
1

A Roadmap to a Modeling Language for

Multi-Agent Systems Engineering

Viviane Silva1 Carlos Lucena1 Paulo Alencar2 Donald Cowan2

1 PUC-Rio, Computer Science Department, SoC+Agent Group,

Rua Marques de São Vicente, 225 - 22453-900, Rio de Janeiro, RJ, Brazil

{lucena, viviane}@inf.puc-rio.br

2 University of Waterloo, School of Computer Science

 200 University Avenue West, Waterloo, ON N2L 3G1

1-519-8884690

Waterloo, Ontario, N2L 3G1 Canada

{palencar, cowan}@csg.uwaterloo.ca

Headline

Complex behavior is often achieved by a collection of individual entities working

autonomously on shared goals, but with no apparent central control. Many different

mechanisms such as the human body and traffic within a city seem to operate in this

manner. Such autonomous operation does not always reach the goal through the most

direct route, as there is often a period of mutual exploration and learning on the part of

the entities, before success is achieved. Currently most computer applications operate on

a model where some program or person is in charge as requests are processed. However,

as computational tasks and supporting services become more distributed through

technologies such as the Internet, we will likely have to re-think our processing models.

Collections of computer-based agents, often called multi-agent systems (MAS), working

2

together with no central control on shared goals seem to be a model worth exploring and

there have been numerous papers published in the literature [e.g.: 5, 12].

A B2B e-Commerce application is an example of a MAS where agents autonomously act

on behalf of human individuals. Agents are created to play roles such as buyers and

sellers in organizations such as auctions. Different types of organizations such as English

or Dutch auctions can be created by seller agents depending on the needs of the

individuals. In B2B e-Commerce the agents are involved in negotiations between

multiple parties using multiple parameters.

If we are to have MAS as tools for supporting computational processes we will have to

learn how to deal with novel concepts such as agent relationships, roles that agents

perform in organizations and agents forming new organizations. A first step in this

direction is the creation of a conceptual framework that organizes the core concepts of

multi-agent systems and relates these ideas to other programming abstractions such as

objects. Further we will need to create new software engineering modeling approaches

and languages to specify, describe, analyze, and implement our multi-agent designs.

Creating a modeling language for multi-agent systems is a complex task and we should

consider following a process or roadmap similar to the one that led to the development of

the Unified Modeling Language (UML) [10] and its various sub-models and supporting

facilities.

In this paper we present a conceptual framework called TAO that organizes the core

concepts related to multi-agent systems and assumes that agents and objects co-exist as

independent and unique abstractions. We then use the TAO framework to create the

multi-agent system modeling language MAS-ML, which extends UML. MAS-ML is

3

defined as a conservative extension of the UML metamodel, and includes agent-related

notions that are part of the TAO conceptual framework while preserving all object-related

concepts, which constitute the UML metamodel. In order to extend UML according to

TAO non-object concepts, new metaclasses and stereotypes have been created and

associated with the UML metamodel. Our approach is similar to that recently proposed

by FIPA for An Agent-based Unified Modeling Language (AUML) [4,7,11] where they

intend to capitalize on the UML experience and reuse UML where appropriate.

THE TAO CONCEPTUAL FRAMEWORK

The TAO (Taming Agents and Objects) conceptual framework is defined by its structural

and dynamic metamodels [8].

The TAO Structural Metamodel. The structural metamodel is defined by entities,

properties and relationships. There are seven entities defined in TAO: object, agent,

organization, role (agent role and object role), environment and event. Because of

similarities among some entities, we have defined a new abstraction called element that is

the basis for the definition of most entities. An element is an entity that has properties and

relationships with other elements. An element instance is a concrete manifestation of an

element class to which a set of properties and relationships are applied [10]. Event is the

only entity in TAO that is not based on the definition of element because events do not

have state, behavior or relationships.

The properties of an element describe its state and behavior characteristics. The state of

an element defines information about other elements of the system and the behavior of an

element defines the actions or operations that the element can perform. Relationships link

two elements and describe how these elements are related to each other. TAO defines

4

eight different relationships that associate objects, agents, environments, organizations

and roles. The relationships defined in TAO are: inhabit, ownership, play, specialization,

control, dependency, association and aggregation.

The TAO Dynamic Metamodel. The dynamic metamodel is defined by primitive (or

elementary) and high-level dynamic processes. These processes involve creation of

elements, destruction of elements and interaction among elements. The elementary

dynamic processes are domain-independent and can be used to define high-level dynamic

patterns and domain specific behavior. Primitive processes define, for example,

organization instance creation, agent instance creation, and role instance creation. The

high-level dynamic processes, such as agents entering an organization and creating sub-

organizations, are also domain-independent and can be defined in terms of the primitive

processes.

