
A Geometric B-Spline Over the Triangular Domain

by

Christopher K. Ingram

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2003

c©Christopher K. Ingram 2003

I hereby declare that I am the sole author of this thesis. This is a true copy of

my thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

For modelling curves, B-splines [3] are among the most versatile control schemes.

However, scaling this technique to surface patches has proven to be a non-trivial

endeavor. While a suitable scheme exists for rectangular patches in the form of

tensor product B-splines, techniques involving the triangular domain are much less

spectacular.

The current cutting edge in triangular B-splines is the DMS-spline [2]. While the

resulting surfaces possess high degrees of continuity, the control scheme is awkward

and the evaluation is computationally expensive. A more fundamental problem is

the construction bears little resemblance to the construction used for the B-Spline.

This deficiency leads to the central idea of the thesis; what happens if the simple

blending functions found at the heart of the B-Spline construction are used over

higher dimension domains?

In this thesis I develop a geometric generalization of B-Spline curves over the

triangular domain. This construction mimics the control point blending that occurs

with uniform B-Splines. The construction preserves the simple control scheme and

evaluation of B-Splines, without the immense computational requirements of DMS-

splines. The result is a new patch control scheme, the G-Patch, possessing C0

continuity between adjacent patches.

iii

Acknowledgements

This research has been partially funded through a scholarship from the Natural

Sciences and Engineering Research Council of Canada.

I would like to thank my family for their tireless support over the last year. I

would also like to thank my supervisor, Stephen Mann, for both introducing me to

the field of CAGD and helping my research take shape. Additional thanks to my

readers, Richard Bartels and Bruce Simpson for their valuable feedback.

Finally, a thank-you to “Sesame Street” for teaching me about triangles. I

never fully appreciated their complexities at the time, but a journey must begin

somewhere.

iv

Contents

1 Introduction 1

1.1 Overview . 3

2 Background 4

2.1 Desirable Control Scheme Attributes 4

2.2 Mathematical Terminology . 7

2.2.1 Barycentric Coordinates . 7

2.2.2 Blossoming . 9

2.2.3 Continuity . 10

2.3 Parametric Curves . 11

2.3.1 Bézier Curves . 11

2.3.2 B-Splines . 14

2.4 Parametric Surfaces . 16

2.4.1 Tensor Product Surfaces . 17

2.4.2 Triangular Bézier Patches 18

v

2.4.3 Constraints on Triangular Patch Continuity 20

2.4.4 B-Patches . 21

2.4.5 Simplex Splines . 24

2.4.6 DMS-Splines . 27

3 A Novel Triangular Patch Scheme 31

3.1 Uniform B-Spline Geometry . 32

3.1.1 Degree One B-Splines . 32

3.1.2 Degree Two B-Splines . 33

3.1.3 Degree Three B-Splines . 35

3.1.4 Curve Construction Algorithm 37

3.2 The Triangular Domain . 40

3.3 Uniform Triangular G-Patches . 41

3.3.1 Degree One G-Patches . 42

3.3.2 Degree Two G-Patches . 42

3.3.3 Degree Three G-Patches . 46

3.3.4 Patch Construction Algorithm 48

3.4 Higher Dimension Constructions . 49

4 Control Point Labelling 51

4.1 B-Spline Labelling . 52

4.1.1 The Domain . 52

vi

4.2 B-Spline Evaluation Revisited . 54

4.3 A Geometric Labelling . 57

4.4 G-Patch Labelling . 59

4.4.1 Domain Points . 59

4.4.2 Cubic G-Patch Labels . 61

4.4.3 Cubic G-Patch Evaluation 62

5 The G-Patch Blending Functions 66

5.1 G-Patch Asymmetry . 67

5.2 G-Patch Blending Functions . 68

5.3 Converting G-Patches to Bézier Form 73

5.4 Another Conversion Technique . 76

5.5 G-Patch Basis Functions . 78

6 G-Patch Networks 80

6.1 Upward Pointing Triangular Patches 80

6.1.1 Evaluation . 86

6.2 Downward Pointing Triangular Patches 86

6.2.1 Quadratic G-Patches . 87

6.2.2 Cubic G-Patches . 89

6.2.3 Quartic G-Patches . 90

vii

7 Analysis 93

7.1 Implementation . 93

7.1.1 User Interface . 94

7.1.2 Computational Requirements 94

7.2 Continuity . 96

7.2.1 Bézier Continuity . 96

7.2.2 Shaded G-Patch Surfaces . 101

8 Conclusions 105

8.1 Summary . 105

8.2 Future Work . 106

8.3 A Closing Thought . 108

A Conversion Matrices 109

A.1 Cubic G-Patch Conversion Matrix 110

A.2 Quartic G-Patch Conversion Matrix 111

Bibliography 112

viii

List of Figures

2.1 Control polygon of a cubic Bézier curve. 12

2.2 Data flow diagram for evaluating a cubic Bézier curve. 13

2.3 de Casteljau algorithm for a cubic Bézier curve. 13

2.4 Data flow diagram for evaluating a cubic B-Spline curve. 16

2.5 A tensor product surface. 17

2.6 Control polygon of a cubic Bézier patch. 19

2.7 Running the de Casteljau algorithm on a quadratic Bézier patch. . 20

2.8 A cubic B-Patch domain region. 22

2.9 A labelled cubic B-Patch control network. 23

2.10 Blending three B-Patch control points. 23

2.11 All the level one blending B-Patch points. 24

2.12 Two cubic B-Patches meeting with C0-continuity. 25

2.13 A cubic simplex spline. 25

2.14 The labelled knot clouds for a quadratic DMS patch. 28

2.15 A Simplex spline weighting a quadratic DMS-spline control point. . 28

ix

2.16 A cubic DMS patch. 30

2.17 Two cubic DMS patches. 30

3.1 Blending the two control points in a degree one B-Spline. 33

3.2 Blending control points in a quadratic B-Spline. 34

3.3 The cubic B-Spline control polygon and knot vector. 36

3.4 Cubic B-Spline recursive blending functions. 38

3.5 Indexing the intermediate points and blending functions. 39

3.6 Indexing the control points for triangular patches. 41

3.7 Blending the three control points in a linear G-Patch. 43

3.8 The degree two convex hull, and the corresponding control point

blends. 44

3.9 Valid regions for blending quadratic G-Patch control points. 44

3.10 The geometric meaning of the new blending functions. 45

3.11 The cubic G-Patch convex hull, and the corresponding control point

blends. 46

4.1 Evaluating F (2.5) and F (3.5) in a uniform quadratic B-Spline. . . . 53

4.2 The domain doubly indexed. 53

4.3 The labelled control points of a uniform cubic B-Spline. 55

4.4 The new, labelled points after inserting knot u1 in a cubic B-Spline. 56

4.5 Inserting the remaining knots u2 and u3. 57

4.6 Geometric labelling of the quadratic B-Spline evaluation. 58

x

4.7 The domain triply indexed. 60

4.8 The labelled control points of a uniform cubic G-Patch. 61

4.9 Visualizing the intersection of three domain intervals for a cubic G-

Patch. 63

4.10 Blending three G-Patch control points using validity intervals. . . . 64

4.11 The labelled points after inserting knot u1 in a cubic G-Patch. . . . 64

4.12 The points resulting from the final two knot insertions. 65

5.1 Labelling the corners of the G-Patch domain. 67

5.2 Inserting two different knots into a quadratic G-Patch. 68

5.3 Data flow diagram for evaluating a quadratic G-Patch. 69

5.4 Reversing the data flow diagram for a quadratic G-Patch. 70

5.5 The G-Patch blending function I3
3,3(u). 72

5.6 The G-Patch blending function I3
2,2(u). 72

5.7 The G-Patch blending function I3
2,1(u). 73

5.8 A quadratic G-Patch converted to its Bézier form. 77

6.1 Domain for a network of four cubic G-Patches. 81

6.2 Control polygons of two neighbouring G-Patches. 82

6.3 Reusing neighbouring G-Patch control points. 82

6.4 Control network for three G-Patches. 83

6.5 Manipulating a corner quadratic G-Patch network control point. . . 84

6.6 Manipulating an edge quadratic G-Patch network control point. . . 84

xi

6.7 Manipulating a central quadratic G-Patch network control point. . . 85

6.8 A large network of upward pointing cubic G-Patches. 86

6.9 A quadratic G-Patch network converted to Bézier form. 88

6.10 Filling the hole in a quadratic G-Patch network. 88

6.11 Cubic Bézier control points for neighbouring patches. 89

6.12 A cubic G-Patch surface. 91

6.13 A quartic G-Patch surface. 92

7.1 Domain labelling of three adjacent patches in an G-Patch surface. . 97

7.2 Bézier control points for three adjacent patches in an G-Patch surface. 97

7.3 Top down projection of quadratic G-Patch surface control points. . 98

7.4 Quadratic G-Patch Bézier points not meeting C1. 99

7.5 Top down projection of cubic G-Patch surface control points. 100

7.6 Quartic G-Patch Bézier points not meeting C1. 102

7.7 A shaded quadratic G-Patch surface and its control net. 103

7.8 A shaded cubic G-Patch surface over the same control net. 103

7.9 A shaded quartic G-Patch surface over the same control net. 104

xii

Chapter 1

Introduction

B-Splines are a great design tool. You pull a control point, and the nearby re-

gion of the curve bulges in that direction without affecting the smoothness of the

curve. B-Splines exhibit virtually every desirable property for modelling univariate

curves. This fact alone is why they are so universally used in two dimensional curve

modelling. A testament to their versatility is that True Type fonts1 are built using

quadratic B-Splines to shape the outline of each character.

It is reasonable to hope that such a powerful technique should generalize to

higher dimensions such as surfaces. In fact, one such method exists, and that is to

form the tensor-product of B-Splines in two parametric directions. The result is a

rectangular shaped B-Spline surface. These surfaces can be found in any 3-D API

in the form of Non-Uniform Rational B-Splines (NURBS).

The inherent rectilinear shape of tensor-product B-Splines severely limits their

use in modelling arbitrary shaped surfaces. Thus, it is felt that a triangular B-

Spline surface is a more natural generalization. In 1987 Ramshaw discussed trian-

1Developed by Apple

1

CHAPTER 1. INTRODUCTION 2

gular B-Splines, and put forth what he describes as his “juiciest” challenge: find a

natural way to “blossom” a triangular-patch surface that builds in the appropriate

continuity conditions, similar to what is done with the B-Spline [14].

Over the last fifteen years, there has been a lot of research on triangular spline

surfaces. Each has its own specialized use, but inevitably each has its own funda-

mental limits. What is fascinating is that among this large body of research, there

is not a single scheme that can be declared the true generalization of the B-Spline.

Most implementations are either computationally expensive, possess vague “shape”

parameters, or both.

The current state of the art remains (arguably) DMS-splines, developed in 1992

by Dahmen, Micchelli and Seidel [2]. Their construction produces surfaces where

neighbouring triangular patches in the surface meet with high degrees of continuity.

This continuity does not come cheaply, however. They are difficult to model with

and require unreasonable levels of computation for even low degree surfaces.

One of the primary problems with DMS-splines and other proposed solutions

is they do not emulate the simple blending techniques used to determine points in

a B-Spline. I hypothesize that if a true generalization exists, it should resemble

the B-Spline construction. This is the idea that has motivated my research: how

can the simple formulas used to blend B-Spline control points be scaled to a higher

dimension, and what are the properties of the resulting surfaces?

My work has resulted in a new patch construction algorithm, the G-Patch, based

solely on mimicking the geometry performed in the B-Spline evaluation. The algo-

rithm is computationally efficient, and the resulting surfaces can be manipulated

just as B-Spline curves can. The scheme is far from ideal, though, as the construc-

tion can only guarantee C0 continuity. That is, neighbouring triangular patches

CHAPTER 1. INTRODUCTION 3

meet along their edges, but do not necessarily meet smoothly.

1.1 Overview

This thesis is organized in the following manner.

Chapter 2 discusses the mathematical foundations of relevant curve and sur-

face constructions. This background material will also introduce the mathematical

notation used throughout the rest of the thesis.

Chapter 3 introduces the theory behind the new triangular G-Patch scheme.

The B-Spline construction will be examined from a geometric standpoint, and then

it is generalized to higher dimension domains.

Chapters 4 through 6 establish the connection between the new G-Patch and a

classic triangular patch known as the Bézier patch. Chapter 4 provides a meaningful

labelling to the G-Patch control points reminiscent of those used for B-Splines.

Chapter 5 goes on to show how to convert between the G-Patch and the Bézier

patch. Then in Chapter 6, I demonstrate how to construct a larger surface from a

collection of G-Patches.

Chapter 7 proceeds to analyze the new scheme and compare the results against

the DMS-spline. In particular the continuity exhibited by G-Patch surfaces is ex-

plored.

Finally, in Chapter 8, I draw conclusions about the new construction, and I give

direction for future research.

Chapter 2

Background

In this chapter I will review the basics behind various control schemes used in the

construction of curves and surface patches in geometric design. This chapter also

introduces my notation.

2.1 Desirable Control Scheme Attributes

Before looking at the specific details of different constructions, I first discuss some of

the key attributes that are considered essential to a good control scheme. Neamtu

gives an excellent discussion of necessary requirements for a multi-variate spline

construction [12]. In short, the control scheme should be simple, automatically

smooth, and computationally feasible over large control point networks. The fol-

lowing section gives further details of the desirable properties.

4

CHAPTER 2. BACKGROUND 5

Piecewise Polynomial of a Fixed Degree

A large, complex curve or surface consists of a collection of smaller curves or patches

of a specified degree. While representing the entire surface by a single patch is

possible, it would need to be of extremely high degree to model anything complex.

Constructing the entire curve or surface becomes a simple matter of generating the

individual pieces and rendering them together.

Individual Piecewise Polynomials are Associated to Regions of the Do-

main

Very simply, the domain of the surface can be divided into small regions, and there

is a single piecewise polynomial defined for each particular region.

Control Points

The shape of individual polynomials is specified by a fixed number of points which

are used as coefficients in the polynomial functions. By moving the control points

the user is able to change the shape of the polynomial.

Local Control

Manipulating the control points should only influence a finite region of the entire

curve and surface. While neighbouring regions are likely to be effected by this ma-

nipulation, the extent of the effect should be restricted to a subset of the piecewise

polynomials. More importantly, as the number of piecewise polynomials for the

surface increases, the number of polynomials effected by a control point movement

should not increase.

CHAPTER 2. BACKGROUND 6

Automatic Continuity Maintenance

Given an arbitrary collection of control points, the corresponding piecewise poly-

nomials should meet with some level of continuity automatically. The construction

should not be conditional on the particular placement of the control points (such

as certain points being coplanar) for this continuity to be achieved.

Interactivity

Ultimately, the constructions need to be run on real hardware, and likely will be

manipulated by real people. If moving a single control point results in a signif-

icant time lag to render the altered surface, it limits the ability to incorporate

the technique in real applications. Ideally, a scheme should allow for reasonably

complex surfaces to be manipulated in real time by a human modeler. Generally,

the greater mathematical complexity of the construction, the less interactive its

implementation will be.

Simplifies to Univariate Splines

When the control scheme is used over the domain R1 the classic univariate splines

should be generated.

Numerical Stability

The evaluation of points on the curve or surface should not suffer from any numerical

stability issues. A small deviation in the original control points should not result

in large movements in the points on the resulting polynomial [1]. The evaluation

CHAPTER 2. BACKGROUND 7

should be stable for all choices of the original control points, such as the control

points being near to each other or sets of control points being collinear.

Intuitive User Interface

Altering the position of a control point or knot should result in the curve or surface

changing in a natural manner. For example, pulling a control point away from the

surface should pull nearby regions of the surface in that direction. The placement

of any knots should have a logical effect on the resulting curve or surface. By far

the most subjective attribute, it is often the feature that dictates its incorporation

into real applications.

Most of these desired properties result from the construction having the convex

hull property. Namely, any point on the surface can be expressed as the weighted

average of a neighbourhood of control points, where the weighting functions are

non-negative and sum to one.

2.2 Mathematical Terminology

2.2.1 Barycentric Coordinates

There are numerous ways of representing a point in space. One possible way is

to perform a linear combination of a collection of points in that space. This leads

to a “coordinate-free” system, as it does not depend on any particular coordinate

reference frame to specify the points. This notion of blending points is part of a

bigger field of mathematics known as affine geometry. For a more formal treatment

refer to any introductory text on CAGD [6, 9, 10].

