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Abstract

Queries that return a list of frequently occurring items are popular in the analysis of data
streams such as real-time Internet traÆc logs. While several results exist for computing frequent
item queries using limited memory in the in�nite stream model, none have been extended to
the limited-memory sliding window model, which considers only the last N items that have
arrived at any given time and forbids the storage of the entire window in memory. We present
several algorithms for identifying frequent items in sliding windows, both under arbitrary dis-
tributions and assuming that each window conforms to a multinomial distribution. The former
is a straightforward extension of existing algorithms and is shown to work well when tested on
real-life TCP traÆc logs. Our algorithms for the multinomial distribution are shown to out-
perform classical inference based on random sampling from the sliding window, but lose their
accuracy as predictors of item frequencies when the underlying distribution is not multinomial.

1 Introduction

On-line data streams posses interesting computational characteristics, such as unknown or virtually

unbounded length, possibly very fast arrival rate, inability to backtrack over previously arrived

items (only one sequential pass over the data is permitted), and lack of system control over the

order in which data arrive; see Babcock et al. for a survey of data management issues in stream

processing [1]. A particular problem of interest concerns statistical analysis of data streams with

a focus on newly arrived data and frequently appearing items. For instance, an Internet Service

Provider may be interested in monitoring streams of IP packets originating from its clients and

identifying users who consume the most bandwidth during a given time interval. These types of

queries, in which the objective is to return a list of the most frequent items (called top-k queries

or hot list queries) or items that occur above a given frequency (called threshold queries), are

generally known as frequent item queries. However, to make such analysis meaningful, bandwidth

usage statistics should be kept for only a limited amount of time (for example, one hour or a single

billable period) before being replaced with new measurements. Failure to remove stale data leads

to statistics aggregated over the entire lifetime of the stream, which are unsuitable for identifying

recent usage trends.

A solution for removing stale data is to periodically reset all statistics. This gives rise to the

landmark window model, in which a time point (called the landmark) is chosen and statistics are

only kept for that part of a stream which falls between the landmark and the current time. Although

simple to implement, a major disadvantage of this model is that the size of the window varies|the

window begins with size zero and grows until the next occurrence of the landmark, at which point

it is reset to size zero. In contrast, the sliding window model expires old items as new items arrive.

In particular, count-based sliding windows are de�ned with respect to the last N items seen, while

time-based windows include only those items which have arrived in the last t time units.

If the entire sliding window �ts in memory, answering threshold queries over sliding windows

is easy: we maintain frequency counts of each distinct item within the window and increment or

decrement counters as new items arrive and old items are removed. However, there are many ap-

plications (e.g. monitoring Internet traÆc on a high-speed link) where the stream arrives so fast

that useful sliding windows are too large to �t in memory. In this case, each window must some-

how be summarized and an answer must be approximated on the basis of the available summary

information. This implies a trade-o� between accuracy and space, which is one of the fundamental

characteristics of all on-line stream algorithms.
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1.1 Our Contributions

We begin by presenting a simple algorithm, Frequent, that identi�es frequently occurring items

in sliding windows conforming to an arbitrary distribution. We then describe three algorithms,

MoreFrequentItem, MostFrequentItem, and OverThreshold, for identifying frequent

items within a stream adhering to a multinomial distribution in each instance of the sliding win-

dow. Our algorithms are based on the Basic Window idea of Zhu and Shasha, where the sliding

window is divided into equally-sized Basic Windows for which only a small synopsis is stored [17].

MoreFrequentItem and MostFrequentItem|which store only the identity of the item that

was most frequent in each Basic Window|identify the most frequent item, but estimating frequency

or even bounding the error in the identi�cation is shown to become infeasible as the number of

item types grows. In contrast, OverThreshold identi�es all items over a speci�ed threshold

frequency and may be used for frequency prediction with bounded error dependent upon the al-

located memory. We demonstrate that MoreFrequentItem and OverThreshold outperform

classical inference based on random sampling in terms of identifying items over a �xed threshold.

Finally, we test our algorithms on TCP connection logs and discover that algorithm Frequent

works fairly well on bursty data, but the others become inaccurate when the assumption of an

underlying multinomial distribution does not hold.

1.2 Roadmap

The remainder of this paper is organized as follows. Section 2 presents relevant previous work,

Section 3 introduces algorithm Frequent, Section 4 describes algorithms MoreFrequentItem

and MostFrequentItem, while Section 5 introduces algorithm OverThreshold. Section 6

compares the prediction error of our algorithms with random sampling and inference for propor-

tions, Section 7 contains experimental results based an a real-life Internet traÆc log, and Section

8 concludes the paper with suggestions for future work.

2 Previous Work

2.1 Frequent Item Algorithms over In�nite Streams

Frequent item algorithms in the in�nite stream model employ sampling, counting, and/or hashing

to generate approximate answers using limited space. The main diÆculty lies in �nding a small

set of potentially frequent items to monitor, while still being able to catch rarely occurring items

that suddenly become frequent. In this context, approximation may mean a number of things: an

algorithm may either return a set of items that contains all frequent 
ows (and some false positives),

only some frequent 
ows (and some false negatives), identities of frequent 
ows but no frequency

counts, or identities and approximate counts of the frequent items. Note that the terms item types,

item categories, and 
ows are used synonymously throughout the remainder of the paper.