The dynamic processes are clearly related to each other. For example, the creation of an

agent is related to the creation of a role and to the creation of an organization since an

agent plays at least one role in an organization. The creation of an organization by an

agent depends on the creation of a role instance to be played by the organization and on

the creation of another role instance to be played by the agent in the organization. While

the dynamics of creating an organization instance involve a general process that can be

used to create any organization in the system, the dynamics of an agent creating an

organization involve the motivation for an agent to create a sub-organization and how

that task is accomplished.

Because of the richness of the multi-agent model there is a potentially infinite number of

domain-independent high-level dynamic behaviors involving agents, roles and

5

organizations. A systematic classification of these high-level dynamics may lead to the

definition of new and complex behavioral patterns.

FOLLOWING THE ROADMAP

Defining a modeling language for MAS-ML requires following a roadmap similar to the

one that led to the development of the UML. Following such a roadmap may include the

need to define a counter-part of the Meta-Object Facility (MOF).

In order to explain the relationship among TAO, MAS-ML and UML better, we use the

four-layer metadata architecture described in the MOF specification [6]. The four

architectural layers are: meta-metamodel layer, metamodel layer, domain model layer and

instance layer (see Table 1). The meta-metamodel layer consists of a description of the

structure and semantics of the meta-metadata. The Object Management Group (OMG)

has specified a meta-metamodel called MOF that defines an abstract language and a

framework for specifying, constructing, and managing technology neutral metamodels.

Following this approach, in TAO we use the ER model (Entity-Relationship model) to

describe the entity and relationship meta-metadata that appear in this layer. ER is used as

a meta-metamodel because it describes the entity and relationship meta-metadata that

provides the basic definitions to describe the different entities and relationship instances

which appear in the metamodel layer.

6

Table 1 – Four-layer metadata architecture

Layers Models

Meta-metamodel layer MOF meta-metamodel ER meta-metamodel

UML metamodel TAO metamodelMetamodel layer

MAS-ML metamodel

Domain model layer MAS-ML models

Instance layer Instances of the domain models

The metamodel layer consists of a description of the structure and semantics of metadata

that are informally aggregated as metamodels. Metamodels are instances of meta-

metamodels and metadata are instances of meta-metadata. OMG has defined the UML

metamodel as an instance of the MOF meta-metamodel. We have defined the TAO

metamodel that we call a conceptual framework [8] as an instance of the ER meta-

metamodel.

The UML metamodel specifies a modeling language that incorporates the object-oriented

community’s consensus on core modeling concepts. The TAO metamodel specifies the

MAS core concepts (abstractions and their relationships) that incorporate object-oriented

concepts and new concepts defined for agent-oriented development based on our

experience and on work described in the literature. Following the roadmap, one of our

goals is to define a MAS-ML metamodel that extends the UML metamodel based on the

concepts described in the TAO metamodel. The MAS-ML specifies a modeling language

7

that incorporates both object- and agent-oriented concepts. In this sense, the MAS-ML

unifies the UML metamodel and the TAO metamodel.

The domain model layer depicts the data specific to the application domain generating

MAS-ML models. The metadata in the metamodel layer is instantiated into concrete data

through domain models using domain-related information.

The instance (information) layer characterizes the possible domain model applications.

This layer describes the specific instances of the domain model data that may occur

during the lifetime of the modeled applications.

MAS-ML AS A TAO-BASED EXTENSION OF THE UML METAMODEL

To extend UML according to the TAO non-object concepts, new metaclasses and

stereotypes have been created and associated with the UML metamodel. Thus, new

diagrams such as Organization Class and Role Class have been created and UML

diagrams such as Class Diagram and Sequence Diagram have been adapted.

TAO defines three main concepts – elements, properties and relationships – that have

been mapped to the UML metamodel. Some elements defined in TAO were directly

mapped to existing UML metaclasses and some properties were directly associated with

existing UML features through the use of stereotypes. Other elements caused the creation

of new metaclasses and other properties caused the creation of new UML features. A set

of relationships such as association and aggregation described in TAO have been

associated with the respective relationships defined in the UML Class diagram. Some

relationships that are typical of MAS have been created and incorporated into new static

diagrams.

8

As initial steps, we have adapted the static Class diagrams and the interaction Sequence

diagram based on TAO concepts. These two diagrams have been chosen because they are

the most commonly used and because it is possible to use them to illustrate both the

structural and dynamic aspects of the TAO metamodel.

