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Abstract

We study sliding window multi-join processing in continuous queries over data streams.
Several algorithms are reported for performing continuous, incremental joins, under the
assumption that all the sliding windows fit in main memory. The algorithms include multi-
way incremental nested loop joins (NLJs) and multi-way incremental hash joins. We also
propose join ordering heuristics to minimize the processing cost per unit time. We test a
possible implementation of these algorithms and show that, as expected, hash joins are faster
than NLJs for performing equi-joins, and that the overall processing cost is influenced by
the strategies used to remove expired tuples from the sliding windows.

1 Introduction

A data stream is a real-time, continuous, ordered (explicitly by timestamp or implicitly by
arrival time) sequence of items. Applications where information naturally occurs as a stream of
data values include sensor data processing [7, 20, 31], Internet traffic analysis [14, 23], financial
tickers [10, 32], and analysis of various transaction logs such as Web server logs and telephone
call records [11]. Due to their continuous and dynamic nature, querying data streams involves
running a query continually over a period of time and generating new answers as new items
arrive. First proposed in [24], these types of queries are known in the literature as continuous,
standing, or persistent queries [10, 19].
Several issues arise in on-line stream processing. Firstly, unbounded streams may not be

wholly stored in bounded memory. Secondly, because data streams are temporally ordered,
new items are often more accurate or more relevant than older items. Finally, streaming query
plans may not use blocking operators that must consume the entire input before any results are
produced.
A common solution to these issues is to restrict the range of continuous queries to a sliding

window that contains the last T items or those items that have arrived in the last t time units.
The former is called a count-based, or a sequence-based sliding window, while the latter is called a
time-based or a timestamp-based sliding window [5]. Constraining all queries by sliding window
predicates allows continuous queries over unbounded streams to be executed in finite memory
and in an incremental manner by generating new results as new items arrive. In particular,
while joining two or more infinite streams is seldom feasible (see Arasu et al. for a discussion of
memory requirements of streaming queries [2]), evaluating windowed joins over stream excerpts
is practical and useful in many applications. For example, an Internet traffic engineer may pose
a query that joins traffic traces from various links in a network, with equality comparison of the
source and destination IP addresses of each packet header as the join predicate. This windowed
join may be used to trace packets through the network and identify sessions whose packets follow
different paths to reach the same destination. The latter could be used to study load balancing
in a network with many redundant links.
Processing continuous queries over sliding windows introduces two issues that affect the

design of windowed algorithms: re-execution strategies and tuple invalidation procedures. An
eager re-evaluation strategy generates new results after each new tuple arrives, but may be
infeasible in situations where streams have high arrival rates. A more practical solution—lazy

re-evaluation—is to re-execute the query periodically. The downside of lazy re-evaluation is an
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increased delay between the arrival of a new tuple and the generation of new results based on
this tuple—long delays may be unacceptable in streaming applications that must react quickly
to unusual patterns in the data. Similarly, eager expiration proceeds by scanning the sliding
windows and removing old tuples upon arrival of each new tuple (this is trivial in count-based
windows as each new tuple simply replaces the oldest tuple in its window). In contrast, lazy

expiration involves removing old tuples periodically and requires more memory to store tuples
waiting to be expired.

1.1 Problem Statement

Given n data streams and n corresponding sliding windows, our goal in this work is to continually
evaluate the exact join of all n windows. We assume that each stream consists of relational tuples
with the following schema: a timestamp attribute ts and an attribute attr containing values from
an ordered domain. We also assume that all windows fit in main memory and we require that all
query plans use extreme right-deep join trees that do not materialize any intermediate results.
Furthermore, we do not permit time-lagged windows, i.e. all windows are assumed to start at
the current time and expire at the current time minus the corresponding window size.
We define the semantics of sliding window joins as monotonic queries over append-only

relations; therefore once a result tuple is produced, it remains in the answer set indefinitely.
Hence, new results may be streamed directly to the user. In particular, for each newly arrived
tuple k, the join is to probe all tuples present in the sliding windows precisely at the time of k’s
arrival (i.e. those tuples which have not expired at time equal to k’s timestamp), and return all
(composite) tuples that satisfy every join predicate. Moreover, we impose a time bound τ on
the time interval from the arrival of a new tuple k until the time when all join results involving
k and all tuples older than k have been streamed to the user. This means that a query must be
re-executed at least every τ time units. However, it does not mean that all join results containing
k will be available at most τ units after k’s arrival; k will remain in the window until it expires,
during which time it may join with other (newer) tuples.

1.2 Summary of Contributions

In this paper, we present a solution to the multi-join processing problem over sliding windows
residing in main memory. All of our algorithms execute multiple joins together in a series of
nested for-loops and process newly arrived tuples from each window separately (possibly using
different join orders). We first propose a multi-way NLJ for eager query re-evaluation that always
iterates over newly arrived tuples in the outer for-loop. We demonstrate that this strategy may
not work well for lazy re-evaluation and propose another NLJ-based operator that is guaranteed
to perform as well or better than the initial algorithm. We also extend our NLJ-based algorithms
to work with hash indices on some or all sliding windows. Moreover, we propose join ordering
heuristics for our algorithms that attempt to minimize the number of intermediate tuples that
are passed down to the inner for-loops. These heuristics are based on a main-memory per-unit-
time cost model. Finally, we test an implementation of our algorithms and investigate the effects
of re-evaluation and expiration strategies on the overall processing cost.
Table 1 lists the symbols used in this paper and their meanings. In Figure 1, we give an
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λi Arrival rate of stream i

in tuples per unit time

Sj Sliding window corresponding to stream j

Tj Time size of the jth time-based window

Cj Number of tuples in Sj
vj Number of distinct values in Sj
bj Number of hash buckets in the hash index

of Sj , if such an index exists

τ Continuous query re-execution interval

a ◦ b Concatenation of tuples a and b

θ Arithmetic comparison predicate, e.g. =

Table 1: Explanations of symbols used in this paper.

 

S1 

S2 

S3 S4 

For all tuples in S1 
   For all tuples in S2 
      If S1.attr θ S2.attr 
         For all tuples in S3 
            If S2.attr θ S3.attr 
               For all tuples in S4 
                  If S3.attr θ S4.attr 
                     Return join tuple 

Figure 1: Join order S1 1 (S2 1 (S3 1 S4)) expressed as a join tree (left) and as a series of
for-loops (right).

example to explain our convention for describing join ordering. In this example, the join order
S1 1 (S2 1 (S3 1 S4)) is expressed as a join tree on the left and as a series of nested for-loops
on the right. We refer to S1 as being “on top of the plan” or “ordered first”, S2 as “ordered
second” and so on. For brevity, we may omit parentheses and write S1, S2, S3, S4 to represent
the join order shown in Figure 1. Note that the pseudocode on the right of Figure 1 shows the
general strategy used in our multi-way joins, whereby the join is effectively evaluated “from the
top down”; the join predicate is evaluated inside each for-loop in order to minimize the number
of tuples that are passed down to the inner for-loops.

