Symbolic Summation in Maple

S. A. Abramov* J. J. Carette
Russian Academy of Sciences Computing and Software
Dorodnicyn Computing Centre McMaster University
Vavilova st. 40, 119991, Moscow, GSP-1, Russia Hamilton, L.8S 418, Canada
abramov@ccas.ru carette@mcmaster.ca
K. O. Geddes' H. Q. Lét
Symbolic Computation Group Symbolic Computation Group
University of Waterloo University of Waterloo
Waterloo, N2L 3G1, Canada Waterloo, N2L 3G1, Canada
kogeddes@scg.math.uwaterloo.ca hqle@scg.math.uwaterloo.ca
Abstract

We describe the design and implementation of the Maple toolbox SumTools, a package for computing
closed forms of indefinite and definite sums.

1 Introduction

This document discusses the design of the SumTools package which is used to finding closed forms of indefinite
and definite sums.
For a given function f of k, one can pose the following two problems related to summation:

1. indefinite sum: compute g(k) = >, f(k), i.e., find a function g(k) such that g(k + 1) — g(k) = f(k).
2. definite sum: compute g(m,n) = >_7_ f(k), i.e., the definite sum of f(k) over the given range m..n.

Summation has been an active research topic. There exist many algorithms, which cover various classes
of summands, for computing closed forms of indefinite and definite sums.

Computing a closed form of a sum is one of the very basic operations. This operation exists in all general
computer algebra systems such as Maple, Mathematica, Macsyma, MuPAD. In this document, we propose
a re-design of summation in Maple. The focus is on a smooth integration of independent blocks of code,
and on the development of recently-developed algorithms. Its design is based on four criteria: functionality,
integrability, extensibility, and performance.

2 Design Criteria

1. Functionality. The package should cover a wide range of algorithms which handle various classes of
summands. Not only the focus should be placed on computing a closed form of a given sum successfully,
but also on the ordering of the algorithms implemented so that the “simplest” possible output can be
obtained. Note that there is a trade-off between simplicity of output and performance.

*Partially supported by the French-Russian Lyapunov Institute under grant 98-03.
tPartially supported by Natural Sciences and Engineering Research Council of Canada Grant No. RGPIN8967-01.
{Partially supported by Natural Sciences and Engineering Research Council of Canada Grant No. CRD215442-98.

2. Integrability. The package should be designed to allow the integration of different algorithms in
a simple fashion. This implies code modularization (logical level) and appropriate code structure
(physical level).

3. Extensibility. In order to incorporate newly-designed algorithms and to implement formulas of sums
which exist in large collections of database such as those in [13, 23, 21], the package should be structured
to allow easy addition of new code development.

4. Performance. The selection of algorithms to be implemented should also focus on efficiency. This
also includes implementation of new, efficient algorithms.

3 Architecture Design

3.1 Indefinite Sums

The diagram in Figure 1 provides the classes of summands the package can handle, and the corresponding
algorithms. These include the classes of polynomials, rational functions [1], hypergeometric terms [7], j-fold
hypergeometric terms [12, 15], functions for which their minimal annihilators can be constructed [4], e.g.,
d’Alembertian terms [9]. A library extension mechanism is also used to include sums for which an algorithmic
approach to finding closed forms does not yet exist (i.e., the pattern match approach is employed in principal).
Currently the computable summands include expressions containing the harmonic function; the logarithmic
function; the digamma and polygamma functions; the sine, cosine and exponential functions.

—{ polynomial }—{ based on Bernoulli’s polynomials
—# rational }—{ Abramov’'s
—{ hypergeometric }—{ Abramov & Petkovsek's
—# j-fold hyper geometric }—{ K oepf-Gosper’s
—{ accurate summation }—{ Abramov & Hoeij's
—# extension mechanism }7* harmonic function

f— logarithmic function

[digamma, polygamma functions
— sine

— cosine

‘— exponential function
Figure 1: Indefinite sum: classification

Figure 2 is a flow chart illustrating the use of various algorithms each of which is applicable to a specific
class of summands, as well as the ordering of these algorithms. Since each class is handled by a specific
algorithm, the ordering is clear-cut for the case of indefinite sums.