CHAPTER 2. BACKGROUND 8

Given a set W of n points, pi, we can blend them to specify a new point, u, by

weighting each point by a different scalar multiple βi ∈ R:

u =
n∑
i=1

βipi.

In general, this point blending only has geometric meaning if the weights of the

control points sum to one:1

n∑
i=1

βi = 1.

Typically the number of points in W is one more than the dimension of the space

the points reside in.

If none of the points pi can be represented as a linear combination of the remain-

ing points, the collection of points form a simplex. When this occurs, the above

blending is said to be a barycentric combination and the βi values are known as the

barycentric coordinates of u with respect to W .

A barycentric combination in which all the βi values are non-negative is referred

to as a convex combination. This type of blending ensures that the resulting point

is inside the convex hull of W .

To demonstrate barycentric coordinates, a line can be described as a barycentric

combination of two unique points, a and b. A point u on the line can be represented

by

u = β1a+ β2b

= β1a+ (1− β1)b.

The last line follows from the barycentric coordinates summing to one. The entire

line is generated by allowing β1 to vary from −∞ to∞. The original point a results
1There is another geometric meaning if the weights sum to zero; it represents a vector.

CHAPTER 2. BACKGROUND 9

from setting β1 = 1 and β2 = 0 and b results from setting β1 = 0 and β2 = 1. Given

a, b and u, the two barycentric coordinates are given by the following formulae:

β1 = b−u
b−a

β2 = u−a
b−a (2.1)

Barycentric coordinates can also be used to define a plane. Given three non-

collinear points (a, b, c), any point u in the plane can be represented as a barycentric

combination of the three points. The three barycentric coordinates are given by

applying Cramer’s rule:

β1 = area(4ubc)
area(4abc)

β2 = area(4uac)
area(4abc)

β3 = area(4uab)
area(4abc) (2.2)

As a convention, when referring to a point u in a known domain region, we will

directly use its barycentric coordinates relative to the extreme points of the domain

region.

2.2.2 Blossoming

Blossoms [14] or polar forms [5] are one representation for piecewise polynomials

that have barycentric coordinates as its foundation. This representation is in a

parametric form. Ramshaw gives the following theorem about blossoming [14]:

Theorem 1 (The Blossoming Principle) Let F be a degree n polynomial which

maps a point u in a d-dimensional domain to a point in Rk. There exists a unique

map f : (Rd)n → R
k such that:

CHAPTER 2. BACKGROUND 10

• f is symmetric — f(. . . , ui, . . . , uj, . . .) = (. . . , uj, . . . , ui, . . .)

• f is multi-affine — f(. . . ,
∑
βiui, . . .) =

∑
βif(. . . , ui, . . .) when

∑
βi = 1

• f is diagonal — f(u, . . . , u) = F (u)

f is said to be the multi-affine blossom of F . f evaluated at a particular set of

parameters is a blossom value. The specific parameters are the blossom arguments.

As an example, consider a function F (u) = 3u2 + 2u + 1. The unique blossom

of F is f(u1, u2) = 3u1u2 + u1 + u2 + 1.

The multiaffine property shows the connection to barycentric coordinates, al-

lowing us to take barycentric combinations of two blossom values to form a new

blossom value.

2.2.3 Continuity

We are often interested in determining the amount of smoothness throughout a

curve a surface. Blossoming provides a means of defining parametric continuity for

a polynomial.

A polynomial is trivially C∞ everywhere. A piecewise polynomial is C∞ every-

where except at the endpoints between the individual polynomials. We consider

two adjacent polynomials defined by the functions F1 and F2 with u being the pa-

rameter at their junction. If F1 and F2 are discontinuous, they are said to meet with

C−1-continuity at u. If the two polynomials agree at u, but do not meet smoothly,

then they meet with C0-continuity. Ck-continuity is then defined

F
(i)
1 (u) = F

(i)
2 (u) for i = 0 . . . k.

CHAPTER 2. BACKGROUND 11

We can also define continuity in terms of blossoming. The two polynomials

meet with Ck-continuity if for arbitrary choices of u1 . . . uk

f1(u1, . . . , uk, u, . . . , u︸ ︷︷ ︸
n−k

) = f2(u1, . . . , uk, u, . . . , u︸ ︷︷ ︸
n−k

)

2.3 Parametric Curves

We will consider intervals of the one-dimensional domain to define a curve. For

each point u in the interval, we consider its image F (u). The resulting curve is

generated by varying u throughout the domain interval.

2.3.1 Bézier Curves

A degree n Bézier curve is defined by n + 1 control points, P0 . . . Pn. The image

of a point u with barycentric coordinates β1 and β2 relative to a domain interval

[a, b] : a, b ∈ R is

F (u) =
n∑
i=0

PiB
n
i (u), (2.3)

where each Bn
i (u) is one of the degree n Bernstein polynomials

Bn
i (u) =

(
n

i

)
β1

n−iβ2
i. (2.4)

We can use blossoming to give a more geometric evaluation of the curve. The

original control points Pi are given by particular values of the blossom of the Bézier

curve:

Pi = f(a, . . . , a︸ ︷︷ ︸
n−i

, b, . . . , b︸ ︷︷ ︸
i

). (2.5)

CHAPTER 2. BACKGROUND 12

When writing the control points, each point is often labelled with its blossom

value.2 Figure 2.1 shows the four labelled control points of a cubic Bézier curve.

Notice that adjacent control points agree in n − 1 of the blossom arguments. Us-

ing the multi-affine property of blossoming, neighbouring control points can be

blended using u’s barycentric coordinates. For instance f(a, a, b) and f(a, b, b) can

be combined to yield a new point

f(u, a, b) = β1f(a, a, b) + β2f(a, b, b). (2.6)

f(a, a, a)

f(a, a, b)

a u b

f(b, b, b)

f(a, b, b)

Figure 2.1: Blossom labels for the control polygon of a cubic Bézier curve defined

over the domain interval [a, b].

By repeatedly blending neighbouring control points, we can determine the point

of the curve F (u). This leads to the de Casteljau algorithm. The general form

for the blending performed at each step is given by the following relation where

i+ j + k = n− 1:

f(u, . . . , u︸ ︷︷ ︸
i+1

, a, . . . , a︸ ︷︷ ︸
j

, b, . . . , b︸ ︷︷ ︸
k

) = β1f(u, . . . , u︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j+1

, b, . . . , b︸ ︷︷ ︸
k

) +

β2f(u, . . . , u︸ ︷︷ ︸
i

, a, . . . , a︸ ︷︷ ︸
j

, b, . . . , b︸ ︷︷ ︸
k+1

) (2.7)

2This label will sometimes be called the “blossom label” of the point.

CHAPTER 2. BACKGROUND 13

f(u, u, u)

f(a, a, a) f(a, a, b) f(a, b, b) f(b, b, b)

f(u, u, b)f(u, u, a)

f(u, b, b)f(u, a, b)f(u, a, a)

Figure 2.2: Data flow diagram for evaluating a cubic Bézier curve.

Figure 2.2 shows how the original control points for the Bézier curve are re-

peatedly combined to generate the final point on the curve. Figure 2.3 shows the

de Casteljau algorithm being run on the original control points. Note that the ratio

of the length of the line segments au : ub is preserved for each blend.

b

f(a, a, u)

f(b, b, u)

f (u, u, u)

f(a, a, b) f(a, b, u) f(a, b, b)

f(a, a, a) f(b, b, b)

f(b, u, u)
f(a, u, u)a u

Figure 2.3: Running the de Casteljau algorithm on a cubic Bézier curve. For each

blend, the ratio of the lengths between au (shown in black) and ub (shown in grey)

is used.

The Bézier curve is a wonderful tool with a simple control scheme and efficient

evaluation. However, modelling a sufficiently complex curve requires the Bézier

CHAPTER 2. BACKGROUND 14

curve to have an extremely high degree. The curve also does not possess local

control since moving a single control point affects the entire curve. A simple solution

to the problem is to divide the domain into smaller regions, and define a Bézier

curve for each region. The only problem is ensuring that adjacent Bézier curves

meet smoothly.

2.3.2 B-Splines

The B-Spline is a construction that generalizes Bézier curves. A degree n B-Spline

is a piecewise polynomial curve in which adjacent curve segments may meet with

up to Cn−1-continuity. The degree of continuity is controlled by the user, and is

provided automatically by the construction. Neighbouring regions of the curve also

share most of their control points.

For a B-Spline the domain is partitioned into an increasing sequence of scalar

values, ti ∈ R, called the knot vector.3 For a degree n curve, the i’th control

point Pi represents a special blossom value using knots as blossom arguments:

f(ti, ti+1, . . . , ti+n−1). The i’th curve segment is defined over the domain interval

[ti+n−1, ti+n] and is constructed using the n+ 1 control points Pi . . . Pi+n.

The image of a point u in this interval is defined by

F (u) =
n∑
i=0

PiN
n
i (u),

where Nn
i (u) is the i’th B-Spline basis function of degree n over the given knot

vector. The basis function can be evaluated using the recurrence relation

Nn
i (u) =

u− ti
ti+n − ti

Nn−1
i (u) +

ti+m+1 − u
ti+m+1 − ti+1

Nm−1
i+1 (u)

N0
0 (u) = 1

3Note that i, the index of the knot, is an integer, but the knot itself is a real number.

CHAPTER 2. BACKGROUND 15

If the denominator is zero as a result of coincident knots, the term is defined to be

zero. Note each B-Spline basis function is non-zero over only a finite interval, thus

providing local control.

As with the Bézier curve, using the blossom values provide a more geomet-

ric evaluation for a point on the curve. If we consider evaluating a point on the

i’th curve segment of a cubic B-Spline, the four control points that define the

segment have blossom values f(ti, ti+1, ti+2), f(ti+1, ti+2, ti+3), f(ti+2, ti+3, ti+4) and

f(ti+3, ti+4, ti+5). Neighbouring control points agree in all but one of the blossom

arguments. If we take u’s barycentric coordinates relative to the disagreeing argu-

ments, we can blend a new point using the following relation:

f(u, . . . , u︸ ︷︷ ︸
j

, ti+j, . . . , ti+n−j) = β1f(u, . . . , u︸ ︷︷ ︸
j−1

, ti+j−1, . . . , ti+n−j) +

β2f(u, . . . , u︸ ︷︷ ︸
j−1

, ti+j, . . . , ti+n−j+1) (2.8)

By repeatedly blending points in this fashion we get the de Boor algorithm [4].

Figure 2.4 shows how the original control points for the B-Spline curve are repeat-

edly blended to generate the final point on the curve.

One segment of the B-Spline curve is simply an alternative representation of

a Bézier curve. One could easily derive the particular Bézier control points for

the curve segment by inserting the appropriate knots using the de Boor algorithm.

As mentioned earlier, the primary advantage of the B-Spline representation is that

continuity between neighbouring segments is provided automatically.

The knot vector controls the tightness of the curves near the associated control

points, while still supporting the continuity conditions. Should lower continuity

CHAPTER 2. BACKGROUND 16

f(u, ti+1, ti+2)

f(ti, ti+1, ti+2) f(ti+1, ti+2, ti+3) f(ti+3, ti+4, ti+5)f(ti+2, ti+3, ti+4)

f(u, u, ti+3)f(u, u, ti+2)

f(u, u, u)

f(u, ti+2, ti+3) f(u, ti+3, ti+4)

Figure 2.4: Data flow diagram for evaluating a cubic B-Spline curve.

be desired, allowing consecutive knots to have the same scalar value decreases the

continuity between the two curves that meet at that place in the domain.

B-Splines possess all of the desired properties listed at the start of the chapter.

Along with automatically maintaining a collection of smoothly joining piecewise

polynomial curves, they have a simple evaluation, provide local control and most

importantly, are intuitive to use.

2.4 Parametric Surfaces

The parametric polynomial curve can be generalized to surfaces quite naturally. We

will consider intervals of the two-dimensional domain to define a patch. For each

point u in the interval, we consider its image F (u). The resulting surface patch is

generated by varying u throughout the area of the domain interval.

CHAPTER 2. BACKGROUND 17

2.4.1 Tensor Product Surfaces

A simple patch scheme is to divide the domain into two parametric directions u

and v as in Figure 2.5. A parametric curve is defined for each of the two parametric

directions. By holding either the u or v parameter constant, and allowing the other

parameter to vary through the domain, a curve is generated in that parametric

direction. By allowing both parameters to vary, a surface is defined.

a

u

v

Figure 2.5: Four tensor product patches defined over two parametric directions u

and v. All four patches share a common vertex a.

For instance, we can define a tensor product of a degree m and a degree n Bézier

curve. The resulting surface is given by

F (u, v) =
n∑
i=0

m∑
j=0

Pi,jB
n
i (u)Bm

j (v). (2.9)

Optionally, B-Spline curves can be used in each of the parametric directions which

yield tensor product B-Splines.

CHAPTER 2. BACKGROUND 18

Tensor product B-Splines can be efficiently evaluated using a slight modification

of the de Boor algorithm. They also inherit most of the desirable properties of

univariate B-Splines such as local control and an intuitive control scheme. The only

drawback is that the surfaces are inherently rectangular in shape. Neighbouring

patches must also meet at a common corner vertex to join continuously as seen

in Figure 2.5. If the domain cannot be naturally partitioned into quadrilaterals,

tensor product B-Splines are not the appropriate modelling tools. A trimming

curves approach can adapt the technique to more geometries, but there is no general

technique for joining two trimmed surfaces [6].

2.4.2 Triangular Bézier Patches

A more natural way to partition the domain is into triangular regions. More surface

geometries can be tiled with triangles than can be tiled with quadrilaterals. This

allows the creation of arbitrarily shaped surfaces. The Bézier curve formulation can

be generalized to triangular shaped surface patches.

A degree n Bézier patch is defined using a triangular layout of
(
n+2
n

)
control

points: Pi,j,k: i, j, k ≥ 0 and i + j + k = n. We will consider an interval in the

domain defined by the triangle 4abc : a, b, c ∈ R. The image of a point u with

barycentric coordinates β1, β2 and β3 is generated by

F (u) =
∑

i, j, k≥0
i+j+k=n

Pi,j,kB
n
i,j,k(u) (2.10)

where each Bn
i,j,k(u) is one of the two-dimensional degree n Bernstein polynomials

given by

Bn
i,j,k(u) =

(
n

i, j, k

)
β1

iβ2
jβ3

k (2.11)

CHAPTER 2. BACKGROUND 19

where
(
n
i,j,k

)
is the generalized binomial coefficient defined as(

n

i, j, k

)
=

n!

i!j!k!
.

As with the curve case, we can use blossoming to give a geometric evaluation of

the curve. The control point Pi,j,k has a blossom value of

Pi = f(a, . . . , a︸ ︷︷ ︸
i

, b, . . . , b︸ ︷︷ ︸
j

, c, . . . , c︸ ︷︷ ︸
k

). (2.12)

f(a, b, c)

u

b c

a

f (c, c, c)

f (a, a, c)

f (a, c, c)

f (b, b, b)

f (a, b, b)

f (a, a, b)

f (b, b, c) f (b, c, c)

f (a, a, a)

Figure 2.6: Blossom values for the control polygon of a cubic Bézier patch defined

over the domain triangle 4abc.

Figure 2.6 shows the labelled control points for a cubic Bézier patch. Three

neighbouring control points that form an upward pointing triangle agree in n − 1

of their blossom arguments. Using the multi-affine property of blossoming, three

neighbouring control points can be blended using u’s barycentric coordinates rel-

ative to 4abc. For instance f(a, a, b), f(a, b, b) and f(a, b, c) can be combined to

yield a new point

f(u, a, b) = β1f(a, a, b) + β2f(a, b, b) + β3f(a, b, c). (2.13)

CHAPTER 2. BACKGROUND 20

By repeatedly blending triples of neighbouring control points, we can determine

the point on the patch F (u). This is identical to the de Casteljau algorithm used

to generate points on a Bézier curve. Figure 2.7 shows the de Casteljau algorithm

being run on a quadratic Bézier patch.

f (a, b)

f (u, c)

u

f (b, b) f (b, c) f (c, c)

f (a, c)

f (u, b)

f (u, u)

f (a, a)

a

b

f (u, a)

c

Figure 2.7: Running the de Casteljau algorithm on a quadratic Bézier patch.

The Bézier patch inherits many of the properties of the Bézier curve. Most

important is that modelling sufficiently complex surfaces requires the Bézier patch

to have an extremely high degree. This is easily solved by dividing the domain into

smaller triangular regions, and defining a Bézier patch for each region. However,

it is a non-trivial task to devise a simple control scheme in which the neighbouring

patches automatically meet with some degree of continuity.