1.3 Roadmap

The remainder of this paper is organized as follows. In Section 2, we review related work.
Section 3 defines our multi-way incremental join algorithms, whose processing cost is analyzed
in Section 4. Section 5 outlines join ordering heuristics. We discuss experimental results in
Section 6. Section 7 concludes the paper and outlines directions for future research.
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2 Related Work

There has been a great deal of recent interest in developing novel data management techniques
and adapting traditional database technology to the data stream model; Cougar [31], Aurora [7],
and STREAM [22] are some examples. The first two focus on processing sensor data. Cougar
concentrates on distributed query processing inside the sensor network, while Aurora allows users
to create query plans by visually arranging query operators by using a boxes (corresponding
to query operators) and (directed) links (corresponding to data flow) paradigm. STREAM
addresses all aspects of stream data management, including memory management, operator
scheduling, and approximate query answering via summary information. A continuous query
language (CQL) have also been proposed within the STREAM project [3].
Recent work on continuous queries focuses on scalable evaluation of many queries by means

of plan sharing and indexing query predicates [9, 10, 21]. TelegraphCQ [8] is a proposed exten-
sion of earlier efforts into adaptive query processing [4, 9, 21], where query plans are re-ordered
throughout the lifetime of a continuous query in response to changes in the execution environ-
ment (e.g. fluctuating stream arrival rates).
Defining sliding windows is one solution proposed in the literature for bounding the memory

requirements of continuous queries and unblocking streaming operators. Another alternative
is to maintain compact stream summaries and provide approximate query answers over the
summaries. Many summary structures have been proposed in the literature; some examples may
be found in [1, 13, 15, 16]. In fact, there may be cases where both sliding windows and summary
structures may be necessary when even the windows are too large to fit in memory. For instance,
Datar et al. [12] give an approximate algorithm for bit counting in a sliding window. The third
method is to exploit any constraints that may hold in a data stream. For example, Babu and
Widom [6] show that foreign key constraints and ordered or clustered arrival (i.e. stream items
arrive in some known order, or duplicate items arrive in one contiguous batch) may be exploited
to lower the memory usage in continuous query processing. Moreover, assertions, referred to as
punctuations in [25, 26], could be inserted into a stream to specify a restriction on subsequently
arriving items. For instance, a punctuation may arrive stating that all future items shall have
the A attribute larger than ten. This punctuation could be used to partially unblock a group-by
query on A—all those groups whose A attribute is larger than ten are guaranteed not to change.
Relevant work on join processing over unbounded streams includes non-blocking binary join

algorithms such as the XJoin [27], which is a variant of the symmetric hash join, and the
Ripple Join [17]. Viglas et al. [29] have developed a multi-way version of the XJoin called the
MJoin. Moreover, Viglas and Naughton [28] propose a rate-based query optimization model for
continuous queries over data streams, which is relevant if the input rate changes with time, in
which case the output rate of a join also changes with time.
Windowed joins over two streams were studied by Kang et al. [18], who introduce incremen-

tally computable binary joins as well as a per-unit-time cost model which we also use in this
paper.
While a multi-way hash join has been proposed in literature, to the best of our knowledge,

this work is the first to consider multi-way joins designed explicitly for sliding windows. We also
know of no previous work on the join ordering problem in the context of sliding windows over
data streams, although this problem is identified in the context of optimizing for the highest
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S1 S2 S3

ts attr ts attr ts attr

90 1 150 1 195 1

100 1 180 1 205 1

Table 2: Partial contents of sliding windows S1, S2, and S3.

output rate of queries over infinite streams [28, 29]. Generally, main-memory join ordering
techniques focus on pushing expensive predicates to the top of the plan (see, e.g. [30]).

3 Sliding Window Join Algorithms

3.1 Motivation

We begin the discussion of sliding window multi-way joins with examples that motivate our
strategies, starting with the simplest case of eager re-evaluation and expiration. We initially
concentrate on time-based windows and later present extensions of our operators to count-based
windows in Section 3.6.
A binary incremental NLJ has been proposed by Kang et al. [18] and proceeds as follows.

Let S1 and S2 be two sliding windows to be joined. For each newly arrived S1-tuple, we scan
S2 and return all matching tuples. We then insert the new tuple into S1 and invalidate expired
tuples. We follow the same procedure for each newly arrived S2-tuple. Extending this binary
NLJ to the case of more than two windows is straightforward: for each newly arrived tuple k,
we execute the join sequence in the order prescribed by the query plan, but we only include k
in the join process (not the entire window that contains k). For example, suppose that we wish
to join three windows, S1, S2, and S3, using the plan S1 1 (S2 1 S3). Upon arrival of a new
S1-tuple, we invalidate expired tuples in S2 and S3 and then probe all tuples in S2 1 S3. If a new
S2-tuple arrives, we first expire old tuples from S1 and S3, then for each tuple currently in S1,
we compute the join of the new tuple with S3 and probe the result set. Similarly, upon arrival
of a new S3-tuple, we expire S1 and S2-tuples, then for each S1-tuple, we evaluate the join of S2

with the new tuple and probe the result set. We call this algorithm Naive Multi-Way NLJ.
To perform lazy re-evaluation with the naive algorithm, we re-execute the join every τ time

units, first joining new S1-tuples with other sliding windows, then new S2-tuples, and so on.
Suppose that we wish to process a batch of newly arrived tuples from S3 given the join order
S1 1 (S2 1 S3). For each tuple in S1, we re-compute the join S2 1 S3, but using only the newly
arrived tuples from S3. Consider the following example where all windows are 100 seconds
long and their partial contents are as shown in Table 2. All join predicates are equalities on
the attribute attr. If the current time is 210 and we run Naive Multi-Way NLJ, incorrect
results will be returned when processing new S3-tuples. Table 3 shows the incremental result
set returned for all new S3-tuples on the top and the actual result set that should be returned
on the bottom. We see that some tuples from S1 should not join with any new S3-tuples as
those S1-tuples should have expired by the time the new S3-tuples have arrived. To solve this
problem, we need to verify that a composite S2 ◦ S3 tuple (call the S2-tuple j and the S3 tuple
k) joins with an S1 tuple, call it i, only if i.ts ≥ k.ts − T1 and j.ts ≥ k.ts − T2. These two
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Incorrect Results
ts attr ts attr ts attr

90 1 150 1 195 1

90 1 150 1 205 1

90 1 180 1 195 1

90 1 180 1 205 1

100 1 150 1 195 1

100 1 150 1 205 1

100 1 180 1 195 1

100 1 180 1 205 1
Correct Results

ts attr ts attr ts attr

100 1 150 1 195 1

100 1 180 1 195 1

Table 3: Partial results returned by the naive algorithm (top) and correct partial join results
(bottom).

conditions ensure that i and j have not expired at time equal to k’s timestamp.

3.2 Improved Eager Multi-Way NLJ

In the above examples, when a new S3-tuple arrives we re-compute the join of S2 with the new
S3-tuple for each tuple in S1. Generally, this results in unnecessary work whenever new tuples
arrive from a window that is not ordered first in the join tree. We propose a more efficient
technique for handling new S3-tuples, in which we initially select only those tuples in S1 which
join with the new S3-tuple (suppose there are c such tuples), and make c scans of S2. In contrast,
the previous approach requires a number of scans of S2 equal to the number of tuples in S1.
Unless all tuples in S1 satisfy the join predicate (as in a Cartesian product), c is less than the
size of S1. When a new S1-tuple or a new S2-tuple arrives, we proceed similarly by selecting
those tuples from the window on top of the join order that join with the new tuple, and for
each match, scanning the remaining window. In effect, the window at the top of the join order
always consists of only one tuple and the join order changes in response to the origin of the
incoming tuple (Table 4). This is possible because we have assumed a common join attribute
across all streams. We define the global join order of a query plan as the static order that our
algorithm would follow had it not ordered new tuples first. In the above example, the global
order is S1, S2, S3.
The pseudocode of the algorithm is given below. Without loss of generality, we let the global

join order be S1, S2 . . . Sn.