3.2 Definite Sums

Figure 3 shows a diagram of different algorithms which help compute closed forms of definite sums. In
addition to the method of first computing a closed form of the corresponding indefinite sum as described
in 3.1, there exist other well-known algorithms which allow the computation of a closed form of a given
definite sum “directly” (in some sense). They include the method of integral representation [11], the method
of hypergeometric sums [26, 14], and the “conversion” method which first converts the given definite sum to a
hypergeometric function [22], and then converts this hypergeometric function to “standard functions” [24, 21].

polynomial?

j-fold

rational? hyper geometric? hyper geometric?

Abramov’s ‘ ‘ Abramov & Petkovsek’s ‘ K oepf-Gosper’s ‘ ‘ Abramov & Hoeij’s ‘ Extension Mechanism ‘
Y Y Y

i G(K) ; i G(k) + ZKT(k) ; M

Figure 2: Indefinite sum: a flow chart

integral representation Egorychev's
indefinite sum SeeFigure 2
|definitesum F
hypergeometric sum Zeilberger’'s & Hoeij's
pFq -> standard functions Roach'’s

Figure 3: Definite sum: algorithms

The flow chart in Figure 4 shows the use of different algorithms which attempt to find closed forms
of definite sums, and the ordering of the algorithms used. Except for the case where the summand is a
hypergeometric term and there exist algorithms that specifically handles this case, the input summand used
in other algorithms can be any arbitrary expression in general. Experimentation has been done on a large set
of samples (see Section 7) in order to determine the ordering of the algorithms (recall the trade-off between
simplicity and performance).

For the method “hypergeometric sum”, the implementation also includes new results related to the
applicability of Zeilberger’s algorithm [2], and efficient algorithms to compute Zeilberger’s recurrences [5, 16].
An implementation of these algorithms is discussed in details in [3, 18].

4 Functional Specification

For the remainder of the document, we denote poly, rat, hg;, hg; ; for a polynomial, a rational function, a
j-fold, and an (¢, j)-fold hypergeometric term, respectively; ps¢ for an expression involving the digamma and
polygamma functions; ma for an arbitrary function where its minimal annihilator can be constructed; and
expr for a general expression.

\F("’k) | o |

integral representation ‘ ‘ indefinite sum ‘ ‘ hyper geometric sum ‘ ‘ pFq -> std fnc.
Y Y Y Y

Figure 4: Definite sum: a flow chart

4.1 Main Functionalities
The package SumTools exports three functions and three sub-packages (or sub-modules):

> eval(SumTools);

module()

export HypergeometricTerm, IndefiniteSum, DefiniteSum,
IndefiniteSummation, DefiniteSummation, Summation;

local Preprocess, Tools, LimitRootOf, Floats;

option package;

description “summation tools”;

end module

Let f be a function in k. The three exported functions are

calling sequence description
Inde finiteSummation(f, k); compute an indefinite sum of f(k)
De finiteSummation(f, k = m..n); | compute the definite sum of f(k) over the specified range m..n
Summation(f,...); handle both indefinite and definite sums

They have the following signatures:

Inde finiteSummation: (f:expr,k::name) —> guexpr
De finiteSummation: (f:expr,k:name = m:expr.. niexpr) —> giexpr
Summation: (f::expr,kimame) —> guexpr
Summation: (f:expr,k:name = m:expr.. niexpr) —> giexpr

See Subsection 4.3 for the signatures of the two special cases of De finite Summation.

