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ABSTRACT
Lazy replication is a popular technique for improving the
performance and availability of database systems. Although
there are concurrency control techniques which guarantee
serializability in lazy replication systems, these techniques
do not provide freshness guarantees. Since transactions may
see stale data, they may be serialized in an order different
from the one in which they were submitted. Strong serializ-
ability avoids such problems, but it is very costly to imple-
ment. In this paper, we propose a generalized form of strong
serializability that is suitable for use with lazy replication.
It has many of the advantages of strong serializability, but
can be implemented more efficiently. We show how gener-
alized strong serializability can be implemented in a lazy
replication system, and we present the results of a simula-
tion study that quantifies the strengths and limitations of
the approach.

1. INTRODUCTION
Replication is a popular technique for improving the per-

formance and availability of a database system. In dis-
tributed database systems, replication can be used to bring
more computational resources into play, or to move data
closer to where it is needed.
A key issue in replicated systems is synchronization. Gray

et al [8] classified synchronization schemes into two gen-
eral categories: eager and lazy. Eager systems propagate
updates to replicas within the scope of the original updat-
ing transaction. This makes it relatively easy to guarantee
transactional properties, such as serializability. However,
since transactions are distributed and relatively long-lived,
the approach does not scale well. Lazy schemes, on the other
hand, update replicas using separate transactions.
Several algorithms have been proposed for guaranteeing

globally serializable executions when updates are lazy. [15,
5, 4] Although serializability is a desirable property, it may
not be enough. Consider a very simple example involving
an on-line ticketing service that uses two types of database
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Figure 1: Transaction Execution History Example

transactions: Reserve and Status. The Reserve transaction
books seats and records the booking in the customer’s vir-
tual shopping bag . The Status transaction reports the cur-
rent contents of a customer’s shopping bag.
Figure 1 illustrates a possible transaction execution his-

tory that includes Reserve and Status transactions performed
on behalf of a hypothetical customer. If the database system
guarantees serializable transaction executions, it is natural
to assume that Treserve will be serialized before Tstatus, since
Treserve finishes before Tstatus has even started. However,
this is not the case. Serializability ensures that transactions
will appear to execute serially in some order, not necessarily
in the order in which they are submitted. Since the customer
presumably expects the booking to appear in the shopping
bag, serializing Treserve after Tstatus is a problem.
In many database systems this kind of transaction re-

ordering cannot occur. The concurrency controls in such
systems guarantee a property that has been called strong
serializability.[3] Informally, a strongly serializable transac-
tion history is a serializable history in which a transaction
that starts after a previous transaction has finished is se-
rialized after its predecessor. For the history illustrated in
Figure 1, this means that Tstatus would be guaranteed seri-
alization after Treserve.
At first glance, it might appear to be unrealistic to worry

about concurrency controls that guarantee serializability but
not strong serializability. After all, many well-known and
widely used concurrency control algorithms, including strict
two-phase locking, do guarantee strong serializability. How-
ever, when data are replicated and the copies are synchro-
nized lazily, transaction reordering can easily occur. Re-
ordering can occur if transactions are allowed to see stale
replicas. For example, if Tstatus in Figure 1 runs against a
stale replica, it may “see” a database state that does not
include the effects of Treserve. Thus, in the context of repli-
cated databases, guarantees on transaction ordering can also
be thought of as guarantees on the freshness of data. Say-
ing that Tstatus must follow Treserve is the same as saying
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Figure 2: Execution Example with Two Customers

that Tstatus must see a database state that is at least fresh
enough to include the effects of Treserve.
Concurrency control algorithms that have been proposed

for lazy replication environments do not address this prob-
lem. They guarantee serializability, but not strong serializ-
ability.[15, 5, 4] To address this concern, one could design a
concurrency control that will guarantee strong serializabil-
ity. The problem with this approach is that such algorithms
are likely to obviate any benefits (performance, scalability)
that might have been derived from replication in the first
place. Once some copy of the data has been updated, repli-
cas would effectively become useless until they too had been
updated. In effect, this is turning lazy propagation into ea-
ger propagation.
In this paper, we adopt a more flexible approach in an