A naive counting method for answering threshold queries is to examine all items as they arrive

and maintain a count for each item type to identify those that appear frequently. This method

takes linear space in the worst case, where all item types are unique except for one type that

occurs twice. On the other hand, reducing memory usage by random sampling may result in

large variance when the sampled frequency is used as the estimator of the actual frequency. Estan

and Varghese propose a sampled counting algorithm to determine a superset likely to contain the

dominant 
ows [7]. This algorithm uses random sampling only to select whether an item is to
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be examined more thoroughly; once an item is selected, all of its occurrences are counted (this

idea also appears in Gibbons and Matias [10]). Another counting-sampling approximate algorithm

is given by Manku and Motwani in [13], which uses a sampling rate that decreases with time in

order to bound memory usage. Finally, a randomized counting-sampling algorithm is presented

by Demaine et al. [6] that �nds 
ows above a relative frequency of 1=
p
nm with high probability,

where n is the number of incoming items observed and m is the number of available counters. This

algorithm divides the stream into a collection of rounds, and for each round counts the occurrences

of m=2 randomly sampled categories. At the end of each round, the m=2 winners from the current

round are compared with m=2 winners stored from previous rounds and if the count for any current

winner is larger than the count for a stored category, the stored list is updated accordingly.

Demaine et al. also present a counting algorithm that uses only m counters and determin-

istically identi�es all categories having a relative frequency above 1=(m + 1). This algorithm is

a straightforward extension of the classical majority counting algorithm by Fischer and Salzberg

[9]. This method, however, returns a superset guaranteed to contain popular items and requires a

re-scan of the data to determine the exact set of frequent items. Moreover, Manku and Motwani

also show a deterministic counting algorithm that maintains a counter for each distinct item seen,

but periodically deletes counters whose average frequencies since counter creation time fall below a

�xed threshold. To ensure that frequent items are not missed by repeatedly deleting and re-starting

counters, each frequency estimate includes an error term that bounds the number of times that the

particular item could have occurred up to now.

Fang et al. present various hash-based frequent item algorithms in [8], but each requires at

least two passes over the data. Moreover, the one-pass sampled counting algorithm by Estan and

Varghese may be augmented with hashing as follows. Instead of sampling to decide whether to

keep a counter for a 
ow, we simultaneously hash each item's key to d hash tables and add a new

counter only if all d buckets to which a particular element hashes are large (and if the element does

not already have a counter). This reduces the number of unnecessary counters that keep track of

rare 
ows. A similar technique is used by Charikar et al. in [4] in conjunction with hash functions

that map each key to the set f�1; 1g.

2.2 Sliding Window Algorithms

Zhu and Shasha introduce the concept of Basic Windows in order to incrementally compute simple

aggregates [17]. The sliding window is divided into equally-sized Basic Windows and only a synopsis

and a timestamp are stored for each Basic Window. When the timestamp of the oldest Basic

Window expires, that window is dropped and a fresh Basic Window is added. This scheme works

well with statistics that are incrementally computable from a set of synopses. For example, we

may incrementally compute the sum of all items inside the current sliding window by replacing the

sum of all elements in the oldest Basic Window with the sum of all elements in the newest Basic

Window. However, results are refreshed only after the stream �lls the current Basic Window. If

the available memory is small, then the number of synopses that may be stored is small and hence

the refresh interval is large.

In order to solve the above problem, Exponential Histograms (EH) are introduced by Datar et

al. in [5]. Given an error bound �, the EH algorithm maintains Basic Windows with exponentially

varying size such that the number of windows (and hence, the amount of memory needed for

synopses) is optimal. Only a synopsis and a timestamp are stored for each Basic Window. However,

in contrast to [17], the EH algorithm returns results to within an error � at all times. The algorithm
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requires O(1
�
log2N) space, where N is the size of the window, and it is proven that this bound is

optimal for counting within the allowed approximation error. Unfortunately, EH may only be used

with synopses that are mergeable. That is, a synopsis for the union of two Basic Windows must

be computable from the two individual synopses. Nevertheless, some statistics that do not obey

the additive synopsis property (e.g. variance) may be re-written into an approximate incremental

formula (see [3]).

Finally, random sampling from a window of sizeN is addressed by Babcock, Datar, and Motwani

in [2]. Two algorithms are shown: Chain Sampling for count-based windows and Priority Sampling

for time-based windows.

3 Motivation and Simple Algorithm for Arbitrary Distributions

The two existing techniques for computing statistics over sliding windows (Basic Windows and EH)

cannot easily handle top-k queries. For example, if each Basic Window stores counts of the top

�ve 
ows, we would ignore a frequent 
ow that consistently places sixth. Moreover, the fact that

a 
ow type appears in a top-k synopsis in any one Basic Window does not mean that this 
ow

is one of the k most frequent 
ows in the entire sliding window (it may not appear in any other

Basic Windows at all). Likewise, the frequent item algorithms for in�nite streams do not present

obvious opportunities for extension to the sliding window model. The counters used in the counting

methods could be split and a timestamp assigned to each sub-counter; this essentially reduces to

the Basic Window method with item counts stored in the synopses. Similarly, hash tables could

be split in the same way, resulting in a Basic Window approach with hash tables stored in the

synopses. Space usage could be improved by incorporating periodic garbage collection to remove

infrequent items or items which are about to expire. However, the side e�ects of the former are

that infrequent items that suddenly arrive in large bursts and rise in frequency above the threshold

may be missed, while the latter arti�cially narrows the sliding window.

We propose the following simple algorithm, Frequent, that employs the Basic Windows ap-

proach and stores top-k synopses in each Basic Window. We �x an integer k and for each Basic

Window, maintain a list of the k most frequent items in this window (we assume that a single Basic

Window �ts in main memory, within which we may count item frequencies exactly). Let Æi be the

frequency of the kth most frequent item in the ith Basic Window. Then Æ =
P

i
Æi is the upper

limit on the frequency of a 
ow that does not appear on any of the top-k lists. Now, we sum the

reported frequencies for each item present in at least one top-k synopsis and if there exists a 
ow

whose reported frequency exceeds Æ, we are certain that this 
ow has a true frequency of at least

Æ. The pseudocode is given below, assuming that b is the number of elements per Basic Window.