4.2 The Sub-package IndefiniteSum

The sub-package IndefiniteSum consists of functions to compute indefinite sums of various classes of sum-
mands:

> eval(SumTools:-IndefiniteSum);
module()
export Polynomial, Rational, Hypergeometric, AccurateSummation, Indefinite,
AddIndefiniteSum, RemovelndefiniteSum;
local functab, Polygamma, Remindef, HasIndefiniteSum, GetIndefiniteSum, GetIndefiniteSums,
Geometric, Harmonic, Ln, Stirling2, Cos, Sin, Exp;
option package;

description “indefinite sums”;
end module
The exported functions have the following signatures:

Polynomial: (p::poly,k:name) — g::poly
Rational: (rurat,kiname) — surat + tupsi
Hypergeometric: (t :: hg;,k:name) — Y ¢githgy
AccurateSummation: (frma,k:name) —> guexpr
Indefinite: (f::expr,kimame) —> guexpr
AddInde finite Sum: (fname::name,impl::procedure) — NULL
Removelnde finiteSum: (fname::name) — NULL

The exported functions Polynomzial, Rational, Hypergeometric, AccurateSummation cover the classes
of summands the sub-package can handle (see Figure 1). The main function I'ndefinite, which computes
an indefinite sum of a given input expression, is a combination of the algorithms handling various classes
of summands. The two functions AddIndefiniteSum, Removelnde finiteSum provide a library extension
mechanism which allows the addition and removal of closed forms of indefinite sums which the existing
algorithms cannot yet handle; the argument frname is the name of the function which appears in the
summand, e.g., sin, cos; and the argument ¢mpl is a procedure for handling summands containing fname.

4.3 The Sub-package DefiniteSum
The sub-package consists of only one function for computing closed forms of definite sums:

> eval(SumTools:-DefiniteSum);
module()
export Definite;
local Frontend, Combinatorial, Hypergeometric, IndefFirst, ToHypergeometric, SelectVar;
option package;
description “definite sums”;
end module
The exported function De finite has the following signatures

Definite: (f:expr,k:name = m:expr .. nuexpr) — giexpr
Definite: (f:expr,k:name = ruRootOf(expr)) — guexpr
De finite: (f:expr,k:name = m::expr) —> guexpr

The last two signatures are special cases of the first one, and are used for notational convenience, i.e.,
users can enter them directly. The second signature is simply for a definite sum over the index of a RootOf;
and the third one is for function evaluation at a given point.

The local procedures C'ombinatorial, Hypergeometric, Inde f First, ToH ypergeometricFunction are im-
plementations of the four methods as shown in Figure 3; Frontend is used as the front-end of De finite for
handling simple definite sums quickly.

4.4 The Sub-package HypergeometricTerm

In addition to providing functions for computing closed forms of indefinite and definite sums of hyperge-
ometric terms, the sub-package HypergeometricTerm also includes functions to construct normal forms of
rational functions and of hypergeometric terms. These forms have various applications in computer algebra.
> eval(SumTools:-Hypergeometric);
module()
export PolynomialNormalForm, RationalCanonicalForm, MultiplicativeDecomposition,
SumDecomposition, CanonicalRepresentation, IsHypergeometricTerm, AreSimilar,
IsHolonomic, IsProperHypergeometricTerm, Gosper, ExtendedGosper, KoepfGosper, Zeilberger,
ZeilbergerRecurrence, ExtendedZeilberger, KoepfZeilberger, IsZApplicable, ZpairDirect,

LowerBound, MinimalZpair, WZMethod, IndefiniteSum, DefiniteSum;
local ZeroAndPole, SelectRoots, GosperStep3, ApplyLtoF, MakeMonic;
option package;
description “tools for handling hypergeometric terms”;
end module

The functions to construct normal and canonical forms include

calling sequence description

Polynomial Normal Form(R::rat,k::name);
RationalCanonical Form(R::rat,k:name);
Multiplicative Decomposition(T::hg; ,k::name);
SumDecomposition(T::hgy,k::name);

Canonical Representation(F::hgy 1,n:name,k::name);

the polynomial normal form of R(k) [12, 20]

the two rational canonical forms of R(k) [6]

the two multiplicative decompositions of T'(k) [T7]
an additive decomposition of T'(k) [7]

the two canonical representations of F(n, k) [8]

