Exploiting Fast Hardware Floating Point in
High Precision Computation

Keith O. Geddes
Wei Wei Zheng

Technical Report CS-2002-41

School of Computer Science
University of Waterloo

December 2002

Abstract

We present an iterative refinement method based on a linear Newton iter-
ation for solving a particular group of high precision computation problems.
Our method generates an initial solution at hardware floating point precision
using a traditional method and then repeatedly refines this solution to higher
precision, exploiting hardware floating point computation in each iteration.
This is in contrast to direct solution of the high precision problem completely
in software floating point. Theoretical cost analysis, as well as experimental
evidence, shows a significant reduction in computational cost is achieved by
the iterative refinement method on this group of problems.

Contents

1

2

Introduction

Cost of a Floating Point Operation

2.1 Software versus hardware floating point
2.2 Growth of cost with increasing precision

Nonsingular Linear Systems

3.1 The Iterative Algorithm
3.2 Cost Analysiso
3.3 Experimental Data

Overdetermined Systems: Least Squares

4.1 The Iterative Method
4.2 Cost Analysis L
4.3 Experimental Data

Singular Linear Systems: SVD

5.1 The Iterative Method
5.2 Cost Analysiso
5.3 Experimental Data

Nonlinear Equations: Polynomial Systems

6.1 The Iterative Method
6.2 Cost Analysiso
6.3 Experimental Data
6.4 Aside: Comparison with fsolve

Conclusion

Floating Point Cost Code

A.1 Hardware floating point environment
A2 Software floating point environment

Nonsingular Linear Systems Code

B.1 Procedure precLinearSolve
B.2 Problemsetup
B.3 TIterative Method

12
12
15
16

17
17
18
19

20
21
22
24
24

25

27
27
28

B.4 Direct Method
B.5 Results

Effect of Garbage Collection

C.1 Problemsetup
C.2 Direct Method oo
C3 Results. o

Ill-conditioned Linear Systems Code

D.1 Procedure precLinearSolve
D.2 Problemsetup
D.3 TIterative Method
D.4 Direct Method
D5 Results. o

Least Squares Code

E.1 Procedure precLeastSquares
E.2 Problemsetup
E.3 TIterative Method
E.4 Direct Method o
Eb5 Results. o

Singular Linear Systems: SVD Code

F.1 Procedure IteratedSVD,
F.2 Problemsetup,
F.3 Iterative Method
F.4 Direct Method
F.5 Results.

Polynomial Systems Code

G.1 Procedure DirectNonLinearSolve
G.2 Procedure precNonLinearSolve
G.3 Problemsetup L
G.4 Tterative Method
G.5 Direct Method
G.6 Results e

11

List of Tables

= O 00 ~J O U = W N —

Hardware and software floating point operation cost. 3
Software floating point with minimal garbage collection. 4
Software floating point operation cost versus precision. 4
Nonsingular linear systems: size, cost and speedup. 10
Effect of garbage collection on Direct Method. 11
Ill-conditioned linear systems. 12
Least squares problems: size, cost and speedup. 17
SVD problems: size, cost and speedup. 20
Polynomial systems: size, cost, speedup and errors. 24
Direct method vs fsolve. o000 25

111

v

1 Introduction

In symbolic and numeric computation, a high precision solution is often de-
sired. The traditional way to compute high precision solutions is to directly
carry out the computation in a multiprecision software floating point envi-
ronment which can be quite time consuming. In contrast, hardware floating
point computation is much faster than the software equivalent. Based on this
realization, we construct a new method that exploits the hardware floating
point environment for most of the computations.

The iterative method presented here is based on Newton’s iteration but
in a linearly converging variant rather than the quadratic Newton’s iteration
commonly used in traditional numerical computation. As is well-known, the
quadratic Newton’s iteration becomes linear if the “derivative information”
is held constant. This is the basic form of our iterative method and it corre-
sponds to the Hensel iteration [6] known in computer algebra. As is the case
in the algebraic Hensel setting, one finds that a linearly converging variant of
Newton’s iteration can be advantageous when the computations in the “base
ring” are much more efficient than the computations which would result if
the update for each iteration were computed in a larger ring.

For the iterative method of this paper, an initial solution at hardware
floating point precision is first generated using a traditional algorithm. Sub-
sequent solutions at higher precision are computed by repeatedly finding
the correction term. The computation is separated into components, the
majority of which are performed on the faster floating point hardware. This
method has been applied to problems with easily computed residuals, and by
performing most of the time-consuming computations in hardware, achieves
significant speedup compared to traditional methods for these types of prob-
lems.

In this paper we apply the method to some linear algebra problems. We
order the discussion according to the categories of linear systems. First we
consider the solution of nonsingular linear systems, followed by least squares
solutions of overdetermined linear systems, and finally we consider the sin-
gular value decomposition for singular linear systems. In the last section, we
apply our method to a class of nonlinear problems, namely, systems of poly-
nomial equations. We find that the new method reduces the computational
cost of computing a high precision solution by a significant factor for these
problems.

We implemented and tested our methods in Maple 8on a1l GHz Pentium 3

with 512 Mb of memory. Our test cases use a “base precision” of 15 digits
corresponding to hardware floating point (double precision). All the timing
results have units in seconds.

2 Cost of a Floating Point Operation

Let us compare the cost of one floating point operation in the software and
hardware floating point environments. In order to have timings that are
sufficiently large to be measured with some degree of reliability, we use matrix
multiplication. By a “floating point operation” we refer to a single scalar
multiplication (or addition) operation.

When an n X n matrix is multiplied by itself using the standard method,
the unit cost of a single operation may be estimated by dividing the matrix
multiplication time by the total number of operations, namely 2n3. In the
tables below we record the estimates of the unit cost for both hardware
and software floating point environments, based on matrix multiplication for
increasing matrix size n. See Appendix A for the Maple code.

2.1 Software versus hardware floating point

We measure the time to multiply a random n X n matrix with itself in both
hardware (Therq) and software (T, f:) floating point environments and gener-
ate two sets of data in Table 1. We calculate T}, = Thara/2n3, the per oper-
ation cost using hardware floating point representation, and T = Tyopi /20>,
the per operation cost using software floating point representation.

Note that the values chosen for the matrix size n are much larger in
the hardware environment in order to achieve measurable timings, whereas
in the software environment choosing such large values of n would lead to
unnecessarily large matrix multiplication timings.

In this experiment the floating-point precision is specified in Maple to
be Digits:=15 for both cases, corresponding to the approximate precision,
expressed in decimal digits, of the binary-based “double precision” hardware
floating point representation.

We see that as the matrix size increases, T}, remains approximately con-
stant at around 0.14 x 107®s. This is our estimate for the hardware floating
point operation cost on the particular computer used. The absolute timing is

Hardware Cost Software Cost
n| Tha| Ta n| Tep| T
500 460 | .1840e-8 || 25 161 | .5152e-5
750 1.250 | .1481e-8 || 50 1.111 | .4444e-5
1000 2.859 | .1429e-8 || 75 4.079 | .4834e-5
1500 9.691 | .1436e-8 || 100 | 10.610 | .5305e-5
2000 22.71 | .1419e-8 || 125 | 22.700 | .5811le-5
3000 76.08 | .1409e-8 || 150 | 43.610 | .6460e-5
4000 | 177.719 | .1388e-8 || 175 | 78.740 | .7346e-5
5000 | 347.210 | .1388e-8 || 200 | 130.160 | .8135e-5

Table 1: Hardware and software floating point operation cost.

only relevant as a means to determine the relative timing of software versus
hardware floating point operations.

For the case of software floats, we see that as the matrix size grows T} in-
creases. This is due to computational overhead including the cost of garbage
collection. The smallest value of T} is approximately 0.5 x 107°. Clearly, T}
1s at least 1000 times larger than Tj.

To see more clearly the effect of garbage collection in the software floating
point environment, we turn off garbage collection and report the results in
Table 2. More specifically, we set the frequency of garbage collection in
Maple to gcfreq=10"8 in contrast to the default setting of gcfreq=10"6.
The value reported for Maple’s gctimes is 1 from the initial setting of the
gcfreq flag and then it is incremented with each additional invocation of
garbage collection.