Algorithm Frequent

Repeat

1. For each element e in the next b elements
If a local counter exists for the type of element e, increment it
Otherwise, create a new local counter for this element type and set it equal to 1

2. Add a summary S containing the identities and counts of the k most frequent items to

the back of queue Q

3. Delete all local counters

4. For each type named in S

If a global counter exists for this type, add to it the count recorded in S
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Otherwise, create a new global counter for this element type and set it equal to the count
recorded in S

5. Add the count of the kth largest type in S to Æ

6. If sizeOf(Q) > N=b then

(a) Remove the summary S0 from the front of Q and subtract the count of the kth largest
type in S0 from Æ.

(b) For all element types named in S0, subtract from their global counters the counts
recorded in S0

If a counter is decremented to zero, delete it

(c) Output the identity and value of each global counter > Æ

Algorithm Frequent works with arbitrary underlying distributions, but is susceptible to the

false negatives problem: there may be items that have appeared on a few top-k lists, but summing

up their frequencies from these top-k lists does not exceed Æ|however, some of these items may

be suÆciently frequent in other Basic Windows (but not frequent enough to register on the top-k

lists of these other windows) that their true frequency counts exceed Æ. Moreover, if k is small,

then Æ may be very large and the algorithm will not be able to report any frequent 
ows. On the

other hand, if k is large and each synopsis contains items of a di�erent type (i.e. there are very

few repeated top-k \winners"), the algorithm may require a great deal of storage space, perhaps

as much as the size of the sliding window. We suspect that algorithm Frequent will work well if

there are a few very frequent 
ows, which will repeatedly be included in nearly every top-k synopsis.

We will verify this hypothesis experimentally in Section 7.

4 Identifying the Most Frequent Item: Multinomial Distribution

In this section, we present an algorithm for identifying the most frequent item in a sliding window

that conforms to a multinomial distribution. We show that the algorithm works well when only

two 
ows are present, but becomes computationally expensive as the number of 
ows increases.

In the next section, we modify the algorithm to instead identify 
ows above a given threshold,

and we show that solving this problem is signi�cantly easier. We begin by considering count-based

windows and extend our approach to time-based windows in Section 5.2.1. We continue to assume

that reporting the most frequent item need not be available at all times (as in the Exponential

Histogram approach) but instead a slight refresh delay is permitted (as in the Basic Window

approach).

4.1 Two Flows

In the simplest case of only two 
ows, call them x and y, whose actual relative frequencies px and

py sum to one, we wish to determine which of the two 
ows occurs in the window with higher

frequency and give an estimate for that frequency. Using the Basic Window approach, a simple

exact algorithm is to store counters that contain the di�erence of the number of x-items versus the

number of y-items in each Basic Window. Summing the counters over all Basic Windows gives the

di�erence in the observed counts, from which percentage frequencies may be obtained if the size

of the sliding window is known. In what follows, we show that if the sliding window conforms to

a binomial distribution, we need only record the identity of the more frequent 
ow in each Basic

Window in order to estimate item frequencies.
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4.1.1 A Simple Algorithm

The following algorithm divides the sliding window of size N into a set of n equally-sized Basic

Windows, each of which is summarized by an entry in a queue. Statistics are refreshed every

b = N=n items.

AlgorithmMoreFrequentItem

1. Initialize global counters fx and fy to zero

2. Repeat

(a) Initialize local counters lx and ly to zero

(b) For each element e in the next b elements
If e is of type x, increment lx
Otherwise, increment ly

(c) Add a summary containing the type of the \winner" (larger local counter) to the back
of queue Q, and increment the corresponding global counter

(d) If sizeOf(Q) > N=b then

i. Remove the summary from the front of Q and decrement the corresponding global
counter

ii. Output the identity and value of the larger global counter

Since a single bit can identify the \winner" between two 
ows, MoreFrequentItem requires

O(N=b) space and �(1) amortized time.

Each time a Basic Window is �lled, MoreFrequentItem outputs the identity of the item

expected to be more frequent in the sliding window. Suppose that the output item is x. The

algorithm also supplies a frequency fx of the Basic Windows dominated by x. However, it is not

immediately clear how fx is related to the actual relative frequency px of item x.

Proposition 1 Consider the random variable w de�ned as follows.

w =

(
1 if x is the more frequent item in a Basic Window

0 otherwise
(1)

Then, w constitutes a Bernoulli variable.

Proof

The probability of success is the same for all Basic Windows as they all have the same

size. Success occurs with probability Bx equal to the probability that 
ow x is more

frequent than 
ow y within the Basic Window. That is, Bx is the probability that 
ow

x occurs d b2e or more times in a Basic Window of size b, given by Equation (2); recall

that 
ows x and y conform to a binomial distribution, where the probability that a

given element e belongs to 
ow x is px and the probability that e belongs to 
ow y is

py = 1� px. Failure occurs with probability 1� Bx.

Bx =

bX
i=d b

2
e

 
b

i

!
pi
x
(1� px)

b�i (2)
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Corollary 1 Since the probability of 
ow x winning in any one Basic Window is independent of

its probability of winning in any other Basic Window, the sum of n Bernoulli variables w is a

Binomial variable with parameters n and Bx.

The frequency fx output by MoreFrequentItem may be used to calculate an observed rela-

tive frequency B̂x that x is the winner of a Basic Window.