attempt to avoid this problem. The basic idea can be ex-
plained using the example in Figure 2. This example is like
the one in Figure 1, only now there are two different cus-
tomers. The first customer is booking tickets, as in Figure
1. The second customer is executing Tavail, which simply
checks ticket availability. In this example, we argue that it is
important that Tstatus be serialized after Treserve. However,
the serialization order of Tavail and Treserve is not important,
in the following sense. The first customer can observe the
sequential nature of his own requests, and expects it to be
preserved. However, he does not observe the arrival times
of other customers’ requests, and thus he has no such ex-
pectations for their ordering relative to his own. Indeed, he
does not observe others’ requests at all, except indirectly
through their effects on the database. Similarly, the second
customer is not aware of the arrival time of Treserve relative
to his own Tstatus transaction.
Arguably, it is desirable to show every transaction the

freshest possible database state. Our point is that if ei-
ther Tstatus or Tavail has to see a stale state that does not
include Treserve, it should be Tavail that does so. Notice
that this has nothing to do with data conflicts between the
transactions - like Tstatus, Tavail may very well conflict with
Treserve. Nor does it have to do with transaction start and
end points - both Tavail and Tstatus start after Treserve has
finished.
In the example from Figure 2, neither serializability nor

strong serializability is appropriate. Serializability alone is
too weak, as it does not guarantee that Tstatus will appear
to follow Treserve. Strong serializability, on the other hand,
is too strong. It permits one and only one serialization or-
der: Treserve followed by Tavail followed by Tstatus. This

imposes unnecessary restrictions that can hurt performance.
It should be possible to place Tavail anywhere in the serial-
ization order.
This paper makes the following contributions. First, we

introduce a new correctness criterion, called session level
strong serializability, or strong session 1SR, for concurrent
transaction executions in replicated systems. Strong ses-
sion 1SR generalizes both serializability and strong serial-
izability by capturing the intuition that some transaction
ordering constraints are important, and others are not. Sec-
ond, we describe several techniques for implementing strong
session 1SR in a simple lazy master (under Gray’s classifi-
cation scheme) replication architecture. Finally, we present
the results of simulation studies which quantify the costs and
benefits of these techniques. In particular, we identify con-
ditions under which strong session 1SR can be implemented
much more efficiently than strong serializability, and, in fact,
almost as efficiently as plain serializability, which provides
no ordering guarantees.
The rest of the paper is organized as follows. In Section

2, we start by presenting the lazy master architecture, and
describe how regular serializability (with no ordering guar-
antees) can be implemented within it. In Section 3 we de-
fine strong session 1SR and relate it to existing transaction
correctness criteria. Section 4 describes how the lazy master
system from Section 2 can be enhanced so that it guarantees
strong session 1SR. Sections 5 and 6 present the simulation
model and the results of our performance evaluation, and
Section 7 describes related work.

2. SYSTEM ARCHITECTURE
In this section we describe the distributed system archi-

tecture that we will consider in this paper. We describe
how transactions are processed and how updates are propa-
gated among the sites, and we show that these mechanisms
guarantee one-copy serializability. We will call this the base
system, since it represents our starting point. The base sys-
tem uses well-known techniques adapted to work within the
architecture we are considering. The base system guaran-
tees global serializability. Later, in Section 4, we will show
how to extend the base system so that it guarantees strong
session 1SR.
Figure 3 illustrates the architecture of the base system.

A primary site holds the primary copy of the database, and
one or more secondary sites hold secondary copies of the
database. Each site consists of an autonomous database
management system with a local concurrency controller. For
the purposes of this paper, we will assume that the database
is fully replicated at the secondary sites. This is not nec-
essary for the concurrency controls that we will describe,
but it simplifies the presentation. If the database were not
fully replicated, an additional mechanism would be needed
to route transactions to the site(s) that hold the particular
data they require.
Clients connect to the secondary sites and submit streams

of transactional database operation requests. We assume
that read-only transactions are distinguished from update
transactions in the request streams. Each transaction is ex-
ecuted at a single site. Read-only transactions are executed
at the secondary site to which they are submitted. Update
transactions are forwarded by the secondaries to the primary
and executed there. According to the classification proposed
by Gray et al, this is a lazy master architecture.[8] Clearly, it
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Figure 3: Lazy Master System Architecture

is appropriate only for read-mostly workloads since the pri-
mary site is a potential update bottleneck. However, many
common workloads in application areas such as information
retrieval [1], data dissemination [6] and web commerce [16],
are read-mostly. The architecture has the advantage that an
arbitrary number of secondary sites can be added to scale
the system with increasing read-only transaction workloads.
The base system uses the following general approach to

ensure global serializability. All update transactions are seri-
alized by the local concurrency control at the primary site.
Updates are propagated lazily to the secondary sites, and
transactionally installed there in the same order in which
they are serialized at the primary. Thus, at any time, each
secondary site will hold a snapshot, probably stale, of the
primary database. Read-only transactions run against these
snapshots. The secondary sites are not synchronized with
each other, so at any given time some secondary sites may
be more or less fresh than others.
There are several specific issues that must be addressed in

order to make this general approach work. We discuss these
in the next two subsections.

