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Abstract

In this paper we give formulas for performing row reduction of a matrix
of Ore polynomials in a fraction-free way. The reductions can be used for
finding the rank and left nullspace of such matrices. When specialized to
matrices of skew polynomials our reduction can be used for computing a
weak Popov form of such matrices and for computing a GCRD and an
LCLM of skew polynomials or matrices of skew polynomials. The algo-
rithm is suitable for computation in exact arithmetic domains where the
growth of coefficients in intermediate computations is a central concern.
This coefficient growth is controlled by using fraction-free methods. The
known factor can be predicted and removed efficiently.

1. Introduction

Ore rings provide a general setting for describing linear differential, recurrence,
difference and g¢-difference operators. Formally Q[Z; 0, 0] is a ring of Ore poly-
nomials over a field Q@ with ¢ an automorphism, ¢ a derivation and where the
elements of @ interact with Z via Za = o(a)Z + 6(a) (Ore, 1933). Classic ex-
amples of such domains include Q = K (n) for some field K with Z the shift
operator and o(a(n)) = a(n+1),d = 0, and Q = K (z) with Z the differential op-
erator and o(a(z)) = a(z), 6(a(z)) = La(z). It is well known that all Ore rings
can be transformed into essentially these two cases (Cohn, 1971, Theorem 8.3.1).
These transformations may however introduce fractions.

In this paper we look at matrices over Ore rings and look for methods to
easily determine their ranks and their left nullspaces. For a given m x s matrix
F(2) € Q[Z;0,]™** we are interested in applying two types of elementary row

operations. The first type includes
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(a) interchange two rows;
(b) multiply a row by a nonzero element in Q[Z; o, d];
(c) add a polynomial multiple of one row to another.

In the second type of elementary row operations we include (a), (b) and (c)
but require that the row multiplier in (b) comes from Q. The second set of row
operations is useful, for example, when computing a GCRD or a LCLM of Ore
polynomials.

Formally, in the first instance we can view a sequence of elementary row oper-
ations as a matrix U(Z) € Q[Z; o, 6]™*™ with the result of these row operations
given by T(Z) = U(Z) - F(Z) € Q[Z;0,]™*°. In the second case, U(Z) would
have the additional property that there exists a left inverse V(Z7) € Q[Z; g, §]™*™
such that V(Z) - U(Z) = I,,,. In the commutative case, such a transformation
matrix is called unimodular (Kailath, 1980).

In the commutative case, the algorithm of Beckermann and Labahn (1997)
transforms via row operations a matrix of polynomials into one whose rank is
completely determined by the rank of its leading or trailing coefficient. In the
commutative case, examples of applications for such transformations include ma-
trix polynomial division, inversion of matrix polynomials, finding matrix GCDs
of two matrix polynomials and finding all solutions to various rational approxi-
mation problems.

In the noncommutative case of skew polynomials (i.e. where § = 0) both the
EG-elimination method of Abramov (1999) and the algorithm in Abramov and
Bronstein (2001) transform a matrix of skew polynomials into one whose rank is
completely determined by the rank of its leading or trailing coefficient. For the
skew polynomial case, it was shown by Abramov and Bronstein (2001) that such
transformations can be used to find polynomial and rational solutions of linear
functional systems.

The algorithm given by Abramov and Bronstein (2001) improves on the EG-
elimination method of Abramov (1999) and extends the method of Beckermann
and Labahn (1997) to the noncommutative case. However, while these algo-
rithms have good arithmetic complexity, coefficient growth is controlled through
coefficient GCD computations. Without the GCD computations the coefficient
growth can be exponential. Controlling the coefficient growth in intermediate
computations is a central concern in computer algebra computations. This is
particularly the case when Q is the quotient field of an integral domain ID.

In this paper we consider the problem of determining the rank and left nullspace
of a matrix of Ore polynomials. Our object is to give a fraction-free algorithm
for finding these quantities when working over the domain ID [Z; 0, §] with ID an
integral domain, and ¢(ID) C ID, §(ID) C ID. By fraction-free we mean that we
can work entirely in the domain ID [Z;0,d] but that coefficient growth is con-
trolled without any need for costly coefficient GCD computations. In addition we
want to ensure that all intermediate results can be bounded in size which allows
for a precise analysis of the growth of coefficients of our computation. Our results
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extends the algorithm of Beckermann and Labahn (2000b) in the commutative
case and Beckermann, Cheng and Labahn (2002) in the case of matrices of skew
polynomials. Unlike the skew and commutative polynomial case, the rank is no
longer necessarily determined by the rank of the leading or trailing coefficient
matrix. The approach taken in this paper follows the previous papers by consid-
ering the required transformation matrix as an order basis, which represents a
basis for the module of vectors of a given order. Equivalently, if we represent row
operations as a row vector, an order basis gives invertible row operations that
eliminate a certain number of trailing coefficients of our Ore matrix polynomial.
By examining the underlying systems of linear equations on the coefficients, we
reduce the problem to linear algebra and obtain a fraction-free recursion formula
which efficiently predicts divisors in order to compute an order basis of a higher
order from one of a lower order.

In the special case of matrices of skew polynomials we can say more. Our
methods can be used to give a fraction-free algorithm to compute a weak Popov
form for such matrices. In addition, the methods can be used to compute, in a
fraction-free way, a greatest common right divisor (GCRD) and a least common
left multiple (LCLM) of skew polynomials or matrices of skew polynomials. Fi-
nally, we show how the quantities produced during such a GCRD computation
relate to the subresultants of two skew polynomials (Li, 1996, 1998), the classical
tools used for fraction-free GCRD computations.

The remainder of this paper is organized as follows. In Section 2 we discuss
classical concepts such as rank and left nullspace of matrices of Ore polynomials
and extend some well known facts from matrix polynomial theory to matrix Ore
domains. In Section 3 we define order bases while in Section 4 we place such
bases in a linear algebra setting. A fraction-free recursion formula for computing
order bases is given in Section 5 followed by a discussion of the termination
criteria along with the complexity of the algorithm in Section 6. Matrices of skew
polynomials are handled in Section 7 where we show that our algorithm can be
used to find a weak Popov form of such matrices, show how the algorithm can be
used to compute a GCRD and LCLM of two skew polynomials and relate order
bases to subresultants in the special case of 2 x 1 matrices of skew polynomials.
The paper ends with a conclusion along with a discussion of directions for future
work. Finally, we include an appendix which gives a number of technical facts
about matrices of Ore polynomials that are necessary for our results.

Notation. We shall adapt the following conventions for the remainder of this
paper. We assume that F(Z) € ID[Z;0,0]™**. Let N = deg F(Z), and write

N
F(Z) =) F;Z7, with F; € D™,
j=0

We denote the elements of F(Z) by F(Z)**, and the elements of F; by Ff’l.

For any vector of integers (also called multi-index) & = (&', ..., dP), we denote
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by |&] = Y- | &% We also denote by Z% the matrix of Ore polynomials having
Z% on the diagonal and 0 everywhere else. A matrix of Ore polynomials F(Z)
is said to have row degree 7 = rdegF(Z) (and column degree fi = cdegF(Z),
respectively) if the ith row has degree 7% (and the jth column has degree ji’).
The vector ¢€; denotes the vector having 1 in component ¢ and 0 elsewhere and

&=(1,...,1).

2. Row-reduced Matrices of Ore polynomials

In this section we will generalize some classical notions such as rank, unimod-
ular matrices and the transformation to row-reduced matrices (see for instance
Kailath (1980)) to the case of Ore matrix polynomials. For the sake of complete-
ness, generalizations of other well known classical properties for matrix polyno-
mials such as the invariance of the rank under row operations, the predictable
degree property and minimal indices are included in the appendix.

With 7 = rdegF(Z) and N = max; i/ = deg F(Z), we may write

ZNT7 R (Z) = L- ZN + lower degree terms,

where the matrix L(F(Z)) := L € Q™** is called the leading coefficient matriz of
F(Z). In analogy with the case of ordinary matrix polynomials (see for instance
(Kailath, 1980, Section 6.3)), F(Z) is row-reduced if rank L = m.

DEFINITION 2.1 (RANK, UNIMODULAR):

(a) For F(Z) € Q[Z;0,8]™"*, the quantity rankF(Z) is defined to be the maz-
imum number of Q[Z; o, d]-linearly independent rows of F(Z).

(b) A matriz U(Z) € Q[Z;0,8]™ ™ is unimodular if there exists a V(Z) €
Q[Z; o, 6]™*™ such that V(Z)-U(Z) = U(Z) - V(Z) = 1,,,.