B̂x = fx=n (3)

This value can then be substituted in Equation (2) in order to obtain p̂x, the expected relative

frequency of item x. Unfortunately, Equation (2) cannot be solved in closed-form for p̂x (see

Appendix A for partial results). Thus, numerical methods must be used in order to obtain a value

for p̂x for a given B̂x.

4.1.2 Bounding the Error

We will make use of the following result due to Hoe�ding [11]. Consider a sample of n items from

a Binomial distribution and an observed frequency of f . The following is Hoe�ding's bound on the

deviation of the observed frequency from the true frequency p.

Pr

�
f

n
� p � �

�
� e�2n�

2

(4)

We assume that the numerical methods used to obtain p̂x from B̂x are not a signi�cant source

of error; therefore, the primary source of error stems from the quality of B̂x as an estimate for Bx.

Now, Bx is a Binomial random variable (by Corollary 1, fx is a Binomial random variable, and Bx

is simply a normalized form of fx). Using the Hoe�ding bound along with a symmetry argument

gives the following.

Pr
n
(B̂x ��) � Bx � (B̂x +�)

o
> 1� 2e�2n�

2

(5)

The right-hand side is the con�dence level, so by setting it equal to the desired con�dence (e.g. 0.95)

we can solve for � (note that n is �xed by the choice of b). Because Bx in Equation (2) increases

monotonically with px, we can �nd lower and upper bounds for px by numerically computing

solutions to Equation (2) for the points Bx = (B̂x � �) and Bx = (B̂x + �), respectively. This

process is illustrated in Figure 1, showing Bx on the vertical axis and the bounds for px on the

horizontal axis.

It should be noted that because the Basic Window size b occurs in the bounds of the summation

in Equation (2), the choice of b has a large impact on the error in predicting px. As b increases,

the following behaviour may be observed.

1. The prediction error � surrounding B̂x increases because n, the number of Basic Windows

used to make the prediction, decreases.

2. The graph of Bx vs. px degrades from a linear function to a step function centered around

px = 0:5.

Figure 2 demonstrates the e�ect of changing b for a window of size N = 10000. It shows the curve

B̂x as a function of px, along with the curves B̂x �� and B̂x + � that bound the 95% con�dence

region. The three graphs demonstrate the following values of b: (a) 5 (b) 50 (c) 500.
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Figure 1: Solving for p̂x numerically.

0

0.2

0.4

0.6

0.8

1

Bx

0.2 0.4 0.6 0.8 1
px

0

0.2

0.4

0.6

0.8

1

Bx

0.2 0.4 0.6 0.8 1
px

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Bx

0.2 0.4 0.6 0.8 1
px

(a) (b) (c)

Figure 2: E�ect of Basic Window size on inference error.

The observation that Bx as a function of px degrades to a step function with increasing b is

crucial for characterizing the e�ect of Basic Window size on prediction error. For small values of b,

algorithm MoreFrequentItem predicts a wide range of values for px, while for large values of b,

the useful prediction range for px is very small. However, the prediction error immediately about

the point px = 0:5 remains tight as b grows. The net e�ect is that as the choice of Basic Window

size ranges from 1 to N , MoreFrequentItem's usefulness as a frequency predictor diminishes,

but its accuracy as a Boolean test for identifying the majority item remains. Since the algorithm's

space usage is inversely proportional to b, we conclude that there is a direct tradeo� between space

and the accuracy of the frequency prediction, but the simple identi�cation of the majority item

does not illustrate this tradeo�.

4.2 Multiple Flows

Algorithm MoreFrequentItem from the previous section may be modi�ed as follows to identify

the most frequent item among d 
ows.

AlgorithmMostFrequentItem

Repeat
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1. For each element e in the next b elements
If a local counter exists for the type of element e, increment it
Otherwise, create a new local counter for this element type and set it equal to 1

2. Add a summary S containing the type of the \winner" (largest local counter) to the back
of queue Q

3. Delete all local counters

4. If a global counter exists for the type named in S, increment it
Otherwise, create a new global counter for this element type and set it equal to 1

5. If sizeOf(Q) > N=b then

(a) Remove the summary from the front of Q and decrement the corresponding global
counter. Delete the counter if its size reaches zero

(b) Output the identity and value of the largest global counter

The space requirement of algorithm MostFrequentItem consists of two parts: the working

space needed to create a summary for the current Basic Window, and the storage space needed for

the summaries of the Basic Windows. In the worst case, the working space requires min(b; d) local

counters of size log b. For storage, there are N=b summaries each requiring log d bits. There are also

at most N=b global counters of size log (N=b). This gives a total space bound of O(min(b; d) logb+
N

b
log d + N

b
log N

b
). The time complexity of MostFrequentItem is O(b) for each pass through

the outer loop. Since each pass consumes b arriving elements, this gives O(1) amortized time per

element.

The largest weakness of this algorithm lies in the intractability of using the output value fi in

order to estimate the relative frequency pi of the most frequent item i. In fact, even just bounding

the error on the identity of i is intractable for large d. Consider the case of three 
ows x, y, and

z. In the two-
ow case, Bx in Equation (2) was constructed by summing the probabilities of all

possible cases where x was in majority within a Basic Window. These cases were easily identi�ed

as exactly those where x occurred at least d b2e times. However, in the three-
ow case the test

count(x) � b

3
is a necessary by not suÆcient criterion for identifying a majority by x, because x's

majority also depends on its count being greater than both y and z. This gives rise to the equation

Bx =

bX
i=d b

3
e

 
b

i

!
pi
x

8<
:

b�iX
j=0

 
b� i

j

!
pj
y
pb�(i+j)
z

�
b�iX

j=i+1

 
b� i

j

!h
pj
y
p1�(i+j)
z

+ p1�(i+j)
y

pj
z

i9=
; (6)

with analogous equations existing for By and Bz. In order to compute px given estimates for Bx, By

and Bz, we must solve a non-linear system of two equations and two unknowns (the third equation

is eliminated by rewriting pz in terms of px and py).