From Table 2 we can see that by removing the effect of garbage collection,
the value of T, remains approximately constant as the matrix size increases,
with a value of approximately 0.3 x 107°s. The last three rows of the table
illustrate, once again, the effect of garbage collection overhead. In this paper,
we will use the estimate

T, ~2x10°T), . (1)

2.2 Growth of cost with increasing precision

The software floating point operation cost Ts(d) is a function of the precision
d = m X p, where p denotes the base precision which is 15 in our test cases,

3

‘ n ‘ Tsopt ‘ T, ‘ gctimes H
25 0.079 | 0.2528e-3 1
30 0.670 | 0.2680e-35 1
75 2.170 | 0.2572e-5 1
100 5.091 | 0.2546e-5 1
125 | 10.180 | 0.2606e-5 1
150 | 17.719 | 0.2625e-5 1
175 | 28.390 | 0.2649e-5 1
200 | 42.339 | 0.2646e-5 1
250 | 136.85 | 0.4380e-5 2
350 | 640.74 | 0.7472e-5 2
500 | 4504.12 | 1.8016e-5 2

Table 2: Software floating point with minimal garbage collection.

precision m X p ‘ Ts(m X p) ‘

1x15 0.4444e-5
dx 15 0.6640e-5
10 x 15 1.598e-5
20 x 15 3.980e-35
30 x 15 6.288e-5
40 x 15 10.91e-5
50 x 15 14.07e-5
60 x 15 17.32e-5
70 x 15 30.93e-3
80 x 15 30.79e-5
90 x 15 35.18e-5
100 x 15 48.48e-5

Table 3: Software floating point operation cost versus precision.

100

60
40 - ;

20 -

0" 20 40 60 80 100
m

Figure 1: Time Ratio TR(m): Polynomial fit to data.

and m is the precision multiplier. To obtain experimental evidence for the
rate of growth of Ts(d), we fix the matrix size at 50 x 50 and let the precision
multipler m grow. The timing results are presented in Table 3.

We wish to model the time ratio T R(m) defined by

Ts(m X p)

TR(m) = T %)

which is the ratio of the cost of one software floating point operation in
precision m X p to the cost of one software floating point operation in base
precision p. The denominator here is the constant value T discussed above.
We know that the cost of multiplying two d-digit floating point numbers is
quadratic in d. It follows that the ratio TR(m) is quadratic in m.

Applying a least squares fit by a polynomial of degree 2 to the data for
T R(m) derived from Table 3, we obtain the following equation. See Figure 1
which shows that the least squares fit to the data by a quadratic polynomial

is quite good.

Ts(m X p) 2
TR(m) = =22 P) o 4.008 0.264m + 0.252
ININE SNPINE S
~ ot T Ty

Incorporating the relationship T, ~ 2 x 10° T}, from equation (1), we get

To(mxp) = TR(m)-T,

1, 1 1
~ — - - Ts

(s +tymty)
~ (16m2 4 500m + 500) T . (2)

3 Nonsingular Linear Systems

Solving nonsingular linear systems in high precision is a natural starting
point to demonstrate the strength of the iterative method. The concept of
our iterative method comes directly from the well-known concept of iterative
improvement for the solution of a linear system, as discussed in standard
numerical textbooks [5], [2]. In the traditional setting, one is computing in
a fixed-precision floating point environment and the purpose of the iterative
improvement step(s) is to refine the solution computed by a direct method
into a solution accurate to full precision.

In the following discussion, we assume the base precision is p digits and
the desired precision is m X p digits.

3.1 The Iterative Algorithm

Consider a linear system Az = b, where A € R™*", b € R™!, and we want
to solve for z € R™'. Both the direct method and the iterative method
start by applying LU decomposition to A and then use forward and back
substitution to solve the system. In the direct method, the computation is
carried out entirely in the software floating point system at high precision,
working with m x p digits throughout.

In contrast, the iterative method works in the hardware floating point
system first, to find an initial solution in the base precision p, and then
enters an iterative refinement loop. In each iteration, the method first uses

software floating point operations to compute the residual from the previous
solution in high precision, and then goes back to the hardware floating point
environment to compute the correction term in base precision, and finally
adds the correction term to the previous solution in software floats. The
resulting sequence of solutions has monotonically increasing precision. The
LU decomposition computed in the initial step at base precision is re-used
in each iterative step, thus making the iterative steps very cost efficient.

In summary, the iterative method can be expressed as Algorithm A.

Algorithm A.

1. [Traditional linear solve] Solve A 2 = b by a direct method in precision p
yielding initial solution #M; save the decomposition result A= P LU.

2. [Compute 20D = 2 £ Az o that 20+ is correct to ~ (t+1)xp
digits]
For:=1. M —1:

(a) Compute r@ =A.200 —pin (1 +1) x p digits.
(b) Solve (P LU) - Az = rl) for Az() in p digits.
(¢) Compute 20D = 20 4 Az in (1 + 1) x p digits.

In practice, one can let the loop iterate until the size of the correction
term, relative to the computed solution, is small; for example, loop until
|AzO)|| < € ||z where € is the unit roundoff error for the desired precision
of the final result. The loop has been specified above in terms of a number
M for purposes of the cost analysis to be carried out. We need an estimate
for the number of iterations required.

The number of iterative refinement steps required is determined by how
well-conditioned (or ill-conditioned) is the matrix A. Let x(A) denote the
condition number of the matrix A. If K(A) ~ 1, we expect the initial estimate
() to be correct to approximately p digits, and we expect to add approxi-
mately p correct digits with each iteration. In this very well-conditioned case
we would have M = m to achieve a result accurate to m p digits.

More generally, we need the following error estimate. Suppose that the
linear system Ay = b is solved in a p-digit floating-point environment by a
direct method (Gaussian elimination with pivoting) yielding the computed

solution Yupproz- An error analysis [4] yields the following estimate for the
relative error, where y denotes the true solution:

||y - yapproxH < /i(A) ¢ (3)

[Yapproall — —

where € = 10'77.

Now suppose that x(A) ~ 10¢. Equation (3) implies that the initial
estimate () computed in step Al will lose about ¢ digits of accuracy; i.e., it
will be correct only to approximately p — g digits. Similarly, in each iterative
step the correction term Az will only be correct to about p— ¢ digits, so we
will expect to add approximately p— ¢ correct digits with each iteration. The
conclusion is that to achieve the desired precision of m p digits, the number
M of iterations required (counting step Al) can be estimated by

M~ P (4)
p—q
where ¢ = logyo (k(A)).

It is clear from equation (4) that Algorithm A can only be expected to
succeed if ¢ < p. Indeed, when the condition number is large enough so
that one cannot get at least one digit of accuracy in step Al then it would
be necessary to abandon hardware floating point and use a high-precision
software floating point environment for the entire computation.

3.2 Cost Analysis

The cost to compute the LU decomposition in step Al is approximately %n3

flops (floating point operations), and the cost of forward and back substitu-
tion is 2n? flops. The total cost Cj., for Algorithm A can be estimated as
follows, where we use equation (2) to express Ts(: X p) in terms of T},.

Cier = Tp X Cost(LUdecomp + for_back_sub)

—I—Z s(1 X p) x Cost(A2.a + A2.¢) + T), x Cost(A2.D)]
2 5 2

~ <§n —|—2n>Th—|—Z{ n? +n) (@Xp)—l—Qn Th}
2

~ [§n3—|—2n2—|—2(M—1)n2] Ty,

8

M
+2(n* +n) Y (1642 +5004 + 500) T,

=2

2, 2
~ [5 o S 0t(16 M + T74 M? + 2261 M 3048)] Ty + O(M° n).

The cost for the direct method can be estimated as follows.
Cairect = Ts(m x p) x Cost(LUdecomp + for_back_sub)
~ (§n3 +2n*) Ts(m x p)
A (§n3 +8n?) (4m® + 125m + 125) T, .
We can now estimate the speedup ratio

Cdirect —~ (% n3 + 8n2) (4 m2 + 125 m + 125)
Citer 2n3+ 202 (16 M3 + 774 M? + 2261 M — 3048)

Using equation (4) to express M in terms of the precision multiplier m, and
rearranging to exhibit the asymptotic behaviour as n grows large, we define
the following Theoretical Speedup (TS) formula.

Cdirect
T =
S < Citer > (5)

(16 m2 + 500 m + 500) + L (48 m? + 1500 m + 1500)
141 [16 (L)3m3 4774 (L)2 m? 4 2261 (2) m — 3048] '
n rP—q rP—q rP—q

Note that

Cirec
TS< d t>—>16m2—|-500m—|-500 as n — 00 .

iter

3.3 Experimental Data

For our first set of experiments, we generate random nonsingular n X n ma-
trices A and random n-vectors b, for various values of n. With base precision
p = 15, we compute the solution = of the linear system A x = b to precision
m X p = 120; i.e., the precision multiplier is m = 8.