Algorithm Eager Multi-Way NLJ

If a new tuple k arrives on stream i

Insert new tuple in window Si
ComputeJoin(k, {S1, . . . , Si−1, Si+1, . . . Sn})
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Origin of new tuple Join order

S1 S1 1 (S2 1 S3)

S2 S2 1 (S1 1 S3)

S3 S3 1 (S1 1 S2)

Table 4: Join orderings used in our multi-way NLJ given that the global join ordering is S1 1

(S2 1 S3).

Algorithm ComputeJoin

Input: new tuple k from window Si and a join order
{S1, . . . , Si−1, Si+1, . . . Sn}.
∀u ∈ S1 and k.ts− T1 ≤ u.ts ≤ k.ts

If k.attr θ u.attr
. . . \\ loop through S2 up to Si−2

∀v ∈ Si−1 and k.ts− Ti−1 ≤ v.ts ≤ k.ts

If k.attr θ v.attr
∀w ∈ Si+1 and k.ts− Ti+1 ≤ w.ts ≤ k.ts

If k.attr θ w.attr
. . . \\ loop through Si+2 up to Sn−1

∀x ∈ Sn and k.ts− Tn ≤ x.ts ≤ k.ts

If k.attr θ x.attr
Return k ◦ u ◦ v ◦ . . . ◦ x

If desired, projections may be performed on-the-fly by removing unwanted attributes in
the Return statement. Algorithm Multi-Way NLJ may be used in conjunction with eager
or lazy expiration and is guaranteed not to join any expired tuples because of the timestamp
comparisons done in each for-loop.

3.3 Lazy Multi-Way NLJs

A straightforward adaptation of algorithm Eager Multi-Way NLJ to the lazy re-evaluation
scenario is to process in the outer-most for-loop all the new tuples which have arrived since the
last re-execution. Let NOW be the time at which re-execution begins. The pseudocode is given
below.

Algorithm Lazy Multi-Way NLJ

Insert each new tuple into its window as it arrives
Every time the query is to be re-executed
For i = 1 . . . n
∀k ∈ Si and NOW − τ ≤ k.ts ≤ NOW

ComputeJoin(k, {S1, . . . , Si−1, Si+1, . . . Sn})

Observe that the above algorithm can be made more general if newly arrived tuples are
not restricted to the outer-most for-loop, leading to a general lazy NLJ algorithm that accepts
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arbitrary join orders. Let Oi = Oi,1, . . . , Oi,n be the join order for performing lazy re-evaluation
involving newly arrived tuples in window i. For instance, if O1 = S1 1 (S3 1 S2) then O1,1 = S1,
O1,2 = S3, and O1,3 = S2. We also allow syntax of the form λi,j and Ti,j to represent the rate
and time size of the window that is jth in the join order when joining with new tuples from
window i. Furthermore, let p be the position within the ordering of the window with the newly
arrived tuples. In the preceding example, p = 1 because O1,1 = S1. The general algorithm is as
follows.

Algorithm General Lazy Multi-Way NLJ

Insert new tuples into windows as they arrive
Every time the query is to be re-executed
For i = 1 . . . n

GeneralComputeJoin(i, Oi)

Algorithm GeneralComputeJoin

Input: window subscript i and a join order Oi

∀u ∈ Oi,1

∀v ∈ Oi,2

If u.attr θ v.attr
. . . \\ loop through Oi,3 up to Oi,p−1

∀k ∈ Oi,p and NOW − τ ≤ k.ts ≤ NOW and
k.ts− Ti,1 ≤ u.ts ≤ k.ts and
k.ts− Ti,2 ≤ v.ts ≤ k.ts and . . .
If u.attr θ k.attr
. . . \\ loop through Oi,p+1 up to Oi,n−1

∀x ∈ Oi,n and k.ts− Ti,n ≤ x.ts ≤ k.ts

If u.attr θ x.attr
Return u ◦ v ◦ . . . ◦ k ◦ . . . ◦ x

Note that timestamp comparisons with new tuples from window Sk can only be done in Sk’s
for-loop and below. This is why Sk’s for-loop must check that the composite tuple produced so
far has not expired relative to a new tuple k. We note that algorithms Lazy Multi-Way NLJ

and General Multi-Way NLJ may only be used in conjunction with lazy expiration, which
must be performed at most as frequently as the re-evaluation frequency.

3.4 Multi-Way Hash Joins

We proceed as in the NLJ, except that at each for-loop, we only scan one hash bucket instead of
the entire sliding window. An eager version of the hash join is given below. We use the notation
Bi,k to represent the hash bucket in the i

th window to which attribute attr of tuple k maps,
i.e. B(i, k) = hi(k.attr) where hi is the hash function used for the i

th window.

Algorithm Multi-Way Hash Join

If a new tuple k arrives on stream i

Insert new tuple in window Si
ComputeHashJoin(k, {S1, . . . , Si−1, Si+1, . . . Sn})
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Algorithm ComputeHashJoin

Input: new tuple k from window Si and a join order
{S1, . . . , Si−1, Si+1, . . . Sn}.
∀u ∈ B1,k and k.ts− λ1T1 ≤ u.ts ≤ k.ts

If k.attr θ u.attr
. . . \\ loop through B2,k up to Bi−2,k

∀v ∈ Bi−1,k and k.ts− λi−1Ti−1 ≤ v.ts ≤ k.ts

If k.attr θ v.attr
∀w ∈ Bi+1,k and k.ts− λi+1Ti+1 ≤ w.ts ≤ k.ts

If k.attr θ w.attr
. . . \\ loop through Bi+2,k up to Bn−1,k

∀x ∈ Bn,k and k.ts− λnTn ≤ x.ts ≤ k.ts

If k.attr θ x.attr
Return k ◦ u ◦ v ◦ w ◦ . . . ◦ x

The lazy version of the hash join can be similarly obtained starting from algorithm Lazy

Multi-Way NLJ or General Lazy Multi-Way NLJ. Observe that the multi-way NLJ may
be considered a special case of the multi-way hash join with bi = 1 for all i.

3.5 Hybrid NLJ-Hash Join

If a query requires an equi-join of a set of windows and a general theta-join of another set, all
on the same attribute, then we may combine the join predicates into one hybrid multi-way join
operator. We proceed in a nested-loops fashion as before, at each step scanning hash buckets if
hash tables are available and scanning whole windows otherwise.