In the general case of d 
ows, to estimate pi we must solve a non-linear system of d�1 equations
and d� 1 unknowns, where the number of terms within each equation grows combinatorially in d.

Even if we restrict the problem to simply bounding the prediction error in the identi�cation of i as

the most frequent item, we cannot translate the width of the Hoe�ding-bounded error surrounding

B̂i to a range surrounding p̂i without solving the entire system.

Because the Most Frequent Item Problem is a simpli�cation of the more general Top-k Problem,

the above results demonstrate that it is infeasible to extrapolate a solution to the top-k problem

with bounded error using only a set of sub-solutions (top-k lists for portions of the total window)

and the assumption of a multinomial distribution.
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5 Threshold Queries: Multinomial Distribution

5.1 The Algorithm

The complexity involved in using algorithm MostFrequentItem is due to the interdependence

among 
ows inherent in the concept of a winner for each Basic Window. Because of the depen-

dencies involved in the creation of the stored synopses, we cannot use the synopses to solve for the

relative frequency of one 
ow without simultaneously solving the entire system. Clearly, if we wish

to solve for the frequencies of only selected 
ows, we must eliminate the inter-
ow dependencies

that exist within the stored synopses.

One way to introduce independence is to replace the concept of winner (implying comparison

among peers) with achiever (implying comparison against an external standard). As a consequence,

rather than each Basic Window resulting in exactly one winner, each Basic Window may result in

the recognition of zero or more achievers. The following algorithm employs a user-de�ned threshold

1=m to create a synopsis for each Basic Window.

AlgorithmOverThreshold

Repeat

1. For each element e in the next b elements
If a local counter exists for the type of element e, increment it
Otherwise, create a new local counter for this element type and set it equal to 1

2. Add a summary S containing the element types of all local counters � b=m to the back of
queue Q

3. Delete all local counters

4. For each type named in S

If a global counter exists for this type, increment it
Otherwise, create a new global counter for this element type and set it equal to 1

5. If sizeOf(Q) > N=b then

(a) Remove the summary S0 from the front of Q

(b) Decrement the global counters for all element types named in S0

If a counter is decremented to zero, delete it

(c) Output the identity and value of all global counters greater than some threshold �

The space complexity of OverThreshold is at most m times worse than that of MostFre-

quentItem, with a worst case bound of O(min(b; d) logb + mN

b
log d + mN

b
log N

b
) where d is the

total number of 
ows in the system. The time complexity is O(min(m; b) + b) per iteration of the

outer loop, which still yields O(1) amortized time.

We now proceed to resolve two issues related to algorithm OverThreshold. Firstly, we iden-

tify the relation between the frequency fx output by the algorithm and the true relative frequency

of the 
ow px. Secondly, we investigate how to calculate the required value of � used in step 6(c)

of the algorithm. We �rst note that, as in section 4.1, we can de�ne a Bernoulli random variable

w =

(
1 if count(x) � b=m in a Basic Window

0 otherwise
(7)

whose probability of success Bx is given by the sum of the probabilities for all scenarios where

x exceeds the threshold. In the construction of Equation (2) in section 4.1 we exploited the fact
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that \majority" in the two 
ow case is equivalent to surpassing a threshold of db=2e. In this more

general case of an arbitrary threshold, our new equation for Bx becomes the following.

Bx =

bX
i=d b

m
e

 
b

i

!
pi
x
(1� px)

b�i (8)

Observe that unlike Equation (6), this equation relates Bx to px without dependence on the relative

frequencies of any other 
ows.

To address the �rst issue, note that each output fx induces a value B̂x = fx=n which is an

approximation for the true Bx of Equation (8). The frequencies fi8i = 1; : : : ; d are expected to

follow a Multinomial distribution with parameters n, B1, B2, . . . , Bd, so the marginal distribution

for fx (and hence B̂x) follows a Binomial distribution. Therefore, we can directly apply the Ho-

e�ding bound from Equation (5) to quantify the error in this approximation. The result is that the

observations made in section 4.1.2 regarding the e�ect of b on the shape of the curve and the error

in prediction all directly apply, with the generalization that the step function centers around the

point px = 1=m rather than px = 1=2. Figure 3 demonstrates the curve associated with the values

N = 10000, b = 50, and m = 10.
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Figure 3: E�ect of Threshold Parameter on Inference Error

The fact that the accuracy of frequency prediction centers around the relative threshold 1=m

used to create the synopses implies that the desired reporting threshold should be very close to

1=m (or, more likely, 1=m should be chosen very close to the actual desired reporting threshold).

Let us assume that 1=m is also the desired reporting threshold. Then, the value for � should be

the expected value for Bx when px equals the reporting threshold 1=m, which can be calculated

by substituting 1=m for px in Equation (8). This value for � gives the most likely list of 
ows

that have a relative frequency over 1=m; however, the solution may contain either false negatives

(high frequency 
ows not identi�ed) or false positives (low frequency 
ows incorrectly identi�ed).

By adding (subtracting) the value � to (from) � , we can guarantee with the con�dence level

associated with � that the solution contains no false positives (negatives), with the tradeo� that

the solution is more likely to contain false negatives (positives).
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5.2 Possible Extensions

5.2.1 Handling Time-based Sliding Windows

Our algorithms have been designed with count-based sliding windows in mind as the Basic Window

approach requires uniformly sized divisions of the window. To extend our work to time-based

windows, Basic Windows could be modi�ed to allow di�erent sizes that span equal time intervals.