Extending the UML Foundation Package

To map TAO concepts into UML, we have created new stereotypes, tags and

metaclasses. Table 2 describes three templates used to guide the definition of each new

element based on the UML specification style [10].

Table 2 – Template attributes used to define new stereotypes, tags and metaclasses.

Stereotypes Tags Metaclasses

Stereotype:

Base Class:

Description:

Parent:

Tags:

Constraints:

Tag:

Stereotype:

Description:

Type:

Multiplicity:

Metaclass:

Description:

Parent:

Attributes:

 Name

Associations:

 Name

Stereotypes:

 Name

An element declared in TAO is represented as an extension of the Classifier metaclass

defined in UML since they share similar characteristics. A Classifier has structural

features, behavioral features and relationships to other Classifiers and an element has

properties (state and behavior) and relationships with other elements. Figure 1 presents a

set of metaclasses of the UML metamodel and all the extensions that we have proposed.

9

This figure shows the new metaclasses and the new stereotypes that have been created.

The icons that represent the stereotypes are associated with the metaclasses on which the

stereotypes are based.

Protocol

DutyRight

Action

Reactive
Environment

Proactive
Environment

Features Classifier

Structural Feature Behavioral Feature

Belief Goal

Axiom
MethodOperation

Attribute

Class AgentClass ObjectRoleClass

OrganizationClass

PlanClass

Metaclasses of the UML metamodel

New Metaclasses

New Stereotypes

Legend

AgentRoleClass

Figure 1 - The extended UML metamodel

Structure Diagrams

When introducing new abstractions in the UML metamodel, new structure diagram

elements and features need to be created to represent the new elements and their

relationships. We have adapted the UML Class diagram and created two new structure

diagrams – Organization diagram and Role diagram – to focus on different aspects of

extensions.

The TAO definitions of object/class and event entities are similar to the definitions of the

UML metaclasses Class and Event. So, we have not created new structure diagram

elements to represent these two entities. New diagram elements have been associated

10

with the metaclasses AgentClass, OrganizationClass, EnvironmentClass, AgentRoleClass

and ObjectRoleClass.

The association, specialization, aggregation and dependency relationships described in

TAO are also described in UML with the same semantics. The difference between the

relationships defined in TAO and the ones defined in UML are the entities that participate

in the relationship. Although TAO applies these relationships to elements such as

organization, agent and agent role, we did not define new diagram elements to represent

them. New diagram elements have been created and associated with new relationships

defined in TAO that do not exist in UML. Those relationships are Inhabit, Ownership,

Play and Control.

The extended class diagram represents the relationships between the resources (objects)

found in the environment and between the resources and the agents that use the resources.

The metaclasses that may appear in this diagram are Agent, Class and other metaclasses

defined by UML. The relationships used in this diagram are those defined by UML plus

association (between agents and objects), aggregation (between agents), and

specialization (between agents).

The organization diagram focuses on the relationships between organizations and other

elements. The metaclasses that may be used in organization diagrams are

OrganizationClass, AgentClass, AgentRoleClass, Class, ObjectRoleClass and

Environment. The relationships that may be used are: ownership (between organizations,

roles and sub-organizations), play (between agents, sub-organizations, objects and their

roles), inhabit (between the environments and other elements), association (between

organizations and objects) and specialization (between organizations).

11

The role diagram is responsible for clarifying the relationships between the agent roles

and object roles. This diagram shows the relationships between AgentRoleClass and

ObjectRoleClass. The set of relationships used in this diagram is: control (between roles),

dependency (between roles), and association (between object and agent roles, object

roles, and agent roles), and aggregation and specialization (between object roles and

agent roles).

As an example, Figure 2 illustrates an organization diagram presenting the Market Place

organization of a market place system. This organization defines three different roles

classes – Auction Market, Market of Used Goods and Supermarket – that may be played

by three different sub-organizations classes – English Auction Market, Books Market and

Retail Market, respectively. The organization Retail and Wholesale Market is a

specialization of Retail Market. All the elements defined in the Market Place inhabit the

same environment called Virtual Market Web Service.

12

MarketPlace

<<goal>> to earn $X monthly
<<belief>> totalSold
<<axiom>>every subOrg
may pay 2% of the totalSold

<<action>>…
 plan ...

Market of Used Goods

<<goal>> to sell at least N items
monthly
<<belief>> sellersRegister,
buyersRegister, totalSold, ...