O

We remark that our definition of rank is different from (and perhaps simpler
than) that of Cohn (1971) or Abramov and Bronstein (2001) who considers the
rank of the module of rows of F(Z) (or the rank of the matrix over the skew-field
Q(Z;0,0) of left fractions). We show in the appendix that these quantities are
in fact the same.

For the main result of this section we will show that any matrix of Ore poly-
nomials can be transformed to a row-reduced one by means of elementary row
operations of the second type given in the introduction.

THEOREM 2.2: For any F(Z) € Q[Z;0,0™"* there exists a unimodular ma-
trir U(Z) € Q[Z;0,0™ ™, with T(Z) = U(Z) - F(Z) having r < min{m, s}
nonzero rows, rdeg T(Z) < rdegF(Z), and where the submatriz consisting of
the r nonzero rows of T(Z) are row-reduced.
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Moreover, the unimodular multiplier satisfies the degree bound
U(Z) <7 — i+ (|a| - [7)e.
where i := max(0,rdeg F(Z)) and 7 := max(0, rdeg T(Z)).

Proof: ~ We will give a constructive proof of this theorem. Starting with
U(Z) =1, we construct a sequence of unimodular matrices U(Z) and T(Z) =
U(Z) - F(Z), with rdegU(Z) < 7 — i + (|ji| — |7])€, 7 = max(0, rdegT(Z)),
and the final T(Z) having the desired additional properties. In one step of this
procedure, we will update one row of the previously computed U(Z), T(Z) (and
hence one component of 7/), and obtain the new quantities U(Z),ew, T(Z)new
with 7,e0 = rnax(67 rdeg T(Z) new)-

Denote by J the set of indices of zero rows of T(Z), and L = L(T(Z)). If the
matrix formed by the nontrivial rows of T(Z) is not yet row-reduced, then we
can find a v € Q™ with v # 0, vL =0, and v/ = 0 for j € J. Choose an index
k with v* # 0 (the index of the updated row) and

7% = max{i’ : v/ # 0},

and define Q(Z) € Q[Z;0,6]"™ by Q(Z)“ = o” ~t(v!)Z7"~7 if vi # 0, and
Q(2)" = 0 otherwise, where ¢t = deg T(Z). Then

T(Z)w = Z o7 VA 7”JT] Z” + lower degree terms
vI #£0
- I/kfljj ;. Ijk
= Z o’ (T7)Z" + lower degree terms

7=1

= " wL)Z™ + lower degree terms .

Hence deg T(Z)k,, < 7% — 1, showing that rdegT(Z),en < rdegT(Z). Notice
that U(Z),ew = V(Z) - U(Z), where V(Z) is obtained from I,,, by replacing its
kth row by Q(Z). Since Q(Z)'* € @ \ {0} by construction, we may consider
W (Z) obtained from I,,, by replacing its (k, j) entry by —(Q(Z)"*)~1Q(Z)™ for
j # k, and by (Q(Z)"*)~! for j = k. The reader may easily verify that W(Z7) -
V(Z)=V(Z)-W(Z) =1,,. Thus, as with U(Z), U(Z),e is also unimodular.
Making use of the degree bounds for U(Z), we also get that deg(Q(Z)-U(Z)) <
7% — [i*+|ji|—|7|. Hence the degree bounds for U(Z),., are obtained by observing
that

rdeg U(Z)new <V — ji+ (Jji] — [7])€ < Vnew — fi + (|/i] — |Vnew|)€"

Finally, we notice that, in each step of the algorithm, we either produce a new
zero row in T(Z), or else decrease ||, the sum of the row degrees of nontrivial
rows of T(Z), by at least one. Hence the procedure terminates, which implies
that the nonzero rows of T(Z) are row-reduced. O
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Remark: The algorithm given in the proof of Theorem 2.2 closely follows the one
in Beckermann and Labahn (1997), Eqn. (12), for ordinary matrix polynomials,
and is similar to that of Abramov and Bronstein (2001) in case of skew poly-
nomials. Unlike the latter work, however, our computations are not done in the
algebra of Laurent skew polynomials (which does not seem to be a natural object
in case of general Ore domains), and we also give additional degree bounds for
the multiplier matrix U(Z).

Of course, as suggested in Abramov and Bronstein (2001), the vector v in the
above algorithm could be chosen in ID '™ by performing fraction-free Gaussian
elimination on L, (see Bareiss (1968)), leading to a fraction-free algorithm for
row-reducing a matrix of Ore polynomials. In this case, in order to prevent an
exponential growth of coefficients, it would be necessary to remove the content
of rows of (U(Z), T(Z)) during the computations, an operation which could be
very expensive. In our case we wish to control coefficient growth by using only
predicted factors which require no content computations.

Remark: In the case of commutative polynomials there is an example in (Beck-
ermann, Labahn and Villard, 2001, Example 5.6) of a F(Z) which is unimodular
(and hence T(Z) = I), has row degree Né and where its multiplier satisfies
rdegU(Z) = (m — 1) N€é. Hence the worst case estimate of Theorem 2.2 for the
degree of U(Z) is sharp.

In Theorem A.2 of the appendix we will prove that the quantity r of Theo-
rem 2.2 in fact equals the rank of F(Z). In addition, this theorem will also show
that the matrix U(Z) of Theorem 2.2 gives some important properties about a
basis for the left nullspace of F(Z) given by

Nez) = {Q(2) € Q[Z; 0,6 : Q(2) - F(Z) = 0}.

Furthermore, various other properties are included in the appendix. In partic-
ular we prove in Lemma A.3 that the rank does not change after performing
elementary row operations of the first or second kind.

3. Order Basis

In this section we introduce the notion of order and order bases for a given
matrix of Ore polynomials F(Z). These are the primary tools which will be used
for our algorithm.

Informally, we are interested in taking linear combinations of rows of our input
matrix F(Z) in order to eliminate low order terms, with the elimination differing
for various columns. Formally such an elimination is captured using the concept
of order.

DEFINITION 3.1 (ORDER): Let P(Z) € Q[Z;0,0]"*™ be a vector of Ore poly-
nomials and @& a multi-index. Then P(Z) is said to have order & if

P(Z) F(Z)=R(Z)-Z° (1)



B. Beckermann et al.: Row Reduction of Matrices of Ore Polynomials 7

with R(Z) € Q[Z;0,6]"*%. The matriz R(Z) in (1) is called a residual. O

We are interested in all possible row operations which eliminate lower order
terms of F(Z). Using our formalism, this corresponds to finding all linear combi-
nations (over Q[Z; o, d]) of elements of a given order. This in turn is captured in
the definition of an order basis, which gives a basis of the module of all vectors
of Ore polynomials having a particular order.

DEFINITION 3.2 (ORDER BAsIS): Let F(Z) € Q[Z;0,0]™**, and & be a multi-
indezx. A matriz of Ore polynomials M(Z) € Q[Z;0,0]™ ™ is said to be an order

basis of order & and column degree ji if there exists a multi-index ji = (', ..., @™)
such that

(a) every row of M(Z) has order &,
(b) for everyP(Z) € Q[Z;0,6]"*™ of order @ there exists a Q(Z) € Q[Z; 7, §]'*™
such that
P(Z) = Q(Z) -M(2),

(c) there exists a nonzero d € Q such that
M(Z)=d- 7" + L(Z)
where deg L(Z)** < ji* — 1.

If in addition M(Z) is row-reduced, with rdeg M(Z) = [i, then we refer to M(Z)
as a reduced order basis. O

Part (a) of Definition 3.2 states that every row of an order basis eliminates
rows of F(Z) up to a certain order while part (b) implies that the rows describe
all eliminates of the order. The intuition of part (c) is that /i’ gives the number
of times row 7 has been used as a pivot row in a row elimination process. A
reduced order basis has added degree constraints, which can be thought of as
fixing the pivots.

By the Predictable Degree Property for matrices of Ore polynomials shown
in Lemma A.1(a) of the appendix we can show that an order basis will be a
reduced order basis if and only if rdegM(Z) < i, and we have the added degree
constraint in part (b) that, for all j =1,...,m,

deg Q(2)" < degP(Z) — ji’. (2)

We remark that the definition of order basis given in Beckermann, Cheng and
Labahn (2002) is slightly more restrictive than our definition of reduced order
basis given here. We use the more general definition in order to gain more flexi-
bility with our pivoting.