Our algorithms for the multinomial distribution would still work due to the following result from

probability theory.

Theorem 1 A Poisson trial ai is a success with probability pi and failure with probability 1 � pi.

Suppose that A is the sum of n independent Poisson trials ai with probabilities pi for 1 � i � n.

Hoe�ding's theorem states that A may be upper-bounded by a Binomial random variable B with

parameters n and p = 1
n

P
n

i=1 pi.

Unfortunately, Hoe�ding's bound for the sum of Poisson trials is known to be (potentially much)

looser than the bound on the sum of Bernoulli trials. Alternatively, we may use Cherno�'s bound

for Poisson trials (see, e.g. [15]).

5.2.2 Top-k Estimation using Counts

Recall that our algorithms compute lists of items that occur with frequencies exceeding a user-

de�ned threshold. The following is a possible extension of our techniques to compute a list of the

k most frequent items. Consider the general case of d distinct 
ows and some threshold � . In

addition to storing the boolean information of whether or not an item exceeded the threshold in a

given Basic Window, we also store the counts of all the items above the threshold. After computing

the list of all the items that exceed the threshold in the entire window, if there are more than k

such items, then we increase the threshold slightly and eliminate all the items whose counts do not

exceed the new threshold. We continue this procedure until there are exactly k items left.

The above suggests a more general approach of assigning di�erent thresholds for di�erent items.

That is, for 
ows x, y, z and w, we could choose to include 
ow x on our above-the-threshold lists

only if its relative frequency is above 0.4 and include other 
ows if their frequencies are above 0.35.

This would be an appropriate strategy if we knew that 
ow x is slightly more popular than the

other 
ows. This method could be improved by incorporating feedback from recent sliding windows

and deciding whether to increase or decrease thresholds for various 
ows. This idea, however, is

beyond the scope of this paper as it is more akin to probabilistic counting from data synopses than

to frequent item queries.

5.2.3 Reducing Space Usage

We propose two extensions of our algorithms that aim at reducing space usage: randomly sampling

items to be stored in the synopses and deleting parts of older synopses if a particular item has

already exceeded the global threshold. In the �rst approach, if an item exceeds the threshold in a

given Basic Window, we 
ip a biased coin and store the item with probability h and ignore it with

probability 1 � h. This scheme reduces space and does not a�ect the running time, but it does

introduce an additional source of error. This demonstrates an interesting tradeo� between using

space in order to straighten out the error curve (as in Figure 2, improving the range of px that can

be predicted) and using space to tighten the prediction error within the usable part of the curve.
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The second improvement essentially cuts down on redundant information and works as follows.

Suppose that an item would have to occur on at least 20 out of 100 top-k lists in order to exceed a

given threshold. Suppose further that 
ow x occurs on 60 such lists. If we removed every second

occurrence of 
ow x from the top-k lists, we would still have 30 such occurrences and we would still

conclude that x exceeds the threshold (although we could not even attempt an estimation of the

true frequency of x). However, this would introduce error for skewed data as the window slides. A

better solution would be to remove 
ow x from the 30 oldest lists on which it occurs, which does

not introduce any error into future windows. This reduction in space comes at a cost of increased

processing time to locate the oldest items to delete.

6 Comparison with Random Sampling

We are interested in comparing the accuracy in identifying high frequency 
ows between our al-

gorithms (MoreFrequentItem and OverThreshold) and classical inference for proportions.

Let p̂ be the sample proportion (observed count divided by the sample size n). The interval within

which the true proportion p lies may be calculated as follows.

p 2 [p̂� z�S; p̂+ z�S] (9)

The value of z� is the percentile of the standard normal distribution that corresponds to the given

con�dence level (z� = 1:960 for 95% con�dence, z� = 2:576 for 99% con�dence), while S is the

standard error of the sample given by the following equation.

S =

s
p̂(1� p̂)

n
(10)

This inference method relies on the normal approximation to Binomial distributions and should be

used only if np � 5 and n(1�p) � 5. Moreover, we introduce the �nite population correction factor,

which is used when sampling is performed from a �nite population. In this scenario, the population

size is equal to the sliding window size because we have assumed that each sliding window conforms

to a multinomial distribution. With the correction for �nite population, assuming sample size n

and sliding window (population) size N , the standard error becomes the following.

S =

s
p̂(1� p̂)

n

s
N � n

N � 1
(11)

In our experiments, the error metric is taken to be the maximum expected error when the

sample proportion is equal to the threshold at the 95% con�dence level. For instance, in the two-


ow majority case, we compare the range of p that MoreFrequentItem returns when B̂x = 0:5

with the con�dence interval predicted by Equations (9) and (11) for p̂ = 0:5. We �x N , the size of

the sliding window, to be 10000 and investigate the consequences of increasing the Basic Window

size b, (or equivalently, decreasing k, the number of Basic Windows). To ensure fairness, we allow

the random sampling algorithm to utilize the same amount of memory that our algorithms require

in the worst case. Furthermore, we undercharge the random sampling algorithm by ignoring the

space costs associated with maintaining a windowed random sample (see Babcock, Datar, and

Motwani [2] for more details regarding these costs).
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6.1 Performance of Algorithm MoreFrequentItem

We begin the performance comparison by considering algorithm MoreFrequentItem in the role

of an identi�er of the majority between two 
ows. Figure 4 shows the error as a function of b. The

upper curve corresponds to classical inference, the lower curve to MoreFrequentItem.
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Figure 4: Prediction Error of MoreFrequentItem and Random Sampling

It can be seen that MoreFrequentItem outperforms classical inference for all values of b.