3.6 Extensions to Count-Based Windows

Our algorithms can be easily modified for use with count-based windows. Firstly, note that eager
expiration in count-based windows is easy: if we implement such windows (and hash buckets)
as circular arrays, then we can perform insertion and invalidation in one step by overwriting the
oldest tuple. Thus, algorithms Multi-Way NLJ and Multi-Way Hash Join carry over and
in fact subroutines ComputeJoin and ComputeHashJoin can be made simpler by omitting
the timestamp comparisons. The more interesting case is that of lazy re-evaluation as eager
expiration may not be performed. A possible solution is to maintain a circular counter and
assign positions to each element in the sliding window (call them cnt). Joins could then be
performed as outlined in our algorithms with one exception: when probing for tuples to join
with a new tuple k, instead of verifying that each tuple’s timestamp has not expired at time
k.ts, we ensure that each tuple’s counter attribute cnt has not expired at time k.ts. To do this,
for each sliding window we find the counter value of the element with the largest timestamp not
exceeding k.ts, subtract the window length from this counter (call the counter value obtained
so far tmp), and ensure that we join only those tuples whose counters are larger than tmp. The
pseudocode for subroutine ComputeCountJoin is shown below.
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Algorithm ComputeCountJoin

Input: new tuple k from window Si and a join order
{S1, . . . , Si−1, Si+1, . . . Sn}.
tmp = argmaxu∈S1 , u.ts ≤ k.ts

∀u ∈ S1 and u.cnt ≥ tmp.cnt− C1

If k.attr θ u.attr
. . . \\ loop through S2 up to Si−2

tmp = argmaxv∈Si−1 , v.ts ≤ k.ts

∀v ∈ Si−1 and v.cnt ≥ tmp.cnt− Ci−1

If k.attr θ v.attr
tmp = argmaxw∈Si+1 , w.ts ≤ k.ts

∀w ∈ Si+1 and w.cnt ≥ tmp.cnt− Ci+1

If k.attr θ w.attr
. . . \\ loop through Si+2 up to Sn−1

tmp = argmaxx∈Sn , x.ts ≤ k.ts

∀x ∈ Sn and x.cnt ≥ tmp.cnt− Cn
If k.attr θ x.attr
Return k ◦ . . . ◦ x

4 Cost Analysis

4.1 Insertion and Expiration

All NLJ algorithms incur a constant insertion cost per tuple: a new tuple is simply appended
to its window. Hash-based algorithms, in addition, need to compute the hash function and
insert tuples into the hash table, hence, their insertion costs are slightly higher. During every
invalidation procedure, there are on average τλi stale tuples in the i

th window, therefore the
average number of tuples to be invalidated per unit time is

∑

i λi, which is independent of the
expiration interval τ . However, if invalidation is performed too frequently, some sliding windows
may not contain any stale tuples, but we will still pay for the cost of accessing these windows.
The situation is similar in hash joins: if there are many hash buckets and the invalidation
frequency is high, some buckets may either be empty or may not contain any tuples to be
expired. Hence, very frequent expiration may be too costly, especially in hash joins, which have
higher expiration costs than NLJs. We will validate this hypothesis empirically in Section 6.

4.2 Join Processing Cost

To represent the cost of join processing, we use a per-unit-time cost model, developed in Kang
et al. [18], and count the number of arithmetic operations on tuple attributes. When estimating
join sizes, we make standard assumptions regarding containment of value sets and uniform
distribution of attribute values. To clarify the former, suppose that an attribute attr appears in
several streams and has values a1, a2, . . . , av. Containment of value sets states that each window
must choose its values from the front of the list a1, a2, . . . , ai and have all values in this prefix.
For simplicity, the subsequent discussion assumes that equi-joins on a common attribute are
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Figure 2: Scalability analysis of our (eager) multi-way join and the naive multi-way join.

performed. Example derivations of cost equations for our algorithms may be found in Appendix
A. Here, we provide a high-level summary of the results.
Given equivalent orderings, algorithm Eager Multi-Way NLJ, abbreviated MULTI-WAY,

outperforms Naive Multi-Way NLJ, abbreviated NAIVE, by reducing the amount of work
done by the inner for-loops. For example, suppose that all windows have time size of one
hundred, all streams arrive at a rate of one tuple per unit time, and each window has 50 distinct
values. Figure 2 shows that our algorithm scales considerably better with the number of sliding
windows than the naive technique.
If expiration and re-execution are done every τ seconds, then algorithm Lazy Multi-Way

NLJ may or may not be optimal, as illustrated by the following examples. Firstly, suppose
that we have four windows with parameters as in the previous example. Figure 3(a) shows
the performance of the best ordering of Naive Multi-Way NLJ (abbreviated NAIVE), Lazy

Multi-Way NLJ (abbreviated LAZY), and General Lazy Multi-Way NLJ (abbreviated
GENERAL). We let τ range from one to fifty, i.e. up to fifty percent of the window size. In
this scenario, both LAZY and GENERAL have the same cost because the optimal ordering is
always to order newly arrived tuples first. The cost steadily increases as τ increases because lazy
expiration increases the average size of each window. The NAIVE strategy is more expensive
than our improved algorithms, especially if τ is small, in which case the strategy of processing
newly arrived tuples in the outer-most for-loop greatly reduces the amount of work done by the
inner for-loops.
We now increase the arrival rate of the fourth stream to ten tuples per unit time, keeping

its distinct value count at fifty. S4 now has ten times as many tuples as before and ten times as
many duplicates as the other windows. The performance of the best ordering of our algorithms
is shown in Figure 3(b). As expected, GENERAL has the lowest cost of all the algorithms
compared here regardless of the value of τ—this is always the case because the join ordering
space considered by GENERAL is a superset of those of the others. Furthermore, LAZY works
as well as GENERAL for small values of τ because the optimal ordering always places on top of
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Figure 3: Performance comparison of our improved lazy algorithms versus the naive lazy algo-
rithm.

the plan the source window of new tuples. However, as τ grows, there are many new S4-tuples
generated between re-executions and placing S4 on top of the plan causes the inner loops to do
a large amount of work. In fact, the optimal ordering for processing S4-tuples when τ is large is
to order S4 last—this is why LAZY is outperformed by the other algorithms in this situation.
Conversely, NAIVE is the most expensive for small values of τ , but becomes nearly as good as
the GENERAL (and better than LAZY) when τ is large, provided that S4 is ordered last. This
is because the cost in this case is mostly made up of the cost of processing S4-tuples (which
arrive at a faster rate than other tuples). Therefore, it is better to order S4 last at all times,
even if it means that other tuples will be processed in sub-optimal order (NAIVE), than it is to
order S4 first, even if tuples from other windows are processed in optimal order (LAZY).

4.3 Summary of Cost Analysis

Eager Multi-Way NLJ always outperformsNaive Multi-Way NLJ under eager re-evaluation.
Moreover, General Lazy Multi-Way NLJ is never worse than any of the other algorithms
described here. We do not analytically compare the performance of hash joins with NLJs be-
cause while the former are clearly more efficient in terms of processing time, their expiration
procedures may be more expensive. Since we do not know the cost of expiring a tuple rela-
tive to accessing a tuple during join processing, we leave this issue for experimental analysis in
Section 6.