2.4.3 Constraints on Triangular Patch Continuity

The B-Spline solved the problem of automatically managing a collection of Bézier

curves such that they met with Cn−1-continuity. It seems only natural to desire

the same level of continuity for a patch construction scheme. However, Ramshaw

[14] and Gallier [9] prove a bleak property for a network of Bézier triangles.

CHAPTER 2. BACKGROUND 21

Theorem 2 (Triangular Bézier Patch Continuity Constraints) For a sur-

face consisting of degree n ≥ 1 triangular Bézier patches the highest degree of

continuity possible, while still providing local flexibility, is Ck-continuity, where

k < 2n−1
3

.

This implies that a surface of cubic Bézier patches cannot possess more than C1

continuity. If C2-continuity is desired, the surface must necessarily be built from

quartic patches.

Despite such a strong claim, the proof gives absolutely no insight into how to

construct a network of patches that possess this level of continuity. This is what

led Ramshaw to propose his challenge problem discussed in the introduction; a

problem that remains open to this day.

2.4.4 B-Patches

One way of looking at a region of the B-Spline is to imagine knots being “pulled

out” of a Bézier curve. For a region of the domain [a, b] each Bézier control point

was defined by

f(a, . . . , a︸ ︷︷ ︸
n−i

, b, . . . , b︸ ︷︷ ︸
i

).

For the B-Spline curve representation each instance of a and b is labelled separately

giving

f(an−i−1, . . . , a0, b0, . . . , bi−1).

Each of the aj and bj values represents a different knot on the domain line such

that a = a0 ≥ a1 ≥ . . . ≥ an−i−1 and b = b0 ≤ b1 ≤ . . . ≤ bi−1.

The B-Patch attempts to generalize this idea by “pulling knots” out of the

corner of the domain triangle defined for a Bézier patch. The collection of knots

CHAPTER 2. BACKGROUND 22

corresponding to each corner is referred to as a knot cloud. For a region of the

domain 4abc Figure 2.8 shows a possible configuration of the knot clouds.

a0

c2

b1

a2

c1

c0

b2

b0

a1

Figure 2.8: A cubic B-Patch domain region.

A Bézier patch control point with blossom label

f(a, . . . , a︸ ︷︷ ︸
i

, b, . . . , b︸ ︷︷ ︸
j

, c, . . . , c︸ ︷︷ ︸
k

)

is now relabelled as

f(a0, . . . , ai−1, b, . . . , bj−1, c, . . . , ck−1).

Figure 2.9 shows the blossom values for a cubic B-Patch.

Note that three neighbouring points forming an upward pointing triangle agree

in n − 1 blossom arguments. This leads to a de Boor style algorithm to evaluate

a point u in the domain. If we express u in barycentric coordinates relative to the

remaining blossom arguments, we can blend the three points. Figure 2.10 shows

the blending of the top three control points. The three points are weighted by u’s

barycentric coordinates in terms of the domain triangle 4a2b0c0 to yield a new

point f(b0, b1, u).

Proceeding with the remainder of the upward pointing triangles, a total of

six new control points are generated and are given in Figure 2.11. Once again,

CHAPTER 2. BACKGROUND 23

f (a0, b0, c0)

f (a0, b0, b1)

f (a0, a1, b0)

f (b0, b1, b2)
f (b0, b1, c0) f (b0, c0, c1)

f (c0, c1, c2)

f (a0, c0, c1)

f (a0, a1, c0)

f (a0, a1, a2)

Figure 2.9: A labelled cubic B-Patch control network.

b0 c0

a2

u

f (a0, b0, c0)

f (a0, b0, b1)

f (a0, a1, b0)

f (b0, b1, b2)
f (b0, b1, c0) f (b0, c0, c1)

f (c0, c1, c2)

f (a0, c0, c1)

f (a0, a1, c0)

f (a0, a1, a2)

f (a0, a1, u)

Figure 2.10: Blending three B-Patch control points.

neighbouring control points differ in only one argument, so the algorithm can be

repeated. This procedure continues until the point f(u, u, u) is derived.

At this point it seems that an appropriate generalization of B-Spline curves has

emerged. However, the evaluation of a single B-Patch does not extend well to a

network of patches. Consider just two adjacent domain regions that share a common

CHAPTER 2. BACKGROUND 24

f (b0, c0, u)

f (b0, b1, u)

f (a0, b0, u)

f (a0, a1, u)

f (c0, c1, u)

f (a0, c0, u)

Figure 2.11: All the level one blending B-Patch points.

edge. We would like to reuse the knot clouds for the corners shared by the domain

regions. We would also like the control polygons of the two corresponding patches

to share control points. Figure 2.12 shows a knot and control point configuration

which allows the two patches to meet with some degree of continuity. The key

feature to note is that the knots along the shared domain edge are collinear.

Seidel proved that this collinearity is a necessary condition for C0 continuity

to take place [15]. This makes arbitrary surfaces impossible to construct. The

collinearity requirement between all the adjacent domain triangles forces the knot

clouds to collapse back to their original locations at the corner of each domain re-

gion. At this point the B-Patches degenerate to simple Bézier patches, and nothing

has been gained.

2.4.5 Simplex Splines

The major problem with B-Patches is that the underlying basis functions do not

automatically provide the required degrees of continuity. The simplex spline, on

CHAPTER 2. BACKGROUND 25

Figure 2.12: A screen capture of two cubic B-Patches meeting with C0-continuity.

The two patches share the control points along their common edge. The domain

with the knot clouds is shown in the bottom left corner.

Figure 2.13: A cubic simplex spline that is C2-continuous everywhere. The six

knots in the domain defining the spline are shown in the bottom left corner.

CHAPTER 2. BACKGROUND 26

the other hand, is a function that does.

The simplex spline is a degree n spline defined over n+ 3 points (knots) in the

domain. A simplex spline exhibits Cn−1 continuity everywhere unless three or more

knots are collinear, in which case the continuity drops along that line.

We will now define the evaluation of the simplex spline over a set of knots V at

a point u. The point on the spline is given by F (u) = M(u|V).

If we triangulate the domain over V , any point on a line connecting two points is

within the convex hull of both triangular regions sharing that edge. The half-open

convex hull is a subset of the convex hull defined such that any point in the domain

is assigned membership to exactly one region [8].

The simplex spline is defined recursively. Consider the base case of evaluating

a point u for a simplex spline defined by a set of three knots V = {t0, t1, t2}.

If u is outside the half-open convex hull defined by V = {t0, t1, t2}, then

M(u|V) = 0

otherwise

M(u|V) =
1

Area 4t0t1t2
.

Higher degree simplex splines of degree n are defined over the set of n+ 2 knots

V = {t0, . . . , tn+1}. An arbitrary set of three points is selected from V to form a

set W = {ta, tb, tc}. If β1, β2 and β3 are u’s barycentric coordinates with respect to

W , then

M(u|V) = β1M(u|V \{ta}) + β2M(u|V \{tb}) + β3M(u|V \{tc}).

Figure 2.13 shows a cubic simplex defined over a hexagonal shaped knot configura-

tion.

CHAPTER 2. BACKGROUND 27

The simplex spline provides the necessary continuity conditions such that they

can be used as basis functions. There are some drawbacks in the simplex spline

evaluation that are worth mentioning. The choice of the knots to place in W

during each recursive evaluation can effect the results of the computation if not

chosen carefully. The evaluation is also plagued with numerical stability issues.

Finally, evaluating a single point on the surface is computationally expensive.

2.4.6 DMS-Splines

The current state of the art remains DMS-splines jointly developed in 1992 by Dah-

men, Micchelli and Seidel [2]. The technique attempts to merge the nice labelling

of the control points found in B-Patches with the smooth basis functions found

in simplex splines. The result is a patch construction scheme that yields a Cn−1

continuous surface.

The setup is similar to B-Patches. The domain is triangulated, and with each

corner of the domain a knot cloud is arranged. For a degree n triangular patch, n

knots are pulled out of each corner of the domain triangles. Note that this is one

more knot than was needed for a B-Patch. Figure 2.14 shows the knot clouds defined

for a quadratic DMS spline. A triangular patch defined for the domain region 4abc

is specified using
(
n+2
n

)
control points Pi,j,k: i, j, k ≥ 0 and i+ j + k = n.

To incorporate the ideas of the Simplex spline, we define a set

Vi,j,k = {a0, . . . , ai, b0, . . . , bj, c0, . . . , ck}.

This spline is not normalized, so we define a normalization factor given by

di,j,k = area 4aibjck.

CHAPTER 2. BACKGROUND 28

a0

c2

b1

a2

c1

c0

b2

b0

a1

Figure 2.14: The labelled knot clouds for a quadratic DMS patch.

To evaluate a point u on the triangular patch, each control point is weighted by

the Simplex spline corresponding to the set above. Figure 2.15 shows a quadratic

simplex spline that is weighting one of the control points.

c1

b0

u
c0

a0

P0,0,2

P1,0,1P1,1,0

P0,2,0
P0,1,1

P2,0,0 a1

Figure 2.15: A Simplex spline weighting a quadratic DMS-spline control point.

This yields the following formula to evaluate a point on the surface:

F (u) =
∑

i+j+k=n

Pi,j,kdi,j,kM(u|Vi,j,k) (2.14)

A screen capture of a single DMS patch is shown in Figure 2.16.

CHAPTER 2. BACKGROUND 29

For a network of DMS patches, the above evaluation is not quite complete. Con-

trol points from neighbouring patches may contribute to the evaluation of a point

on the surface. This is because the simplex splines weighting each control point can

evaluate to non-zero values outside the domain triangle the patch is defined over.

Figure 2.17 shows the result of adding a neighbouring patch to Figure 2.16. The

original patch has changed shape and no longer curls back on itself along its upper

left edge. Instead it is extended so that it blends smoothly into the new patch.

The DMS construction can yield Cn−1 continuous surfaces, but does the scheme

solve Ramshaw’s original problem? Unfortunately, a DMS patch does not correlate

to the Bézier patch, so it is not actually solving the problem. This fact can be

excused if it manages to provide the desirable control scheme attributes discussed

at the start of the chapter. Regrettably, the control scheme is far from ideal.

The most noticeable problem comes from the computational cost of evaluating the

surface. There does not yet exist a nice coefficient based evaluation for the DMS

patch. In calculating a point on the surface numerous simplex splines must be

explicitly evaluated, which (as previously mentioned) is an expensive operation to

perform. As well, it is not easy to determine which neighbouring control points

will factor into the evaluation. Since simplex splines are explicitly calculated, the

DMS spline evaluation inherits the numerical stability issues occurring in simplex

splines.

Computational issues aside, the DMS control scheme does not present an el-

egant user interface. While manipulating the control points should not pose a

problem, the placement of the knot clouds presents an enormous challenge to the

user. Moving the knots has unexpected results, and it is an enormous burden trying

to prevent too many knots from becoming collinear. It is also not known if there

is a “good” way to place the knots automatically for the user.

CHAPTER 2. BACKGROUND 30

Figure 2.16: A cubic DMS patch. The knot clouds in the domain for the patch are

shown in the bottom left corner.

Figure 2.17: Two cubic DMS patches. The knot clouds in the domain for the

patches are shown in the bottom left corner.

Chapter 3

A Novel Triangular Patch Scheme

I will introduce a new triangular patch construction scheme, G-Patches. Their

construction attempts to generalize the geometry of a uniform B-Spline curve over

higher dimensional domains.

Most generalizations of higher order B-Splines attempt to find some method of

attributing knots to each of the control points in the surface. The result is that the

simple knot vector of the low order splines becomes a knot cloud in the higher or-

der surfaces. However, I propose that before providing the flexibility of free moving

knots, it is worth studying how to create a generalization of the blending functions

used in the uniform B-Spline. Thus far, no one has provided a direct higher order

analogy for the uniform case. Tackling this problem on its own is worthy of inves-

tigation, and may provide the clues to developing the true generalization that is so

actively being sought.

31

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 32

3.1 Uniform B-Spline Geometry

The general de Boor evaluation for a point u over an arbitrary knot vector re-

quires calculating u’s barycentric coordinates with respect to many different pairs

of points. Assuming that all the knots are evenly spaced simplifies the computa-

tions required to generate u’s image. Once we deduce how to perform the geometry

over one piecewise polynomial, we can duplicate the same construction through

each region of the domain. At this point the knot vector can then be discarded

altogether.

Consider the region [ta, tb] of the domain defining one segment of the piecewise

polynomial. In a uniform, degree n B-Spline, if ta and tb are spaced k units apart,

then the relevant knot vector consists of 2n knots {ta−n+1, . . . , ta, tb, . . . , tb+n−1} all

spaced k units apart. These knots are used as blossom arguments for the n + 1

control points defining this region of the curve. We will consider u’s image when u

is in the range ta ≤ u ≤ tb.

3.1.1 Degree One B-Splines

Consider the simple case where we have a degree one spline. Here, the knot vector

is {ta, tb}. If we look at the blossom values for the two control points, P0 and P1,

we see that the first point is labelled f(ta), while the other is labelled f(tb). To

find F (u), we simply determine u’s barycentric coordinates with respect to ta and

tb and use those coordinates to blend the two control points as shown in Figure 3.1.

Using Equation 2.1 we get u’s barycentric coordinates satisfying the relation

u = β1ta + β2tb, β1 + β2 = 1,

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 33

F (u)

ta u tb

β2

P1

P0

f(ta)

f(tb)

β1

β2

β1

Figure 3.1: Blending the two control points in a degree one B-Spline. β1 and β2

are used to weight the two control points.

and the image of u is consequently

F (u) = β1P0 + β2P1.

3.1.2 Degree Two B-Splines

Now that we have defined the base case, we consider quadratic B-Splines. Again, u

is restricted to vary from ta to tb. For this case, the knot vector is {ta−1, ta, tb, tb+1}

and there are three control points, P0, P1, P2, with blossom values f(ta−1, ta),

f(ta, tb) and f(tb, tb+1) respectively.

To evaluate the curve, we perform affine combinations of neighbouring control

points. Notice that neighbouring control points have all but one blossom argument

in common so we find the barycentric coordinates of u relative to the blossom

argument unique to each point. Thus, for the first two control points, we find the

barycentric coordinates of u in terms of ta−1 and tb.

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 34

It is important to take a look at where the image of u will be on this line: it

always lies in the half of the line nearest the middle control point. Figure 3.2 high-

lights these valid locations on the line in grey. Manually calculating the barycentric

coordinates of u for this step is not difficult, but it would be nice if we could deter-

mine the new coordinates automatically. As it turns out, if we know the barycentric

coordinates of u relative to ta and tb, then we can directly convert these values to

the new coordinates needed for this step.

tb

P2

β2

P1

P0

ta u

β1+1

2

β1

β2

2

β2+1

2

β1

2

Figure 3.2: Blending the three control points in a quadratic B-Spline. The weighting

of each control point is given along the arcs. The grey region of each line segment

indicates possible locations of the new points after the first level blending.

Using the barycentric coordinates β1 and β2 for u, we map these to new barycen-

tric coordinates, β′1 and β′2, defined relative to ta−1 and tb. Using the uniformity of

knot placement, we find that

u = β′1ta−1 + β′2tb

=
β1

2
ta−1 +

β2 + 1

2
tb.

Thus we can blend the two control points to get an image on the line between them

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 35

using

f(u, ta) =
β1

2
P0 +

β2 + 1

2
P1. (3.1)

Symmetrically, we can blend the last two control points using a similar formula:

f(u, tb) =
β1 + 1

2
P1 +

β2

2
P2. (3.2)

Figure 3.2 shows the blending functions used to generate these new points.

Finally, we are left with the task of blending the two new points f(u, ta) and

f(u, tb) to generate the point on the curve. Since the two points agree in all but

one blossom argument, we can again apply the blossoming principle. We combine

the points using u’s barycentric coordinates relative to the arguments they disagree

on. This calculation is identical to that used for the degree one B-Spline, therefore,

we combine the points with the original barycentric coordinates of u, β1 and β2.

Thus,

f(u, u) = β1f(u, ta) + β2f(u, tb).

3.1.3 Degree Three B-Splines

It is worth looking at the degree three B-Spline construction before generalizing

the technique. The set of relevant knots increases by two yielding the knot vector

{ta−2, ta−1, ta, tb, tb+1, tb+2}. There are four controls P0, . . . , P3, with each point

having three arguments in its blossom label as given in Figure 3.3.