The functions related to finding closed forms of indefinite and definite sums of hypergeometric terms are

calling sequence

description

I'sHypergeometricTerm(T::expr,k::name);
AreSimilar(Ty ::hgy,To::hgy,kiiname);
IsHolonomic(F::hg 1,ni:name,k:name);
IsProperHypergeometricTerm(F::hgy 1,
niname,kiname);
Gosper(T::hgy,k:name);
ExtendedGosper({Ti::hg1,To::hgy,. . .},
k:name);
KoepfGosper(T::hg;,k:name);
Zeilberger(F::hgy 1,n:name,k:name);
Zeilberger Recurrence(F::hgy 1,
nuname,kiname,m:expr..niexpr);
ExtendedZeilberger(V ,n:mame,k::name);
KoepfZeilberger(G::hg; ;,
niname,kiname);
IsZ Applicable(F::hgy 1 ,n::name,k::name);
Zpair Direct(R::rat,n::name,k::name);
Lower Bound(F::hgy 1,n::name,k::name);

Minimal Zpair(F::hgy 1,n:name,k::name);
W ZMethod(f::expr,r:expr,
niname,kiname);
Inde finite Sum(T ::expr,k:mame);
De finiteSum(F::expr,n:name,
k:name = m:expr..n:expr);

check if T(k) is a hypergeometric term in k

check if the terms Ty (k) and T3 (k) are similar [22]
check if F(n, k) is holonomic [8]

check if F(n, k) is a proper hypergeometric term [8]

indefinite hypergeomeric summation [12]
extended Gosper’s algorithm [22]

extension of Gosper’s algorithm to j-fold terms[15]
perform Zeilberger’s algorithm [26]
construct Zeilberger’s recurrence

for >°1_ F(n,k) [26]
extension of Zeilberger’s for V.=37_ F(m,k) [17]
extension of Zeilberger’s to (¢, j)-fold terms [15]

applicability of Zeilberger’s algorithm to F(n, k) [2]
direct method to construct the Z-pair for R(n, k) [16]
a lower bound for the order of the telescopers

for F(n, k) [5]
compute the minimal Z-pair for F(n, k)
perform Wilf-Zeilberger’s algorithm [25]

indefinite sum of hypergeometric terms
definite sum of hypergeometric terms

See [3, 18] for a detailed discussion of the implementation of this sub-package.

5 Implementation Details

5.1 Code Structure and Dependency

Figure 5 shows code structure and code dependency of the package SumTools. The Preprocess function
classifies the given sum into one of the two types (indefinite or definite). Each type is handled by the corre-
sponding independent sub-module. This allows easy extensibility of functionalities for each sub-module. The
integrability of the package as a whole is shown by the dependency of the sub-modules: HypergeometricTerm
provides functionalities, while Tools provides various auxiliary tools to IndefiniteSum and DefiniteSum;

Extensibility provides a library extension mechanism to IndefiniteSum which in turns provides function-
ality to DefiniteSum.

IndefiniteSum.mm Summation.mm DefiniteSum.mm
Preprocess.mm
[
IndefiniteSum DefiniteSum
Polynomial.mm Frontend.mm
Rational.mm Combinatorial.mm
Hyper geometric.mm Hyper geometricTerm IndefFirst.mm
AccurateSummation.mm] DefiniteSum.mm > Hyper geometric.mm
Indefinitemm | ndefinitesum.mm ToHypergeometricFunction.mm
Definitemm

f

Extensibility Tools

Harmonic.mm ArgumentList.mm

Ln.mm FindSubs.mm

Polygamma.mm Singular.mm

SinCosExp.mm CheckEndPoints.mm

Figure 5: SumTools package: code structure and code dependency

5.2 Library Extension Mechanism

For the case of indefinite sum, a library extension mechanism [19, Chap. 6] is provided. This is done via the
two functions AddInde finite Sum and Removelnde finiteSum of the IndefiniteSum sub-package:

> with(SumTools:-IndefiniteSum);

[AccurateSummation, Hypergeometric, Indefinite, Polynomial, Rational, AddIndefiniteSum,
RemovelndefiniteSum)

Let f be a user-defined procedure which handles summands containing a function g. To add this knowledge
into the function Indefinite, one does

AddInde finiteSum(g, eval (f,1));
Similarly, to remove the knowledge of g from Indefinite, one does

Removelnde finite Sum(g);

5.3 Handling Floats

For a given summand which contains floating-point numbers, the current implementation simply converts
these numbers into exact rational numbers before the corresponding function f which handles the summand
is invoked. Numerical evaluation is then applied to the output from f.

5.4 Handling Composite Structures

If the input is a composite structure (e.g., list, set, matrix, vector) of summands, then the corresponding
solver will map itself into the elements of this structure.

6 Examples

6.1 Indefinite Sums

> with(SumTools:-IndefiniteSum):

Example 1
>F := 1/(n"2+sqrt 5 *n-1);
1

Cn24vhn—1
Since F is a rational function of n, the algorithm [1] is used:
> Sum(F,n) = Rational(F,n);

3 1 _ 4(6n2+6v5n—6n+T7-35)
n24+vin—1 302n+v5+1)(2n+v5-1)(2n+v5-3)

The result shows that F' is rational summable.

Example 2
> F := binomial(n/2+k,k)*2"(-k);

- <n/2k—|— k>

Since F is a 2-fold hypergeometric term w.r.t. n, W. Koepf’s extension to Gosper’s algorithm [15] is used:
> Sum(F,n) = Hypergeometric(F,n);

22 f <n/2k—|— k> ﬁrk <n <n/2k—|— k> it 1)<n/2+;/2—|—k>>
Example 3

> F := n~2/binomial(2#*n,n)/(n"2+3*n+2);

77,2

N (n?2+3n+ 2)(2n")

Although the hypergeometric term F' is not hypergeometric summable, it is possible to re-write F' as A, F1 +
Fs5 where Fy and F5 are hypergeometric terms and Fs is simpler than F [7]. Hence,
> Sum(F,n) = Hypergeometric(F,n);

n? 6n% —11n—125 11 457 n + 250
zn:(n2+3n—|—2)(2n")_ 9(n+1) H4z—|—2 Z54n+1 H4z—|—6

i=1 n i=1

Note that a multiplicative representation of F' is

2

n - i+1
2(n+1)(n+2) Z,:HlQ(2i+1)'

Example 4 [4]
> F := 1/5%((1/2+1/2%57(1/2)) "n-(1/2-1/2*5"(1/2)) "n) ~2;

P (% ((1+2¢5)”_ (1_2ﬁ)n))2

The complete factored minimal annihilator for F' can be constructed using [10], and the application of the
method of accurate summation [4] provides a closed form for the indefinite sum of F :
> Sum(F,n) = AccurateSummation(F,n);

s (5 () e (5 a9

n

Note that instead of calling a specific routine corresponding to the given class of summands as shown in
the above four examples, calling the general routine Inde finite should yield the same answers.

Example 5
> F := sin(x)*cos(x+1)-1n(2#*x);

F :=sin(x) cos(z + 1) — In(2 x)

It is shown in Figure 1 that knowledge about the functions sin, cos, and In is known via the library extension
mechanism. Hence, it is possible to compute a closed form for) F :
> Sum(F,n) = Indefinite(F,x);

) 1 x—xcos(1)2—|—cos (J:)2—|—2xln(2)sin(1)—|—2 In (T (z)) sin (1)
Zsm(l‘) cos(z+1)—In(2z) = — 3 sin (1)

n

6.2 Definite Sums

> with(SumTools:-Definite):

Example 6
> F := (2+k) " (k-2)*(1+n-k) " (n-k)/(k'*(n-k)');

24k (1+n—k""

F =
kY (n—k)!