<<duty>>acceptOnlySellersIfRegister,
acceptOnlyBuyersIfRegister,
registerNumberOfItensSold , ...
<<right>> ...
<<protocol>> ...

Supermarket

<<goal>> to earn at least $ Y monthly
<<belief>> ...

<<duty>> registerTheSale,
acceptAnyBuyer, ...
<<right>> allowTheCreationOfSubOrg
<<protocol>> ...

Auction Market

 Books Market

English Auction Market

Retail or Wholesale Market

<<goal>> to exchange goods for money
<<belief>> totalSold, ...
<<axiom>>paymentDoneByCreditCard,

<<action>> registerTheSale, acceptAnyBuyer,
allowTheCreationOfSubOrg,
registerSubOrg, ...

planSubOrg {allowTheCreationOfSubOrg,
registerSubOrg}
 planSale {registerTheSale}
 planAccept {acceptAnyBuyer}, ...

Retail Market

Virtual Market WebService
…
…

Figure 2 - Organization Diagram

Sequence Diagram

A UML sequence diagram presents a set of interactions between objects playing roles in

collaborations. We propose to extend the sequence diagram to represent the behavior of

agents, organizations and environments.

While extending the UML sequence diagram, three sequence diagram elements were

created and the existing diagram element called object was modified. Table 3 identifies

the instances that may appear in a sequence diagram and its associated diagram elements.

13

Table 3 - The sequence diagram elements

Instances Diagram Element

Object obj/role/org/env : Class/ObjectRole/Organization/Environment

Agent
agent/role/org/env : Agent/AgentRole/Organization/Environment

Organization
org/role/org/env : Organization/AgentRole/Organization/Environment

Environment

env : Environment env : Environment

Proactive element Reactive element

In addition, we have created new stereotypes to identify new interaction types –

<<role_commitment>>, <<role_cancel>> and <<role_change>> – and have extended the

definition of the stereotype <<create>> and <<destroy>> defined in the UML

metamodel. The extensions proposed to the UML sequence diagram make it possible, for

instance, to represent the dynamic processes previously described in this paper.

Using the market place system as example, Figure 3 shows a User Agent called Bob

searching for an organization to play a role. Bob is interested in entering an organization

to buy a wholesale item. This figure illustrates interactions between agents playing

different roles, an environment and an organization. The figure also illustrates an agent

committing to another role and an agent canceling a role.

14

Bob/FruitBuyer :
UserAgent/Buyer

Anne/MediatorApple :
UserAgent/Mediator

Bob/Member3 :
UserAgent/Member

 v : Virtual Market WebService AppleSale: WholesaleGroup

organizations ()

AppleSale

“to group buyers and buy apples”
...roles ()

Mediator

“to mediate the bought of apples”

Member

“to buy a package of apples”

canCommitWith (mediator)

no

canCommitWith (member)

yes

...<<role_commitment>>

...
...

...

numberOfItensWanted (5kg)

payment = $ 7,00

numberOfItensBought (4kg)

...

...

<<role_cancel>>

...

and

Figure 3 – Partial sequence diagram representing illustrative interactions

RELATED WORK

Organizations such as FIPA and the OMG Agent Work Group have been proposing

AUML [4,7], an UML extension based on characteristics identified in MASs. AORUML

(Agent-Object-Relationship UML) [11] has a similar intent. In these approaches

stereotypes are used to create agent classes based on the metaclass Class that describes

object classes. However, stereotypes may be used to indicate a difference in meaning or

usage between two model elements with identical structure and, therefore, they are not

appropriate to describe the different structures defined by objects and agents. In addition,

these approaches do not describe possible relationships between objects and agents, and

do not describe other entities such as environment and organization that are frequently

used in MAS models. They also do not describe how to represent in their proposed

sequence diagrams the interactions between agents, organizations and environment,

features such as agents playing more than one role, and how to represent agents entering

15

an organization and migrating to another environment. The main difference between our

approach and others presented in the literature is the proposal of a clear definition and

representation of the elements that compose MASs and their behaviors. Some proposals

describing the dynamic process of MASs are presented in [2,3]. However, in [2] they do

not provide explicit representations for dynamic processes that describe the primitive and

high-level interactions between agents and organizations such as role instance creation or

agents playing roles in organizations. In [3] the authors describe a process for the

reorganization of societies where agents enter societies to play roles but their approach

focuses on utility functions and not on the representations.

CONCLUSIONS

In this paper we have proposed a modeling language for multi-agent systems, which we

call MAS-ML. We have begun by developing a conceptual framework for MASs called

TAO and describing how this framework led to the definition of the MAS modeling

language called MAS-ML, a conservative extension of the UML metamodel which

includes the agent-related notions from TAO.