Again, we blend neighbouring control points, and again the points differ in only

one blossom argument. We need to find the barycentric coordinates of u relative

to the differing blossom argument. Thus for the first two control points, we must

find the barycentric coordinates of u in terms of ta−2 and tb.

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 36

P2

P3P0

P1

ta−2

f(tb, tb+1, tb+2)f(ta−2, ta−1, ta)

f(ta−1, ta, tb)

ta tb

u

ta−1 tb+1 tb+2

f(ta, tb, tb+1)

Figure 3.3: The cubic B-Spline control polygon and knot vector. The grey region

of the knot vector indicates all the possible values of u. The grey region of each

line segment in the control polygon indicates the locations of the new points after

the first level blending.

This time, we notice that u’s image will always lie in the third of the line closest

to the second point. Figure 3.3 highlights in grey the valid locations of u’s image

on all three line segments of the control polygon. The technique of automatically

converting the barycentric coordinates, β1 and β2 to the new coordinates β′1 and β′2

can again be performed by taking advantage of the uniformity of the knot vector.

We reach a slightly different formula:

u =
β1

3
ta−2 +

β2 + 2

3
tb.

Thus we can blend the two control points to get u’s image on the line between them

with

f(u, ta−1, ta) =
β1

3
P0 +

β2 + 2

3
P1.

Similarly, we can blend the last two control points by the symmetric formula:

f(u, tb, tb+1) =
β1 + 2

3
P2 +

β2

3
P3.

Finally we need to consider blending the middle two control points. If we look

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 37

at the image of u, we see it always lies in the middle third of the line. Similar to

above, with a uniform knot vector the barycentric coordinates of u relative to ta−1

and tb+1 are given by

f(u, ta, tb) =
β1 + 1

3
P1 +

β2 + 1

3
P2.

At this point we are left with three new points with which to blend: f(u, ta−1, ta),

f(u, ta, tb) and f(u, tb, tb+1). These blossom arguments are identical to the quadratic

case, with an additional u argument. Therefore, we combine these points using the

formulas from the previous section.

3.1.4 Curve Construction Algorithm

Let us examine all the blending functions used to combine the control points for

a cubic B-Spline curve (Figure 3.4). The four original control points are at the

top of the figure, and the point on the curve is at the bottom. This is the same

as Figure 2.4, but with the various values of β′1 and β′2 used to blend points given

along the edges of the diagram. β′1 always appears along edges flowing down and

to the right, while β′2 always appears along edges flowing down and to the left.

At this point we see a pattern emerging in the values generated for our formulas.

This pattern makes it easy to construct a dynamic program to calculate points for

a degree n uniform B-Spline. We can automatically calculate the particular value

of β′1 and β′2 needed to blend any two points, based on its location in the triangle.

We will label the intermediate points in the blending function triangle using two

indices. The first index, deg, indicates what row the point is from. All of the points

in that row can be interpreted as control points for a curve of degree deg. The

second index, i, indicates which of the control points in the row is being referenced

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 38

β2+1

2

β1+0

1

β1+1

2

β2+0

3

β1+2

3

β2+1

3

β1+1

3

β2+2

3

β1+0

3

β2+0

1

β1+0

2

β2+0

2

f(u, tb, tb+1)

f(u, u, u)

f(ta−1, ta, tb)

f(u, ta, tb)

f(tb, tb+1, tb+2)f(ta, tb, tb+1)f(ta−2, ta−1, ta)

f(u, u, tb)f(u, u, ta)

f(u, ta−1, ta)

Figure 3.4: Cubic B-Spline recursive blending functions.

(Figure 3.5). The edges now show the blending function used to combine control

points from level deg.

The ith pair of blending functions for combining points on the deg’th level is

given by

β′1 =
β1 + i

deg

β′2 =
β2 + deg − i− 1

deg
(3.3)

This represents the general form for blending the degree deg uniform B-Spline con-

trol points. At this point the knot vector has been eliminated from the calculations

entirely.

Before continuing, we should verify that each pair of blending functions sum to

unity as barycentric coordinates should:

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 39

β2+1

3

β2+2

3

β1+0

3

β1+0

2

β2+0

2

β2+1

2

Degree 3 blends

Degree 2 blends

Degree 1 blends
β1+0

1

β2+0

1

β1+1

2

β2+0

3

β1+2

3

β1+1

3

P3,0 P3,1 P3,2 P3,3

P2,2P2,1P2,0

P0,0

P1,0 P1,1

Figure 3.5: Indexing the intermediate points and blending functions.

β′1 + β′2 =
β1 + i

deg
+
β2 + deg − i− 1

deg

=
β1 + β2 + i− i+ deg − 1

deg

=
1 + deg − 1

deg

=
deg

deg

= 1 for deg 6= 0

This leads to an efficient algorithm to calculate a point on the curve. It is

essentially the de Boor algorithm with precomputed blending functions, and is

not meant to be considered a new algorithm, simply a revisitation of the classical

methodology. For this algorithm, we have u, the point in the domain, passed in as

its barycentric coordinates relative to ta and tb.

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 40

Algorithm UniformBlossom(β1, β2, P []):

Input: u’s barycentric coordinates and, P , an array of n control points

Output: F (u), the point on the curve

1: for deg from n− 1 to 1 do

2: for i from 0 to deg − 1 do

3: P [i]← β1+i
deg
· P [i] + β2+deg−i−1

deg
· P [i+ 1]

4: return P [0]

Like the de Boor algorithm, this dynamic programming algorithm has an O(n2)

running time and requires only O(n) space. The difference, though, is that it does

not perform explicit calculations using an underlying knot vector.

3.2 The Triangular Domain

Having simplified the construction for curves it is time to scale this up to surfaces

defined over a triangular domain. At the heart of B-Splines are Bézier curves. Bézier

curves are defined over a similar domain as the B-Splines, but without the concept

of knots. As indicated in the previous chapter, the knots and reuse of control points

are what give B-Splines their continuity properties for neighbouring curve segments.

Also discussed in the previous chapter, Bézier patches are the generalization of

Bézier curves to surfaces. The domain of a Bézier patch is triangular, and I would

like to use the same domain in my generalization of the B-Splines.

For the moment I will focus on one piecewise polynomial patch in the domain.

This piece of the domain is represented by an equilateral triangle with corners

labelled ta, tb and tc. We are concerned with mapping a point u inside this domain

triangle to a point on the patch. We represent u with barycentric coordinates β1,

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 41

β2 and β3 such that

u = β1ta + β2tb + β3tc, β1 + β2 + β3 = 1.

3.3 Uniform Triangular G-Patches

I construct the degree deg patches (hereafter referred to as G-Patches) out of a

control net of
(
deg+2

2

)
control points laid out in a triangular grid. As with Bézier

patches, we will repeatedly blend three neighbouring points that form an upward

pointing triangle. We label the points with a double index, Pi1,i2 , where i1 is the

row, and i2 is the particular point in that row. It is noted that i2 is always less

than or equal to i1, and indexing starts with 0. Figure 3.6 shows the control points

for a cubic patch.

u

P3,3

P2,2

P1,1

P3,2

P0,0

P1,0

P2,0

P3,1
P3,0

P2,1

ta

tb tc

Figure 3.6: Indexing the control points for triangular patches.

For the remainder of this chapter I will refer to the control points using this

indexing. At this stage we will not concern ourselves with the notion of knots; we

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 42

will just focus on developing the new blending functions. This means we do not

yet have blossom values to associate with the control points. In Chapter 4 a more

geometric labelling for the control points will be derived.

All that remains is to scale the derivations from Section 3.1.4 to handle the new

triangular domain. As before, we will be converting β1, β2 and β3 to the appropriate,

new, barycentric coordinates, and using these to blend the neighbouring points.

3.3.1 Degree One G-Patches

Degree one G-Patches have three control points associated with them: P0,0, P1,0

and P1,1. Here we want the patch to encompass the entire triangle just as the degree

one B-Spline curve covers the entire line between the two control points.

For the degree one curve, we saw the values of β′1, β′2 were simply β1 and β2, so

it seems appropriate to use the same general formula. Thus, our new barycentric

coordinates will be

β′1 =
β1 + 0

1
, β′2 =

β2 + 0

1
, β′3 =

β3 + 0

1
. (3.4)

The inclusion of the denominator and addition by zero will become apparent when

looking at higher degree patches.

Blending the three control points with these barycentric coordinates will yield

the image of u on the patch as shown in Figure 3.7.

3.3.2 Degree Two G-Patches

Degree two G-Patches have six control points P0,0, . . . , P2,2. There are three different

upward pointing triangles, resulting in three different blending functions. For the

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 43

F (u)

P0,0

β1

β3

P1,0

ta

tc

β2

β1

β3

P1,1

u β2

tb

Figure 3.7: Blending the three control points in a linear G-Patch. β1, β2 and β3

are used to weight the control points.

purpose of this discussion, we will refer to blending the top three control points

as blend A, the bottom left three control points as blend B and the bottom right

control points as blend C as shown in Figure 3.8.

For the degree two B-Splines, the blending functions mapped u onto the inner

half of the points being combined. For the G-Patch, we will devise a similar blending

function that maps u to regions that are located nearer the center of the control

net. Thus, the barycentric coordinates used to blend A should result in the image

laying in the bottom middle of the three points. Figure 3.9 highlights in grey the

target regions for each blending function.

Looking back at Equation 3.1 and Equation 3.2 for the degree two B-Spline, we

see that β′1 and β′2 take the form

β′1 =
β1 + 0

2
, β′2 =

β2 + 1

2

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 44

P1,0

P2,0

P1,1

P0,0

A

B C

P2,2P2,1

Figure 3.8: The degree two convex hull, and the corresponding control point blends.

P1,0

P2,2P2,1P2,0

P1,1

P0,0

Figure 3.9: Valid regions for the first level blending of quadratic G-Patch control

points. The image of u for all three blends will fall within the shaded regions.

and

β′1 =
β1 + 1

2
, β′2 =

β2 + 0

2
.

When blending the two leftmost points, β′1 has a “+0” term while the other

barycentric coordinate has a “+1” term. When blending the rightmost pair, β′2 has

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 45

the “+0” term while the other barycentric coordinate has the “+1” term.

Using the same idea for the G-Patch, when blending the points for A, β′1 will

have a “+0” term and all the other barycentric coordinates will have “+1” terms.

Geometrically, these new blending functions represent barycentric combinations of

points defined over a much larger domain triangle 4t′at′bt′c shown in Figure 3.10.

t
′

a

u

tb tc

ta

t
′

b
t
′

c

Figure 3.10: The geometric meaning of the new blending functions.

Similarly, when blending the points for B, β′2 will be the barycentric coordinate

with the “+0” term, and when blending the points for C, β′3 will have the “+0”

term. Finally, the denominator for each barycentric coordinate needs to be set to

three so that the new barycentric coordinates sum to unity.

Summarizing, this gives three sets of blending functions for the upward pointing

triangles A, B and C. The new barycentric coordinates for each are given by

A: β′1 =
β1 + 0

3
, β′2 =

β2 + 1

3
, β′3 =

β3 + 1

3

B: β′1 =
β1 + 1

3
, β′2 =

β2 + 0

3
, β′3 =

β3 + 1

3

C: β′1 =
β1 + 1

3
, β′2 =

β2 + 1

3
, β′3 =

β3 + 0

3
. (3.5)

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 46

This yields three new points, which are in turn blended using the same evalua-

tion as the degree one G-Patch.

3.3.3 Degree Three G-Patches

We will look at the degree three G-Patch before generalizing the new blending func-

tions. These patches have ten control points P0,0, . . . , P3,3 resulting in six different

upward pointing triangles, each requiring its own blending function. Again, to aid

in discussion, we will label the blending of neighbouring control points with the

letters A through F as in Figure 3.11.

F

C

P2,1

P3,2P3,1P3,0 P3,3

A

B

D E

P1,1

P0,0

P1,0

P2,0 P2,2

Figure 3.11: The cubic G-Patch convex hull, and the corresponding control point

blends. The valid region for each blend is highlighted in grey.

For the cubic B-Splines we saw that the first blend took the form

β′1 =
β1 + 0

3
, β′2 =

β2 + 2

3
.

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 47

Again, β′1 has a “+0” term, but now the β′2 formula has a “+2” term.

Using this idea, the corner blends for the G-Patch should have one barycentric

coordinate with a “+0” term, while the remaining two coordinates should have a

“+2” term. The resulting blending functions require a denominator of 5 so that

the barycentric coordinates sum to unity. This gives the following new barycentric

coordinates for the corner blends:

A: β′1 =
β1 + 0

5
, β′2 =

β2 + 2

5
, β′3 =

β3 + 2

5

D: β′1 =
β1 + 2

5
, β′2 =

β2 + 0

5
, β′3 =

β3 + 2

5

F: β′1 =
β1 + 2

5
, β′2 =

β2 + 2

5
, β′3 =

β3 + 0

5
. (3.6)

Figure 3.11 highlights in grey the valid regions for each blending function. Notice

that the size of the regions are smaller than those in the quadratic case. This is

due to a larger denominator in the expression.

Finally, the middle three blends need to be accounted for. Let us examine the

B blend, first. If we examine the two corner blends on either side (A and D), we

see that they agree on the β′3 values, so we can use this same value in B’s blend. If

we look at the numerators of A and D’s β′1 and β′2, they look identical to those used

in the degree three B-Spline blending functions. It follows that we should choose a

β′1 and β′2 value for B’s blend that looks like the value used in the B-Spline case,

namely the numerator for β′1 and β′2 should both have a “+1” term. Applying this

idea to all three middle blends, we get the following new barycentric coordinates:

B: β′1 =
β1 + 1

5
, β′2 =

β2 + 1

5
, β′3 =

β3 + 2

5

C: β′1 =
β1 + 1

5
, β′2 =

β2 + 2

5
, β′3 =

β3 + 1

5

E: β′1 =
β1 + 2

5
, β′2 =

β2 + 1

5
, β′3 =

β3 + 1

5
. (3.7)

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 48

This gives us six new points that are recursively blended using the formulas

given for the quadratic G-Patch.

3.3.4 Patch Construction Algorithm

Looking at the formulas given in Equations 3.4, 3.5, 3.6 and 3.7 a pattern once

again emerges in the blending functions. By specifying the degree (deg) of the G-

Patch, we can automatically calculate the particular value of β′1, β′2 and β′3 needed

to generate point Pi1,i2 using u’s original barycentric coordinates.

β′1 =
β1 + i1

2 deg − 1

β′2 =
β2 + deg + i2 − i1 − 1

2 deg − 1

β′3 =
β3 + deg − i2 − 1

2 deg − 1
(3.8)

Again, we should verify that these blending functions sum to unity as barycentric

coordinates should:

β′1 + β′2 + β′3 =
β1 + i1

2 deg − 1
+
β2 + deg + i2 − i1 − 1

2 deg − 1
+
β3 + deg − i2 − 1

2 deg − 1

=
β1 + β2 + β3 + i1 − i1 + i2 − i2 + deg + deg − 1− 1

2 deg − 1

=
1 + 2 deg − 2

2 deg − 1

=
2 deg − 1

2 deg − 1

= 1

Having a closed form for the blending functions to use at each step gives us

another efficient dynamic programming algorithm to calculate a point on the surface

of the G-Patch given the patch’s control net. For this algorithm, we have u, the

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 49

point in the domain, passed in by its barycentric coordinates relative to the patch’s

domain triangle, and an n × n array of control points for the patch. We only use

the lower triangular half of the array, since the control net is triangular.

Algorithm UniformG-Patch(β1, β2, β3, P [][]):

Input: u’s barycentric coordinates and, P , an n× n array of control points

Output: F (t), the point on the surface

1: for deg from n− 1 to 1 do

2: for i1 from 0 to deg − 1 do

3: for i2 from 0 to i1 do

4: β′1 ←
β1+i1

2 deg−1

5: β′2 ←
β2+deg+i2−i1−1

2 deg−1

6: β′3 ←
β3+deg−i2−1

2 deg−1

7: P [i1][i2]← β′1 · P [i1][i2] + β′2 · P [i1 + 1][i2] + β′3 · P [i1 + 1][i2 + 1]

8: return P [0][0]

This dynamic programming algorithm has an O(n3) running time, and requires

O(n2) space.