The method [11] recognizes the summand is Abel’s type, and is able to find a closed form for Y., _, F:
> Sum(F,k=0..n) = Definite(F,k=0..n);
z”: C+k) P A4+n—k)"" (3+n

1 1)n—l
k' (n—k)! 4 n! 6 (n—1)!

k=0

Example 7 [23, Ex. 10, p.121]
> F := binomial (2*n—-2*k,n-k)#*2~ (4*k)*((2*k)*(2*k+1)*binomial (2*k,k)) " (-1);
n—2k
(hzeh)2t
2k
k(2k+1) (%)

| —

Since F' is hypergeometric summable w.r.t. k, a closed form of Zzzl F can be computed:
> Sum(F,k=1..n) = Definite(F,k=1..n);

L G o)
SRR () 2

Example 8 [23, Ex. 11, p.164]
> F := binomial(2*n+1,2%k)"2;
2n 41\
()
Zeilberger’s algorithm is applicable to the hypergeometric term F [2]. The combination of this algorithm
and the one in [14] helps find a closed form of >, _, F:
> Sum(F,k=0..n) = Definite(F,k=0..n);
2n+1\? 4T (2n+3/2)
l;)(2k > CT(n+1)T(n+3/2)

Example 9
> F := 2°(2*k)/Pi~(1/2) *GAMMA (k-n) *GAMMA (k+n) /GAMMA (2*k+1) *z"k;
22K T (k —n) T (k +n) 2*
VAT (2k+1)
The “conversion” method is used in this example. It first converts > ., F to hypergeometric function
(—/7/(sin(m n)n) 2 F1(n, —n;1/2; z) which is then converted to “standard functions”:
> Sum(F,k=0..infinity) = Definite(F,k=0..infinity);

F =

oQ

Z 22K (k —n) T (k +n) 25 _ _ /mcos (2narcsin (y/2)) esc (1 n)
LT AT 2k A1) n

Example 10

Recall that the RootO f structure in Maple is a place holder for representing all the roots of a given expression
in one variable. In particular, it is the standard representation for algebraic numbers, algebraic functions.
> F = (£72+1)/(t"3-5*%t+2);

t2
poo_t+L
3 —5t+2
> Sum(F,t=Root0f(x"5+x+1)) = Definite(F,t=Root0f(x"5+x+1));
Z 241 _ @
3 —5t+2 833

t=RootOf(_Z%+_Z+1)

7 Testing

The goal is to include as many tests from different sources as possible. At this moment, we have prepared
a number of tests. Many of them are taken from [13, 23]. For the indefinite case, 618 summands are tested:
30 polynomials, 60 rational functions, 477 hypergeometric terms, and 51 used for accurate summation. As
for the definite case, 177 summands are used to test the four main methods.

It is necessary that all the calls to sum in the Maple test suite be tested. This is planned for near future.

8 Concluding Remarks

We have presented in this document a design for the SumTools package. When the package is “completed”,
the function Summation is expected to replace the current command sum in Maple. In terms of functional-
ities, the package includes the incorporation of accurate summation and of additive decomposition of hyper-
geometric terms to the indefinite case; the integration of the sub-package SumTools:-HypergeometricTerm,
and of the function convert/StandardFunctions (in the “conversion” method) are included for the definite
case. These algorithms are not implemented or not incorporated to the current sum.

Although the code structure is new, we should stress that we re-use good pieces of code written by
various Maple developers throughout many years. Hence, this work is a collective contribution of the Maple
developers. Of equal importance, the design also focuses on the integrability and on the extensibility. This
hopefully will help the maintenance and future development.

10

References

[1] S.A. Abramov, Indefinite sums of rational functions, Proc. ISSAC 95, 1995, 303-308.

[2] S.A. Abramov, Applicability of Zeilberger’s algorithm to hypergeometric terms, Proc. ISSAC’02, ACM
Press, 2002, 1-7.