A key theorem for proving the correctness of the fraction-free algorithm deals
with the uniqueness of order bases. The proof in Beckermann, Cheng and Labahn
(2002) is not applicable for the new definition of order bases and so we give a
new proof here for this result.
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THEOREM 3.3: Let M(Z) be an order basis of order & and degree |i.

(a) There exists only the trivial row vector P(Z) = 0 with column degree < ji—¢€
and order > .

(b) For any k, a row vector with column degree < ji — €+ &y, and order > & is
unique up to multiplication with an element from Q.

(c) An order basis of a particular order and degree is unique up to multiplication

by constants from Q.

Proof: ~ We only need to show part (a) as (b) and (c) follow directly from
(a). Suppose that P(Z) # 0 has order & and column degree ji — €. By Defini-
tion 3.2(b), there exists Q(Z) € Q[Z;0,d]'*™ such that P(Z) = Q(Z) - M(Z).
Let j be the index such that deg Q(Z)" is maximum. Since P(Z) # 0, it follows
that deg Q(Z)* > 0. Now,

deg P(Z)" = deg (Z Q(Z)HF - M(Z)’“’j) :

k=1
Note that if £ # 7, then
deg Q(2)"" - M(2)" = deg Q(Z)"* + deg M(Z)*
< deg Q(2)" + degM(2)"
< deg Q)™ + i — 1.

Also, . . . . .
deg Q(Z)" - M(Z)" = deg Q(2)" + 7,
so that . . . .
degP(2)" = deg Q(2)" + # > i,
This contradicts the assumption that deg P(Z)' < i/ — 1. O

In the commutative case there are a number of characterizations of order bases.
For example in Beckermann and Labahn (1997) order bases are characterized by
properties on its determinant.

EXAMPLE 3.4: Let a(Z),b(Z) € ID[Z; 0,0] with degrees d,, dy, respectively, with
dy > dy. Set t = dy — dy, b} ™ = []'_, 0" (bo) and solve
b a(Z) = q(2) - b(Z) +r(2) - 2 (3)

with degq(Z) = t and degr(Z) < dy. Equation (3) corresponds to solving the
linear system of equations

bg O'(bl) O't(bt)

o lags. . ald = g0, @] . , (4)

ot (by)
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an equation similar to that encountered in performing left pseudo-division of skew
polynomials. Setting

b —a(2)
0 oytzen

M(7) - {G(Z) } _ { r(Z) ] g

M(Z) =

we see that
b(Z) w(Z)

where w(Z) = b o1 (b(2)) = b S h o (b,) ZP. Properties (a) and (c)
of Definition 3.2 are trivially satisfied by M(Z). Property follows from the linear
equations given in the next section. O

4. Determinantal Representations

We are interested in constructing an algorithm for computing recursively order
bases M (Z) for increasing orders. In order to predict the size of these objects and
predict common factors, we derive in this section a determinantal representation
together with a particular choice of the constant d arising in Definition 3.2(c).
Because the order condition in Definition 3.1 is on the right, we observe that

if
F(Z)=> F7Z, P(Z)=> PZ*
J k

then we have

P(Z)-F(Z)=> S;7 (5)

with the unknowns P, obtained by constructing a system of linear equations by
setting the undesired coefficients of S; equal to zero.

Let us examine the underlying system of linear equations. Notice first that for
any P(Z) € Q[Z; 0, 6] we may write

cr(Z - P(Z)) = o(ck-1(P(2))) + 6(c(P(2))) (6)

where ¢j, denotes the kth coefficient of a polynomial (with c_; = 0). We may
write (6) in terms of linear algebra. Denote by C = (c¢uu)uwp—o,1,. the lower
triangular infinite matrix of operators defined by ¢,, = 0, cyr1, = o and 0
otherwise, and by C, (1 > 0) its principal submatrix of order p. Furthermore,
for each F(Z) € Q[Z;0,0] and nonnegative integer p we associate vectors of
coefficients

F,=[0(F(2)),....,cu1(F(2))]" = [Fo, ..., Fun]", (7)
F =[c(F(2),c(F(2)),..)]" =[F,F,..]". (8)
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Note that we begin our row and column enumeration at 0. We can interpret (6)
in terms of matrices by

C. -F,=1[c0(Z -F(2)),...,cor(Z-F(Z))]".

Comparing with (5), we know that P(Z) has order @& if and only if for each
t=1,..,57=0,..,&" -1 we have

> _¢(P(2)*-F(2)*) =o.
k=1
If we wish to find solutions P(Z) such that degP(Z)"* < #* for some multi-
index ¢/, then we obtain a system of linear equations of the form
(P, oy Py Py, P - K (P + €,3) = 0, (9)

where the coefficient matrix has the form

K(D‘+ é‘, (D’) — (Kk,ﬂ(ljk + 1,@»6));;:11,...,5

and KF4(7% + 1,397 may be written as
{ FY' Cy FY - €7 -FY } . (10)

Thus, the matrix K (7 + €,dJ)" is in the form of a striped Krylov matrix (Beck-
ermann and Labahn, 2000b), except that by stepping from one column to the
next we not only multiply with a lower shift matrix but also apply the functions
o and ¢. Thus, in contrast to Beckermann and Labahn (2000b), here we obtain
a striped Krylov matrix with a matrix C having operator-valued elements.

EXAMPLE 4.1: In the case of matrices of skew polynomials, the v X w submatrix
Kb v, w) is

SE) GOF) oOFL P(FL)
0 o' (Fy") o' (F™) o' (F,7)
0 0 oY EPYH - o Y(FM))

According to (9), it follows from Theorem 3.3 that if there exists an order
basis M(Z) of order & and degree ji then K(fi,d) has full row rank, and more
precisely

k=1,...,m: rank K(ji,d)=rank K(i-+ é,ad) = | (11)
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Suppose more generally that [ and & are multi-indices verifying (11). We
call a multigradient d = d(ji,d) any constant +1 times the determinant of a
regular submatrix K, (/i,J) of maximal order of K(fi,&d), and a Mahler system
corresponding to (ji,d) a matrix of Ore polynomial M(Z) with rows having
order @ and degree structure

M(z) = d - ZF 4 lower order column degrees.

In order to show that such a system exists, we state explicitly the linear system of
equations needed to compute the unknown coefficients of the kth row of M(Z)

denote by b*(ji,d) the row added while passing from K (i, &) to K (ji + €,d).

Then, by (9), the vector of coefficients is a solution of the (overdetermined)
system

which by (11) is equivalent to the system

where in b*(j7,J) and in K, (ji+ €, J) we keep the same columns as in K, (j7,J).
Notice that by Cramer’s rule, (12) leads to a solution with coefficients in ID.
Moreover, we may formally write down a determinantal representation of the
elements of a determinantal order basis, namely

M(Z2)% = +det | K.(@+ &,3) | Bpur_145,,(Z) | (13)

with
E..(Z)=10,...,0|1,Z,...,Z"|0,...,0]", (14)

the nonzero entries in E,,(Z) occurring in the ¢th stripe. In addition, we have
that

ZM YHIF(Z)" = tdet [ K. (fi + €, &) | Egpre(Z) ], (15)

where
E;(2) = [F(Z)", ..., 27" '"F(Z)"|...... F(Z)™, ..., 27" 'R (Z)™".

In both (13) and (15) the matrices have commutative entries in all but the last
column. It is understood that the determinant in both cases is expanded along
the last column.

We finally mention that, by the uniqueness result of Theorem 3.3, any order
basis of degree ji and order & coincides up to multiplication with some element
in @ with an Mahler system associated to (fi,d), which therefore itself is an
order basis of the same degree and order. By a particular pivoting technique we
get a reduced order basis by computing Mahler systems.
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5. Fraction-free Recursion Formulas for Order Bases

In this section we show how to recursively compute order bases in a fraction-free
way. This can also be thought of as constructing a sequence of eliminations of
lower order terms of F(Z). In terms of linear algebra, the recursion can be viewed
as a type of fraction-free Gaussian elimination which takes into consideration the
special structure of the coefficient matrix of the linear system associated to the
“elimination of lower order terms” problem.

For an order basis M(Z) of order & and degree ji having a Mahler system
normalization, we look at the first terms of the residuals. If they are all equal to
zero then we have an order basis of a higher order. Otherwise, we give a recursive
formula for building an order basis of higher order and degree. However, a priori
this new system has coefficients from @ since we divide through some factors.
In our case, however, the new system will be a Mahler system according to
the existence and uniqueness results established before, and hence we will keep
objects with coefficients in ID .