However, we still need to produce fully developed MAS software engineering

techniques, including modeling languages. For example, in defining MAS-ML, we have

only provided UML extensions related to two of the UML set of diagrams. The extension

of UML according to TAO impacts other diagrams and we are in the process of analyzing

and extending other UML diagrams. There are still challenges such as the refinement of

our structural and dynamic process representations in cases where agents and roles are

destroyed, when organizations with internal agents playing different roles are destroyed,

or when agents migrate between environments. We also need to develop a comprehensive

16

multi-agent counter-part of the Meta Object Facility and analyze the extension of UML

sub-models and sub-languages such as OCL (Object Constraint Language) to handle

constraints among goals, beliefs, events, actions and plans, and defining extensive MAS

declarative approaches to experiment with our models based on technologies such as

XML schemas [1].

ACKNOWLEDGEMENTS

This work has been partially supported by the National Sciences and Engineering

Research Council of Canada (NSERC), the National Research Council of Brazil (CNPq),

PRONEX, ESSMA, and IBM.

REFERENCES

[1] Alencar, P.; Oliveira, T.; Silva, V.; Garcia, A.; Lucena, C.; Cowan, D.: Towards a

Monitored Data Consistency and Business Processing based on Declarative Software

Agents. In: Garcia, A.; Lucena, C.; Zamobnelei, F.; Omicini, A; Carstro, J. (Eds.):

Software Engineering for Large-Scale Multi-Agent System. Springer-Verlag, LNCS,

2003.

[2] Ferber, J.; Gutknecht, O.: A meta-model for the analysis and design of organizations

in multi-gents systems. In: Demazeau, Y., (Ed.): Proc. of the International Conference on

Multi-Agent Systems, pages 128 135. IEEE Press, 1998.

[3] Glaser, N; Morignot, P.: The Reorganization of Societies of Autonomous Agents,

Multi-Agent Rationality. In: Boman, M., Velde, W. (Eds.): Proc. of the 8 th European

Workshop on Modeling Autonomous Agents in a Multi-Agent World, SpringerVerlag,

Berlin, Germany, 1997.

17

[4] Huget, M.: Agent UML Class Diagrams Revisited. In: Bauer, B., Fischer, K., Muller,

J., Rumpe, B. (Eds.): Proc. of Agent Technology and Software Engineering (AgeS), ,

Erfurt, Germany, October 2002.

[5] Jennings, N.R. and Wooldridge, M. Intelligent Agents: Theory and Practice. In: The

Knowledge Engineering Review, Volume 10, Number 2, pages 115-152, 1995.

[6] Meta Object Facility (MOF) Specification. Version 1.4, April, (2002). Available at

URL http://www.omg.org/cwm/a

[7] Odell, J.; Parunak, H.; Bauer, B.: Extending UML for agents. In: Wagner, G.,

Lesperance, Y., Yu, E. (Eds.): Proc. of the Agent-Oriented Information Systems

Workshop (AOIS), pp. 3-17, 2000.

[8] Silva, V.; Garcia, A.; Brandao, A.; Chavez, C.; Lucena, C.; Alencar, P.: Taming

Agent and Object in Software Engineering. In: Garcia, A.; Lucena, C.; Zamobnelei, F.;

Omicini, A; Carstro, J. (Eds.): Software Engineering for Large-Scale Multi-Agent

System. Springer-Verlag, LNCS, 2003.

[9] Silva, V.; Lucena, C., From a Conceptual Framework for Agents and Objects to a

Multi-Agent System Modeling Language, Technical Report CS2003-10, School of

Computer Science, University of Waterloo, Canada, 2003.

[10] Unified Modeling Language (UML) Specification. Version 1.4, April, (2002).

Available at URL http://www.omg.org/uml/

[11] Wagner, G.: A UML Profile for External AOR Models. In: Proc. of 3rd International

Workshop on Agent-Oriented Software Engineering (AOSE-2002), held at Autonomous

18

Agents & Multi-Agent Systems, Palazzo Re Enzo, Bologna, Italy - July 15, 2002.

Springer-Verlag LNAI, 2002.

[12] Zambonelli, F., Jennings, N. and Wooldridge, M.: Organizational Abstractions for the

Analysis and Design of Multi-agent Systems. In: Ciancarini, P. and Wooldridge, M.,

(Eds.): Agent-Oriented Software Engineering, Springer-Verlag, 2001.