5 Join Ordering

5.1 Eager Evaluation

We now investigate the effect of join ordering on the processing cost. All cost values given in
this section are in units of attribute comparisons per unit time. We ignore the cost of inserting
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and expiring tuples, which is not affected by the join ordering. We also continue to assume that
no materialization of intermediate results may take place, leaving n! possible extreme right-deep
join trees from which to choose a plan (or n · n! for General Lazy Multi-Way NLJ), where
n is the number of sliding windows to be joined.
We begin with a simple example in eager re-execution. Suppose that each window has the

same number of distinct values. It it sensible to (globally) order the joins in ascending order
of the window sizes (in tuples) λiTi, or average hash bucket sizes λi

Ti
bi
. That is, the window

to which a new tuple arrives is processed in the outer-most for-loop, followed by the smallest
remaining window and so on. This strategy minimizes the work done by the inner loops: by
placing a small window in the outer for-loop, fewer tuples are passed down to the inner for-loops.
In the general case of eager re-execution, a sensible heuristic is to assemble the joins in

descending order of binary join selectivities, leaving as little work as possible for the inner loops
(we define a join predicate p1 to be more selective than another, p2, if p1 produces a smaller
result set than p2). Consider four streams with parameters as shown in Table 5 and suppose that
hash indices are not available. The global order chosen by this heuristic is either S1, S2, S3, S4,
or S2, S1, S3, S4, depending on the tie-breaking procedure. The former is the optimal plan,
which costs 16000 (an example derivation of this number may be found in Appendix B), while
the latter is fifth-best at 19600. For comparison, the worst plan’s cost is nearly 90000. In this
example, it turns out that the cheapest plans are those with S1 ordered first in the global order,
which suggests a possible augmentation of our heuristic—explore plans where fast streams are
ordered at or near the top of the plan.

Stream 1 λ1 = 10, T1 = 100, v1 = 500

Stream 2 λ2 = 1, T2 = 100, v2 = 50

Stream 3 λ3 = 1, T3 = 200, v3 = 40

Stream 4 λ4 = 3, T4 = 100, v4 = 5

Table 5: Stream parameters in the initial heuristic example.

To test the augmented heuristic, consider four streams with parameters given in Table 6. In
the absence of hash tables, the best global order is S2, S1, S3, S4 and costs 80400. The initial
heuristic chooses either S2, S3, S1, S4 or S2, S3, S4, S1, whose costs are approximately 123000 and
248000, respectively. Note that Stream 1 is faster than the others, so we try moving it up the
order to get S2, S1, S3, S4, which is the optimal global ordering. Interestingly, moving the fast
stream all the way up to get S1, S2, S3, S4 is worse as it costs 120000. For comparison, the worst
plan costs nearly 650000.

Stream 1 λ1 = 100, T1 = 100, v1 = 200

Stream 2 λ2 = 1, T2 = 100, v2 = 200

Stream 3 λ3 = 1, T3 = 100, v3 = 20

Stream 4 λ4 = 3, T4 = 100, v4 = 2

Table 6: Stream parameters in the augmented heuristic example.
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If more than one stream is significantly faster than the others, as in the parameters shown
in Table 7, the augmented heuristic still works well. Ordered by ascending join selectivity, we
try S3, S4, S1, S2, whose cost is 49542. We note that the two fast streams are ordered last, so we
try to move them up. Moving up S1 gives S3, S1, S4, S2 for a cost of 47977, which is the optimal
ordering in this scenario, and moving up both S1 and S2 gives S3, S1, S2, S4 for a cost of 51954.
Each combination considered by our heuristic costs less than the average cost per unit time over
all orderings, which, in this case, is 63362. Again, moving the fast streams all the way to the
top to get S1, S2, S3, S4 or S2, S1, S3, S4 is not recommended as these two plans cost 68200 and
79000 respectively.

Stream 1 λ1 = 11, T1 = 100, v1 = 200

Stream 2 λ2 = 10, T2 = 100, v2 = 100

Stream 3 λ3 = 1, T3 = 100, v3 = 65

Stream 4 λ4 = 1, T4 = 100, v4 = 20

Table 7: Stream parameters in the example with two fast streams and two slow streams.

In summary, a reasonable heuristic for eager re-evaluation of the multi-way NLJ is to initially
order the joins in descending order of their selectivities. If one or more streams are faster than
the others, it is also beneficial to consider orderings where the fast streams are moved up the
join order (but not all the way to the top). The number of orderings considered is on the order
of nf where f is the number of “fast” streams.

5.2 Lazy Re-evaluation

Recall from Figure 3 that algorithm Lazy Multi-Way NLJ is as good as General Lazy

Multi-Way NLJ when τ is small (how small τ must be for this to be true depends on the
query). If this is the case, we may use the same ordering heuristics as before. Otherwise,
General Lazy Multi-Way NLJ is more efficient if a good join ordering is chosen. Recall
that the general NLJ allows arbitrary join orderings depending on the origin of the tuples that
are being processed. Note, however, that the join ordering problem in this scenario is simply
a recursive case of the problem in previous cases, with the exception that the resulting global
join orders are the actual orders used in the algorithm, i.e. newly arrived tuples are not always
processed in the outer for-loop. Thus, we may still use the same heuristics except that when
calculating intermediate join sizes for each ordering, we replace Ti of the window whose new
tuples we are currently processing by τ to signify that we are only joining new Si tuples that
have arrived in the last τ time units.

5.3 Join Ordering in the Multi-Way Hash Join

If each hash table has the same number of buckets, the ordering problem is the same as in the
NLJ. This is because the hash-join so configured operates in a nested-loop fashion like the NLJ,
except that at each loop, only one hash bucket is scanned instead of the entire window. Since
the number of hash buckets is the same for each window, the cost savings are equal at each
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for-loop. Our heuristics can also be used if the hash tables have various sizes so long as we
discount each window’s time size Ti by the number of buckets to get the average bucket size

Ti
bi
.

This gives the average number of tuples in Si that will be scanned when performing the join.

5.4 Join Ordering in Other Scenarios

We conclude the discussion on join ordering with examples of how our general principle of
minimizing the work done by the inner for-loops may be applied in other scenarios, including
those in which some of our simplifying assumptions do not hold.

• Hybrid Hash-NLJ: A simple heuristic is to place all the windows that contain hash indices
in the inner for-loops since those repeat the most often. At this point the index selection
problem in the context of our hybrid operator comes into play: given the constraints on
available memory, on which windows should we build hash indices?

• Expensive predicates: Those may need to be ordered near the top of the join tree in order
to minimize the work done by the inner for-loops.

• Joins on different attributes: In this case, we may no longer arbitrarily re-order the join
tree. However, it may still be more efficient to place the window from which the new tuples
came at the outer-most for-loop. Thereafter, a simple greedy heuristic could be at each
step to choose the most selective join predicate allowed by the join graph.

• Fluctuating stream arrival rates: If feasible, we re-execute the ordering heuristic whenever
stream rates change beyond a given threshold. Otherwise, it may be prudent to place near
the top of the plan all those streams which are expected to fluctuate widely—recall that
our heuristics often select plans where fast streams are near the top.