In the following theorem we give a recurrence relation which closely follows
the case of skew polynomials (Beckermann, Cheng and Labahn, 2002) and the
commutative case (Beckermann and Labahn, 2000b, Theorem 6.1(c)). The re-
sulting order bases have properties similar to those cited by Beckermann and
Labahn (2000b, Theorems 7.2 and 7.3).

THEOREM 5.1: Let M(Z) be an order basis corresponding of order J and degree
i, and X € {1,...,s}. Denote by r; = czn((M(Z) - F(Z))?*), the (j,\) entry of
the first term of the residual of M(Z). Finally, set & := & + €.

(a) If ry = ... = rp = 0 then M(Z) := M(Z) is an order basis of degree 7 := [i

and order .

(b) Otherwise, let w be an index such that rr # 0. Then an order basis M(Z)
of degree UV := [i + €, and order J with coefficients in Q is obtained via the
formulas

pr-M(Z2)F =1 - M(2)5% — vy - M(Z)™F (16)

forl,k=1,2,....m, L # 7, and

o(pr) - M(Z)™* = (rz - Z = 6(rz)) - M(2)™* = " a(pe) - M(2)"* (17)
l#£T
for k=1,2,....m, where pj = czi s, ,—1(M(Z)™7).

(¢) If in addition M(z) is a Mahler system with respect to (ji,&), then M(Z)
is also a Mahler system with respect to (V,d). In particular, M(Z) has
coefficients in ID .
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Proof:  Part (a) is clear from the fact that the rows of M(Z) have order &
when ry =...=r, =0.

Let M(Z)?" denote the jth row of M(Z). For part (b) notice first that rows
/M/(Z)é" for ¢ # 7 have order & by construction, as required in Definition 3.2(a).
In addition row (r,-Z—3(r,))-M(Z)™ also has order @ since (re-Z—0(rz))(rz) =
rro(ry)Z. By construction therefore row M(Z)™ has order &.

The verification of the new degree constraints of Definition 3.2(c) (with /i being
replaced by i) for the matrix M(Z) is straightforward and is the same as in the
commutative case (Beckermann and Labahn, 2000b, Theorem 7.2). In addition,
notice that p, is the leading coefficient of M(Z)%¢, so the leading coefficient of
M(Z)% equals 7, for all £ by construction. However it still remains to show that
we obtain a new order basis with coefficients in ID .

We now focus on the properties of Definition 3.2(b). If P(Z) € Q[Z; 0, §]'*™
has order & then it has order & and so there exists a Q(Z) € Q[Z; 5, 6]™ such
that

P(2) =) Q(2)" -M(2)" +Q(Z)"" - M(Z)™ (18)
J#T
where
Q(2)Y =Q(2)" - P for all j # 7w and Q(2)" = 3" Q(2)- :— (19)
i i=0 T

Since P(Z) and all the M(Z)J terms have orderAcE this must also be the
case for Q(Z)4™ - M(Z)™. Let p be the degree of Q(Z) and write Q(Z)"" =
P Qi (r - Z — 8(ry))k. Since (ry - Z — 8(rx))rs = 150(rz)Z, we see that

Al

2o - rr = 0. Therefore, by assumption on m we have that Qé’” = 0. Writing
Q)™ =Q(Z)'™ - (re - Z — 6(ry)) gives

=> Q(2)" M2V + Q2 - (1 Z = 8(ry)) - M(Z)™. (20)
j#ET

Completing the row operations which normalize the degrees of M(Z) in (17)
gives a Q(Z) with P(Z) = Q(Z) - M N( 7). Consequently, the property of Defini-
tion 3.2(b) holds.

Finally, in order to establish part (¢) we know already from Section 4 and
the existence of order bases of a specified degree and order that both (f,d) and
(7, @) satisfy (11). By the uniqueness result of Theorem 3.3 we only need to show
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that the “leading coefficient” d of M(Z) in Definition 3.2(c) is a multigradient
of (7, 5), the latter implying that M(Z) is a Mahler system and in particular
has coefficients from ID .

Denote by d the corresponding “leading coefficient” of M(Z). In the case
discussed in part (a), we do not increase the rank by going from K(fi,d) to
K(7, 5) since we just add one column and keep full row rank. Hence d = d being
a multigradient with respect to (ji,d) is also a multigradient with respect to
(7, uN?) In the final case described in part (b) we have d = r,. Using formula (15)
for the residual of the wth row of M[(Z) we learn that r, coincides (up to a sign)
with the determinant of a submatrix of order |7/| of K (7, u:)) Since r, # 0 by
construction, it follows that d = rr is a new multigradient, as required for the
conclusion. O

COROLLARY 5.2: If M(Z) is a reduced order basis then the order basis M(Z)
computed by (16) and (17) in Theorem 5.1 is also a reduced order basis of degree
v, provided that the pivot w is chosen such that

T = min{ji 7, # 0} (21)

Proof: Tt is straightforward to check that rdegM(Z) = . Hence, by Lemma
A.1(a), it is sufficient to show that cdegQ(Z) < deg(P(Z))é — 7, with P(Z) =
Q(Z) - M(Z) as in the proof of Theorem 5.1.

We see in (19) that deg Q(Z)" < deg P(Z) — i’ = deg P(Z) — v/ for all
j # m while deg Q(Z)™ < deg P(Z) — [i™ because of the minimality of /i". In
(20), deg Q(Z)'™ < deg P(Z) — (ji" + 1) = deg P(Z) — ™. Completing the
row operations which normalize the degrees of I\Z(Z) in (17) gives a Q(Z) with
P(Z)=Q(Z)- M(Z) having the correct degree bounds. O

6. The FFreduce Algorithm

Theorem 5.1 gives a computational procedure that results in the FFreduce algo-
rithm given in Table 1. In this section we consider the termination criterion for
this algorithm and discuss its complexity.

THEOREM 6.1 (TERMINATION OF ALGORITHM FFREDUCE):

Let r = rank¥(Z). The final residual R(Z) has rank r and m — r zero rows.
Moreover, if J C {1,...,m} is the set of row indices corresponding to the zero
rows of R(Z), then the rows M(Z)% for j € J form a row-reduced basis of the
left nullspace Ny(z) of F(Z).
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Table 1: The FFreduce Algorithm

ALGORITHM FFreduce
INPUT: Matrix of Ore polynomials F € ID[Z; 0, 6]™*5.

OutpuT: Mahler system M € ID [Z; 0, 0]™*"™,
Residual R € D [Z; 0, 6]"™**
Degree ji, order &.

INITIALIZATION: Mg < I, Ro < F, do < 1, jig < 0, < 0,
N  deg(F(Z)),p+ 0,k +0

While k < (mN + 1)s do
Pr P, p <0
For A=1,..,s do
Calculate for £ =1,..,m: first term of residuals r; + Ry (0)
Define set A = {¢ € {1,..,m} : ry # 0}.

I®)

If A = {} then Mk—i—l <— Mk, Rk—i—l <— Rk, dk—l—l <— dk, ﬁk-l-l <— ﬁk
else

Choose pivot 7, « min{f € A : jit, = minj{ﬁi 1j €A}

T b

Calculate for £ = 1,..,m, £ # m: py + cﬁf;fl(Mk ).

Increase order for{=1,..,m, £ # mp:
e, b -
Y d [Tﬂk M, —rg - M

Ry, « 7lrm, - Rf — 7R

Increase order and adjust degree constraints for row my:
s 5 la'
Mt (dk)[(m 2 = 0(rm)) - MR =3, o (pe) - Nik ]
RZI—CI—,I = o(d )[(Tﬂk Z —6(rr,)) R Wk, Zé;éwk o(pe) - Rlc,. ]

Update multigradient, degree and p:

dk+1 < Trys ﬁk-l—l «— ﬁk +€Wk7 p < p+1
end if

Adjust residual in column A: for £ =1,...,m
Rii‘l — Rk+1/Z (formally)

Wpy1 < W+, k+—k+1

end for
end while
M(—Mk,R%Rk,ﬁ(—ﬁk,(D‘(—&;k

15
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Proof: ~ Recall that the last computed Mahler system M(Z) results from
iteration k = sk, Kk = mN + 1, and has order k¢ and degree ji.

The statement rank F(Z) = rank R(Z) follows from Lemma A.3 since R(Z)Z"
is obtained from F(Z) by applying row operations of the first type.