For instance, if b = 100, the algorithm's error is only one-�fth of the error in random sampling.

As the value of b approaches 400, our algorithm's advantage in minimizing the error reaches one

order of magnitude. As seen in Figure 2 in Section 4, increasing b has little e�ect on the approxi-

mation error of MoreFrequentItem at the decision point, while at the same time reducing the

space requirements (and unfortunately, increasing the refresh delay). In contrast, random sampling

performs increasingly poorly as b gets large because the ratio of the sample size to the population

size decreases. We conclude thatMoreFrequentItem is the superior algorithm for the examined

parameters.

6.2 Performance of Algorithm OverThreshold

We now compare the worst-case performance of algorithmOverThreshold with classical inference

for many 
ows with three threshold values: 0.5, 0.1, and 0.01. The value of N remains �xed at

10000 and the con�dence level is still 95%. We assume that the number of distinct 
ows d is at

least as large as b. Results are shown in Figure 5 for threshold values of (a) 0.5 (b) 0.1 and (c)

0.01. The (approximately) linear function is the error of OverThreshold, while the sharp curve

corresponds to the error of random sampling.

We �rst note that the error in classical inference is no longer a monotonically increasing function

of b. This is so because the space complexity of algorithm OverThreshold depends on b (in the

worst case, we need to store the entire current Basic Window in memory since we assumed that

d � b) and on mN

b
(the number of synopses stored times the maximum number of items that may

possibly exceed the given threshold of 1
m
). Thus, as b increases, our algorithm must allocate more

working storage for the current Basic Window, which allows the classical inference algorithm to use
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Figure 5: Prediction Error of OverThreshold and Random Sampling

a larger sample size. This explains why the error in random sampling eventually begins to decrease

as b increases, as seen in Figures 5(a) and 5(b).

Our second observation deals with the degradation in the worst-case performance of algorithm

OverThreshold (relative to random sampling) for very small threshold values. Clearly, a smaller

threshold value allows more items to exceed the threshold in a given Basic Window, thereby in-

creasing the upper bound on the sizes of our synopses. Nevertheless, as seen in Figure 5(a), our

algorithm outperforms random sampling when the threshold is 0.5 and b is smaller than roughly

2500 (i.e. one quarter of the sliding window size). In Figure 5(b), we see that when the threshold is

lowered to 0.1, our algorithm performs better for b ranging between approximately 25 and 2500. In

Figure 5(c), further decreasing the threshold to 0.01 leads to a value of b ranging roughly between

250 and 2500 for which algorithm OverThreshold is more precise than random sampling.

It should be noted that these results represent the worst-case behaviour of algorithm Over-

Threshold, where the maximal number of items that could exceed the threshold in a given Basic

Window do and must be recorded in the synopses, and where there are at least b distinct items

in the sliding window. Relaxing either of these conditions leads to a relative improvement in the

performance of our algorithm versus random sampling. In the \best" case of only two 
ows, we

only require one counter in order to decide which 
ow was more frequent within the current Basic

Window. Thus, the amount of memory available to store a random sample is smaller and our

algorithm enjoys a greater relative advantage (see Figure 4).

7 Experimental Results

7.1 Experimental Setup

We now test our algorithms on Internet traÆc data obtained from the Internet TraÆc Archive

[12]. We use a trace that contains all wide-area TCP connections between the Lawrence Berkeley

Laboratory and the rest of the world between September 16, 1993 and October 15, 1993. The trace

was created by Paxson and analyzed by Paxson and Floyd in [16]. The total number of connections

in the trace is 782279, with the ten most popular protocol types shown in Table 1. We consider

each of the 53 protocol types present in the trace to be a distinct item type. In each experiment, we

randomly choose one hundred starting points for windows, each of size 10000 items, and execute our

algorithms over those windows. For comparison, we also run a brute-force algorithm that calculates

the true frequencies of all item types.
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Protocol type # of connections % of connections

smtp 272643 34.9

nntp 148498 19.0

ftp-data 112891 14.4

telnet 89238 11.4

domain 33402 4.3

ftp 32872 4.2

�nger 24901 3.2

gopher 11587 1.5

www 9070 1.2

printer 7755 1.0

other 39422 5.0

TOTAL 782279 100.0

Table 1: Ten most popular protocols in the TCP trace used in our experiments.

k Avg. count of kth item Avg. # correct Avg. # false negatives

1 11.3 0 0

2 5.7 1.1 0.3

3 3.5 2.4 0.2

4 2.0 3.5 0.2

5 1.2 4.5 0.1

6 0.76 5.6 0.8

Table 2: Experimental results for algorithm Frequent

7.2 Performance of Algorithm Frequent

We begin by testing algorithm Frequent over sliding windows composed of four hundred Basic

Windows of size 25. We vary k, the size of the synopses, from one to six. We measure the average

count of the kth most frequent item per Basic Window (by dividing Æ by the number of Basic

Windows), the average number of 
ows that were correctly identi�ed by our algorithm as being

over the threshold Æ, and the average number of false negatives. Results are shown in Table 2.

As expected, the average count (per Basic Window) of the kth most frequent item drops as k

increases. In fact, when k = 6, the sixth most frequent item's frequency is below one, meaning that

in some Basic Windows, there are only �ve distinct types and the sixth type has frequency zero

(ties are broken arbitrarily). Now, if we only store the winner in each Basic Window (k = 1), Æ is

large and we cannot reliably identify any popular items. There are also no false negatives because

there are actually no 
ows whose frequency exceeds Æ. Since the average count of a winner is 11.3

and there are 25 items per Basic Window, a 
ow would have to occur with frequency 11:3=25, i.e.

over 45% of the time. However, as seen in Table 1, the most frequent 
ow occurs with frequency of

35%. When k = 2, there are either one or two 
ows that exceed 5:7=25, or 23% frequency and our

algorithm almost always identi�es the most frequent 
ow. There may be occasional false negatives.