6 Experimental Results

6.1 Experimental Setting

In this section, we validate our join ordering heuristics, compare the performance of our join
operators, and investigate trade-offs associated with re-evaluation and expiration frequencies.
We have built simple prototypes of our algorithms in Java 1.3.1, running on a Windows PC with
a 1.2 GHz AMD processor and 256 megabytes of RAM. We have implemented sliding windows
and hash buckets as singly-linked lists with the most recent tuples at the tail (i.e. hash tables
are implemented as one-dimensional arrays of linked lists). Thus, insertion adds a tuple at the
end of a list or bucket, while expiration advances the pointer to the first element. All hash
functions are simple modular divisions by the number of hash buckets. For simplicity, each
tuple consists of two integer attributes: a system-assigned timestamp ts and a common join
attribute attr, and the join predicate is hard-coded to be an equality comparison. Eager and
lazy query re-evaluation, as well as eager and lazy tuple expiration, are supported. Note that
the expiration procedure does not delete old tuples as this is under control of Java’s garbage
collection mechanism. We have experimented with Java’s System.gc() method, which acts as
a suggestion for Java to perform garbage collection and found that our simulation slows down
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Algorithm Max. rate of Max. rate of
best plan worst plan

Eager NLJ 1614 333

Lazy NLJ,
τ = 5 1446 296

Lazy NLJ,
τ = 10 1332 274

Eager hash 11540 2524

Lazy hash,
τ = 5 8420 2041

Lazy hash,
τ = 10 7947 1848

Table 8: Experimental validation of our cost model and join ordering heuristic.

when this method is called frequently. We do not discuss this further as it is an implementation-
specific issue.
Our tuple generation procedure is as follows. We run a continuous for-loop, inside which

one tuple per iteration is generated from a random stream i with probability equal to λi
∑n

j=1
λj
.

The tuple is given a timestamp equal to the current loop index and an attribute value chosen
uniformly at random from the set {1, 2, . . . , v}, where v is the number of distinct values in
the new tuple’s source stream. This procedure simulates relative stream rates and guarantees
containment of value sets. We repeat the loop x times, measure the time t taken to execute
the simulation, and report x

t
, which is the maximum input rate that can be supported by the

system. This is the cumulative rate over all inputs, measured in tuples per second. In order to
eliminate transient effects occurring when the windows are initially non-full, the simulator first
generates enough random tuples to fill the windows. We repeat each experiment ten times and
report the average.

6.2 Validation of Cost Model and Join Ordering Heuristic

We begin by executing a simple query with parameters as shown in Table 5 and compare
maximum supported input rates for various orderings. We execute the multi-way NLJ and the
multi way hash join (with five buckets per hash table) under eager re-evaluation and expiration,
and lazy re-evaluation and expiration with two choices of τ : five and ten. Results are shown in
Table 8. Recall from Section 5.1 that the worst plan for this query costs roughly five times as
much to process as the optimal plan in case of algorithm Multi-Way NLJ. As seen in Table 8,
when insertion and expiration costs have been included, this difference diminishes somewhat.
We have verified that the best plan in all cases is the plan predicted by our heuristic. Note
that the hash join outperforms the NLJ and that increasing the re-evaluation interval hurts
performance; we elaborate on these points in the next experiment.
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Figure 4: Performance comparison of our algorithms with respect to a) increasing the re-
evaluation and expiration interval and b) building large hash tables on fast streams.

6.3 NLJ vs. Hash Join

We now compare the performance of our NLJ versus our hash join (with bucket sizes 2, 10,
and 30, abbreviated HASH2, HASH10, and HASH30). We run a four-window query in which
each window’s time size is 100 units, streams arrive with rates of one tuple per unit time, and
each window has fifty distinct values. Figure 4(a) shows a graph of the maximum input rate
versus the re-execution (and expiration) interval τ . We will discuss the effect of expiration
frequency later on; for now, we note that the relative performance of various join configurations
is as expected: the NLJ is the slowest and the hash join with the largest hash table is the
fastest. The greatest relative improvement occurs between the NLJ and the hash join with two
hash bucket per window. Thereafter, the marginal improvement of adding more hash buckets
decreases.

6.4 Effect of Query Re-Evaluation and Expiration Frequencies on Processing

Time

Returning to Figure 4(a), we now explain the effect of re-evaluation and expiration frequencies
on the overall performance of our algorithms. Frequent expiration incurs the cost of updating
linked list pointers upon every arrival of a new tuple. In contrast, sporadic evaluation performs
fewer of these operations, but allows windows to grow between updates, causing longer join
evaluation times. Beginning with the NLJ, we see that short expiration intervals are preferred
as the cost of advancing pointers is lower than the cost of scanning longer windows in the
processing stage. However, very frequent expiration and re-evaluation are inefficient. The same
pattern is seen in the hash joins, except that the optimal frequency increases as the number of
buckets increases. For instance, the two-bucket hash join performs best when expiration and
execution are done every four time units (given the parameters in this example), for the ten-
bucket join the optimum is roughly fifteen time units, and for the 30-bucket join, the optimum is
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approximately 30 time units. As already discussed in Section 4.1, this is the case because if the
number of hash buckets is large and the invalidation frequency is high, then many buckets are
empty or do not contain any tuples to be expired. However, we still pay for the cost of accessing
the buckets and checking for old tuples. The downside here is that large re-execution intervals
may not be suitable for many real-time streaming applications, meaning that hash joins with
large hash tables are not as fast as they could be if the re-execution interval were larger. We
also note that the maximum allowed rate drops off gradually when τ is large. Again, this is
because the sliding windows are large (they have many old tuples) so the join spends more time
scanning the windows.

6.5 Varying Hash Table Sizes

Thus far, we have only evaluated hash joins where each hash table has the same number of
buckets. We now consider a strategy that builds larger hash tables for large windows (in terms
of time size or stream arrival rate). We run a join of four windows, 100 time units large and
with fifty distinct values. Three streams arrive with rates of one tuple per unit time, while the
fourth stream is fifty times faster. We re-execute the query and expire old tuples every five time
units to provide a reasonably high re-fresh frequency. Results are shown in Figure 4(b) for four
scenarios: equal hash table sizes (Equal), allocating one hash bucket each to slow streams (1
to slow—in this case, slow streams do not have hash indices), allocating five buckets each to
slow streams (5 to slow), and allocating ten buckets each to slow streams (10 to slow). The
horizontal axis measures the average number of hash buckets per window. For example, if this
number is 12, then in the Equal strategy, every hash table has 12 buckets, while in the “5 to
slow” strategy, the three hash tables corresponding to slow streams have five buckets each and
the hash table over the fast stream has 4 · 12− 3 · 5 = 33 hash buckets.
In the Equal strategy, the maximum input rate increases gradually as the number of buckets

increases and reaches over 7000 tuples per unit time when each hash table has 13 buckets. In “1
to slow”, the best rate is obtained when the average number of buckets is eight, i.e. when the
largest hash table has 29 buckets. Increasing the largest hash table further hurts performance
because of the large expiration cost at this (fairly small) value of τ . “5 to slow” works very well
and reaches a maximum rate of over 10000 tuples per unit time when the average hash table
size is 12 buckets (i.e. when the largest hash table has 33 buckets). Finally, “10 to slow” does
not work as well as “5 to slow” for the hash table sizes shown on the graph, but continues to
improve and surpasses “5 to slow” if more hash buckets are available (not shown on the graph).
In summary, assuming that counting the average number of buckets per hash table is a fair cost
metric, allocating more hash buckets to a large window improves performance. However, this
largest hash table must not be too large because, as we have previously explained, very large
hash tables do not perform well when τ is relatively small.

6.6 Lessons Learned

We now summarize our findings regarding our multi-way join algorithms and optimal execution
strategies for sliding windows implemented as singly-linked lists.
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• The multi-way hash join is considerably more efficient than the multi-way NLJ and should
be used whenever hash indices are available. We have seen that increasing the number
of hash buckets improves performance, but the marginal improvements diminish as the
number of buckets increases. Moreover, allocating more hash buckets to larger windows is
a promising strategy.