For the random nonsingular matrices generated, we find that x(4) ~ 10?
in each case so we use the value ¢ = 3 for calculating the Theoretical Speedup

9

Matriz size Time Speedup

n Titer | Taivear || A=t | TS(fim==t)
50 0.49 2.80 5.71 2.59
75 1.78 14.45 8.12 3.81
100 5.83 48.93 8.39 5.03
125 13.00 619.01 || 47.62 6.25
150 36.11 321.12 8.89 7.47
175 84.14 799.35 9.50 8.69
200 154.41 | 8219.59 || 53.23 9.91
225 286.76 | 16853.00 || 58.77 11.1

Table 4: Nonsingular linear systems: size, cost and speedup.

TS. Note that the expected number of iterations required for solving this set
of linear systems is M ~ p/(p — ¢) x m = 1.25m; i.e., M ~ 10.
Equation (5) becomes

) 5524 16572
TS <Cdzrect> _ + n

112962
Citer 1 + n

Table 4 presents timing results for the iterative method and the direct
method for solving this set of random linear systems. The actual ratio of the
timings is presented as well as the Theoretical Speedup predicted by our cost
analysis. See Appendix B for the program.

We see that the Theoretical Speedup formula predicts the speedup fac-
tor reasonably well except for various “spikes” in the timings for the direct
method. In fact, the iterative method proves to be even more advantageous
than predicted since it essentially avoids any serious memory issues.

The “spikes” appearing in Table 4 in the timings for the direct method
are due to Maple’s garbage collection algorithm as well as possibly some
other memory organization issues. To test the effect of garbage collection,
we present in Table 5 the results of “turning oft” garbage collection (more
precisely, we set gcfreq=10"8). Note that this is not a practical idea because
it leads to a large increase in memory usage, but it serves to verify that
garbage collection is the primary cause of the timing “spikes” noted in Table
4. See Appendix C for the program.

We see in Table 5 that when garbage collection is “turned off”, the com-
puting times for the direct method increase monotonically as the matrix size

10

Matriz size default: gcfreq = 10° gc “off”: gcfreq = 10%
n gc ‘ Tiirect ‘ space(Mb) || gc ‘ Tiirect ‘ space(Mb)
50 4 2.39 79 1 1.35 40.4
75 8 13.60 112 1 4.68 127.2
100 13 51.83 126 || 1 12.94 287.0
125 20 | 1340.07 127 | 2 43.67 473.7
150 27 511.67 169 || 2| 113.72 505.4
175 36 | 1267.52 20.5 | 2| 243.31 546.2
200 47 1 12097.02 23.1 | 2| 478.04 591.3
225 58 | 4826.99 31.5 | 2]1013.19 641.2

Table 5: Effect of garbage collection on Direct Method.

increases, avoiding the timing “spikes” seen in Table 4. As a tradeoff, the
required memory space allocation becomes more than 20 times larger than
for the default gc setting. For later experiments, we revert to the default
garbage collection setting.

Table 4 showed that the iterative refinement method is significantly faster
than the direct method for a set of random matrices which were reasonably
well-conditioned. In Table 6 we present the results for the case of matrices
which have a higher condition number. The program in Appendix D creates
“ill-conditioned” matrices by creating a random matrix A and then forming
AT A as the new coefficient matrix.

In Table 6 we report the condition number x(A) of the matrix, the relative
error in the solution by each method, and the number of iterations actually
required by the iterative method to reach the desired high precision solution.

As before, we use base precision p = 15 and we compute the solution of
the linear system to precision m X p = 120; i.e., m = 8. As can be seen
in Table 6, x(A) ~ 10° for this set of matrices. Therefore we have used
the value ¢ = 6 for calculating the Theoretical Speedup TS. Note that the
expected number of iterations required for solving this “ill-conditioned” set
of linear systems is M ~ p/(p—q) x m ~ 1.67m; i.e., M ~ 13.3. We see that
this is a reasonable estimate for the number of iterations actually required
as reported in Table 6.

In this case, equation (5) becomes

) 5524 16572
TS <Cdzrect> o + n

- 202624.6
Citer 1 + n

11

k(A) | # Relative Error Time Speedup

n x10% | ¢t. REiter REdirect Titer Tdirect —ljdf::ea 75
50 | 0.30 | 11 || 0.16e-119 | 0.22e-115 1.14 4.51 3.97 | 1.45

75 | 0.15 | 11 || 0.12¢-119 | 0.44e-116 2.93 33.00 || 11.28 | 2.13
100 | 1.30 | 12 || 0.35e-119 | 0.17e-114 8.77 175.25 || 19.98 | 2.81
125 | 0.09 | 11 || 0.11e-119 | 0.34e-115 16.53 | 1254.08 || 75.85 | 3.49
150 | 0.63 | 12 || 0.19e-119 | 0.96e-114 || 36.59 | 2320.82 || 63.43 | 4.17
175 | 0.13 | 14 || 0.56e-120 | 0.55e-112 || 105.94 | 3415.27 || 32.24 | 4.85
200 | 0.43 | 13 || 0.10e-119 | 0.17e-113 || 178.84 | 13282.48 || 74.27 | 5.53
225 | 1.90 | 12 || 0.41e-119 | 0.10e-113 || 210.72 | 13807.22 || 65.52 | 6.21

Table 6: Ill-conditioned linear systems.

From Table 6 we observe that the iterative method not only is faster than
the direct method, but also it returns fully accurate solutions. As expected,
the solutions computed by the direct method lose approximately 6 digits of
accuracy due to the condition number of the matrices. See Appendix D for
the program.

4 Overdetermined Systems: Least Squares

Consider the case of an overdetermined linear system for which we wish to
compute the least squares solution. Just as in the case of solving a nonsin-
gular linear system, we can exploit an iterative method to compute a high
precision least squares solution more efficiently than using a direct method.
In the following discussion, we assume the base precision is p digits, and the
desired precision is m X p digits.

4.1 The Iterative Method

Let £ > n, A€ R b c R¥! and we wish to solve Az ~ b in the
least squares sense. This is an overdetermined system of linear equations.
The desired solution is a vector x € R"*! which minimizes ||b — Az||,. This
solution can be computed by finding « and r such that (see [2])

r=b—Ax, ATr=0.

12

Note that since our iterative method will compute successive approximations
for both = and r, we will compute in each iteration a residual not only with
respect to x but also with respect to r.

In this section, we assume that the columns of A are linearly independent
and therefore the system has a unique least squares solution set x, r. The
linearly dependent case will be handled by the SVD method in section 5.

The original least squares problem can be rewritten as the following non-
singular linear system (see [2]):

(ﬁjﬁ)@zﬁ. o)

Algorithm A from section 3 may be applied to the (k4n)x (k+n) nonsingular
linear system C'y = d defined by (6) yielding the following algorithm.

1. Solve for yM in base precision by a direct method.

2. Compute y Y =y + Ay i =1..M — 1, where Ay is defined by
C Ay = 50) and s = d — C yO.

In the above algorithm, the precision for each step of the computation would

be as defined in Algorithm A. Also as before, M = (ﬁ) m where
q = logy, (r(C)) -

The large size of the matrix C in the above formulation of the least
squares problem makes this approach inefficient as stated. However, one
can separate the large square system (6) into into smaller blocks to take
advantage of the fact that there are identity and zero submatrices in the
matrix C. QR decomposition is then applied to solve the problem.

We have "
A _[k ; Az
=1). - (30)

: : (1) — Az _ @)
O gy =[5 oA —r
mame=(G)= (™)
Solving C Ay = s for Ay is thus equivalent to solving the following
system for Az and Ar®:
ANz $ Art) = b — Az — ()
AT AP = — AT ()

13

The iterative method for the least squares problem can be expressed as
Algorithm B.

Algorithm B.

1. [Traditional QR method] In precision p, decompose A = @ R, solve
Rz = QT b for £V and compute rV = b — Az,

2. [Compute 201 = 20 4 Ag®D (4D = () 4 Ar() 50 that 20+, 0+
are correct to & (1 + 1) x p digits]
For:=1. M —1:

(a) In (¢« + 1) x p digits, compute the right hand side vectors:
3(1i) =b—Az® 0
3(;) = AT
(b) In p digits, solve AT Arl) = 3(;) for Ar®; je.,
RT QT A — 8(22');
i.e., solve RT z = 3(;) for z = QT Ar), then Ar®) =Q = .
(¢) In p digits, solve A Az = 3(1i) — Ar® for Az®: ie.,

QR Az = 3(1i) — Ar®
= RAL® = QT (s — Ar)
= RAz =qQT sgi) —z.
(d) In (: + 1) x p digits, 20D = 2 1 Al’(i), pO+) —) L AP

The direct method uses QR decomposition and back substitution to solve
the least squares problem, with all computations performed in high precision
in the software floating point environment.