In order to show that R(Z) has m — r zero rows, let W(Z) be as in Theo-
rem A.2, with @ = rdegW (Z). Recall from Theorem A.2 that W(Z) is row-
reduced, and that @ < (m — 1) - Né. Since the rows of W(Z) have order
k€, there exists Q(Z) € Q[Z;0,8]™*™ such that W(Z) = Q(Z) - M(Z).
By construction, M(Z) is a reduced order basis, and therefore row-reduced,
with row degree ji. Lemma A.1(c) then implies that there is some permutation
p:{l,...,m—r}—{1,...,m}, with & > V) for j = 1,...,m — r. Hence, for
j=1..m-—r,

degR(Z)PV" = —k + deg(R(Z)PV>Z25) = —k + deg(M(Z)PV) . F(Z))
< —k+ N +deg(M(Z2)PV)) = —g + N + jirV)
< —k+N+& <k+mN =-1,

showing that these m — r rows R(Z)PU)> are indeed zero rows.

It remains to show the part on the rows M(Z)’ for j € J. Clearly, with M(Z),
also the submatrix M(Z)” is row-reduced. Any P(Z) € Ng(z) has order k¢, so
there exists Q(Z) € Q[Z; 5, ]'*™ such that P(Z) = Q(Z) - M(Z). Thus,

Q(2)-R(2)Z" = Q(Z) - M(Z) - F(Z) = P(Z) - F(Z) = o.

The relation r = rank R(Z) implies that the nonzero rows of R(Z) are Q[Z; o, ]
linearly independent, and hence Q(Z)'” = 0 for j € J. Consequently, the rows
of M(Z)” form a basis of Np(z), as claimed in Theorem 6.1. O

In what follows we denote by cycle the set of iterations k = ks, ks+1, ..., (k+
1)s — 1 in algorithm FFreduce for some integer x (that is, the execution of the
inner loop).

Let us comment on possible improvements of our termination criterion. In
all examples given in the remainder of this section, we choose as ID the set of
polynomials in z with rational coefficients, with Z = 4, and thus o(a(z)) =

ax), 8(alr)) = ta(e). N

Remark: The above proof was based on the estimate @’ < (m —1)N for the left
minimal indices of the left nullspace Np(z), which for general matrix polynomi-
als is quite pessimistic, but can be attained, as shown in (Beckermann, Labahn
and Villard, 2001, Example 5.6) for ordinary matrix polynomials. For applica-
tions where a lower bound « is available for ||, the sum of the row degrees
of the nontrivial rows of the row-reduced counterpart of F(Z) (compare with
Theorem 2.2), it would be sufficient to compute Mahler systems up to the final
order (mN +1 — v)é, since then we get from Theorem 2.2 and Theorem A.2 the
improved estimate a7 < (m — 1)N — .
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Remark: In contrast to the special case of skew polynomials (compare with
(Beckermann, Cheng and Labahn, 2002, Lemma 5.2)), the pivots 7 in one cyle
are not necessarily distinct. In case s > m, there might be even up to s nontrivial
steps in one cycle of the algorithm. Thus |/i| may be as large as k (all iterations
are nontrivial). As an example, consider

F(Z)=[1z+7]
leading to my = m = 1.

Remark: In the special case of skew polynomials (6 = 0), the rank of any matrix
polynomial F(Z) (over Q[Z;0,4]) is bounded below by the rank of its trailing
coefficient F(0) (over Q). This property is no longer true for general Ore domains,
as it becomes clear from the example

F(2) = [é 1+xxz]'

Here the rank of F(0) is 2, whereas the second row of F(Z) equals Z times the
first row of F(Z), and hence rank F(Z) = 1.

Remark: 1f in the cycle starting at k& = ks there are only distinct pivots, following
(Beckermann, Cheng and Labahn, 2002, Lemma 5.1) we may still prove that the
rank of R,(0) coincides with the number of pivots used in this cycle. However,
in contrast to (Beckermann, Cheng and Labahn, 2002, Lemma 5.2), it is no
longer true in general that the number of pivots (or distinct pivots) in a cycle is
increasing. Indeed, for the example

F(2)= { 1 _on 1 —Oe:cz]

we have in the first cycle 7y = 1, m; = 2, giving rise to

RZ(Z)Z:[_xZZ 0 ]

0 (1—ezxZ—exZ?

Then k = 2 is a trivial iteration, and there is either one (for € # 1) or no pivot
(for € = 1) in the second cycle. Moreover, if € is a positive integer, then we have
2 pivots in all further cycles up to the eth one. Thus, the trailing coefficients of
the residuals after a cycle do not remain nonsingular.

For the above reasons, we believe that it is quite unlikely that there exists an
early termination criterion for FFreduce in Ore domains such as (22) below based
on the number of pivots in one cycle which insures that one has found rank F(Z7).
The situation is different for the special case of skew polynomials discussed in
Beckermann, Cheng and Labahn (2002) which will be further studied in the next
section.
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In the remainder of this section we examine bounds on the sizes of the interme-
diate results in the FFreduce algorithm, leading to a bound on the complexity
of the algorithm. For our analysis, we assume that the coefficient domain ID
satisfies

size(a + b) = O(max(size(a), size(h)))
size(a - b) = O(size(a) + size(h))
cost(a +b) = O(1)
cost(a - b) = O(size(a) - size(h)),

where the function “size” measures the total storage required for its arguments
and the function “cost” estimates the number of bit operations required to per-
form the indicated arithmetic. These assumptions are justified for large operands
where, for example, the cost of addition is negligible in comparison to the cost
of multiplication.

In a first step, let us examine the size of the coefficients and the complexity
of one iteration of algorithm FFreduce.

LEMMA 6.2: Let K be a bound on the size of the coefficients appearing in
F(2)r, Z - F(Z)r,...,ZF - F(Z) for j = 1,...,m, where i = [ir. Then
the size of the coefficients in My and Ry, is bounded by O(|fi|K). Moreover, the
cost at iteration k is bounded by O((msN|fi]* + (m + s)|d]*) K?).

Proof:  Equations (13) and (15) show that both the Mahler system and the
residual can be represented as determinants of a square matrix of order |ji|. The
coefficient in this matrix are coefficients of F(Z)%, Z - F(Z)k, ..., Z% . F(Z)*.
Hence the well-known Hadamard inequality gives the above bound for the size
of the coefficients.

In order to obtain the cost, we have to take into account essentially only the
multiplication of each row of (Mg, Ry) by two scalars and the multiplication
of the pivot row by at most m + 1 scalars. It remains to count the number of
coefficients, and to take into account that each multiplication with a coefficient

has a cost bounded by O(|i]*K?). O

By slightly generalizing (Beckermann and Labahn, 2000b, Theorem 6.2), we
deduce the following complexity bound (compare also with (Beckermann, Cheng
and Labahn, 2002, Theorem 5.5)).

COROLLARY 6.3: Let K be a bound on the size of the coefficients appearing in
F(Z2), Z-F(Z)»,...,ZF -F(Z)) for j =1,...,m, where [i = [i}, of iteration k
of FFreduce. Then the total cost for computing My, and Ry by algorithm FFreduce
is bounded by O((msN|i|]* + (m + s)|i]*)K?).

In the general Ore case, we obtain for FFreduce a worst case bit complexity of
O((m + s)m*s*N*K?), whereas in the case of skew polynomials we may obtain
the slightly sharper worst case bound O((m + s)m®* min(m, s)* N*K?).
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Proof:  The first part of the Theorem is an immediate consequence of Lemma
6.2 and of the fact that the number of iterations in the FFreduce algorithm
in which any reduction is done equals |fi|. In order to show the second part,
we use the bound |g| < |&] with the final order vector & = (mN + 1)¢&, and
|i3] = s(mN + 1). In case of skew polynomials, pivots are distinct, and hence
their number in a cycle is bounded by min(m,s) (in fact by the rank of F(Z7)),
leading to the bound |fi| < min(m, s)(mM + 1). O

7. Applications for Skew Polynomials

In this section we show how the FFreduce algorithm can be used to solve a
number of different problems in the special case when the input is a matrix of
skew polynomials. Of course when ¢ is the identity then this also gives fraction-
free algorithms for ordinary matrix polynomials.

In the case of skew polynomials (Beckermann, Cheng and Labahn, 2002), the
termination criterion

prs + the number of zero rows in Rys(Z) =m (22)
allows us to prove (Beckermann, Cheng and Labahn, 2002, Theorem 5.3) that
rank R,s(0) = rankR5(Z)) = rank F(2), (23)

the rank of the trailing coefficient matrix R,s(0) being defined over the field Q.
Moreover (Beckermann, Cheng and Labahn, 2002, Lemma 5.2),

the pivots m for ks — s < k < ks are distinct, (24)
and hence (Beckermann, Cheng and Labahn, 2002, Lemma 5.1 and Lemma 5.2)
prs = rank R,4(0) = rank R (0). (25)

It is also shown implicitly in the proof of (Beckermann, Cheng and Labahn, 2002,
Theorem 5.4) that x < m(/N + 1) which has to be compared with the number
of cycles, mN + 1, required by FFreduce. Thus the new termination property
(22) essentially does not increase the complexity of algorithm FFreduce, but for
many examples may improve the complexity.