• The optimal expiration frequency depends on the choice of algorithm and on the sizes of
the hash tables. The larger the hash table, the higher the optimal frequency.

7 Conclusions and Future Work

We have presented and analyzed incremental, multi-way join algorithms for sliding windows
over data streams. Based on a per-unit-time cost model, we developed a join ordering heuristic
that finds a good join order without iterating over the entire search space. Our experiments
with a Java implementation of our operators have shown that various system parameters such as
stream arrival rates, tuple expiration policies, and hash table sizes greatly affect query processing
efficiency. Moreover, we have shown that hash-based joins perform much better than NLJ-
based operators. While our existing implementation is likely to be ineffective in many real-time
scenarios, a faster programming language combined with better memory management and novel
join algorithms could increase the efficiency of our techniques.
Our research goal is to develop a sliding window query processor that is functional, effi-

cient, and scalable. In terms of functionality, we intend to design efficient algorithms for other
query operators over sliding windows besides joins (e.g. windowed sort and windowed top-k
list). Improvements in efficiency include low-overhead indices for indexing window contents
and exploiting stream properties such as near-sortedness and foreign-key relationships. Finally,
scalability may be improved by means of grouped evaluation of similar queries, indexing query
predicates, storing materialized views, and returning approximate answers if exact answers are
too expensive to compute.
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Appendix A

We now show sample derivations of the cost formulae for our NLJ-based operators given that the
join predicate is an equality comparison of a common attribute and that the sliding windows are
time-based. We show four example derivations under eager and lazy evaluation of the multi-way
NLJ and the general multi-way NLJ. For simplicity, we consider the cost to be proportional to
the number of accesses per unit time. Each sample derivation is a join of four windows with
global join order S1, S2, S3, S4.
First, we define the intermediate result size of a join of two windows, Si and Sj , as φij =

λiTiλjTj
max(vi,vj)

. We extend this definition to multi-joins of n windows to get the following.

φij...n =
φj...nλiTi

max(min(vj , vj+1, . . . , vn), vi)

=
φij+1...nλjTj

max(min(vi, vj+1, . . . , vn), vj)
= . . .

=
φij...n−1λnTn

max(min(vi, vj , . . . , vn−1), vn)

That is, we first join any n−1 windows, calculate the size of this (n−1)-way join, multiply it by
the size of the remaining window (in the numerator), and divide by the maximum of the number
of distinct values in the (n− 1)-way join and the remaining window (in the denominator). The
number of distinct values in a (n− 1)-way join is the minimum number of distinct values in any
of the n − 1 windows joined thus far. Note that the expected result size of a multi-way join is
the same regardless of the order in which the individual joins are performed.
We also define φ̂12...n to be the intermediate result size of a join of n sliding windows under

lazy re-evaluation, in which case the expected time size of each window Si increases from Ti to
Ti + τ . That is,

φ̂ij...n =
φ̂j...nλi(Ti + τ)

max(min(vj , vj+1, . . . , vn), vi)

=
φ̂ij+1...nλj(Tj + τ)

max(min(vi, vj+1, . . . , vn), vj)
= . . .

=
φ̂ij...n−1λn(Tn + τ)

max(min(vi, vj , . . . , vn−1), vn)
,

where φ̂ij =
λi(Ti+τ)λj(Tj+τ)

max(vi,vj)
for any two windows Si and Sj .

Eager Multi-Way NLJ

When processing new S1-tuples, we repeat the join λ1 times per unit time. Each time, we scan
S2 for a cost of λ2T2 tuple accesses. For each S2-tuple that joins with the new S1-tuple (the
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expected number of such tuples is λ2T2
max(v1,v2) because we are joining one S1-tuple with λ2T2 S2-

tuples), we scan S3 for a cost of λ3T3 tuple accesses. Finally, for each S3-tuple that joins with

each composite S1 ◦ S2-tuple (there are

(

λ2T2
max(v1,v2)

)

λ3T3

max(min(v1,v2),v3) such tuples because we are first joining

one S1-tuple with λ2T2 S2-tuples and then joining the result with λ3T3 S3-tuples), we scan S4

for a cost of λ4T4 tuple accesses. The total cost per unit time of processing S1-tuples, call it C1,
is as follows.

C1 = λ1



λ2T2 +
λ2T2

max(v1, v2)
λ3T3 +

λ2T2
max(v1,v2)λ3T3

max(min(v1, v2), v3)
λ4T4





= λ1λ2T2 +
1

T1
(φ12λ3T3 + φ123λ4T4)

When processing new S2-tuples, we calculate the cost as before to get C2:

C2 = λ2



λ1T1 +
λ1T1

max(v2, v1)
λ3T3 +

λ1T1
max(v2,v1)λ3T3

max(min(v2, v1), v3)
λ4T4





= λ2λ1T1 +
1

T2
(φ12λ3T3 + φ123λ4T4)

The cost per unit time of processing new S3 tuples is:

C3 = λ3



λ1T1 +
λ1T1

max(v3, v1)
λ2T2 +

λ1T1
max(v3,v1)λ2T2

max(min(v3, v1), v2)
λ4T4





= λ3λ1T1 +
1

T3
(φ13λ2T2 + φ123λ4T4)

Finally, the cost per unit time of processing new S4-tuples is:

C4 = λ4



λ1T1 +
λ1T1

max(v4, v1)
λ2T2 +

λ1T1
max(v4,v1)λ2T2

max(min(v4, v1), v2)
λ3T3





= λ4λ1T1 +
1

T4
(φ14λ2T2 + φ124λ3T3)

We sum C1, C2, C3, and C4 to get the total cost per unit time.

Lazy Multi-Way NLJ

Let Li be the cost per unit time of processing new Si-tuples in the lazy strategy. Upon each re-
execution (every τ time units), we execute the same algorithm as in the eager case, except that
the number of new tuples in each window is multiplied by τ . However, we then divide by τ to get
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the cost per unit time. Moreover, each window Si now has time-size Ti+ τ because expiration is
also performed every τ time units. The costs of handling tuples from various windows are given
below.

L1 = λ1



λ2(T2 + τ) +
λ2(T2 + τ)

max(v1, v2)
λ3(T3 + τ) +

λ2(T2+τ)
max(v1,v2)λ3(T3 + τ)

max(min(v1, v2), v3)
λ4(T4 + τ)





= λ1λ2(T2 + τ) +
1

(T1 + τ)

(

φ̂12λ3(T3 + τ) + φ̂123λ4(T4 + τ)
)

L2 = λ2



λ1(T1 + τ) +
λ1(T1 + τ)

max(v2, v1)
λ3(T3 + τ) +

λ1(T1+τ)
max(v2,v1)λ3(T3 + τ)

max(min(v2, v1), v3)
λ4(T4 + τ)





= λ2λ1(T1 + τ) +
1

(T2 + τ)

(

φ̂12λ3(T3 + τ) + φ̂123λ4(T4 + τ)
)

L3 = λ3



λ1(T1 + τ) +
λ1(T1 + τ)

max(v3, v1)
λ2(T2 + τ) +

λ1(T1+τ)
max(v3,v1)λ2(T2 + τ)

max(min(v3, v1), v2)
λ4(T4 + τ)





= λ3λ1(T1 + τ) +
1

(T3 + τ)

(

φ̂13λ2(T2 + τ) + φ̂123λ4(T4 + τ)
)

L4 = λ4



λ1(T1 + τ) +
λ1(T1 + τ)

max(v4, v1)
λ2(T2 + τ) +

λ1(T1+τ)
max(v4,v1)λ2(T2 + τ)

max(min(v4, v1), v2)
λ3(T3 + τ)





= λ4λ1(T1 + τ) +
1

(T4 + τ)

(

φ̂14λ2(T2 + τ) + φ̂124λ3(T3 + τ)
)

We sum L1, L2, L3, and L4 to obtain the total cost per unit time. Note that the above four
equations are identical in format to the equations in the eager case, except that the average time
size of each window grows by τ .