14

4.2 Cost Analysis

The cost to compute the QR decomposition in step Bl is approximately
2k n? flops. The cost to compute Q7 b and then solve for (V) is 2k n + n?
flops and the cost to compute Az and then r is 2kn + k flops. The
total cost Cjr for Algorithm B can be estimated as follows, where we use
equation (2) to express Ts(7 X p) in terms of T,.

Citer = Tp x Cost(B1) +
M
Z[Ts(i X p) X Cost(B2.a + B2.d) + T, x Cost(B2.b + B2.c)]
=2

(2kn2—|—4kn—|—n2)Th

%

M
+ 3 [(@kn+3k+n)Tu(i x p) + (45> + 2n* + k) T

=2

%

[(2kn? +4kn+n?) + (4K +20%) (M - 1)| T,

M
+4knd (16i* + 5000 +500)T, + O(M’k)

=2

4
[2kn2—|—4(M—1)k2—|—§kn(16M3—|—774M2—|—2258M—3045)

%

+@M-1)n*| T + O(M°K).
The cost for the direct method can be estimated as follows.

Cairect = Ts(m x p) x Cost(QR decomp + solve for x and r)
(2kn2 +4kn+n? + O(k)) Ts(m X p)
~ (8kn®+16kn+4n®) (4m* +125m +125) Ty, + O(m* k) .

%

For our experiments we choose to set & = 2n, so using this relationship the
estimate for the speedup ratio is

Cairect (16 ° 4+ 36 n?) (4m? + 125m + 125)
Ciree 4mP+ Ln? (128 MP + 6192 M2 + 18118 M — 24411)

Using equation (4) to express M in terms of the precision multiplier m, and
rearranging to exhibit the asymptotic behaviour as n grows large, we define
the following Theoretical Speedup (TS) formula.

15

Cdirect)
T =
S < Citer (7)

(16 m? + 500m + 500) + 2
3
14 - [128 (52-) m® +6192 ()

(4m? 4 125m + 125)
“m? + 18118 (52) m - 24411]

pP—q

Note that

Cirec
TS(C({ t>—>16m2—|—500m—|—500 as n — oo .
iter

4.3 Experimental Data

We generate random k x n matrices A and random k-vectors b, for various
values of n and with & = 2n. Using base precision p = 15, we compute the
least squares solution to precision m x p = 120; i.e., the precision multiplier
is m = 8. The timing results are presented in Table 7. See Appendix E for
the program.

As was the case in Table 4 (nonsingular linear systems), we find that
q = 3 is an appropriate estimate for the random matrices generated, for the
purpose of calculating the Theoretical Speedup TS. Note that the expected
number of iterations required for solving this set of problems is

M=~p/(p—q)xm=12m

i.e., M =~ 10. Experimental observations confirm that this is a reasonable
estimate.
Equation (7) becomes

. 5594 12429
TS <Cdzrect> . + n

= 75330.75
Citer 1 —I_ -

n

From the data in Table 7, we see that the iterative method has an efficiency
advantage over the direct method by a factor that is significantly larger than
predicted by our cost analysis. As the investigation in section 3 illustrated
(see Table 5), memory management overhead including garbage collection
can add very significantly to the cost of solving large problems using a high-
precision software floating point environment.

16

Matriz size Time Speedup
kxn Titer | Tuivear | =t | TSt
50 x 25 1.08 4.22 3.91 2.00
80 x 40 3.24 33.76 | 10.42 3.10
100 x 50 5.28 100.72 | 19.08 3.83
120 x 60 9.34 278.20 | 29.78 4.56
150 x 75 24.36 652.57 | 26.79 5.66
160 x 80 31.95 | 3144.05 | 98.41 6.03
200 x 100 84.92 | 9376.09 | 110.41 7.49
250 x 125 | 262.92 | 33128.67 | 126.00 9.32

Table 7: Least squares problems: size, cost and speedup.

5 Singular Linear Systems: SVD

In this section, we apply an iterative method based on the singular value de-
composition (SVD) for computing high precision solutions for singular linear
systems. In the following discussion, we assume the base precision is p digits
and the desired precision is m X p digits.

5.1 The Iterative Method

Let K >n, A¢c R™" b e R*! and furthermore assume that the matrix
is rank deficient: k(A) < n. We investigate the iterative approach proposed
by Corless and Schicho [1] for computing a solution of Az =~ b based on
applying the Moore-Penrose pseudo-inverse of the singular matrix A.

First we outline the direct method for this problem. The following steps
would be applied in the desired precision m X p.

1. Compute the singular value decomposition A = U S VT .

2. Decide the numerical rank r of A by examining the singular values
012032 ...20, 20,11 ~0>...20,.

3. Compute the Moore-Penrose pseudo-inverse At =V S U7 where

11 1
vt = diag(—, —,...,—,0,...,0) .

2
01 02 Oy

4. Compute the solution z = Afb .

17

The determination of the numerical rank in step 2 above (and in step C1
of Algorithm C) requires that a tolerance 7 has been chosen such that all
singular values satisfying o; < 7 are considered to be equivalent to zero.

In the iterative method for this problem, we first apply in base precision
p the direct method outlined above. Then we apply the iteration presented
in Algorithm C. Note that the approximate pseudo-inverse A computed in
step C1 is used repeatedly in each iteration [1].

Algorithm C.

1. [Moore-Penrose method] In base precision p, decompose A = U S VT,
then compute the approximate pseudo-inverse AT = V SF U7 and the
initial solution (1) = Afb .

2. [Compute 20D = 2 £ Az o that 20+ is correct to ~ (t+1)xp
digits]
Fori=1..M—-1:
(a) In (7 + 1) x p digits, compute) = Az() —p .
(b) In p digits, compute Azl = AFr0)
(¢) In (i + 1) x p digits, compute z(+1) = () + Az |

5.2 Cost Analysis

Consider the case & = 2n. The cost of the singular value decomposition is
12n? 4+ O(n?) flops. Computing the pseudo inverse costs 4n® + O(n?) flops
and computing the initial solution #(*) costs 2n? flops [3].

The cost of the direct method can be estimated as follows where, as usual,
we use equation (2) to express Ts(m X p) in terms of T}, .

Cairect = Ts(m x p) x Cost(SV D + pseudo inverse + compute x)
[12 n> +4n® + O(nz)] Ts(m X p)
~ 167° (16 m” + 500m + 500) T, + O(m* n?) .

%

The iterative method of Algorithm C has total cost estimated as follows.

18

Citer = Tp x Cost(C1) +
M
Z[Ts(i X p) X Cost(C2.a 4+ C2.¢) + T, x Cost(C2.b)]

=2

%

M
16n° T, + 2[2 n*T,(i x p) +2n*Th] + O(n?)

=2

%

2
[mﬁ+§mumﬁ+WMW)ﬂl+<mey

We have not done an analysis to determine how to estimate M, the num-
ber of iterations required. For the experimental results presented here, we
simply note that for our set of tests the number of iterations never exceeded
M = % m, so we use this estimate below. In any case, we find that the actual
speedup achieved by the iterative method is much larger than predicted by
our theoretical analysis.

The estimate for the speedup ratio is

Cairect _ 161° (16 m? +500m + 500) _ 167° (16 m? + 500 m + 500)
Citer 1613 + 202 (16 M3 + 774 M2) ~ 1613 + 9n2 (4m?3 + 129m?)

Therefore we define the Theoretical Speedup (TS) formula:

Cirect 16 m* + 500 m + 500)
TS<) - _om .
Citer 1 —|— 16n (4 m3 —|— 129 mz)

Note that

Cirec
TS<(‘; t>—>16m2—|-500m—|-500 as n — 0o .
iter

5.3 Experimental Data

We set & = 2n and generate matrices A of size k x n having deficient rank:
k(A) < n. The k-vectors b are chosen to ensure that the singular system
has a solution. Using base precision p = 15, we solve the problem in the
sense described above to precision m x p = 120; i.e., the precision multiplier
is m = 8. The timing results are presented in Table 8. See Appendix F for
the program.

19

Matriz size Time Speedup

kExn Titer Tuieer | imest | TS(gzt
30 x 15 0.29 7.74 26.69 14.3
50 x 25 0.61 52.19 85.56 23.7
80 x 40 1.11 213.74 | 192.56 37.9
100 x 50 | 1.47 786.75 | 535.20 47.3
120 x 60 | 2.00 | 3700.11 | 1850.01 56.6
150 x 75 | 2.94 | 17907.16 | 6090.87 70.6

Table 8: SVD problems: size, cost and speedup.