7.1. Full Rank Decomposition and Solutions of Linear Functional Systems

When F(Z) represents a system of linear recurrence equations, one can show that
an equivalent system with a leading (or trailing) coefficient with full row rank
allows one to obtain bounds on the degrees of the numerator and the denominator
of all rational solutions. This has been used by Abramov and Bronstein (2001)
to compute rational solutions of linear functional systems.
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In (Beckermann, Cheng and Labahn, 2002)it is shown that the output of
FFreduce applied to F(Z) € ID[Z;0,0]™** can be used to construct T(Z™") €
D[Z~ ;071 0™ and implicitly S(Z) € Q[Z; o, 0]™*™ such that

T(Z ') -F(Z)=W(Z) € D[Z;0,0]™, S(Z)T(Z 1) =1,

with the number of nonzero rows of W(Z) coinciding with the rank of the
trailing coefficient W(0), and hence with the rank of W(Z). The existence of
a left inverse S(Z) shows that the reduction process is invertible in the algebra
of Laurent skew polynomials, moreover, we obtain a full rank decomposition
F(Z)=S(Z)W(Z) in Q[Z;0,0].

In this context we should mention that an exact arithmetic method involving
coefficient GCD computations for the computation of T(Z7') - F(Z) = W(Z)
with W(Z) as above has already been given in Abramov and Bronstein (2001).

7.2. Row-reduced Form and Weak Popov Form

The FFreduce algorithm can be used for row reduction in the case of matrices
of skew polynomials. In particular, given F(Z) € ID[Z; 0,0]™** we can compute
U(Z) and T(Z) satisfying Theorem 2.2. Since we wish to eliminate high-order
coefficients, we perform the substitution Z = Z~', ¢ = o~ and perform the
reduction over ID [2 ;0,0]. We further assume that o' does not introduce frac-
tions, so that ¢~'(a) € ID for all a € ID. We write F(Z) := F(Z~') - ZV, and
let My(Z), Ry(Z), fir, and @, be the intermediate results obtained from the
FFreduce algorithm with the input F(Z). If we define

Ui(2) = ZF . My (2), T.(Z) = ZP - Ry(Z) - 29N, (26)

then Ug(Z)-F(Z) = Ti(Z). In this case simple algebra shows that the recursion
formulas for Ui (Z) obtained from (16) and (17) become

o (pry) - Upa (2)% = 0 (1) - Up(2)" — ok (rg) - ZP6 " U (Z)™ (27)
for ¢ # k and

O_ﬁ;:lc +2 (pﬂ_k) . Uk+1 (Z)?Tk,~

ST

_ O'Mkk—i—l(rwk) . Uk(Z)Trk" . Z Uﬁ’k“k-i—z(pz) . Zﬁ’;k_ﬁﬁ-i-l . Uk-i—l(Z)Z", (28)
0FTy,

where

=,

—jit m m
Te =0 uk(cNJrﬁika/sJ(Tk(Z)Z’(k od )H)):

(Uk(2)™)).

ST e

— _l"‘k _ -
pe =0 (Cu’,:’“ — i, =0y 0 +1

Since ji;* < jif, whenever r, # 0, and that p, = 0 whenever ji;* < jif — 1 by
the definition of a reduced order basis, it follows that Uy, {(Z) € ID [Z; o, 0]™*™.
Moreover, [Ug;1(Z), Ti1+1(Z)] is obtained from [Uy(Z), Ti(Z)] by elementary
row operations of the second type, so if Ug(Z) is unimodular then Uy, (7) is
also unimodular.
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THEOREM 7.1: Let Mk(Z), Rk(Z), fix, and Gy = K - € be the final output ob-
tained from the FFreduce algorithm with the input ¥(Z). Then

(a) Ur(Z) € D[ Z;0,0™™ and Ty(Z) € D[Z;0,0™"*;

(b) Ur(Z) is unimodular;

(¢) Un(Z) -F(Z) = Ti(2);

(d) the nonzero rows of Ty(Z) form a row-reduced matriz.

Proof:  Parts (a), (b), and (c) have already been shown above. By (23), we
see that rank R(0) = rank F(Z) = rank R(Z), which is also the number of
nonzero rows in R(Z). Therefore, the nonzero rows of R(Z) form a matrix with
trailing coefficient of full row rank. It is easy to see that rdeg T(Z) = ji+(N—k)-€
and that

T(Z)" = o (R(0)") - ZF*N=% 4 lower degree terms.

Therefore, L(T(Z)) = od&T%) (f{(OA)) Since ¢ is an automorphism on @, it
follows that rank L(T(Z)) = rank R(0), and hence the nonzero rows of T(Z)
form a row-reduced matrix. O

In fact, the FFreduce algorithm can be modified to obtain U(Z) and T(Z) such
that T(Z) is in weak Popov form (Mulders and Storjohann, 2002) (also known
as quasi-Popov form (Beckermann, Labahn and Villard, 2001)). The weak Popov
form is defined as follows.

DEFINITION 7.2 (WEAK Poprov FORM): A matriz of skew polynomials F(Z)
15 said to be in weak Popov Form if the leading coefficient of the submatriz formed

from the nonzero rows of F(Z) is in upper echelon form (up to row permutation).
O

Formally, if d = k- € is the order obtained at the end of the FFreduce algorithm,
we form the matrices U(Z) and T(Z) by

[Uk(2)%, T(2)~]  if m, =i for some ks — s < k < ks,

[U(Z)i’jaT(Z)i’j] - {[Um(z)i,jij(Z)iJ] otherwise;

We note that U(Z) and T(Z) are well-defined because the pivots 7 are distinct
for ks — s <k < ks by (24). We now show that T(Z) is in weak Popov form.

THEOREM 7.3: Let & = k- € be the order obtained from the FFreduce algorithm
with the input ¥(Z). Then

(a) U(Z) € D[Z;0,0™ ™ and T(Z) € D[Z;0,0]™"5;

(b) U(Z) is unimodular;

(¢) U(Z)-F(Z) = T(Z);
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(d) T(Z) is in weak Popov form.

Proof:  Part (a) is clear, and (b) follows from the fact that U(Z) can be
obtained from U, s(Z) by applying elementary row operation of the second
type on each row until it has been chosen as a pivot. Moreover, we have that for
all k and ¢, U,(Z2)% - F(Z) = T1(Z)% and hence (c) is true.

Let H), be the coefficient of Z5=0e of My(Z) - F(Z) for ks —s < k < ks.
Since My (Z) is an order basis, it follows that the first £ — (ks — s) columns of

H,, are zero. If m, = 4, then we have H,i’k_(m_s)H # 0. Furthermore, if i # m;, for
any ks — s < k < ks , H> must be zero. Therefore, if we form the matrix H by

i — {H}c] if T, = ¢ for some ks — s < k < ks (29)

H!J  otherwise,

then the nonzero rows of H form a matrix in upper echelon form (up to a
permutation of rows). By reversing the coefficients of T(Z) we see that

T(Z)" = ot (H") - ZPes—stN=R 4 Jower degree terms.

Thus, L(T(Z)) = 048 T(?)(H). Since o is an automorphism on @ it follows that
the nonzero rows of L(T(Z)) is in upper echelon form and hence T(Z) is in weak
Popov form. O

Recall from Theorem A.2 that the multipliers of Theorem 7.1 and of Theo-
rem 7.3 both provide a basis of the left nullspace of F(Z).