2.1 Update Propagation
Updates made by committed transactions are propagated

lazily from the primary site to the secondary sites. This
means that propagation occurs some time after the update
has been committed at the primary. A variety of mecha-
nisms, including log sniffers and triggers, can be used to
generate a change log for propagation. One such mecha-
nism, more general than the one required here, is described
in [14]. Propagated updates arriving at each secondary are
placed in a FIFO update queue there. We will not be con-
cerned in this paper with the exact format of the change log
or the update propagation messages.
We assume that the local concurrency control at the pri-

mary site guarantees that transactions can be serialized in
the order in which they commit. Many well-known con-
currency control protocols, such as strict two-phase locking,

have this property, which has been called commitment or-
dering (and strongly recoverable).[3, 13] We also assume that
the propagation mechanism propagates updates in commit
order, and that they are not lost or reordered by the net-
work. Thus, the updates appear in the secondary update
queues in commit order, which is the same as their serial-
ization order.

2.2 Refresh
At each secondary site, a refresh process removes propa-

gated updates from the local update queue and applies them
to the local database copy. For each transaction’s queued
updates, the refresher uses a separate local refresh transac-
tion to install those updates in the local secondary database
copy. Thus, for every update transaction at the primary
there is eventually one corresponding refresh transaction at
each secondary site.
It is important that the local concurrency control at each

secondary site should serialize the refresh transactions in the
same order in which the corresponding update transactions
were serialized at the primary site. We use a simple mecha-
nism to achieve this: the refresh process performs the refresh
transactions sequentially in the order in which updates are
retrieved from the local update queue, and the local concur-
rency controller at the secondary is assumed to ensure that
sequentially executed transactions can be serialized in the
order in which they are executed. This property, which is
slightly weaker than commitment ordering, has been called
strong serializability.[3]
A drawback of this mechanism is that refresh transaction

throughput is limited by sequential execution. This restric-
tion can be relaxed, allowing refresh transactions to run in
parallel. However, if refresh transactions are executed in
parallel, there must be some mechanism to ensure that they
will be serialized in the proper order. Several such mech-
anisms, including ticketing and transaction conflict analy-
sis, have been proposed in the literature.[7, 9] Any of these
techniques could be applied to parallelize the refresh trans-
actions. However, since our global concurrency control tech-
niques depend only on the proper serialization of the refresh
transactions and not on the particular mechanism used to
achieve it, we will stick with the simple sequential execution
mechanism in this paper.
Finally, we note that the refresh process must contend

with concurrent read-only transactions for access to the database
at the secondary, and with the propagator for access to the
local update queue. The refresh process uses one transac-
tion, called a retrieval transaction, to remove updates from
the queue, and a second transaction (the refresh transac-
tion) to apply those updates to the database tables. The
local concurrency control at the secondary is used to se-
rialize both types of transactions. However, the retrieval
transactions are a special case since propagation is append-
only and the retrieval transactions read the updates from
the queue in append order. It is sufficient for the retrieval
transactions to run at a reduced SQL isolation level, namely,
read committed.[10] The refresh transactions, however, must
run at the serializable level.

2.3 Discussion
It should be clear that the database at each secondary

site evolves through exactly the same sequence of states as
the primary database, although it may lag behind because



propagation is lazy. That is, each time a refresh transaction
commits, the resulting secondary database state is the same
as the primary database state when the corresponding up-
date transaction committed. Zhuge et al called this property
completeness.[17] Since we have completeness, it should also
be easy to see that this system guarantees global, one-copy
serializability (1SR).

Lemma 1. If the primary and all secondary database copies
begin in the same state, the base system guarantees 1SR.