Equation (8) becomes

Cdirect 5524
TS(Cit > NS

From the data in Table 8, we see that the iterative method has an efficiency
advantage over the direct method by a factor that is significantly larger than
predicted by our cost analysis. As the investigation in section 3 illustrated
(see Table 5), memory management overhead including garbage collection
can add very significantly to the cost of solving large problems using a high-
precision software floating point environment.

6 Nonlinear Equations: Polynomial Systems

The problem of computing numerical solutions for a system of nonlinear
equations is typically solved by a successive approximation method. Indeed,
Newton’s iteration is one common choice of method. Starting from a suffi-

% one computes a sequence of iterates

ciently accurate initial approximation !
¢ 2@ 4G which converge to a solution.

The point of considering systems of nonlinear equations in this paper is
to note that, just as in the preceding sections, it can be advantageous when
computing high-precision solutions to employ a linearly converging Newton
iteration rather than the commonly-used quadratic iteration. The idea is to
build up the high precision solution in blocks of “base precision” digits and
thus exploit the speed of the hardware floating point environment.

In this section, we consider systems of multivariate polynomial equations

and demonstrate the strength of our particular “iterative method” for com-

20

puting high precision solutions. As before, the base precision is p digits and
we wish to compute solutions accurate to precision m X p digits.

6.1 The Iterative Method

We are given a system of nonlinear equations
filer, 29y cy2y) =0, 1=1,2,..,n (9)

to be solved for x;, + = 1,2,...,n. In this paper, we will assume that we are
given a sufficiently accurate initial approximation z(®) .

Newton’s iteration in matrix-vector formulation takes the following form
where J¢(x) denotes the n X n Jacobian matrix for system (9) evaluated at
a point (vector) x:

2D) 7 (W) ()

Denote J®) = J(x®), Azp®) = g+ _ 5() - k) — f(5 (k)

The so-called “direct method” (i.e., the traditional quadratic Newton
iteration method) updates the Jacobian matrix J® and the residual f®*)
in each iteration, and solves the linear system J®) Az®) = §*) by a direct
linear solver. Most of the calculations are performed in the high precision
software floating point environment, noting that the precision is allowed to
grow appropriately with each iteration. (See the program in Appendix G.)

Our “iterative method”, in contrast, performs as much of the computation
as possible in the hardware floating point environment. We compute the first
iterate (") by applying the “direct” Newton’s method at base precision. (In
all cases, we are assuming that a sufficiently accurate initial approximate (%)
has been given to us.) We then evaluate the Jacobian matrix J™) at base
precision and compute the LU decomposition of J. The result J) = P LU
of the LU decomposition is kept and repeatedly used in later iterations.
The residual 1s computed at higher precision in the software floating point
environment, and the correction term is calculated at base precision in the
hardware floating point environment.

We present our algorithm as Algorithm D.

Algorithm D.

1. Compute z(!) in precision p via a standard (“direct”) Newton’s method
starting with the given initial guess 2(°).

21

2. In precision p, compute the Jacobian matrix J) = J;(2")) and apply
LU decomposition yielding J = PLU .

3. [Compute 20D = 2 £ Az o that 20+ is correct to ~ (t+1)xp

digits]
Set € = 0.5 x 10t~ (mxp)
For:=1,2,..

(a) Compute r() = f(z®)in (i + 1) x p digits.
(b) Solve (P LU) - Az = rl) for Az() in p digits.
(¢) Compute 20D = 2 — Az ip (1 +1) x p digits.

until Norm(AX(i)) <e.

6.2 Cost Analysis

Suppose the cost of evaluating function f; at a point (a1, x2,...,2,) is Cj
flops. This cost will depend on the particular function f;. For a system of
sparse multivariate polynomials, we may assume that Cy ~ O(n). We will
use the estimate Cy, = n in the following cost analysis.

In the “direct method”, each iteration performs n function evaluations to
compute the residual f*), n? function evaluations to evaluate the Jacobian
matrix J*), and solves one n x n linear system. Since the solution converges
quadratically, only a few iterations are required and we may estimate the
total cost by the cost of the last iteration which is performed at the highest
precision. Therefore the cost estimate for the “direct method” is:

Clirect > [(n2 +n) Cy, + Cost(linear Solve)} Ts(m X p)

2
A [(n2 +n)n + §n3 + 2n2] (16 m? + 500 m + 500) T,

%

5
[(5 n® + 3n2> (16 m® + 500 m + 500)] Ty .

At base precision p, our “ iterative method” computes the initial solution
() using the “direct method”, evaluates the Jacobian matrix J), and de-

composes J(= P LU. At higher precision, it computes the residual. As

22

in the previous sections, this method saves the LU decomposition of J() for
later use. The total cost Cj, for Algorithm D can be estimated as follows.

Cier = Tp, x Cost (compute =M 4+ compute JW 4 LUdecomp)

M
+ Z [Ts(¢ x p) x Cost(D3.a + D3.c) + T}, x Cost(D3.0)]
=2

%

5 2
[§n3 +3n? + nZCfi + —n3] T

3
M
+ Z [(n Cy +n)Ts(i x p) + 2n2Th}
=2

%

10
[?n3 +3n? + 2(M — 1)n2] T}
M
+ (n? +n)> (167* + 50017 + 500) T),

=2
10 1
[—n3 n §n2 (16017 + T74M? + 2264 M — 3045)] Ty + O(M?n) .

%

3

The number M of iterations required will depend on #(.J(")), the condition
number of the Jacobian matrix, because the correction term for each iteration
is computed in step D3.b by solving a linear system with coefficient matrix

JM). For our cost estimates, we will assume ¢ = log(x(J(V)) ~ 6 and the

expected number of iterations is M ~ p%q m /s %m
Using this relationship for M in terms of m and rearranging to exhibit the

asymptotic behaviour as n grows large, we define the following Theoretical

Speedup (TS) formula.

TS(C"’”“) _ (8m? + 250m +250) + £2(4m? 4 125m + 125)
Citer © 1+ 2-(400m® + 11610m2 + 20376m — 16443)

(10)

Note that

Cirec
TS< g t) — 8m? + 250m + 250, asn — oo .
iter

23

Size Time Speedup Norm of Errors
n Titer Tiieer | ==t | TS NEier N Egirect
25 0.91 1.88 2.07 | 3.65 || 0.459e-119 | 0.465e-119
50 1.83 9.12 4.98 | 7.04 || 0.483e-119 | 0.483e-119
75 2.92 33.59 || 11.50 | 10.4 || 0.604e-119 | 0.483e-119
100 5.41 82.00 || 15.16 | 13.8 || 0.457e-119 | 0.483e-119
125 7.91 568.98 || 72.00 | 17.2 || 0.483e-119 | 0.483e-119
150 12.03 | 1425.43 || 118.49 | 20.5 || 0.483e-119 | 0.483e-119
225 37.86 | 9423.69 || 248.91 | 30.6 || 0.333e-118 | 0.333e-118
250 || 54.241 | 18162.47 || 334.85 | 33.9 || 0.338e-118 | 0.333e-118

Table 9: Polynomial systems: size, cost, speedup and errors.

6.3 Experimental Data

In our experiments, the base precision is p = 15 and we compute results to
precision m X p = 120; i.e., m = 8. Equation (10) becomes

TS <Cdirect> _ 2762 + %

1094405
Citer 1 + =4n

Some timing results for randomly generated polynomial systems are pre-
sented in Table 9. The size of the error in the computed solution for each
method is also presented in the table. See Appendix G for the program.

We see that each of the methods computes solutions that are accurate up
to the last two digits. As in previous sections, the efficiency advantage of our
proposed iterative method is even greater than anticipated, mainly because
the traditional method operating in a high-precision software floating point
environment incurs expensive garbage collection costs.

6.4 Aside: Comparison with fsolve

In this experiment, we compare the “direct method” with Maple’s built-in
function fsolve. We find that the “direct method” has better performance
than fsolve on systems of polynomial equations. As Table 9 shows, our new
iterative method offers even greater performance.

Maple’s fsolve needs a hint (i.e. an initial guess) for solving a large

system of equations, as do our methods. We start with a hint accurate

24

Size Time Digits of Hint Norm of Errors

0|\ Tysotve | Taivear || fsolve | direct | NEjowe | NEaivea
25 4.91 1.88 3 3 0.220e-115 | 0.465e-119
50 42.02 9.12 3 3 0.110e-112 | 0.483e-119
75 || 132.35 33.59 3 3 0.310e-114 | 0.483e-119
100 || 433.56 82.00 3 3 0.110e-113 | 0.483e-119
125 fail 568.98 - 3 - 0.483e-119
150 fail | 1425.43 - 3 - 0.483e-119
225 fail | 9423.69 - 3 - 0.333e-118
250 fail | 18162.47 - 3 - 0.333e-118

Table 10: Direct method vs fsolve.

to the first 3 digits. The “direct method” works properly for the entire
input set, while fsolve fails when the system size is greater than 100. Also,
when fsolve succeeds it gives a less accurate solution, as shown in Table
10. Where “Digits of Hint” for £solve in Table 10 is indicated by a dash,
we tried successively more accurate hints (up to 20 digits) and fsolve still

failed.