7.3. Computing GCRD and LCLM of Matrices Skew Polynomials

Using the preceding algorithm for row reduction allows us to compute a greatest
common right divisor (GCRD) and a least common left multiple (LCLM) of
matrices of skew polynomials in the same way it is done in the case of matrices
of polynomials (Beckermann and Labahn, 2000b; Kailath, 1980). Let A(Z) €
D [Z;0,0/™** and B(Z) € ID[Z;0,0]™*%, such that the matrix

F(Z) = [A(Z)]

has rank s. Such an assumption is natural since otherwise we may have GCRDs
of arbitrarily high degree (Kailath, 1980, page 376). After row reduction and
possibly a permutation of the rows, we obtain

N A R B

with G(Z) € ID[Z;0,0]°**, and U, j(Z), U, ;(Z) matrices of skew polynomials
of size s x mj, and (my + my — s) X m;, respectively. Standard arguments (see,
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for example, Kailath (1980)) show that G(Z) is a GCRD of A(Z) and B(Z).
Furthermore, for any common left multiple V{(Z) - A(Z) = V(Z) - B(Z) we
see that the rows of [V1(Z) —V,(Z)] belong to the left nullspace Np(z). Since
[U21(Z) Uyp(Z)] is a basis of Np(z) by Theorem A.2, there exists Q(Z) €
Q[Z; o, 0](ma+ma=s)x(mitm2=5) quch that

[Vi(Z) —V2(2)] =Q(2) - [Un(2) Uxn(Z)],

implying that Uy (Z)-A(Z) and —Uyy(Z)-B(Z) are LCLMs of A(Z) and B(Z).

In contrast to the method proposed in Beckermann and Labahn (2000b), our
GCRD has the additional property of being row-reduced or being in weak Popov
form.

7.4. Computation of Subresultants

The method of Section 7.3, applied to two 1 x 1 matrices, gives the GCRD and
LCLM of two skew polynomials a(Z) and b(Z). In this subsection we exam-
ine the relationship of the intermediate results obtained during our algorithm
to the subresultants of skew polynomials defined by Li (1996, 1998). Denoting
the degrees of a(Z),b(Z) by d, > dp, the j-th subresultant sres;(a,b) for skew
polynomials is defined by taking the determinant of the matrix

-O'db_j_l(ada) O—db_j_l(adafl) e Tttt O—db_j_l(a2j+2*db) Zdb_j_la(Z)-
U(ada) U(a]) ZCL(Z)
| ‘ g, - . aj-l-l CL(Z)
O'dai]il(bdb) Udai]il(bdb—l) e oot Jdai]il(szﬁ-?—da) Zdai]ilb(Z)
i by, - b1 b(Z) ]

THEOREM 7.4: Let a(Z) and b(Z) be two skew polynomials of degrees d, and
dy, respectively, such that d, > dy. Then sresj(a,b) # 0 if and only if there exists
an € = {; with [laq, 21 = (do — j,do — J) — €. In this case,

do—dy—1
Tad,-2-1(2)"" = 7 - sresj(a, b), Y= H a7 (ag,).
i=0
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Proof:  After expanding with respect to the first columns, we see that the
quantity v - sres;(a, b) coincides with the determinant of the matrix

o N a0) o T ) e e o aysa) 2% a(2)]
U(ada) O'(Cl]) ZCL(Z)
| | Qq, *-- ‘ aj+1 a(Z)
O'dai]il(bda) Udai]il(bda—l) e oot Udai]il(ij-i-?—da) Zdai]ilb(z)
U(bda) o'(b]) Zb(Z)
i by, - b1 b(Z)

Denote by S; the matrix of size (2d, —2j) x (2d, —2j — 1) obtained by dropping
the last column, and notice that

o~ ®7IT0(S)) = K((do — j, da — ), (2da — 2] = 1)), (31)
the Krylov matrix associated to F(Z) = (a(2),b(Z)T, a(Z) = a(Z ) - Z% , and
b(Z) = b(Z") - Z%. Thus sres;(a,b) # 0 if and only if the dimension (over @)
of the left nullspace of S; is equal to one, which in turn is true if and only if
there is a unique P € Q[Z;0,0] (up to multiplication with an element from Q)
of order & = (2d, —2j — 1) and degP <d, —j — 1.

One verifies using (Beckermann, Cheng and Labahn, 2002, Lemma 5.2) and
the relation d, # 0 that |Jx| = & = |/ix| for all k£ in algorithm FFreduce. Let
k = 2d, —2j — 1, then from (2) we conclude that sres;(a,b) # 0 if and only if /i,
has one component being equal to d, — 7 — 1 and the other one being at least as
large as d, — j, that is, iy = (d, — j,d, — j) — € for some ¢ € {1, 2}.

Finally, if sres;(a, b) # 0, then we use (31) and the determinant representations
of Section 4 together with the uniqueness of Mahler systems in order to conclude
that

7 - sres;(a, b) = +ZF Ry (2) - 274 = T (2)

O

Therefore, whenever jiy;_ is of the form (k, k) — €, for some ¢ € {1,2} during
the execution of our algorithm, we can recover the nonzero sresq, x(a,b) from
R 1(Z) - Z9 %€ after multiplying by Z* and dividing by the extra factor of ~
(or by dividing Ty, 1(Z)5" by 7).

Notice that the extra factor of v is introduced at the beginning of the algo-
rithm, before any step with |A| > 1. There is no reduction performed in these
first d, — d, steps. Thus, we may modify our algorithm so that no reduction is
done until |A| = 2 for the first time, except the updating of ji. Then

+ 7y —dat+d .R2k71(2)1,1 . 72%k=1—da if fop—1 = (k—1,k),

sresq. _p(a,b) = 2 5 5 5
do—k(a,D) {iZ“%l 'RZk—l(Z)Q’I . 72%k—1-da if fiog 1 = (k, k—1).
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8. Conclusion

In this paper we have given a fraction-free algorithm for transforming a given
matrix of Ore polynomials into one where both the rank and the left nullspace
is easily determined. The algorithm is a modification of the FFFG algorithm of
Beckermann and Labahn (2000b) in the commutative case. In the case of skew
polynomials we also show how our approach can be used to find a weak Popov
form of a matrix of skew polynomials. In addition, in the special case of 2 x 1
skew polynomial matrices we relate our algorithm along with the intermediate
quantities to the classical subresultants typically used for one sided GCD and
LCM computations.

There are a number of topics for future research. In this paper we have given
a fraction-free method for elimination of low order terms of a matrix of Ore
polynomials. However for general Ore domains it appears to be more useful to
work with leading coefficients, something not possible using our methods except
for the case of skew-polynomial domains. We would like to find a fraction-free
method for reduction of leading coefficients over Ore domains. We will look at
combining the procedure in Theorem 2.2 along with modified Schur complements
(Beckermann, Cabay and Labahn, 1997) of Krylov matrices to help us develop
such an algorithm.

We are also interested in extending our results to nested Ore polynomial do-
mains, allowing for computations for example in Weyl algebras. This is a difficult
extension to do in a fraction-free way since the corresponding associated linear
systems do not have commutative elements. As such the standard tools that we
use from linear algebra, namely determinants and Cramer’s rule, do not exist in
the classical sense.

Finally, it is well known that modular algorithms improve on fraction-free
methods by an order of magnitude. We plan to investigate such algorithms for
our rank and left null-space computations.
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A. Appendix: Further Facts on Matrices of Ore Polyno-
mials

In this Appendix we will present a number of technical results that are needed in
our paper. These results are typically well understood in the context of commuta-
tive matrix polynomials but are not at all obvious for the case of noncommutative
matrices of Ore polynomials.

Consider first the notion of the rank of a matrix of Ore polynomials, F(Z) €
Q[Z;0,0]™**. Denote by Mgz = {Q(2)F(Z) : Q(Z) € Q[Z;0,6]'"*™} the
submodule of the (left) Q[Z; o, §]-module Q[ Z; o, §]'*¢ obtained by forming linear
combinations of the rows of F(Z). Then following (Cohn, 1971, p. 28, Section
0.6), the rank of a module M over Q[Z;0,J] is defined to be the cardinality
of a maximal Q[Z; o, §]-linearly independent subset of M. Comparing with our
Definition 2.1, we see that rank F(Z) < rank Mp(z). In Theorem A.2 below show
that in fact we have equality.

Notice that for any A(Z) € Q[Z;0,0]™ ™ we have that Maz)r(z) C Mr(2).
If now A(Z) has a left inverse V(Z) € Q[Z;0,d]™*™, then we also have the
inclusions Mgzy = Mvz)az)Frz) C Maz)r(z), showing that in this case
Ma@zrz) = Mr@z).

For identifying the different concepts of rank, it will be useful to show that the
rows of a row-reduced matrix of Ore polynomials are linearly independent over
Q[Z; 0,6]. This however is an immediate consequence of Lemma A.1(a) below
which in case of ordinary matrix polynomials is referred to as the predictable
degree property (see Kailath (1980), Theorem 6.3.13).

LEMMA A.1l: Let F(Z) € Q[Z;0,6]™"*, with fi = rdegF(Z).
(a) F(Z) is row-reduced if and only if, for any Q(Z) € Q[Z; o, 5] ™,

deg Q(2)F(Z) = mﬁX(ﬁj +deg Q(2)").