3.4 Higher Dimension Constructions

So far we looked at one and two dimensional domains. The equations given for

the particular blending functions in Equations 3.3 and 3.8 are starting to exhibit

a pattern. If we were to follow the same analysis for the three dimensional do-

main (volumes), we would derive the following formulas for the new barycentric

CHAPTER 3. A NOVEL TRIANGULAR PATCH SCHEME 50

coordinates:

β′1 =
β1 + i1

3 deg − 2

β′2 =
β2 + deg + i2 − i1 − 1

3 deg − 2

β′3 =
β3 + deg + i3 − i2 − 1

3 deg − 2

β′4 =
β4 + deg − i3 − 1

3 deg − 2
(3.9)

At this point it is possible to completely generalize the blending function for a

construction of arbitrary dimension and degree.

If we have a dim-dimensional domain, then a point u in the domain will be

represented by dim + 1 barycentric coordinates, β1. . .βdim+1. These barycentric

coordinates will be relative to dim + 1 points, t1 . . . tdim+1 which form an affine

basis.

If we are dealing with a degree deg surface, then the control net will consist

of
(
deg+dim

2

)
control points and we will label our points with dim index values,

Pi1,...,idim .

Using u’s original barycentric coordinates, we can automatically calculate the

particular values of β′1. . .β′dim+1 needed to generate the point Pi1, . . . , idim of the

given degree.

β′1 =
β1 + i1

dim(deg − 1) + 1

β′dim+1 =
βdim+1 + deg − idim − 1

dim(deg − 1) + 1

β′j =
βj + deg + ij − ij−1 − 1

dim(deg − 1) + 1
for 1 < j < dim+ 1 (3.10)

Chapter 4

Control Point Labelling

Having derived blending equations to generalize B-Splines to higher dimensional

domains, the next task is to look at providing labels for the original G-Patch control

points in a manner reminiscent of the B-Spline. B-Spline curves reuse the labels

of the control points for neighbouring curve segments, so a good G-Patch scheme

should also allow neighbouring patches to share control points and their labels.

In this chapter the original B-Spline control point labelling provided by Ramshaw

will be introduced. This notation captures the geometry of the B-Spline blending

function as well as showing how neighbouring curve segments can use many of the

same control points. The notation will then be extended to the G-Patch control

points providing the geometric meaning behind the G-Patch blending functions.

The resulting control point labelling will provide the means in Chapter 6 to ex-

tend the single G-Patch evaluation to an entire surface made up of a collection of

G-Patches.

51

CHAPTER 4. CONTROL POINT LABELLING 52

4.1 B-Spline Labelling

Typically B-Spline control points are given using a blossom value f(a, b, c) : a, b, c ∈

R. For a uniform cubic B-Spline, the blossom arguments for the control point are

a fixed distance, k, apart; for example f(3, 4, 5) or f(10, 20, 30). What is often

overlooked is that the blossom value for a control point only has meaning inside

a particular interval of the domain. Namely, it is only valid if one is evaluating a

point u in the domain where u is between a − k and c + k (again, assuming the

uniform knot vector). So f(3, 4, 5) is valid in the evaluation of F (2.5), but it has

no meaning when considering F (7.3).

In the original blossoming paper [14], Ramshaw explicitly associates a “validity

interval” with each B-Spline blossom value to reinforce which region of the domain

the point is defined. This interval is put as a subscript before the blossom ar-

guments. Thus, the control point f(3, 4, 5) would be more accurately written as

f{2,6}(3, 4, 5), indicating that for 2 ≤ u ≤ 6 the point represents the blossom value

f(3, 4, 5). Figure 4.1 shows the evaluation of two points in different regions of a

uniform quadratic B-Spline. Note that the farthest right control point is not used

in the evaluation of F (2.5) since it is outside the validity interval defined for it.

4.1.1 The Domain

Up until this point we labelled points in the one dimensional domain with a single

value u where u is allowed to vary from zero to the size of the domain (assuming the

knots at the ends have full multiplicity). Choosing the leftmost point in the domain

to start from is arbitrary, and one can just as easily start labelling from the other

direction. This is a result of the knot vector having two parametric directions. I

CHAPTER 4. CONTROL POINT LABELLING 53

f{3,6}(4, 5)

f{3,5}(3.5, 4)

f{2,4}(3.5, 3)

f{2,3}(2.5, 2.5)

f{3,4}(3.5, 3.5)

f{2,4}(2.5, 3)

f{0,3}(1, 2)

f{1,3}(2.5, 2)

f{1,4}(2, 3) f{2,5}(3, 4)

Figure 4.1: Evaluating F (2.5) and F (3.5) in a uniform quadratic B-Spline.

will refer to the original parametric direction as s, and the new direction as t.1 We

add a second value to each point in the domain that accounts for this alternative

parametric directions (Figure 4.2). To identify which parametric direction a value

refers to, the value will be written with either an “s” or “t”. Note, that the “s”

and “t” labels shall always be explicitly written for clarity and ease of reading.

t7 t6 t5 t3 t2 t1 t0

s0 s1 s2 s3 s4 s5 s6 s7

0 1 2 3 4 5 6 7

t4

Figure 4.2: The domain doubly indexed.

Any point u in the domain is now represented by a tuple {si, tj}, where i + j

equals the size of the domain. So while there are two parameters, there is only one

1This t is not related to particular knots in the knot vector.

CHAPTER 4. CONTROL POINT LABELLING 54

degree of freedom. In Figure 4.2 all points in the domain must have i + j = 7. So

the leftmost point of the shaded region would be given as {s3, t4}.

What is more appealing is that we can specify regions of the domain using

only the endpoints of the region. Again, a tuple {si, tj} will suffice to specify the

endpoints. The si value specifies the left endpoint, and tj the right, so the region is

defined as the segment between these two values. For instance, the shaded region

in the figure is given as {s3, t3}. Any point {si, tj} in the shaded region must

necessarily have both si ≥ s3 and tj ≥ t3.

This notation has a couple of interesting properties. First, the length of an

interval can be determined from the region’s label by adding up the i and j values

and subtracting this value from the size of the domain. This property is consistent

with points being represented by a tuple whose i and j values sum to the size of

the domain, since a point has no size. Second, if the i and j values sum to a value

greater than the size of the domain, it indicates an empty segment. For example,

{s5, t6} specifies an empty interval using the domain from Figure 4.2.

The downside of doubly indexing the domain is if the domain is increased in

size, all the tj values in the domain are affected. As well, points have become a

little bulkier with this notation.

4.2 B-Spline Evaluation Revisited

We can update Ramshaw’s labelling of the B-Spline control points to include both

parametric directions. For this example, I will consider a single region of the cubic

B-Spline defined over the domain given in Figure 4.2. The vertical bars will repre-

sent the knots of the knot vector used during the evaluation. The new labelling of

CHAPTER 4. CONTROL POINT LABELLING 55

the control polygon is given in Figure 4.3.

f{s1,t2}({s2, t5}, {s3, t4}, {s4, t3})

f{s0,t3}({s1, t6}, {s2, t5}, {s3, t4}) f{s3,t0}({s4, t3}, {s5, t2}, {s6, t1})

f{s2,t1}({s3, t4}, {s4, t3}, {s5, t2})

Figure 4.3: The labelled control points of a uniform cubic B-Spline.

Note that the validity interval for each control point can be reproduced directly

from its blossom arguments. It is a tuple consisting of an si with index one lower

than the lowest index s and tj with index one lower than the lowest index t ap-

pearing in the blossom argument. The third control point has blossom arguments

of ({s3, t4}, {s4, t3}, {s5, t2}), so the validity interval is necessarily {s2, t1}.

Let us evaluate at a point u in the region {s3, t3} of the domain. In per-

forming the first level of the de Boor algorithm, adjacent control points are

blended using Equation 3.3. Consider blending the first two control points:

f{s0,t3}({s1, t6}, {s2, t5}, {s3, t4}) and f{s1,t2}({s2, t5}, {s3, t4}, {s4, t3}). The new

point is derived by inserting a knot at u1.

To label this new point, we must determine the new validity interval, and the

correct blossom arguments. The new validity interval is the intersection of the

intervals for the two control points being blended. The regions {s0, t3} and {s1, t2}

intersect over the interval {s1, t3}, so this is the new point’s validity interval. This

intersection can also be determined directly. The new interval is composed of the

second interval’s s value and the first interval’s t value.

CHAPTER 4. CONTROL POINT LABELLING 56

The blossom arguments are given by taking all the common blossom arguments

between the control points, along with the newly inserted knot. The new point

will then have blossom arguments of (u1, {s2, t5}, {s3, t4}). Thus, the intermediate

point will be labelled f{s1,t3}(u1, {s2, t5}, {s3, t4}). Note the validity interval of the

new point is consistent with its blossom arguments; the validity tuple contains the

si and tj values which are one lower than the corresponding values remaining in

the blossom arguments.

This new validity interval shows us where the blending formulas used in Equa-

tion 3.3 come from. When the new knot u1 is inserted, we determine u1’s barycentric

coordinates relative to the new validity interval, and use these coordinates to blend

the control points.

A similar evaluation is performed for each pair of adjacent control points. The

three labelled, intermediate points from the first knot insertion are given in Fig-

ure 4.4.

f{s3,t1}(u1, {s4, t3}, {s5, t2})f{s1,t3}(u1, {s2, t5}, {s3, t4})

f{s2,t2}(u1, {s3, t4}, {s4, t3})

Figure 4.4: The new, labelled points after inserting knot u1 in a cubic B-Spline.

The de Boor algorithm is repeated with these intermediate points until eventu-

ally only one point remains. Figure 4.5 shows the points resulting from inserting the

knots u2 and u3. The final point in the evaluation is labelled as f{s3,t3}(u1, u2, u3).

CHAPTER 4. CONTROL POINT LABELLING 57

f{s2,t3}(u1, u2, {s3, t4})

f{s3,t3}(u1, u2, u3)

f{s3,t2}(u1, u2, {s4, t3})

Figure 4.5: Inserting the remaining knots u2 and u3.

The validity interval has been reduced to the shaded region of the domain, and all

that remains of the blossom arguments are the inserted knots. If u1 = u2 = u3 = u

then f{s3,t3}(u1, u2, u3) is a point on the B-Spline corresponding to F (u).

4.3 A Geometric Labelling

Thus far, adding the extra parameters has done little except clutter the clean

labelling scheme of blossoming. One major observation about the de Boor algorithm

as I have outlined it here is that the blossom arguments are never directly used in

the evaluation. The affine combinations performed between neighbouring control

points can be determined solely from the validity intervals. From a geometric

standpoint, the blossom arguments are not directly required, and from a notational

standpoint could be dropped entirely. The only piece of the blossom argument of

interest is which knots have been inserted.

I propose the use of the following geometric labelling of the B-Spline control

points. Note that this is no longer a blossom label. To remind the reader that these

are no longer blossom values, the labels will be given in terms of a function “g”,

CHAPTER 4. CONTROL POINT LABELLING 58

standing for “geometric”.

A point will be labelled using its validity interval. The parameters in the

function are restricted to the knots that have been inserted (given in the order

they have been inserted). Since there are a variable number of arguments, a

superscript in the label shows how many knots are yet to be inserted. As an

example, the second B-Spline control point from Figure 4.3 is relabelled from

f{s1,t2}({s2, t5}, {s3, t4}, {s4, t3}) to the geometric label g3
{s1,t2}().

The final point of the evaluation given in Figure 4.5 is relabelled as g0
{s3,t3}(u1, u2, u3).

For points in which there are no more knots to be inserted, it is acceptable to drop

the 0 superscript. As well, if it is clear over which domain interval the evaluation

was performed, the interval on the final point’s label may be omitted. Combining

these notational simplifications, it may be desirable to label this point simply with

g(u1, u2, u3).

Figure 4.6 shows the evaluation for a uniform quadratic B-Spline using the

geometric labelling. As before u must be in the domain region {s3, t3}.

g
2

{s2,t2}
()

g
2

{s3,t1}
()

g
1

{s3,t2}
(u1)

g
2

{s1,t3}
()

g
1

{s2,t3}
(u1)

g
0

{s3,t3}
(u1, u2) = g(u1, u2)

Figure 4.6: Geometric labelling of the quadratic B-Spline evaluation.

CHAPTER 4. CONTROL POINT LABELLING 59

4.4 G-Patch Labelling

A similar geometric labelling can be given to the control points of the G-Patch and

the intermediate points formed during the evaluation. Once the domain has been

properly labelled, this new geometric labelling can be applied.

4.4.1 Domain Points

In a two dimensional domain, the knot vector becomes a knot triangle. Since we

are dealing with a uniform G-Patch, this domain will be uniformly triangulated.

With a knot vector, the s and t parameters represent points on the number line.

With a triangular domain, there are now three parameters, r, s and t, each of

these representing a line through the domain in each of the parametric directions.

Figure 4.7 shows a triangular shaped domain ten units wide, along with the labelled

knot lines in each parametric direction. This knot triangle will be used to define a

single cubic G-Patch.

A triangular region of the domain is specified by giving a triple {ri, sj, tk} indi-

cating the lines on the outside of the triangle. For instance, the shaded region in

Figure 4.7 is contained inside the lines {r3, s3, t3}. Note that the triangular regions

specified in this manner always form equilateral triangles.

A point u in the domain is specified by the three intersecting lines in each

parametric direction. As was the case before, valid points in the domain are subject

to the constraint that the values i, j and k for the point must sum to the size of

the domain (the length of any side of the domain triangle). We will be concerned

with evaluating points in the shaded triangle. One such point is the top corner of

this region, and it is specified by the label {r4, s3, t3}.

CHAPTER 4. CONTROL POINT LABELLING 60

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10r10

r9

r8

r7

r6

r5

r4

r3

r2

r1

r0 s10 s8 s7 s6 s5 s4 s3 s2 s1 s0s9

s10

s9

s8

s7

s6

s5

s4

s3

s2

s1

s0

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t0

t0

Figure 4.7: The domain triply indexed.

As before, a simple test that a point {ri, sj, tk} is inside a region {ra, sb, tc} is

that i, j and k must all be at least as big as a, b and c respectively.

CHAPTER 4. CONTROL POINT LABELLING 61

4.4.2 Cubic G-Patch Labels

All that remains is to determine what validity intervals are appropriate for the

control points. We will concern ourselves with evaluating a patch over the grey

domain region of Figure 4.7. Each validity interval represents a large equilateral

triangle in this domain, and it must include this shaded region of the domain.

Looking back at Figure 3.10 and Figure 3.11 we can start to see where the

blending functions were coming from. For instance 4t′at′bt′c in Figure 3.10 corre-

sponds to domain interval {r3, s2, t2}. The three control points being blended would

then have slightly larger domain intervals associated with them that overlap in this

region.

Extending this idea back to the original cubic control polygon, Figure 4.8 shows

the new labelling of the G-Patch control points that have the appropriate validity

intervals.

g
3

{r1,s2,t0}
()

g
3

{r3,s0,t0}
()

g
3

{r1,s1,t1}
()

g
3

{r2,s0,t1}
()

g
3

{r1,s0,t2}
()

g
3

{r0,s0,t3}
()

g
3

{r0,s1,t2}
()g

3

{r0,s2,t1}
()

g
3

{r0,s3,t0}
()

g
3

{r2,s1,t0}
()

Figure 4.8: The labelled control points of a uniform cubic G-Patch.

It is worth examining the labels of the boundary control points a little closer.

CHAPTER 4. CONTROL POINT LABELLING 62

Consider the bottom four control points. The ri value of each validity interval are

unchanged amongst them. If we remove the r arguments altogether the points are

labelled identical to the B-Spline control points in Figure 4.3. This reinforces the

connection of the G-Patch to the B-Spline.

4.4.3 Cubic G-Patch Evaluation

Let us evaluate a point u in the region {r3, s3, t3} of the domain. In performing

the first level of the algorithm, three neighbouring control points are blended to-

gether. Consider blending the top three control points: g3
{r3,s0,t0}(), g

3
{r2,s1,t0}() and

g3
{r2,s0,t1}() by inserting the knot at u1. This gives us the first intermediate point of

the evaluation.

To label the new point, we must determine its validity interval. As before, this

is determined by intersecting the three control point intervals. Figure 4.9 shows the

three domain intervals. The intersection of the three regions is shown in grey, and

we see the resulting validity interval is {r3, s1, t1}. This intersection could also be

determined directly from the original control point labels. The new interval is the

first (top) point’s r value, the second (bottom left) point’s s value, and the third

(bottom right) point’s t value. Having determined the new point’s domain interval,

we can properly label the point with its geometric label: g2
{r3,s1,t1}(u1).