7 Conclusion

The iterative refinement method based on a linear Newton iteration, exploit-
ing the speed of hardware floating point while constructing a high precision
solution, is found to be significantly faster than traditional direct methods.
The methods were compared on some linear algebra problems and also on
systems of nonlinear equations.

In the iterative refinement method, the main computation which must
be performed in the high-precision software floating point environment is
the computation of the residual in each iteration. Problems for which the
residual is easy to compute are suitable for the proposed method.

Computing eigenvalues to high precision could be a possible extension to
our current work if a fast method of computing determinants (for the residual
calculations) can be found.

25

References

1]

Corless, R. and Schicho, J. Iterated improvement using the SVD for
singular linear systems. Technical Report TR-00-09, Ontario Research
Centre for Computer Algebra, London, ON, Canada, 2000.

Dahlquist, G. and Bjoerck, A. Numerical Methods. Prentice-Hall, En-
glewood Clifts, NJ, 1974.

Demmel, J. Applied Numerical Linear Algebra. STAM, 1997.

Forsythe, G., Malcolm, M. and Moler, C. Computer Methods for Math-
ematical Computations. Prentice-Hall, Englewood Cliffs, NJ, 1974.

Forsythe, G. and Moler, C. Computer Solution of Linear Algebraic Sys-
tems. Prentice-Hall, Englewood Cliffs, NJ, 1967.

Geddes, K., Czapor, S. and Labahn, G. Algorithms for Computer Alge-
bra. Kluwer Academic Publishers, Norwell, MA, 1992.

Golub, G. and Van Loan, C. Matriz Computations. The Johns Hopkins
University Press, Baltimore, MD, 1989.

26

Appendices

A Floating Point Cost Code

Table 1: Hardware and software floating point operation cost.
Compute in base precision, default gcfreq.

Table 2: Software floating point with minimal garbage collection.
Set gcfreq=10"8, compute only in software floats.

Table 3: Software floating point operation cost versus precision.
Increase precision multiplier, compute in software floats.

> with(LinearAlgebra):
> baseprec := trunc(evalhf(Digits));

baseprec := 15

A.1 Hardware floating point environment

>n := 500;
n = 300
> Digits := baseprec; UselHardwareFloats := true:
Digits :==15
> A := RandomMatrix(n, n, generator=-1.0..1.0,

outputoptions=[datatype=’float[8]°]):
> hfTime := time(MatrixMatrixMultiply(A, A));

hfTime := 0.860

> T_h := evalf[4] (hfTime/(2*n"3));

T h :=0.34401078

27

A.2 Software floating point environment

> #kernelopts(gcfreq=10-8):
>n := 50;

n := 50
> multiplier := 1:
> prec := multiplier*baseprec:
> Digits := prec; UseHardwareFloats := false:
Digits :==15
> t := SFloat(1l, -prec):
> A := RandomMatrix(n, n, generator=rand(-10"prec..10 prec),
outputoptions=[datatype=’sfloat’]):
> A = t.A:

> sfTime := time(MatrixMatrixMultiply(A, A));

sfTime := 2.209

> T_s := evalf[4] (sfTime/(2*n"3));

T s :=0.8835107°

> kernelopts(gctimes);

28

B Nonsingular Linear Systems Code

Table 4: Nonsingular linear systems: size, cost and speedup.
Default gcfreq.

B.1 Procedure precLinearSolve

> precLinearSolve := proc (A::Matrix, b::Vector, prec::integer)
local baseprec, ipiv, x, delta_x, Normx, eps, k, r;

baseprec := trunc(evalhf(Digits));

Digits := baseprec; UseHardwareFloats := true;
ipiv := LinearAlgebra:-LUDecomposition(A, output=[’NAG’]);
x := LinearAlgebra:-LinearSolve([ipiv], b);

delta_x := x; Normx := LinearAlgebra:—Norm(X);

eps := SFloat(5, -prec)*Normx;

for k from 2 while LinearAlgebra:—Norm(delta_x) > eps do
Digits := k*baseprec; UseHardwareFloats := false;
r := A.x - b;

Digits := baseprec; UseHardwareFloats := true;
delta_x := LinearAlgebra:-LinearSolve([ipiv], r);
Digits := k*baseprec; UseHardwareFloats := false;
x := x - delta_x;
end do;
return Xx;
end proc:

B.2 Problem setup

> with(LinearAlgebra):
> baseprec := trunc(evalhf(Digits));

baseprec := 15

29

> multiplier := 8:

> prec := multiplier*baseprec:
> Digits := prec; UseHardwareFloats := false:

Digits := 120
>n := 100;

n := 100

> t := SFloat(1l, -prec):
> A := RandomMatrix(n, n, generator=rand(-10"prec..10 prec),
> outputoptions=[datatype=’sfloat’]):
> A = t.A:
> b := RandomVector(n, generator=rand(-10"prec..10"prec),
> outputoptions=[datatype=’sfloat’]):
>b :=t.b:

B.3 Iterative Method

> st := time():
> iterative_x := preclLinearSolve(A, b, prec):
> iterativeTime := time() - st:

B.4 Direct Method

> st := time():
> direct_x := LinearSolve(A, b):
> directTime := time() - st():

B.5 Results

> directTime, iterativeTime;

579.060, 51.650

30

> SpeedUp := evalf[3](directTime/iterativeTime);

SpeedUp :=11.2

> diffNorm := Norm(iterative_x - direct_x):
> evalf[3] (diffNorm);

0.412107 1

> # Note: iterative_x is fully accurate.

31

C Effect of Garbage Collection

Table 5: Effect of garbage collection on Direct Method.

C.1 Problem setup

> kernelopts(gcfreq=1078):

> with(LinearAlgebra):

> baseprec := trunc(evalhf(Digits));

baseprec := 15

> multiplier := 8:

> prec := multiplier*baseprec:
> Digits := prec; UseHardwareFloats := false:

Digits := 120
>n := 100;

n := 100

> t := SFloat(1l, -prec):
> A := RandomMatrix(n, n, generator=rand(-10"prec..10 prec),
> outputoptions=[datatype=’sfloat’]):
> A = t.A:
> b := RandomVector(n, generator=rand(-10"prec..10"prec),
> outputoptions=[datatype=’sfloat’]):
>b :=t.b:

C.2 Direct Method

> st := time():
> direct_x := LinearSolve(A, b):
> directTime := time() - st():

32

C.3 Results

> kernelopts(gctimes);

2

> evalf[4] (kernelopts(bytesalloc));

0.288210°

> directTime;

39.190

33

D Ill-conditioned Linear Systems Code

Table 6: Ill-conditioned linear systems.
Default gcfreq.

D.1 Procedure precLinearSolve

> precLinearSolve := proc (A::Matrix, b::Vector, prec::integer)

local baseprec, ipiv, x, delta_x, Normx, eps, k, r;
baseprec := trunc(evalhf(Digits));

Digits := baseprec; UseHardwareFloats := true;
ipiv := LinearAlgebra:-LUDecomposition(A, output=[’NAG’]);
x := LinearAlgebra:-LinearSolve([ipiv], b);

delta_x := x; Normx := LinearAlgebra:—Norm(X);

eps := SFloat(5, -prec)*Normx;

for k from 2 while LinearAlgebra:—Norm(delta_x) > eps do
Digits := k*baseprec; UseHardwareFloats := false;
r := A.x - b;

Digits := baseprec; UseHardwareFloats := true;
delta_x := LinearAlgebra:-LinearSolve([ipiv], r);
print(‘Norm(delta_x) ¢ = LinearAlgebra:-Norm(delta_x));

Digits := k*baseprec; UseHardwareFloats := false;
x := x - delta_x;
end do;

print(‘#Iterations‘ = k-1);
return Xx;
end proc:

D.2 Problem setup

> with(LinearAlgebra):
> baseprec := trunc(evalhf(Digits));

34

baseprec := 15

> multiplier := 8:

> prec := multiplier*baseprec:
> Digits := prec; UseHardwareFloats := false:

Digits := 120
>n := 100;

n := 100

> t := SFloat(1l, -prec):
> A := RandomMatrix(n, n, generator=rand(-10"prec..10 prec),
> outputoptions=[datatype=’sfloat’]):
> A = t.A:
> b := RandomVector(n, generator=rand(-10"prec..10"prec),
> outputoptions=[datatype=’sfloat’]):
>b :=t.b:

v

Create matrix A with larger condition number.
> A := Transpose(A).A:
> condA := evalf[3](ConditionNumber(A));

condA := 14800.