When k = 3, there are usually two or three items that exceed Æ and again, our algorithm always
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Figure 6: Accuracy of algorithm MoreFrequentItem with our experimental data.

correctly identi�es the two most frequent 
ows. In some cases, the third 
ow is also identi�ed and

in others, it is not reported. When k = 4, there are three, four, and sometimes �ve 
ows that now

exceed Æ. At least the top three are always identi�ed and occasionally, the fourth or �fth 
ows are

left out. When k reaches �ve, the average count of the �fth most popular item in a Basic Window

is just over one and there are very few false negatives: our algorithm correctly identi�es the top

four and sometimes the top �ve 
ows in the correct order. However, increasing k to six means that

the sixth most frequent item sometimes has frequency zero and there are now up to eight item

types whose frequency exceeds Æ. In this case, the probability of false negatives increases and our

algorithm may not identify frequent 
ows in correct order, i.e. a 
ow may have a lower reported

frequency than another, but a higher true frequency. We conclude that algorithm Frequent works

surprisingly well in identifying the heaviest 
ows within data resembling a power law distribution

(i.e. several heavy 
ows and many very light 
ows). We note, however, that the algorithm would

perform much worse when faced with a distribution that is more uniform.

7.3 Performance of Algorithm MoreFrequentItem

We have edited the trace and retained only two protocols (smtp and ftp-data) in order to test

algorithm MoreFrequentItem. Results are shown in Figure 6. The two curves represent the

lower and upper frequency prediction ranges for 99% con�dence, while the crosses and circles

represent the values of Bx and the corresponding true values of px of the winning and losing 
ow,

respectively. Figure 6 (a) corresponds to bucket size of �ve, Figure 6 (b) to bucket size of 25, and

Figure 6 (c) to bucket size of 125. In all cases, we see that the S-shaped prediction curve of our

algorithm (which assumes an underlying binomial distribution) does not match the approximately

linear prediction curve of the experimental data. In particular, the winning 
ow's frequency is

consistently underestimated (the observed values lie to the right of the prediction curves) because

of the burstiness of the data. That is, if a 
ow wins in a particular Basic Window, it might occur in

this window exclusively. On the other hand, the frequency of the losing 
ow is often overestimated

because the losing 
ow may not occur at all in the Basic Windows in which it does not win. We

conclude that algorithmMoreFrequentItem should be used (especially as a frequency predictor)

only if it is known that the underlying distribution is (or may be approximated as) binomial.
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Figure 7: Accuracy of algorithm OverThreshold with our experimental data.

7.4 Performance of Algorithm OverThreshold

Results of experiments with algorithm OverThreshold are shown in Figure 7. The two curves

represent the lower and upper frequency prediction ranges for 99% con�dence and the crosses

represent the actual (px; Bx) pairs generated from the test data. We �x the Basic Window size

at 25 and test threshold values of 0.08 (Figure 7 (a)), 0.12 (Figure 7 (b)), and 0.24 (Figure 7

(c)). As before, in many cases the frequencies of the heavy 
ows are underestimated due to the

burstiness of the data. Notably, some of the lighter 
ows are not as bursty as the most popular

types and are well approximated by our multinomial algorithm. Again, we conclude that algorithms

MoreFrequentItem and OverThreshold should not be used if the underlying data cannot be

approximated by a multinomial distribution.

8 Conclusions

We presented algorithms for computing threshold queries over sliding windows using limited mem-

ory. We considered the general case, in which item types conform to an arbitrary distribution and

presented a simple algorithm that works well with real data that are bursty and contain a small

set of very popular item types. We also narrowed down our focus to data conforming to a multi-

nomial distribution and devised algorithms for answering threshold queries (and to some extent

for inferring the actual frequencies of items) in this model. These algorithms were later shown to

outperform classical inference from a windowed random sample, but turned out to perform poorly

with bursty data.

Our future work includes analyzing algorithm Frequent and proving an upper bound on the

size of the top-k synopses required to guarantee a certain level of precision. If the underlying

data conform to a power law distribution, we suspect a correlation between k and the power law

coeÆcient. Moreover, this work may also be considered as a �rst step towards solving the more

general problem of reconstructing a probability distribution of a random variable given only an

indication of its extreme-case behaviour.
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Appendix

Relating Bx and px

The following calculations have been performed in Maple 8.00 [14]. Here, we show that the closed

form solution of Equation (2) is impractical to compute. We begin by restating Equation (2), that

is, the probability of 
ow x winning a particular Basic Window in the case of only two 
ows.

Bx =
bX

i=d b
2
e

 
b

i

!
pi
x
(1� px)

b�i (12)

Solving the summation in Equation (12), we obtain

Bx =

 
b

d b2e

!
p
d b
2
e

x (1� px)
b�d b

2
eH

�
[d
b

2
e � b; 1]; 1+ d

b

2
e;

px

px � 1

�
(13)

where the generalized Hypergeometric function H([n1; :::; nj]; [d1; :::; dm]; z) is de�ned as
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H(n;d; z) =

1X
k=0

Q
j

i=1
�(ni+k)

�(ni)
zkQ

m

i=1
�(di+k)

�(di)
k!

(14)

where the Gamma function �(z) is

�(z) =

Z 1

0
e�ttz�1dt (15)

Maple is unable to analytically solve for px in Equation (12). This is also the case for multiple


ows and an arbitrary threshold|the only di�erence is that d b
2e is replaced by �b where 0 � � � 1

is the threshold.
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