This new validity interval again reinforces the geometry of the G-Patch blending

formula. When the new knot u1 is inserted, we determine u1’s barycentric coor-

dinates relative to this new validity interval, and use these coordinates to blend

the three control points. For the three control points above, this means we are

determining u1’s barycentric coordinates relative to the triangle {r3, s1, t1} as seen

in Figure 4.10. Of course, rather than manually determine the new barycentric co-

CHAPTER 4. CONTROL POINT LABELLING 63

u

t0 t1 s1

r2

r3r3

r2

t1s1

t0s0

s0

Figure 4.9: Visualizing the intersection of three domain intervals for a cubic G-

Patch.

ordinates, we would simply use the precomputed values provided by Equation 3.8.

This evaluation is performed for each set of upward pointing control points. The

labelled intermediate points from the first knot insertion are given in Figure 4.11.

The G-Patch evaluation is repeated on the six new control until eventually one

point remains. Figure 4.12 shows the results of inserting the last two knots u2 and

u3.

This final point in the evaluation is labelled g0
{r3,s3,t3}(u1, u2, u3). The validity

interval has been reduced to the original shaded region of the domain, and all

possible knots have been inserted. If u1 = u2 = u3 = u then we have a point on

the G-Patch. Recall, that if the domain is already understood to be the shaded

triangle, the point may be labelled more compactly by g(u1, u2, u3).

CHAPTER 4. CONTROL POINT LABELLING 64

g3

{r2,s1,t0}
()

g3

{r2,s0,t1}
()

g3

{r3,s0,t0}
()

u

t1

r3

s1

g2

{r3,s1,t1}
(u1)

β′
3

β′
2

β′
1 β′

1

β′
2

β′
3

Figure 4.10: Blending three G-Patch control points using validity intervals. u can

be any point inside the shaded region of the domain. The barycentric coordinates

of u with respect to this larger domain interval are used to blend the three control

points.

g
2

{r1,s1,t3}
(u1)

g
2

{r3,s1,t1}
(u1)

g
2

{r2,s2,t1}
(u1)

g
2

{r1,s3,t1}
(u1)

g
2

{r1,s2,t2}
(u1)

g
2

{r2,s1,t2}
(u1)

Figure 4.11: The labelled points after inserting knot u1 in a cubic G-Patch.

CHAPTER 4. CONTROL POINT LABELLING 65

g
1

{r2,s2,t3}
(u1, u2)

g
0

{r3,s3,t3}
(u1, u2, u3)

g
1

{r3,s2,t2}
(u1, u2)

g
1

{r2,s3,t2}
(u1, u2)

Figure 4.12: The points resulting from the final two knot insertions.

Chapter 5

The G-Patch Blending Functions

A B-Spline controls a network of Bézier curves, automatically giving the necessary

continuity between neighbouring curves. For a degree n B-Spline, any region of

the domain can be converted into a corresponding Bézier curve. Similarly, a degree

n G-Patch can be represented by an equivalent degree n Bézier patch. In this

chapter I will develop the underlying G-Patch blending functions in a manner that

resembles the B-Spline basis functions, as well as show how to convert the I-Patch

into Bézier form.

The labelling given in Chapter 4 is identical to the geometric B-Spline labelling

with the addition of a parametric direction. Superficially, this appears to be the

generalization of B-Splines over a triangular domain. However, the labels are not

polar forms, and it is natural to want to generate blossom values for these points.

Exploring the relationship between G-Patch and Bézier control points will allow

the appropriate connection to be made.

66

CHAPTER 5. THE G-PATCH BLENDING FUNCTIONS 67

5.1 G-Patch Asymmetry

One of the immediate consequences of the labelling in Chapter 4 is to wonder if we

can recover Bézier control points for a G-Patch simply by inserting the appropriate

knots. This is the technique used with B-Splines, so it seems a reasonable expec-

tation. We will once again consider a G-Patch defined over the shaded region of

Figure 4.7, namely {r3, s3, t3}. To simplify the discussion, I will label the corners

of this domain triangle with an a, b and c as in Figure 5.1.

r3

s3t3

b

u

c

a

Figure 5.1: Labelling the corners of the G-Patch domain.

Consider a quadratic G-Patch defined over the domain4abc. The corresponding

Bézier patch will have six control points: f(a, a), f(b, b), f(c, c), f(a, b), f(a, c) and

f(b, c).

Let us attempt to generate f(a, b) by inserting the knot a, followed by the knot

b into the G-Patch. This derivation is performed on the left of Figure 5.2. The

three darkened inner points represent the insertion of the first knot a, and the black

point is the result of inserting the second knot b. However, the choice to insert the

a knot first is arbitrary. Polar forms are symmetric, and f(a, b) = f(b, a). Let us

run the derivation the other way, by inserting the b knot first followed by the a

knot. The result is given on the right of Figure 5.2.

The problem is immediately apparent: g(a, b) 6= g(b, a). More troubling is that

CHAPTER 5. THE G-PATCH BLENDING FUNCTIONS 68

g1

{r2,s2,t3}
(a)

g2

{r1,s1,t3}
()g2

{r1,s3,t1}
()

g2

{r1,s2,t2}
()

g2

{r2,s2,t1}
()

g2

{r3,s1,t1}
()

g(a, b)

g1

{r3,s2,t2}
(a)

g1

{r2,s3,t2}
(a)

g2

{r2,s1,t2}
()

g1

{r2,s3,t2}
(b)

g2

{r1,s1,t3}
()

g(b, a)

g1

{r3,s2,t2}
(b)

g2

{r1,s3,t1}
()

g2

{r1,s2,t2}
()

g2

{r2,s2,t1}
()

g2

{r3,s1,t1}
()

g1

{r2,s2,t3}
(b)

g2

{r2,s1,t2}
()

Figure 5.2: Inserting the knot a followed by b (left) and the knot b followed by a

(right) into a quadratic G-Patch.

neither one of these point agrees with where f(a, b) is supposed to be (somewhere

in the downward pointing triangle). The order of knot insertion influences the

resulting point, so the geometric labels are not symmetric (and consequently are

not blossom values). For the moment I will leave this discussion. Only after knowing

precisely where the Bézier control point f(a, b) should occur, can this ambiguity be

resolved.

5.2 G-Patch Blending Functions

When evaluating a G-Patch, the control points are recursively blended together.

This has the effect of weighting each of the original control points by a different

underlying function. I define Ini,j(u) to be the degree n, G-Patch function weighting

the control point Pi,j for a point u in the domain. A point on the surface of the

patch is represented by

F (u) =
n∑
i=0

i∑
j=0

Ini,j(u)Pi,j. (5.1)

CHAPTER 5. THE G-PATCH BLENDING FUNCTIONS 69

This notation hides many of the details outlined in the previous chapter, namely

the control points must contain the point u in their validity intervals. However,

once the control polygon has been identified, it is simply a matter of substituting

u’s barycentric coordinates relative to the domain triangle into Equation 5.1.

An immediate question is how to calculate these blending functions? Consider

the data flow diagram of the quadratic G-Patch given in Figure 5.3. The point

u is represented by its barycentric coordinates (β1, β2, β3) relative to the domain

triangle 4abc. The original control points are on the outside and shaded white,

while the intermediate points in the evaluation are in the center. The point on

the surface is at the center of the diagram. The weightings used to generate the

intermediate points are given along each edge. If we follow the arrows from each

control point to the center, we see the contribution that each control point makes.

P2,2

β3+1

3

β2

3

β1+1

3

β1P1,0

β2

β2+1

3

β1+1

3

β1

3

P2,0

P1,1

β2+1

3

β3+1

3

P0,0

P2,1

β3

3

β3

Figure 5.3: Data flow diagram for evaluating a quadratic G-Patch.

For instance, P0,0 contributes β1

3
·β1 to the point on the surface. As an example,

CHAPTER 5. THE G-PATCH BLENDING FUNCTIONS 70

if we were determining the image of u = a and substitute a’s barycentric coordinates

(β1 = 1, β2 = 0, β3 = 0) we find that P0,0 contributes 1
3

to a’s image.

To insert two distinct knots, u1 followed by u2, u1’s barycentric coordinates

would be used to follow an edge from a white point to a grey point, and u2’s

barycentric coordinates would be used to follow an edge from a grey point to a

black point.

Running all the arrows of the data flow diagram in reverse, putting 1 at the root

and the blending function labels on the outside, we generate each of the functions

weighting the control points (Figure 5.4). Summing all the paths from the root

to each particular label gives the weight of that function. For example, there are

two paths from the root to I2
1,0(u) giving a total contribution for this function of

β1 · β2+1
3

+ β2 · β1+1
3

.

I2
2,2(u)

β3

3

β3

β3+1

3

β1+1

3

β1

β2

β2+1

3

β1+1

3

β1

3

β2

3
β2+1

3

I2
0,0(u)

I2
1,0(u) I2

1,1(u)

I2
2,0(u) I2

2,1(u)

β3+1

3

1

Figure 5.4: Reversing the data flow diagram for a quadratic G-Patch.

This diagram can be used directly to show how the higher degree blending

CHAPTER 5. THE G-PATCH BLENDING FUNCTIONS 71

functions can be defined in terms of lower degree functions. The following is a

recurrence relation for a degree m G-Patch blending function reminiscent of the

Cox-de Boor-Mansfield B-Spline recurrence relation:

Imi,j(u) =
β1 + i

2m− 1
Im−1
i,j (u) +

β2 +m+ j − i
2m− 1

Im−1
i−1,j(u) +

β3 +m− j
2m− 1

Im−1
i−1,j−1(u)

I0
0,0(u) = 1

Imi,j(u) = 0 if i < 0, j < 0, i < j, or i > m, (5.2)

where u is expressed as the barycentric coordinates relative to the domain triangle.

From Figure 5.4, the following are the six quadratic G-Patch blending functions

in terms of u’s barycentric coordinates:

I2
0,0(u) =

1

3

(
β1

2
)

I2
1,0(u) =

1

3
(2β1β2 + β1 + β2)

I2
1,1(u) =

1

3
(2β1β3 + β1 + β3)

I2
2,0(u) =

1

3

(
β2

2
)

I2
2,1(u) =

1

3
(2β2β3 + β2 + β3)

I2
2,2(u) =

1

3

(
β3

2
)

(5.3)

At this point we can visualize each basis function by evaluating all valid values of

u inside the domain triangle.

A similar set of derivations was performed for a cubic G-Patch to derive ten cubic

blending functions. The following three figures (5.5, 5.6, 5.7) show a rendering of

three of the blending functions. Note the seven functions not rendered are similar

to these, being either rotations or mirror images.

CHAPTER 5. THE G-PATCH BLENDING FUNCTIONS 72

Figure 5.5: The G-Patch blending function I3
3,3(u).

Figure 5.6: The G-Patch blending function I3
2,2(u).

CHAPTER 5. THE G-PATCH BLENDING FUNCTIONS 73

Figure 5.7: The G-Patch blending function I3
2,1(u).

5.3 Converting G-Patches to Bézier Form

To derive the conversion between a G-Patch and its Bézier representation, we will

use the monomials as an intermediate representation. It is well known how to

convert from monomial to Bézier form, so the only difficulty is converting a G-

Patch to monomial form. Goldman provides an extensive discussion of converting

between numerous, well-known curve and surface bases [10]. In particular, there is

a discussion about representing a Bézier surface defined over the triangular domain

in its monomial form.

Equation 5.3 is almost in the required monomial form. Following Goldman’s

approach, we set β1 = a, β2 = b and β3 = 1 − a − b giving the quadratic G-Patch

represented in the monomial basis:

CHAPTER 5. THE G-PATCH BLENDING FUNCTIONS 74

I2
0,0(u) =

1

3
a2

I2
1,0(u) =

2

3
ab+

1

3
a+

1

3
b

I2
1,1(u) = −2

3
a2 − 2

3
ab+

2

3
a− 1

3
b+

1

3

I2
2,0(u) =

1

3
b2

I2
2,1(u) = −2

3
ab− 2

3
b2 − 1

3
a+

2

3
b+

1

3

I2
2,2(u) =

1

3
a2 +

2

3
ab+

1

3
b2 − 2

3
a− 2

3
b+

1

3
.

Using these equations, we can create a matrix to convert the G-Patch control

points to monomial control points, hereafter referred to as the I matrix:

I =

1/3 0 0 0 0 0

0 2/3 0 1/3 1/3 0

−2/3 −2/3 0 2/3 −1/3 1/3

0 0 1/3 0 0 0

0 −2/3 −2/3 −1/3 2/3 1/3

1/3 2/3 1/3 −2/3 −2/3 1/3

.

To produce a row matrix, m, containing the monomial coefficients multiply

m = v · I,

where v is a row vector of the G-Patch control points of the form

v =
[
P0,0 P1,0 P1,1 P2,0 P2,1 P2,2

]
.

CHAPTER 5. THE G-PATCH BLENDING FUNCTIONS 75

It is worth noting that m’s coefficients for the monomials are provided in the order

a2, ab, b2, a, b, 1.

The next step is to generate the matrix needed to convert monomials to Bézier

representation. Farin gives a simple matrix, B, that converts Bézier to monomial

form [6], so taking its inverse produces the needed matrix. To convert from Bézier

form to the monomial coefficients (in the order given above) we have

B =

1 0 0 0 0 0

0 2 0 0 0 0

−2 −2 0 2 0 0

0 0 1 0 0 0

0 −2 −2 0 2 0

1 2 1 −2 −2 1

,

and its inverse is thus

B−1 =

1 0 0 0 0 0

0 1/2 0 0 0 0

0 0 0 1 0 0

1 1/2 1/2 0 0 0

0 1/2 0 1 1/2 0

1 1 1 1 1 1

.

The conversion between G-Patch control points and Bézier control points can

be performed directly by deriving a conversion matrix, C, given by

C = I ·B−1.

CHAPTER 5. THE G-PATCH BLENDING FUNCTIONS 76

Doing so with the above matrices yields the following quadratic G-Patch to quadratic

Bézier patch conversion matrix:

C2 =

1/3 0 0 0 0 0

1/3 2/3 1/6 1/3 1/6 0

1/3 1/6 2/3 0 1/6 1/3

0 0 0 1/3 0 0

0 1/6 1/6 1/3 2/3 1/3

0 0 0 0 0 1/3

(5.4)

The subscript for the conversion matrix indicates what degree patch is being con-

verted. To produce a row vector b of Bézier control points multiply

b = v · Cdeg.

Figure 5.8 shows a quadratic G-Patch and its control polygon beside the same

patch converted to Bézier control points using the C2 matrix. The patch is the

same, only the control points are different.

For those wishing to implement this conversion for higher degree patches, I

have provided the conversion matrices C3 and C4 for cubic and quartic patches in

Appendix A.

5.4 Another Conversion Technique

At first glance, the contents of the conversion matrices Ci look arbitrary. However,

a closer examination shows the values have meaning in terms of knot insertion.

The first observation is that all the entries are between 0 and 1, so the conversion

CHAPTER 5. THE G-PATCH BLENDING FUNCTIONS 77

Figure 5.8: A quadratic G-Patch (left) converted to its Bézier form (right).

to Bézier form is performing convex combinations of the original G-Patch control

points. This suggests the existence of a direct conversion technique by performing

affine combinations of control points.

Focussing on the C2 matrix, the first column shows the location of f(a, a). It

occurs in the barycenter of the top three control points. This is the same location

that the G-Patch places g(a, a). Looking at columns four and six show that f(b, b)

agrees with g(b, b) and f(c, c) agrees with g(c, c).

The second column shows the derivation of f(a, b). It only involves the middle

three control points and the function evaluates to

f(a, b) =
2

3
P1,0 +

1

6
P1,1 +

1

6
P2,1. (5.5)

At this point it is worth looking at the formulas for the location of g(a, b) and

g(b, a). Referring back to Figure 5.2 and performing the knot insertion calculation

CHAPTER 5. THE G-PATCH BLENDING FUNCTIONS 78

on the data flow diagram in Figure 5.3 we get

g(a, b) =
2

3
P1,0 +

1

3
P2,1 (5.6)

g(b, a) =
2

3
P1,0 +

1

3
P1,1. (5.7)

It appears that f(a, b) falls in the midpoint between g(a, b) and g(b, a). A quick

verification shows that indeed

f(a, b) =
g(a, b) + g(b, a)

2
. (5.8)

Further exploration on cubic G-Patches and the C3 matrix shows similar results:

f(a, a, b) =
g(a, a, b) + g(a, b, a) + g(b, a, a)

3

f(a, b, c) =
g(a, b, c) + g(a, c, b) + g(b, a, c) + g(b, c, a) + g(c, a, b) + g(c, b, a)

6

Thus, the location of the symmetric polar value for f is just the average of each

of the asymmetric G-Patch evaluations. This provides the alternate method for

converting a G-Patch into a Bézier patch. Perform all the permutations of knot

insertions for the particular Bézier control point, and then average the results.