D.3 Iterative Method

> st := time():
> iterative_x := preclLinearSolve(A, b, prec):

Ahnvn(deﬁa_w)::(l91661013359261381610_8

Norm(delta_z) = 0.649768918493847026 10"

35

Norm(delta_z) = 0.461555877050158644 10~>°
Norm(delta_z) = 0.327887888693404913 10~ *'
Norm(delta_z) = 0.232927678675440092 102
Norm(delta_z) = 0.165466123224243248 10~%
Norm(delta_z) = 0.117558431188850830 10~
Norm(delta_z) = 0.835141325409320218 10~>°
Norm(delta_z) = 0.593240981105982526 107
Norm(delta_z) = 0.421396189769436202 10~
Norm(delta_z) = 0.299349272043340206 10~'"*
#Iterations = 12

> iterativeTime := time() - st:

D.4 Direct Method

> st := time():
> direct_x := LinearSolve(A, b):
> directTime := time() - st():

D.5 Results

> directTime, iterativeTime;

439.620, 64.440

> SpeedUp := evalf[3](directTime/iterativeTime);

SpeedUp := 6.83

> diffNorm := Norm(iterative_x - direct_x):
> evalf[3] (diffNorm);

0.851 1071

> # Note: iterative_x is fully accurate.

36

E Least Squares Code

Table 7: Least squares problems: size, cost and speedup.

E.1 Procedure precLeastSquares

> preclLeastSquares := proc(A::Matrix, rows::integer, cols::integer,
b::Vector, prec::integer)
local baseprec, At, QO0, RO, QOt, b2, ROupper, ROupper_t, x, r,
delta_x, Normx, eps, k, s1, s2, k1, u, i1, delta_r;

baseprec := trunc(evalhf(Digits));
At := LinearAlgebra:-Transpose(A);

Digits := baseprec; UseHardwareFloats := true;

(QO, RO) := LinearAlgebra:-QRDecomposition(Matrix(rows, [A]));
QOt := LinearAlgebra:-Transpose(QO0);

b2 := Q0t.b;

ROupper := RO[1l..cols, 1..cols];

ROupper_t := LinearAlgebra:-Transpose(ROupper) ;

x := LinearAlgebra:-BackwardSubstitute(ROupper, b2[1..cols]);
r := QO[1..rows, cols+l..rows] . b2[cols+1l..rows];
delta_x := x; Normx := LinearAlgebra:—Norm(X);

eps := SFloat(5, -prec)*Normx;
for k from 2 while LinearAlgebra:—Norm(delta_x) > eps do

Digits := k*baseprec; UseHardwareFloats := false;

sl :=b -r - A.x; 82 := -At.r;

Digits := baseprec; UseHardwareFloats := true;

k1 := LinearAlgebra:—ForwardSubstitute(ROupper_t, s2);
u := Q0t.si1;

delta_x := LinearAlgebra:—BackwardSubstitute(ROupper,
ull..cols]-k1);

for i from 1 to cols do uli] := k1[i] end do;

delta_r := QO0.u;

Digits := k*baseprec; UseHardwareFloats := false;

37

X := x + delta_x; r :=r + delta_r;
end do;

return (x, r);
end proc:

E.2 Problem setup

> with(LinearAlgebra):
> baseprec := trunc(evalhf(Digits));

baseprec := 15

> multiplier := 8:

> prec := multiplier*baseprec:
> Digits := prec; UseHardwareFloats := false:
Digits := 120

> cols := 25; rows := 2*cols;

cols := 25

rows := 90
> t := SFloat(1l, -prec):
> A := RandomMatrix(rows, cols,
> generator=rand(-10"prec. .10 prec),
> outputoptions=[datatype=’sfloat’]):
> A = t.A:
> b := RandomVector(rows, generator=rand(-10"prec..10 prec),
> outputoptions=[datatype=’sfloat’]):
>b :=t.b:

E.3 Iterative Method

> st := time():
> (x, r) := precLeastSquares(A, rows, cols, b, prec):
> iterativeTime := time() - st:

38

E.4 Direct Method

VvV V V V V VvV

st := time():

(Q, R) := QRDecomposition(A):

b2 := Transpose(Q).b:

direct_x := BackwardSubstitute(R, b2):
direct_r := b - A.direct_x:
directTime := time() - st:

E.5 Results

>

directTime, iterativeTime;

50.900, 5.900

SpeedUp := evalf[3](directTime/iterativeTime);

SpeedUp := 8.63

diffNorm_x := Norm(x - direct_x):
evalf[3] (diffNorm_x);

0.685107 11
diffNorm_r := Norm(r - direct_r):
evalf[3] (diffNorm_r);

0.239107'®

39

F Singular Linear Systems: SVD Code

Apply Corless and Schicho’s
"Iterated Improvement using the SVD."

F.1 Procedure IteratedSVD

> IteratedSVD := proc (A::Matrix, Ap::Matrix, b::Vector,
prec::integer)
local baseprec, eps, x, r, k, delta_x;

baseprec := trunc(evalhf(Digits));

Desired size of residual is eps.
eps := SFloat(l, -prec);

Compute initial solution.
Ap = approximate Moore-Penrose pseudo-inverse of A
accurate to (at most) baseprec.

Digits := baseprec; UseHardwareFloats := true;
x := Ap.b;
Digits := 2*baseprec; UseHardwareFloats := false;

r := A.x - b;

Iterate until Norm(r) <= eps.

for k from 2 while LinearAlgebra:-Norm(r) > eps do
Digits := baseprec; UseHardwareFloats := true;
delta_x := Ap.r;
Digits := k*baseprec; UseHardwareFloats := false;
x := x - delta_x;
Digits := Digits + baseprec;
r := A.x - b;

end do;

return Xx;

end proc:

40

F.2 Problem setup

For k >= n define k-by-n matrix A with rank(A) < n and
k-vector b, with x_true a solution of A.x = Db
with(LinearAlgebra):

baseprec := trunc(evalhf(Digits));

vV V ##

baseprec := 15

> multiplier := 8:

> prec := multiplier*baseprec:
> Digits := prec; UseHardwareFloats := false:
Digits := 120

> cols := 25; rows := 2*cols;

cols := 25

rows := 50
> rank := cols-1;

rank = 24
> A := RandomMatrix(rows,rank) .RandomMatrix(rank, cols):
> x_true := RandomVector(cols):

> b := A.x_true:
> # ranktol: threshold for deciding rank based on singvals.

> ranktol := SFloat(l, -baseprec);

ranktol := 0.1 10~

41

F.3 Iterative Method

VvV V V V V V V V VvV

v

st := time():

Digits := baseprec; UseHardwareFloats := true:
Digits :==15
SVD computation in base precision.

(U, S, Vt) := SingularValues(A, output=[’U’,’S3’, *Vt’]):

Compute Ap = Moore-Penrose pseudo-inverse of A .
tau := ranktol*Norm(S):
Sp := Vector(rows, 0):
for i from 1 to rows do
if s[i] > tau then Sp[il] := 1.0/S[i] end if;
end do:
Spt := DiagonalMatrix(Sp[1..cols], rows, cols):
Ap := Transpose(Vt).Transpose(Spt).Transpose(U):

x_iter := IteratedSVD(A, Ap, b, prec):
iterativeTime := time()-st:

F.4 Direct Method

v

VvV V V V V V VvV VvV

st := time():

Digits := prec; UseHardwareFloats := false:
Digits := 120
SVD computation in high precision.

(U, S, Vt) := SingularValues(A, output=[’U’,’S3’, *Vt’]):

Compute the Moore-Penrose pseudo-inverse of A.
tau := ranktol*Norm(S):
Sd := Vector(rows, 0):
for i from 1 to rows do

if S[i] > tau then Sd[i] := 1.0/S[i] end if;
end do:
Sdt := DiagonalMatrix(Sd[1..cols], rows, cols):
Ap := Transpose(Vt).Transpose(Sdt) .Transpose(U):

42

>
>

x_dir := Ap.b:
directTime := time()-st:

F.5 Results

>

iterativeTime, directTime;

1.060, 252.110

SpeedUp := evalf[3](directTime/iterativeTime);

SpeedUp := 238.
Check computed results.

check_dir := Norm(Ap.(A.x_dir - b)):
check_dir := evalf[3] (check_dir);

check_dir := 0.108 107115

Norm(Ap.(A.x_iter - b)):
evalf[3] (check_iter);

check_iter :
check_iter :

check_iter := 0.179107116

r_dir := Norm(A.x_dir - b);

r_dir :== 0.131071°

r_iter := Norm(A.x_iter - b);

r_iter := 0.1107!