Eager Naive and General Multi-Way NLJs

Suppose that the join order is S1, S2, S3, S4 regardless of the origin of new tuples, as in the naive
algorithm. This will allow us to show how to compute the cost if newly arrived tuples are in
various positions in the order. We denote the cost of processing new Si-tuples as Gi in this case
to distinguish from Ci in the previous calculations. Assume that lazy re-evaluation is performed
every τ time units. When processing new S1-tuples, G1 = C1 as those tuples are ordered first.
When processing new S2-tuples, we scan S1 for a cost of λ1T1 tuple accesses, then perform the
rest of the join in the same way as when processing S2-tuples in our lazy multi-way NLJ. That
is, G2 = C2. Now, when new S3-tuples are processed, we scan S1 and for each S1-tuple, scan all
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of S2 for a cost of λ1T1λ2T2 tuple accesses. For each S1-tuple that matches any S2-tuple (there
are φ12 such tuples), we check if the new S3-tuple matches and if so (there will be a total of

φ12

max(min(v1,v2),v3) such matches because we are joining the result of S1 1 S2, whose size is φ12,

with one S3-tuple), we scan S4 for a cost of λ4T4 tuple accesses. The cost per unit time is given
below.

G3 = λ3

(

λ1T1λ2T2 + φ12 +
φ12λ4T4

max(min(v1, v2), v3)

)

When processing new S4-tuples, we again scan S1 and for each S1-tuple, we scan all of S2

for a cost of λ1T1λ2T2 tuple accesses. For each of the φ12 intermediate result tuples, we scan
S3 for a cost of λ3T3 tuple accesses. Finally, each resulting tuple (of which there are φ123) is
compared with the new S4-tuple. The cost is as follows.

G4 = λ4 (λ1T1λ2T2 + φ12λ3T3 + φ123)

The total cost per unit time is G1 +G2 +G3 +G4.

Lazy Naive and General Multi-Way NLJs

We continue to assume that the join order is S1, S2, S3, S4 regardless of the origin of new tuples.
Let Hi be the cost of processing new Si-tuples under lazy re-evaluation every τ time units.
H1 = L1 because new tuples are ordered first in both cases. Similarly, When processing new
S2-tuples, everything is the same as in the lazy multi-way NLJ except that the order of the first
two for-loops is reversed. This does not affect the work done in the inner loops, and therefore
H2 = L2. When processing new S3-tuples, we scan S1 and for each S1-tuple, we scan all of
S2 for a cost of λ1(T1 + τ)λ2(T2 + τ) tuple accesses. For each S1-tuple that matches any S2-
tuple (there are φ̂12 such tuples), we scan the new S3-tuples, of which there are λ3τ and for

each match (of which there are φ̂12λ3τ
max(min(v1,v2),v3) because we are joining S1 1 S2 with λ3τ newly

arrived S3-tuples), we scan S4 for a cost of λ4T4 tuple accesses. The cost per unit time is given
below.

H3 =
λ1(T1 + τ)λ2(T2 + τ)

τ
+ φ̂12λ3 +

φ̂12λ3λ4(T4 + τ)

max(min(v1, v2), v3)

Finally, when processing new S4-tuples, we again scan S1 and for each S1-tuple, scan all of
S2 for a cost of λ1(T1+τ)λ2(T2+τ) tuple accesses. For each S1-tuple that matches any S2-tuple
(there are φ̂12 such tuples), we scan S3 and for each match (of which there are φ̂123), we scan
the new S4-tuples of which there are λ4τ . The cost per unit time is given below.

H4 =
λ1(T1 + τ)λ2(T2 + τ)

τ
+
φ̂12λ3(T3 + τ)

τ
+ φ̂123λ4

The total cost per unit time is H1 +H2 +H3 +H4.
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Appendix B

In this section, we carry out a cost calculation of one of the query plans discussed in Section
5.1. We repeat the system parameters in Table 9. We will use algorithm Eager Multi-Way

NLJ and assume that we are performing an equi-join.

Stream 1 λ1 = 10, T1 = 100, v1 = 500

Stream 2 λ2 = 1, T2 = 100, v2 = 50

Stream 3 λ3 = 1, T3 = 200, v3 = 40

Stream 4 λ4 = 3, T4 = 100, v4 = 5

Table 9: Stream parameters in the worked example.

We first calculate the intermediate result sizes of each possible binary join, shown in Table 10.

φ12
λ1T1λ2T2
max(v1,v2) =

10·100·1·100
500 = 200

φ13
λ1T1λ3T3
max(v1,v3) =

10·100·1·200
500 = 400

φ14
λ1T1λ4T4
max(v1,v4) =

10·100·3·100
500 = 600

φ23
λ2T2λ3T3
max(v2,v3) =

1·100·1·200
50 = 400

φ24
λ2T2λ4T4
max(v2,v4) =

1·100·3·100
50 = 600

φ34
λ3T3λ4T4
max(v3,v4) =

1·200·3·100
40 = 1500

Table 10: Sizes of the intermediate results in the worked example.

We will also need φ123 and φ124 in order to calculate the total cost. These are given Table 11.

φ123
φ12λ3T3

max(min(v1,v2),v3) =
200·1·200

50 = 800

φ124
φ12λ4T4

max(min(v1,v2),v4) =
200·3·100

50 = 1200

Table 11: Three-way join sizes in the worked example.

In descending order of the binary join selectivites (i.e. the join which produces the fewest
intermediate results is ordered first), our heuristic chooses the ordering S1, S2, S3, S4. We use
equations for C1 through C4 developed in the Appendix A to calculate the cost per unit time:
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C1 = λ1λ2T2 +
1

T1
(φ12λ3T3 + φ123λ4T4)

= 10 · 1 · 100 +
1

100
(200 · 1 · 200 + 800 · 3 · 100)

= 3800

C2 = λ2λ1T1 +
1

T2
(φ12λ3T3 + φ123λ4T4)

= 1 · 10 · 100 +
1

100
(200 · 1 · 200 + 800 · 3 · 100)

= 3800

C3 = λ3λ1T1 +
1

T3
(φ13λ2T2 + φ123λ4T4)

= 1 · 10 · 100 +
1

200
(400 · 1 · 100 + 800 · 3 · 100)

= 2400

C4 = λ4λ1T1 +
1

T4
(φ14λ2T2 + φ124λ3T3)

= 3 · 10 · 100 +
1

100
(600 · 1 · 100 + 1200 · 1 · 200)

= 6000

The total cost per unit time is 3800 + 3800 + 2400 + 6000 = 16000.
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