5.5 G-Patch Basis Functions

An obvious question that remains is whether or not the G-Patch blending func-

tions, Ini,j(u), form a basis. They are based on the geometry of the B-Spline, and

they have a recurrence relation defining them that is similar to the B-Spline basis

functions, Nn
i (u), so it is tempting to make the same generalizations about the

G-Patch blending functions.

CHAPTER 5. THE G-PATCH BLENDING FUNCTIONS 79

Theorem 3 (G-Patch Blending Functions Form a Basis) The set of degree

n G-Patch blending functions Ini,j(u) form a basis for the linear space of dimension(
n+2

2

)
for n ≤ 4.

Proof: The G-Patch to Bézier conversion matrix Ci is invertible for 0 ≤ i ≤ 4.

�

I conjecture that this property will hold for all n, but this remains an open

problem.

Chapter 6

G-Patch Networks

Recall that the primary goal for a control scheme is to regulate a collection of Bézier

patches. In the previous section, I showed how a single G-Patch can be converted

into a Bézier patch. The final step is to show how to create a network of G-Patches

that form a larger surface.

I will now describe how to construct a surface built from a network of G-Patches

in which adjacent patches share control points. The construction gives the user

local control over the upward pointing patches, and attempts to smoothly fill in the

downward pointing patches to complete the surface.

6.1 Upward Pointing Triangular Patches

A single G-Patch of degree n is formed using
(
n+2

2

)
control points laid out in the

shape of an upward pointing triangle. This patch corresponds to an upward pointing

triangle in the domain with sides of unit length. Now consider the adjacent regions

of the domain in each parametric direction. The corresponding patches will also be

80

CHAPTER 6. G-PATCH NETWORKS 81

generated by a collection of
(
n+2

2

)
control points. Let us look at the control points

labelling one of these patches and determine what similarities there are to the first

patch.

For simplicity, the discussion will consider quadratic patches defined over the

domain in Figure 6.1. There are three upward pointing triangles and one downward

pointing triangle from this domain that we will consider. The domain triangles are

labelled A through D for easier discussion.

r0

t3

t4

t5

t6

t7

t8

r8

r7

r6

r5

r4

r3

r1

r2

s8 s7 s6 s5 s4 s3 s2 s1 s0

D

t0

t1

t2

B

C

A

Figure 6.1: Domain for a network of four cubic G-Patches.

Consider the labels of the control points for the G-Patch corresponding to do-

main triangle A and compare it to that of domain triangle B (Figure 6.2). We see

that the three bottom-right labels of patch A match the bottom-left labels of B.

With a network of B-Spline control points, having neighbouring curves reuse the

same control point when their labels agree gives the resulting network of curves high

degrees of continuity. It seems appropriate to have the two neighbouring patches

CHAPTER 6. G-PATCH NETWORKS 82

reuse the same control points whenever their labels agree. Thus we can represent

the two patches with nine control points as in Figure 6.3.

g2

{r0,s0,t3}
()g2

{r0,s2,t1}
()

g2

{r1,s2,t0}
() g2

{r1,s1,t1}
()

g2

{r2,s1,t0}
()

g2

{r0,s1,t2}
()

g2

{r0,s2,t1}
()

g2

{r0,s3,t0}
()

g2

{r1,s1,t1}
()

g2

{r2,s0,t1}
()

g2

{r0,s1,t2}
()

g2

{r1,s0,t2}
()

4B:4A:

Figure 6.2: Control polygons for domain triangles A (left) and B (right). The three

control points that are common to both control polygons are shown in grey.

g
2

{r2,s1,t0}
() g

2

{r2,s0,t1}
()

g
2

{r1,s0,t2}
()

g
2

{r0,s0,t3}
()

g
2

{r1,s1,t1}
()

g
2

{r0,s2,t1}
() g

2

{r0,s1,t2}
()

g
2

{r0,s3,t0}
()

g
2

{r1,s2,t0}
()

Figure 6.3: Reusing neighbouring G-Patch control points. The three grey points

are used in the evaluation of patch A and patch B.

The labelling for the domain triangle C provides even more duplicated control

points. It has three control point labels in common with both patch A and patch

B. Again, if we set these matching labels to the same control points, we can now

completely specify the three G-Patches with only ten distinct control points as

CHAPTER 6. G-PATCH NETWORKS 83

given in Figure 6.4.

g
2

{r2,s1,t0}
() g

2

{r2,s0,t1}
()

g
2

{r1,s0,t2}
()

g
2

{r0,s0,t3}
()

g
2

{r1,s1,t1}
()

g
2

{r3,s0,t0}
()

g
2

{r0,s2,t1}
() g

2

{r0,s1,t2}
()

g
2

{r0,s3,t0}
()

g
2

{r1,s2,t0}
()

Figure 6.4: Control network for domain triangles A, B and C.

Looking at the four control point labels along the outer edges, we notice that

they share a remarkable similarity to B-Spline control points. The only difference

is an extra parametric direction, r. The analysis performed in Chapter 7 will un-

fortunately determine that patch boundaries are not, themselves, B-Spline curves.

At this point we can visualize the results of utilizing this control scheme. If the

user manipulates one of the corner control points given in Figure 6.4, it will only

have an effect on one of the patches. Figure 6.5 shows a control network in which

all ten of the points lie uniformly in a plane except for one of the corner control

points which was pulled up approximately a unit away from the plane.

Notice that the individual G-Patches agree with their neighbours at the corners

of the patch. If they did not meet in this fashion, this construction would hold

little value, as it would not be possible to construct even a C0 patch network.

If the user manipulates one of the edge control points, this will effect the two

G-Patches that share the control point, while leaving the other patch unaffected.

CHAPTER 6. G-PATCH NETWORKS 84

Figure 6.5: Moving a corner control point in a network of three quadratic G-Patches.

Figure 6.6: Moving an edge control point in a network of three quadratic G-Patches.

CHAPTER 6. G-PATCH NETWORKS 85

Figure 6.7: Moving the center control point in a network of three quadratic G-

Patches.

Figure 6.6 shows a control network similar to Figure 6.5, but with the altered

control point being located along the edge.

Finally, if the user manipulates the center control point, all three G-Patches will

be pulled towards the moved control point. The result of such a movement is given

in Figure 6.7.

These patch networks are scalable. Should the user wish to add more patches of

the same degree in any parametric direction, it only requires adding additional rows

of control points. If higher degree patch networks are desired, the same technique

is used, with the only difference being that more control points will agree between

neighbouring patches. For instance two adjacent cubic patches will have six control

points in common. Figure 6.8 shows this scaling with a larger network of cubic

G-Patches. Notice that the patches are only pulled towards the nearby control

points.

CHAPTER 6. G-PATCH NETWORKS 86

Figure 6.8: A large network of upward pointing cubic G-Patches.

6.1.1 Evaluation

The evaluation of a large network of patches is not difficult. For a degree n patch,

after determining the
(
n+2

2

)
control points corresponding to each region of the do-

main, the patch is evaluated at various values of u. Either the algorithm from

Section 3.3.4 is used, or the G-Patch control points are converted to Bézier control

points and a Bézier patch tessellator is used to render the surface.

6.2 Downward Pointing Triangular Patches

When dealing with one patch, we have always oriented our domain such that the

base of a triangle was at the bottom. However, once we begin to stitch a large

collection of triangular patches together, some pieces of the domain are oriented

in the opposite direction. Namely in Figure 6.1 the domain triangle D has the

CHAPTER 6. G-PATCH NETWORKS 87

opposite orientation. I will demonstrate how to generate the downward patches for

quadratic, cubic and quartic patches.

6.2.1 Quadratic G-Patches

First we need to look at how to label the domain triangle D. The three parametric

lines that form the edges of the triangle are {r3, s3, t3}. The original definition of

domain triangle labelling from Section 4.4.1 defined valid points in the triangle as

necessarily having their r, s and t parameters greater than or equal to {r3, s3, t3}.

However, there are no points in the domain that match this specification. Upon

closer inspection, it appears that for downward pointing triangles, the definition

needs to be reversed, namely that the r, s and t parameters must all be less than

or equal to {r3, s3, t3}.

The problems with downward pointing triangles go much further. What points

should be used to specify the control polygon for the downward pointing patch?

Ideally, we would like these points to be readily available in terms of the points

of Figure 6.4. However there does not appear to be a downward pointing triangle

meeting this criteria.

There is a reprieve, though, and it comes from looking at the Bézier represen-

tation of each of the three upward G-Patches. For the downward pointing patch to

meet its neighbours with C0 continuity, the control points along the edges of each

neighbouring patch must agree with the new patch. This completely specifies a

degree 2 Bézier patch. In Figure 6.9, a network of three G-Patches is shown, with

the G-Patch control net given on the left, and the corresponding Bézier control

networks on the right.

The central Bézier control points in Figure 6.9 represent the G-Patch corre-

CHAPTER 6. G-PATCH NETWORKS 88

Figure 6.9: A Quadratic G-Patch network (left) converted to Bézier representation

(right).

sponding to the domain triangle D. Evaluating this additional Bézier patch creates

a continuous surface as seen in Figure 6.10.

Figure 6.10: Filling the hole in a quadratic G-Patch network.

Recalling the results of Theorem 2, C0 is as good as you can hope for with

quadratic patches while still allowing local control. Thus far the G-Patch scheme

CHAPTER 6. G-PATCH NETWORKS 89

is solving Ramshaw’s problem.

6.2.2 Cubic G-Patches

This same strategy can be used to handle higher degree G-Patch networks. For

the cubic case, the downward pointing patch has ten Bézier control points. The

outer nine points are completely defined by the edges of the neighbouring patches

to ensure C0 continuity. This leaves the center control point. At this juncture we

can start to look at the C1 continuity conditions in trying to place the new point.

For this to occur, we need the first derivatives to match between the neighbouring

patches. Consider the control points of the Bézier patches for domain triangles A

and D as seen in Figure 6.11. We are interested in determining the grey control

point of the downward patch.

A a

b

c

dA

D

Figure 6.11: Cubic Bézier control points for neighbouring patches.

For the patches to have matching first derivatives, the three pairs of triangles

that meet along the patch boundary (the greyed diamond shapes of Figure 6.11)

must be coplanar. More specifically, the diamonds should have the same shape

as the two domain triangles A and D. This tells us how to generate the grey

CHAPTER 6. G-PATCH NETWORKS 90

control point. By properly blending A’s three white control points (a, b and c) with

the appropriate barycentric coordinates, the grey point is determined (dA). The

following formula gives us the location of the new point as predicted by patch A:

dA = 1a− 1b+ 1c. (6.1)

This only gives us the location that patch A predicts the Bézier control point

should appear. We can just as easily use the Bézier control points of patch B and

patch C (Figure 6.1) to get other locations of the d point (dB and dC). This gives

three possible values for d. The obvious question to ask is which is the correct

value to use? In an ideal world, they would all agree with each other, but that is

not likely to occur. The next best thing to do is to take the average of the three

predictions:

d =
1

3
(dA + dB + dC) . (6.2)

This value of d is likely not going to agree with any of the neighbouring patches.

If so, the new patch will not meet its neighbours with C1-continuity, a fact proven

more rigourously in the next chapter. The hope is that the result is close enough

to not be discernable. Figure 6.12 shows the large network of cubic patches from

Figure 6.8 with the downward patches now filled in using Equation 6.2. At first

glance the averaging does not seem to be causing a noticeable problem, as the

surface appears reasonably smooth.

6.2.3 Quartic G-Patches

Specifying the 15 quartic Bézier control points of the downward pointing G-Patches

is similar to the cubic case. The 12 points on the outside of the patch are specified

by the C0 continuity conditions with its neighbours, while the three inner points are

CHAPTER 6. G-PATCH NETWORKS 91

Figure 6.12: A cubic G-Patch surface.

specified using the C1 conditions. Again, we average the location that is predicted

by each of the neighbouring patches. This time, only two patches are competing

for the location of each of the interior points due to the size of the patch.

This leads to an important observation. As the degree of the patches get higher,

there are more degrees of freedom to place interior control points, which allows for

the possibility of smoother levels of continuity when filling the holes.

A large network of quartic G-Patches with the downward patches specified in

this manner is given in Figure 6.13. The surfaces are exhibiting what appear to be

a higher degree of continuity, as there appears to be no noticeable discontinuities

between neighbouring patches. The next chapter will formalize what level of con-

tinuity is realizable with this G-Patch network construction. As well, the surfaces

will be rendered with smooth shading to allow for more subjective analysis.

CHAPTER 6. G-PATCH NETWORKS 92

Figure 6.13: A quartic G-Patch surface.

Chapter 7

Analysis

I have provided a means to construct a locally flexible control network of G-Patches

in which initial wire-frame renderings of higher degree surfaces appear to exhibit

the continuity actively being sought. I will now analyze the results of my G-Patch

scheme, and compare them against DMS-Splines. I will address performance issues

with the implementation, followed by an examination of the overall surface conti-

nuity exhibited by neighbouring patches, and ultimately determine the limitations

of the scheme.

7.1 Implementation

The G-Patch construction has been put together in a simple tool that provided

the screen captures used throughout this thesis. The user has the ability to select

control points and pull them in any direction. When a control point is moved,

the effected upward pointing patches are recomputed. As well, any neighbouring

downward pointing patches that are effected are updated.

93

CHAPTER 7. ANALYSIS 94

7.1.1 User Interface

In terms of usability, manipulating G-Patches has an intuitive feel. The user tugs

on one of the control points, and the nearby region of the surface bulges in that

area. Regions of the surface far removed from the interaction are unaffected by the

movement. The user need not be aware that the underlying surface is based on

G-Patches.

Thus far, it is on par with manipulating control points in DMS-Splines. The

major difference, however, is the lack of knot clouds that the user is faced with

when manipulating DMS-Splines. As discussed in the background, the knot cloud

is intimately related to the resulting surface, and as yet no one has found a nice

way to hide this detail from the user. Thus, the G-Patch surface seems to have the

advantage of a simpler control scheme.

The one interface advantage that is held by DMS-Splines is that the domain

need not have a regular triangulation as the G-Patch domain requires. This allows

more flexibility when trying to model with DMS-Splines.

7.1.2 Computational Requirements

Since only the local patches are effected by the movement of a G-Patch control

point, the computational requirement is minimal. In a large surface, only a few of

the underlying patches will ever require any recomputation. Indeed the performance

bottlenecks surround the volume of data being sent to the graphics unit rather than

in performing G-Patch calculations. This is not too surprising, as the evaluation

does only a small amount of additional work above what a simple Bézier patch

tessellator would perform.

CHAPTER 7. ANALYSIS 95

Recall that the Bézier control points of the downward pointing patches are

generated from the Bézier control points of the upward pointing patches. The

additional work is merely the cost to transform the G-Patch control points into

Bézier control points. The work required to change representations is proportional

to the size of the conversion matrix. A degree n G-Patch will have m control points

and an m×m conversion matrix where m ∈ O(n2). Thus, switching representations

has an O(n4) complexity.

To evaluate a single point on the surface of a Bézier patch using the de Casteljau

algorithm has a running time of O(n3). Typically when tessellating a Bézier patch

there are at least Ω(n2) points on the surface that are evaluated to generate a

smooth looking surface. Thus, the cost to convert from an G-Patch to a Bézier

patch is at least a factor of n less then the cost to actually render the patch.

Compare this to the cost of evaluating a DMS-Spline. As mentioned before, they

are prohibitively expensive to evaluate as the underlying simplex basis functions

need to be explicitly evaluated. Add the fact that it is extremely difficult to deter-

mine which control points from neighbouring patches contribute to a point on the

surface, and this makes the DMS-spline evaluation extremely computation heavy.

As such, G-Patch surfaces are much less resource intensive than DMS-splines.

Finally, the evaluation of a G-Patch is numerically stable. All the points on

the surface are generated by convex combinations of the original control points. If

the conversion matrix Cn is used, it contains only simple fractions which results in

stable computations. This is in contrast to DMS-Splines which are plagued with

stability issues.

CHAPTER 7. ANALYSIS 96

7.2 Continuity

Given the analysis of the previous section, the G-Patch surfaces are highly desirable.

The only issue that remains is to look at the resulting surfaces to see if they exhibit

the desired continuity.

As mentioned in Section 2.4.3, a network of Bézier patches imposes limits on

the degree of continuity that can be achieved while still having local flexibility. So

having expectations such as C2 continuity amongst a collection of cubic patches is

unreal.