43

G Polynomial Systems Code

G.1 Procedure DirectNonLinearSolve

RRRRHHHH
Procedure AssignDigits: a utility routine.
RRRRHHHH

Purpose: Returnsdigits withdigits = newDigitsexcept thatif oldDigits
1s within hardware precision then digits will not exceed hardware precision.

> AssignDigits := proc (oldDigits::integer, newDigits::integer)
local digits;
digits := newDigits;
if oldDigits <= evalhf(Digits) and
digits > evalhf(Digits) then
digits := trunc(evalhf(Digits));

end if;
return digits;

end proc:

t13: 551883 54
Procedure DirectNonlLinearSolve.
t13: 551883 54

Purpose: Direct solution of a nonlinear system of polynomial equations to
precision specified by Digits.

Parameters:

input: p -- vector of polynomials

n -- number of polynomials

vars -- list of variables in polynomial system
hint -- initial guess for the solution, as a set
{x[1] = <float>, x[2] = <float>, ... }

output: (x, iterations) with

X -- a vector, the high precision solution

iterations -- the number of iterations used

44

> DirectNonLinearSolve := proc (p::Vector, n::integer,
vars::list(name), hint::set(equation))

local i, x, xseq, f, JO, J, final_Digits, deltax, sqrt_eps,
Norm_deltax, guard, k, working_prec, r;

x := Vector(n, (i) -> eval(vars[i], hint));

xseq := seq(x[i], i=1..n);

f := unapply(p, vars);

JO := linalg[jacobian] ([seq(pl[il, i=1..n)], vars);
J := unapply(convert(JO,’Matrix’), vars);

final_Digits := Digits;
if final_Digits <= evalhf(Digits) then

UseHardwareFloats := true
else

UseHardwareFloats := false
end if;

deltax := x; sqrt_eps := sqrt(SFloat(5, -final_Digits));
Norm_deltax := LinearAlgebra:-Norm(deltax) ;
guard := 4; # Number of guard digits

for k from 1 while Norm_deltax > sqrt_eps do
working_prec := max(0, -2*ilogl0(Norm_deltax~2));
Digits := AssignDigits(final_Digits, working_prec + guard);
r := Vector(n, evalf(f(xseq)));
deltax := LinearAlgebra:-LinearSolve(J(xseq), r);
Norm_deltax := LinearAlgebra:-Norm(deltax);
print (‘Norm(deltax)‘ = Norm_deltax);
x := x - deltax; =xseq := seq(x[i], i=1..n);
end do;

return (x, k-1);
end proc:

45

G.2 Procedure precNonLinearSolve

HHHnnieH
Procedure precNonLinearSolve.
HHHnnieH

Purpose: Solve a nonlinear system of polynomial equations to high precision
via an iteration exploiting hardware floats in each iteration.

Parameters:

input: p -- vector of polynomials

n -- number of polynomials

vars -- list of variables in polynomial system
hint -- initial guess for the solution, as a set
{x[1] = <float>, x[2] = <float>, ... }
prec -- the required precision

output: (x, iter) with

X -- a vector, the high precision solution

iter -- the number of iterations required to

achieve the desired accuracy.

> precNonLinearSolve := proc (p::Vector, n::integer,
vars::list(name), hint::set(equation), prec::integer)

local baseprec, x, iterations, i, xseq, f, JO, J, ipiv,
r, deltax, eps, Norm_deltax, k;

Compute the solution to baseprec.

baseprec := trunc(evalhf(Digits));

Digits := baseprec; UseHardwareFloats := true;

(x, iterations) := DirectNonLinearSolve(p, n, vars, hint);
print ("solution computed to base precision");

xseq := seq(x[i], i=1..n);

f := unapply(p, vars);

JO := linalg[jacobian] ([seq(pl[il, i=1..n)], vars);

J := unapply(convert(JO,’Matrix’), vars);

ipiv := LinearAlgebra:-LUDecomposition(J(xseq),
output=[’NAG’]);

46

deltax := x; eps := SFloat(5, -prec);
Norm_deltax := LinearAlgebra:-Norm(deltax) ;

for k from 2 while Norm_deltax > eps do
Digits := k*baseprec; UseHardwareFloats := false;
r := Vector(n, evalf(f(xseq)));

Digits := baseprec; UseHardwareFloats := true;
deltax := LinearAlgebra:-LinearSolve([ipiv], r);
Norm_deltax := LinearAlgebra:-Norm(deltax);
print (‘Norm(deltax)‘ = Norm_deltax);

Digits := k*baseprec; UseHardwareFloats := false;
x := x - deltax; =xseq := seq(x[i], i=1..n);
end do;

return (x, k-1);
end proc:

G.3 Problem setup

#ARRRARY
Procedure GeneratePolys: a utility routine.
#ARRRARY

Purpose: Generate a random system of n polynomials in n variables, for
given 1.

> GeneratePolys := proc (n::integer)
local p, i, xlist, k;
global x;
p := Vector(n);
xlist := [seq(x[i], i=1..n)];
for k to n do
plk] := randpoly(xlist);

end do;
return p;

end proc:

47

#ARRRARY
Procedure RandomRat: a utility routine.
#ARRRARY

Purpose: Generate random rational numbers.

> IntLength := 2:
rand(-10"IntLength .. 10" IntLength):
rand(1..10"IntLength):

> RandomNum :

> RandomDen :

> RandomRat := proc()
RandomNum () /RandomDen ()
end proc:
#Huf#HHHH
Begin problem setup.
#Huf#HHHH

> with(LinearAlgebra):
>n := 50; prec:= 120;

n =50
prec := 120

Choose how accurate a hint to give to fsolve.
hint := evalf[3](soln):

> # Generate a random system of n polynomials in n variables.
> # Add constant terms to the polynomials generated so that
> # there is a known solution.

> soln := {seq(x[k] = RandomRat(), k=1..n)}:

> p := GeneratePolys(n):

> for k to n do

> plkl := plk] - eval(plk], soln)

> end do:

> vars := [seq(x[k], k=1..n)]:

>

> for i from 1 to n do

> x_exact[i] := eval(vars[i], soln)

> end do:

> x_exact := Vector(n, (i)->x_exact[i]):

>

>

>

48

G.4 Iterative Method

> st := time():
> (x_iter, iter) :=
> precNonLinearSolve(p, n, vars, hint, prec):

Norm(deltaz) = 0.00559406778213197754

Norm(deltaz) = 0.00829141999910298738
Norm(deltaz) = 0.0000423683774278293988
Norm(deltaz) = 0.38462560138404197910~°

“solution computed to base precision”
Norm(deltaz) = 0.888199999999981386 10~ '3
Norm(deltaz) = 0.986333333333364779 107 %°
Norm(deltaz) = 0.582009999999938352 10~>*
Norm(deltaz) = 0.616480000000167566 10!

(deltaz) = 0.167565999999997060 10~
Norm(deltaz) = 0.550363333333444397 107"
Norm(deltaz) = 0.613233000000017910 10~
Norm(deltaz) = 0.299329999999975222 10~ '*?
Norm(deltaz) = 0.148838000000010426 10~
Norm(deltaz) = 0.104259999999954016 10~ '%"

Norm

> iterativeTime := time()-st:
> ‘#Iterations‘ = iter;

#Iterations = 11

49

G.5 Direct Method

> Digits := prec;

Digits := 120
> st := time():
> (x_dir, iterations) :=
> DirectNonLinearSolve(p, n, vars, hint):

Norm(deltaz) = 0.005526

Norm(deltaz) = 0.0083234778819211
Norm(deltaz) = 0.000046691834781847
Norm(deltaz) = 0.1674699976488610996235 1077
Norm(deltaz) = 0.235109999999999841639164036833411477 10715

Norm(deltaz) = 0.158399999999999999999999999999953841453901623075040\
45477079351978341 1073

Norm(deltaz) = 0.4615899\
99999999995320206057383232912478125267161437164787648)\
444488230102584641752874 10~ °*

> directTime := time()-st:
> ‘#Iterations = iterations;

#Iterations = 7

G.6 Results

> directTime, iterativeTime;

43.550, 4.640

> SpeedUp := evalf[3](directTime/iterativeTime);

SpeedUp := 9.40

30