[3] S.A. Abramov, K.O. Geddes, H.Q. Le, Computer algebra library for the construction of the minimal
telescopers, Proc. ICMS’02, 2002, 319-329.

[4] S.A. Abramov, M.v. Hoeij, Integration of solutions of linear functional equations, Integral Transforma-
tions and Special Functions, 1999, Vol.8, No. 1-2, 1999, 3-12.

[6] S.A. Abramov, H.Q. Le, A lower bound for the order of telescopers for a hypergeometric term, Proc.
FPSAC’02, 2002, on CD.

[6] S.A. Abramov, M. Petkoviek, Canonical representations of hypergeometric terms. Proc. FPSAC’2001,
2001, 1-10.

[7] S.A. Abramov, M. Petkovsek, Optimal decomposition of indefinite hypergeometric sums, Proc. IS-
SAC’01, ACM Press, 2001, 7-14.

[8] S. Abramov and M. Petkovsek, Proof of a conjecture of Wilf and Zeilberger, University of Ljubljana,
Preprint series, 39, 2001.

[9] S.A. Abramov, E.V. Zima, D’Alembertian solutions of inhomogeneous linear equations (differential,

difference, and some other). Proc. ISSAC’96,ACM Press, 1996, 232-240.
[10] S.A. Abramov, E.V. Zima, Minimal Completely Factorable Annihilators, Proc. ISSAC’97, 1997.

[11] G.P. Egorychev, Integral representation and the computation of combinatorial sums. Novosibirsk,
Nauka, 1977 (in Russian); English: Transl. of Math. Monographs, Vol. 59, AMS, 1984, 2-nd Ed. in
1989.

[12] R.W. Gosper, Jr., Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci.
USA 75, 1977, 40-42.

[13] H.W. Gould, Combinatorial Identities, Morgantown, W. Va. 1972.

[14] M. van Hoeij, Finite singularities and hypergeometric solutions of linear recurrence equations. J. Pure

Appl. Algebra, 139, 1999, 109-131.

[15] W. Koepf, Hypergeometric summation: an algorithmic approach to summation and special function
tdentities, Vieweg, 1998.

[16] H.Q. Le, A direct algorithm to construct Zeilberger’s recurrences for rational functions, Proc. FPSAC01,
2001, 303-312.

[17] H.Q. Le, Computing the minimal telescoper for sums of hypergeometric terms, SIGSAM Bulletin, v.
35, no. 3, September, 2-10.

[18] H.Q. Le, S.A. Abramov, K.O. Geddes, HypergeometricSum: A Maple package for finding closed forms
of indefinite and definite sums of hypergeometric type, Technical report CS-2001-24, Department of
Computer Science, University of Waterloo, Ontario, Canada.

[19] M.B. Monagan, K.O. Geddes, K.M. Heal, G. Labahn, S.M. Vorkoetter, J. McCarron, P. DeMarco,
Maple 7 Programming Guide, Toronto: Waterloo Maple Inc., 2001.

[20] M. Petkoviek, Hypergeometric solutions of linear recurrences with polynomial coefficients, J. Symb.
Comput. 14, 1992, 243-264.

11

[21] A.P. Prudnikov, Yu. Brychkov, O. Marichev, Integrals and Series, Volume 3: More Special Functlions.
Gordon and Breach Science Publishers, 1990.

[22] M. Petkovsek, H. Wilf, D. Zeilberger, A=B, A.K.Peters, Wellesley, Massachusetts, 1996.
[23] J. Riordan, Combinatorial identities, John Wiley & Sons, 1968.

[24] K. Roach, Hypergeometric function representations. Proc. ISSAC’96, ACM Press, New York, 1996,
301-308.

[25] H. Wilf, D. Zeilberger, Rational functions certify combinatorial identities, J. Amer. Math. Soc. 3, 1990,
147-158.

[26] D. Zeilberger, The method of creative telescoping, J. Symb. Comput. 11, 1991, 195-204.

12