There will be two methods used to analyze the surfaces. First, examining the

Bézier control polygon of neighbouring patches will show what inherent continuity

limitations are built into the new surfaces. Finally, by turning on shading in the tool

and looking at the resulting surfaces, we will be able to give a subjective analysis.

7.2.1 Bézier Continuity

Knowing how to convert the G-Patch into its Bézier representation allows us to

immediately see what continuity can be achieved in the surface.

The G-Patch surface is trivially C0 due to the procedure by which downward

triangular patches are constructed. As well, adjacent upward patches agree at their

common corner.

We turn our attention to determining if any of the higher degree G-Patch sur-

faces exhibit C1 continuity. The answer is no. It will be sufficient to look at two

neighbouring upward pointing G-Patches and the downward patch between them.

The three domain triangles, A, B and C are given in Figure 7.1 with the corners

of each region of the domain labelled with the points a through e.

CHAPTER 7. ANALYSIS 97

d

a c

e

A

b

C
B

Figure 7.1: Domain labelling of three adjacent patches in an G-Patch surface.

We are concerned with possible configurations the underlying Bézier control

points take for these three patches when different G-Patch control points are moved.

Figure 7.2 shows the first two layers of Bézier control points around point b, the

shared corner of the three patches. Note that this diagram applies to G-Patches of

degree greater than or equal to two. A necessary (although not sufficient) condition

for the three patches to meet with C1 continuity is that the grey control points must

all be coplanar. Taking this one step further the three control points f(a, b, . . . , b),

f(b, . . . , b) and f(b, . . . , b, c) must be collinear. If there is some arrangement of

points in a G-Patch control network that cause these three Bézier control points to

not be collinear, we will have shown the surface is not C1.

f(a, b, . . . , b)

f(b, . . . , b)

f(b, . . . , b, c)

Figure 7.2: Bézier control points for three adjacent patches in an G-Patch surface.

CHAPTER 7. ANALYSIS 98

Quadratic G-Patches

We will start with quadratic surfaces. The corresponding control network will have

ten control points. The bottom left six control points influence A’s patch, while

the bottom right six control points influence B’s patch. To simplify the discussion,

the control points will be laid in a uniform triangular grid in a plane set at z = 0.

One of the control points will be moved perpendicular to the plane such that its

z value is 1. Figure 7.3 shows a top down view of the control points. The grey

control point is the one that has been moved out of the plane. Notice that it is the

topmost control point that is common to both A and B’s patch.

A B

Figure 7.3: Top down projection of quadratic G-Patch surface control points. All

the points are coplanar except the grey point which is above the plane.

Now we need to verify that the Bézier control points (f(a, b), f(b, b) and f(b, c))

are collinear. For the time, we will restrict our attention to the z coordinate of the

three points. We generate the z value of the Bézier control points by multiplying

a vector of the z values of the individual G-Patch control points by the conversion

matrix (Section 5.3).

Using the C2 conversion matrix given in Equation 5.4, we generate the z value

of A’s Bézier points by multiplying[
0 0 1 0 0 0

]
· C2 =

[
1
3

1
6

2
3

0 1
6

1
3

]
.

CHAPTER 7. ANALYSIS 99

Note, the result of the multiplication is simply the third row of the conversion

matrix. f(a, b) is the fifth element of the resulting vector, while f(b, b) is the sixth

element.

We generate the z value of B’s Bézier points by multiplying[
0 1 0 0 0 0

]
· C2 =

[
1
3

2
3

1
6

1
3

1
6

0
]
.

Note, this is now the second row of the conversion matrix. f(b, b) is the fourth

element of the resulting vector, while f(b, c) is the fifth element.

Summarizing, f(a, b) = 1
6
, f(b, b) = 2

6
and f(b, c) = 1

6
. However, there is no

way the three points can be collinear, as their z values form an inverted “v” shape.

The complete set of Bézier control points (in three space) for the A and B patches

are shown in Figure 7.4. Clearly the control points are not collinear, and thus the

surface is not C1.

Figure 7.4: Quadratic G-Patch Bézier points not meeting C1.

CHAPTER 7. ANALYSIS 100

Cubic G-Patches

The corresponding G-Patch control network will have fifteen control points. The

bottom left ten control points influence A’s patch, while the bottom right ten

control points influence B’s patch (Figure 7.5). Again, the topmost control point

that influences both patches is moved out of the plane.

A B

Figure 7.5: Top down projection of cubic G-Patch surface control points. All the

points are coplanar except the grey point which is above the plane.

Now we need to determine if the Bézier control points f(a, b, b), f(b, b, b) and

f(b, b, c) are collinear. Again, we will consider the z coordinate of the three points.

If we use the cubic conversion matrix C3 given in Appendix A, then the third

row of this conversion matrix will provide the z values of the Bézier control points:

[
4
15

1
9

4
15

1
45

7
90

2
15

0 1
45

2
45

1
15

]
.

f(a, b, b) is the ninth element of this vector, while f(b, b, b) is the tenth element.

Similarly, the z value of B’s Bézier points are the second row of C3:

[
4
15

4
15

1
9

2
15

7
90

1
45

1
15

2
45

1
45

0
]
.

CHAPTER 7. ANALYSIS 101

f(b, b, b) is the seventh element of the resulting vector, while f(b, b, c) is the eighth

element.

Summarizing, f(a, b, b) = 2
45

, f(b, b, b) = 3
45

and f(b, b, c) = 2
45

. As with

quadratic patches, the the three points are not collinear, as their z values form

an inverted “v” shape, and thus cubic G-Patch surfaces are not C1.

Higher degree G-Patches

If we follow this example to higher degree patches, the same conclusion is always

reached. Moving the topmost point common to both patches causes the three

necessary Bézier control points to not be collinear. Thus, G-Patch surfaces in

general are not guaranteed to be C1.

If there is one redeeming factor, it is that as the degree is raised, one must move

a G-Patch control point much further to bring the necessary Bézier control points

noticeably out of alignment. Consider the quartic G-Patch surface in Figure 7.6.

Again, the control point is moved only a unit out of the plane, however the Bézier

control points appear to be almost linear.

7.2.2 Shaded G-Patch Surfaces

Knowing that the G-Patch is only guaranteed to be C0 reduces the expectations we

hope to achieve with smoothly shaded surfaces. However, the wire frame surfaces

rendered in the previous chapters started to look smooth at higher degrees.

Figures 7.7, 7.8 and 7.9 show the same G-Patch control network rendered with

increasing degree G-Patches. As we progress to higher degree patches, there is a

dramatic increase in the amount of smoothness between patches. However, even

CHAPTER 7. ANALYSIS 102

Figure 7.6: Quartic G-Patch Bézier points not meeting C1.

in the quartic case (Figure 7.9), most of the edges between the underlying patches

are still discernable to the eye. If a user is not moving control points too wildly,

though, quartic surfaces (and higher) may yield satisfactory results.

CHAPTER 7. ANALYSIS 103

Figure 7.7: A shaded quadratic G-Patch surface and its control net.

Figure 7.8: A shaded cubic G-Patch surface over the same control net.

CHAPTER 7. ANALYSIS 104

Figure 7.9: A shaded quartic G-Patch surface over the same control net.

Chapter 8

Conclusions

Is the G-Patch network going to replace tensor product B-Splines as the surface

modelling tool of choice? Definitely not. However, this was not the goal of the

research. Its purpose was to take a purely geometric view of how points are blended

with the uniform B-Spline and scale the functions up to the elusive triangular

domain.

I summarize the results of the new patch scheme and close with some direction

for future work.

8.1 Summary

I have provided a piecewise polynomial surface control scheme that allows the user

to control the shape of a network of upward pointing Bézier patches. Each down-

ward pointing hole of the resulting network is then filled in by constructing an

additional Bézier patch whose control points are set in positions that allow the

patch to meet its three neighbours as smoothly as possible.

105

CHAPTER 8. CONCLUSIONS 106

This G-Patch network possesses many of the desirable properties discussed in

Section 2.1. First and foremost is that the blending formulas reduce to the classic

univariate B-Spline construction when the domain is R1. This leads to G-Patch

networks inheriting most of the desirable properties possessed by B-Splines. For

instance the G-Patch construction has local control. As well, the evaluation of a

point on the surface is fast and numerically stable, owing to a coefficient-based

evaluation. Finally, the manipulation of the surface is extremely intuitive, since

there are no knot clouds for the user to place. To deform the surface, the user only

needs to alter the position of a nearby control point.

The downside is that, in its current form, the G-Patch surface cannot guarantee

anything more than C0 continuity between adjacent Bézier patches, regardless of

the degree of the G-Patch network. A small consolation is higher degree G-Patch

surfaces require greater disparity in the positions of the control points for this lack

of smoothness to be detectable. This single deficiency, though, all but removes the

G-Patch from being a viable modelling tool.

8.2 Future Work

It is my hope that the introduction of this new surface construction will guide new

research into triangular B-Splines. Since this a new patch scheme, a number of

avenues merit further analysis.

The G-Patch control scheme provides a simple way to control a network of

Bézier patches, but does so without concern for continuity. It is hoped that a more

sophisticated evaluation can be developed that uses the G-Patch control scheme at

its root, but builds in higher degrees of continuity. One idea is to take the existing

G-Patch control points and perform a level of subdivision hidden from the user.

CHAPTER 8. CONCLUSIONS 107

Using these new control points as degrees of freedom they could be placed such

that the resulting surface is smoother, possessing C1-continuity and higher.

The technique used to specify the patches for the downward pointing triangles

is inelegant. A simple blossom-style evaluation to derive control points for the

downward triangles would solve this problem. Also, turning the control network

upside down results in an entirely different evaluation. Perhaps averaging the two

views of the control points would make for a smoother surface, and resolve the

asymmetry in the construction.

Another area of future work involves the G-Patch basis functions. Throughout

the thesis, the functions used to combine the control points have been referred to

merely as “blending functions”. Although I did show that they were in fact basis

functions up to quartic patches, what is needed is a formal proof that the degree n

G-Patch blending functions form a basis. The G-Patch to Bézier patch conversion

matrices exhibit remarkable structure. Providing a simple means of determining the

conversion matrix Ci, or determining a closed form representation of the blending

functions may facilitate such a proof.

The relationship between the G-Patch evaluation and the Bézier patch should

also be investigated further. It cannot be an accident that the symmetric polar value

for points on the Bézier patches are simply the average of each of the asymmetric

G-Patch evaluations.

Finally, the G-Patch construction is based on the notion of a uniform spline. For

B-Spline curves, it is a simple matter to move knots in the domain to change the

flexibility in regions of the spline. Incorporating the ability to move “knot lines”

through the domain to control the new surface warrants further research.

CHAPTER 8. CONCLUSIONS 108

8.3 A Closing Thought

Is the G-Patch the true generalization of the B-Spline? Optimistically I believe

it is not; if it were, it would mean there is no higher dimension construction that

automatically builds in continuity, and Ramshaw’s challenge mentioned in the intro-

duction has no solution. Consequently, the only way to get smooth triangle-patch

surfaces would be to necessarily throw expensive computations at the problem as

found with DMS-splines.

What the G-Patch hopefully represents is a step towards determining the true

triangular B-Spline.

Appendix A

Conversion Matrices

Chapter 5 described two procedures used to generate a conversion matrix, Cn, which

translates a set of degree n G-Patch control points to Bézier control points. Rarely

would one want to perform this calculation in a live application. It is much simpler

to precompute the required matrix once and use it as needed.

The following pages give the cubic and quartic conversion matrices C3 and C4.

109

APPENDIX A. CONVERSION MATRICES 110

A.1 Cubic G-Patch Conversion Matrix

C3 =

1
15

0 0 0 0 0 0 0 0 0

4
15

4
15

1
9

2
15

7
90

1
45

1
15

2
45

1
45

0

4
15

1
9

4
15

1
45

7
90

2
15

0 1
45

2
45

1
15

1
15

2
15

2
45

4
15

7
90

1
45

4
15

1
9

1
45

0

4
15

2
5

2
5

2
5

8
15

2
5

4
15

2
5

2
5

4
15

1
15

2
45

2
15

1
45

7
90

4
15

0 1
45

1
9

4
15

0 0 0 0 0 0 1
15

0 0 0

0 1
45

1
45

1
9

7
90

2
45

4
15

4
15

2
15

1
15

0 1
45

1
45

2
45

7
90

1
9

1
15

2
15

4
15

4
15

0 0 0 0 0 0 0 0 0 1
15

APPENDIX A. CONVERSION MATRICES 111

A.2 Quartic G-Patch Conversion Matrix

C4 =

1
105

0 0 0 0 0 0 0 0 0 0 0 0 0 0

11
105

8
105

17
420

4
105

31
1260

1
90

2
105

17
1260

1
126

1
420

1
105

1
140

1
210

1
420

0

11
105

17
420

8
105

1
90

31
1260

4
105

1
420

1
126

17
1260

2
105

0 1
420

1
210

1
140

1
105

11
105

2
15

13
210

16
105

1
14

19
630

2
15

1
14

19
630

1
105

11
105

13
210

19
630

1
105

0

12
35

47
140

47
140

167
630

32
105

167
630

73
420

271
1260

271
1260

73
420

11
105

29
210

47
315

29
210

11
105

11
105

13
210

2
15

19
630

1
14

16
105

1
105

19
630

1
14

2
15

0 1
105

19
630

13
210

11
105

1
105

2
105

1
140

4
105

17
1260

1
210

8
105

31
1260

1
126

1
420

11
105

17
420

1
90

1
420

0

11
105

73
420

29
210

167
630

271
1260

47
315

47
140

32
105

271
1260

29
210

12
35

47
140

167
630

73
420

11
105

11
105

29
210

73
420

47
315

271
1260

167
630

29
210

271
1260

32
105

47
140

11
105

73
420

167
630

47
140

12
35

1
105

1
140

2
105

1
210

17
1260

4
105

1
420

1
126

31
1260

8
105

0 1
420

1
90

17
420

11
105

0 0 0 0 0 0 0 0 0 0 1
105

0 0 0 0

0 1
420

1
420

1
90

1
126

1
210

17
420

31
1260

17
1260

1
140

11
105

8
105

4
105

2
105

1
105

0 1
105

1
105

19
630

19
630

19
630

13
210

1
14

1
14

13
210

11
105

2
15

16
105

2
15

11
105

0 1
420

1
420

1
210

1
126

1
90

1
140

17
1260

31
1260

17
420

1
105

2
105

4
105

8
105

11
105

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
105

Bibliography

[1] R. Burden and J. Faires. Numerical Analysis. Brooks/Cole Publishing Com-

pany, 1997.

[2] C.A. Dahmen, W.A. Micchelli and H.-P. Seidel. Blossoming begets B-spline

bases built better by B-patches. Mathematics of Computation, 59(199):97–115,

July 1992.

[3] C. de Boor. On calculating with B-splines. Journal of Approximation Theory,

6:50–62, 1972.

[4] C. de Boor. A Practical Guide to Splines. Springer, 1978.

[5] P. de Casteljau. Formes à Pôles. Hermes, Paris, 1985.

[6] G Farin. Curves and Surfaces for CAGD. Morgan Kaufmann, fifth edition,

2002.

[7] M.G.J. Franssen. Evaluation of DMS-splines. Master’s thesis, Eindhoven Uni-

versity of Technology, 1995.

[8] R.C. Franssen, M. Veltkamp and W. Wesselink. Efficient evaluation of trian-

gular b-spline surfaces. Computer Aided Geometric Design, 17:863–877, 2000.

112

BIBLIOGRAPHY 113

[9] J Gallier. Curves and surfaces in geometric modelling. Morgan Kaufmann,

2000.

[10] R Goldman. Pyramid Algorithms. Morgan Kaufmann, 2003.

[11] G. Greiner and H.-P. Seidel. Modeling with triangular B-splines. IEEE Com-

puter Graphics and Applications, 14:56–60, 1994.

[12] M. Neamtu. What is the natural generalization of univariate splines to higher

dimensions? Mathematical Methods for Curves and Surfaces: Oslo 2000, pages

355–392, 2001.

[13] R.F. Pfeifle. Approximation and Interpolation using Quadratic Triangular B-

Splines. PhD thesis, University Erlangen-Nurnberg, 1995.

[14] L. Ramshaw. Blossoming: A connect-the-dots approach to splines. Technical

report, Digital Equipment Corporation, June, 1987.

[15] H.-P. Seidel. Symmetric recursive algorithms for surfaces: B-patches and the

de Boor algorithm for polynomials over triangles. Constructive Approximation,

7:257–279, 1991.