(b) Let A(Z) = B(Z) - C(Z) be matrices of Ore polynomials of sizes m X s,
m X r, and r X s, respectively. Then rank A(Z) < r.

(c) Let A(Z) =B(Z)-C(Z) be as in part (b), with A(Z) and C(Z) row-reduced
with row degrees @' < @? < ... < a™ and y* < 2 < ... < 77, respectively.
Then m < r, and &7 > 39 for j =1, ..., m.

(d) Let T(Z) = U(Z) - S(Z), with U(Z) unimodular and with both S(Z) and
T(Z) row-reduced. Then, up to permutation, the row degrees of S(Z) and
T(Z) coincide.
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Proof:  For any Q(Z) € Q[Z;0,0]"*™ let N' := max; i’ + deg Q(Z)"’ and
define the vector h € Q*™, h # 0, by

Q(2)" = W ZN' " 4 lower degree terms.
Clearly, deg Q(Z) - F(Z) < N', with the coefficient at Z"' being given by

ZhJ NCE(FE) = h- oV N (L(F(2))).

Since o is an automorph1sm, we have that F(Z) is row-reduced if and only
if 09(L(F(Z))) is of full row rank for any integer j that is, if and only if
ho! (L(F(Z))) # 0 for all h # 0 and all integers j. This in turn holds true if
and only if deg Q(Z)F(Z) = N’ for any Q(Z) € Q[Z; 0, §]"*™.

In order to show (b), we may suppose by eliminating a suitable number of rows
of A(Z) and B(Z) that rank A(Z) = m. If r < m, then Mgz, C Q[Z;0,6]"*",
the latter Q[Z; o, 0]-module being of rank r. Hence r > rank MB y > rank B(Z).
On the other hand B(Z) has more rows than columns. Thus, by definition of
rank B(Z) there exists a nontrivial Q(Z) € Q[Z;0,6]"*™ with Q(Z)B(Z) = 0.
Thus Q(Z)A(Z) = 0, a contradiction to the fact that A(Z) has full row rank
m. Therefore r > m, as claimed in part (b).

For a proof of part (c¢), recall first that the rows of the row-reduced A(Z) are
Q[Z; 0, 0]-linearly independent by part (a), and hence s = rank A(Z) < r by
part (b). Suppose that @/ > ¥/ for j < k, but @ < F*. Part (a) tells us that
degB(Z)"* < @ — ¢ Since @/ < ¥ < ¢ for j < k < {, we may conclude
that B(Z)?* = 0 for j < k < ¢, in other words, the first k rows of A(Z) are
polynomial linear combinations of the first & — 1 rows of C(Z). Again from part
(b) it follows that the first k& rows of A(Z) are Q[Z; 0, d]-linearly dependent, a
contradiction. Hence the assertion of part (c) holds.

Finally, part (d) is obtained by twice applying part (¢) (compare with (Kailath,
1980, Lemma 6.3.14, p.388) for the case of ordinary matrix polynomials). O

Consider now the left nullspace Ng(z) of a F(Z) € Q[Z;0,5]™**. Clearly, Np(z)
is a Q[Z; 0, d]-module. We want to construct a row-reduced basis of this space,
and obtain information about the degrees of such a basis.

THEOREM A.2: Let F(Z) € Q[Z;0,6]™*%, and U(Z) € Q[Z;0,0|™ ™ be uni-
modular, with T(Z) =U(Z) -F(Z) having r nonzero rows, where the submatriz
consisting of the r nonzero rows of T(Z) are row-reduced. Then

r = rank Mp(zy = rankF(Z) = m — rankNg(z), (32)

with a basis over Q[Z;0,0] of Np(z) given by those rows of U(Z) corresponding
to the zero rows of T(Z).

Moreover, there ezists a row-reduced W(Z) € Q[Z;0,8])™ "™ with rows
forming a basis of the left nullspace Ng(zy, and

rdeg W(Z) < (m — 1)Ne, N =degF(2).
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Proof:  Denote by J the set of indices of zero rows of T(Z), and define the
matrix U(Z)”" by extracting from U(Z) the rows with indices in J. In a first

step, let us determine the left nullspace of T(Z), and establish equality (32) for
the matrix T(Z). For some P(Z) € Q[Z; 0, )" *™ we have

P(Z)T(Z) =Y P(Z)"T(Z)".
2

We have shown implicitly in Lemma A.1(a) that the rows T(Z)’ for j & J
are linearly independent over Q[Z;o,d]. Therefore P(Z) € Nz if and only if
P(Z)" =0 for all j ¢ J, and in addition

r =rank T(Z) = m — rank Np(z).

As mentioned before, we also have that rank T(Z) < rank My(z) =: p. Suppose
that there is strict inequality. Then there exist p elements of Mr(z) which are
Q[Z; 0, 0]-linearly independent and which can be written as rows of the matrix
B(Z)T(Z) for some B(Z) € Q[Z;0,d]?*™. Then rank B(Z)T(Z) = p by con-
struction of B(Z). However T(Z) contains only r rows different from zero, and
hence rank B(Z)T(Z) < r by Lemma A.1(b), a contradiction. Consequently,
(32) holds for the matrix F(Z) being replaced by T(Z).

We now use the fact that U(Z) is unimodular, that is, there exists a V(Z) €
Q(Z;0,0]™™ with V(Z)-U(Z) = U(Z)-V(Z) = I. Consequently, Q(Z) € Nr(z)
if and only if P(Z) = Q(Z) - V(Z) € Nx(z), that is,

Nrz) ={P(2)-U(2) : P(2)"7 =0 for j & J} = My(z)s..

Since U(Z) has a right inverse, we may conclude that NMy(z) = {0}, showing
that rows of unimodular matrices are linearly independent over Q[Z; o, d]. Thus
the rows of U(Z)” form a basis of Nz, and

m — rank Mgy = m — rank Mz = m — r = rank Np(z).

Since again the relation p := rank F(Z) < rank Mgz is trivial, for a proof of
the first part of the assertion of Theorem A.2 it only remains to show that p < r
leads to a contradiction. Suppose without loss of generality that the first p rows
of F(Z) are linearly independent. Then, by maximality of p, we find for any
j=p+1,..,m quantities Q(Z)"* € Q[Z; 0, 4] with

Q2T #0,  QUMF(ZP +Y QUPHF(Z) =0,

k=1

that is, we have found m — p > m — r many Q[Z; 0, §]-linearly independent
elements of ANp(z), in contradiction to our previous findings on rank Np(z).

In order to show the second part of Theorem A.2, suppose that U(Z) and T(Z)
are those defined in Theorem 2.2. Let W(Z) be the row-reduced counterpart
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of U(Z)”" obtained by applying Theorem 2.2. Since one is obtained from the
other by multiplying on the left by some unimodular factor, the rows of W (Z)
form a row-reduced basis of Np(z), with rdegW (Z) < rdegU(Z)”. Hence it
only remains to recall the bound for the row-degree of the multiplier U(Z) of
Theorem A.2: we have for j € J

deg U(Z" < 7 — i + (|jil - |7)) < |fil = 7 < (m — DN.
O

We should mention that the quantity rdegW(Z) of Theorem A.2 is an in-
variant of F(Z) since by Lemma A.1(d), we obtain the same degrees (up to
permutation) for any row-reduced basis of the left nullspace of F(Z). In the
case of ordinary matrix polynomials, the components of rdegW (Z) are usually
referred to as left minimal indices or left Kronecker indices, (see §6.5.4, p. 456
of Kailath (1980)).

We conclude this appendix by showing that a certain number of elementary
properties of the rank remain equally valid for matrices of Ore polynomials.

LEMMA A.3: For any F(Z) € Q[Z;0,8]"*%, the rank of F(Z) does not change
by applying any of the row operations of first or second type described in the
introduction, or by multiplying F(Z) on the right by a full rank square matriz of
Ore polynomials.

Proof: ~ Suppose that A(Z) € Q[Z;0,0]**® is of rank s. Then Nz = {0}
by (32), implying that Np(z)a(z) = Nr(z). Hence F(Z)A(Z) and F(Z) have the
same rank by (32). If U(Z) is unimodular, then Muyz).r(z) = Mp(z), showing
that the rank remains the same. Finally we need to examine the row operation of
multiplying one row of F(Z) with a nonzero element of Q[7; o, §]. Since Q[Z; o, ]
contains no zero divisors, it is easy to check that F(Z) and the new matrix will
have the same number of Q[Z;0,d]-linearly independent rows, and hence the
same rank. O