Proof. Let Ti represent the ith transaction to commit
at the primary and let Si represent the database state at the
primary that results from that commit. Since the primary’s
local concurrency control guarantees commitment ordering,
primary transactions are serialized in the order T1, T2, T3, . . .

and the primary database moves through the sequence of
states S0, S1, S2, . . . as the primary transactions commit.
Now consider a secondary site. The only updates that oc-
cur at this site are made by refresh transactions. Since
the propagation and refresh mechanism provides the com-
pleteness property, the database at the secondary site moves
through the states S0, S1, S2, . . . as refresh transactions com-
mit. Since the local concurrency control at the secondary
site serializes read-only transactions and local refresh trans-
actions, each read-only transaction at the secondary site will
see one of these states. Suppose that read-only transaction
Tr sees state Si at the secondary. This is equivalent to run-
ning Tr at the primary after Ti and before Ti+1. Since every
read-only transaction can be fit into the update transaction
serialization order in this way, 1SR is ensured.

As we have already noted, a desirable feature of the base
system is that an arbitrary number of secondary sites can be
added to scale the system’s capacity for processing read-only
transactions. Ultimately, the system’s bottleneck will be
the ability of the primary site to handle the updates. Note,
however, that the only constraint on the primary site is that
its local concurrency control must provide the commitment
ordering property for update transactions. Parallelization
and distribution can be used to improve the capacity of the
primary site, as long as this property is maintained.
The primary disadvantage of the base system, of course,

is that it does not provide the ordering guarantees that
were described in Section 1. Globally, the base system pro-
vides serializability but not strong serializability. Consider
again the example illustrated in Figure 1. In the base sys-
tem, Treserve, an update transaction, would be executed
at the primary site, while Tstatus, a read-only transaction,
would be executed at a secondary site. Since the secondary
databases are stale, Tstatus may “see” a database state that
does not include Treserve, even though Tstatus is executed af-
ter Treserve. In the remainder of this paper, we will consider
how to extend the base system to correct this problem.

3. CORRECTNESS
Breitbart et al used the term strong serializability to mean

serializability in which the ordering of non-concurrent trans-
actions is preserved in the serialization order.[3] Since we
are concerned in this paper with replicated databases, we
present here a slightly modified version of their definition
that is appropriate when there is replication.

Definition 1. Strong 1SR: A transaction execution his-
tory H is strongly serializable (Strong 1SR) iff it is 1SR and,

for every pair of committed transactions Ti and Tj in H such
that Ti’s commit precedes the first operation of Tj , there is
some serial one-copy history equivalent to H in which Ti

precedes Tj .

A transaction execution history over a replicated database
is one-copy serializable (1SR) if it is equivalent to a serial
history over a single copy of the database.[2]
As discussed in Section 1, Strong-1SR can be too strong:

it requires the enforcement of transaction ordering constraints
that may be unnecessary in a given application, e.g., the
constraint that Tavail must follow Treserve in the example of
Figure 2. Furthermore, it may be very costly to implement
Strong-1SR. Consider what would be involved in enforcing
Strong-1SR in the base system described in the previous
section, for the example from Figure 2. Since Treserve is
an update transaction, it would be executed at the primary
site. Tavail, which is a read-only transaction, would exe-
cute at a secondary site. However, Tavail may not be able
to execute immediately at the secondary since Strong-1SR
requires that Tavail see the effects of Treserve. Tavail would
have to wait until Treserve’s reservation was propagated to
the secondary and applied to the database there. Since the
ordering of Tavail and Treserve is not important in this appli-
cation, the wait is unnecessary. This difficulty is not simply
an artifact of the base system. In any replicated system,
Strong-1SR will have the effect of limiting the usefulness of
replicas while updates are being propagated.
We propose a weaker notion of correctness that reflects

the idea that ordering constraints may be necessary between
some pairs of transactions, but not others. Abstractly, we
use sessions as a means of specifying which ordering con-
straints are important and which are not. A session is sim-
ply a set of transactions. The transactions in an execution
history H are partitioned into one or more sessions. Or-
dering constraints will be enforced among transactions in a
single session, but not between transactions from different
sessions.
We use a session labeling to identify which transactions

are assigned to each session:

Definition 2. Session Labeling: A session labeling LH

of an execution history H assigns a session label (identifier)
to each transaction in H.

We use the notation LH(T ) to refer to the session label of
transaction T . Given an execution history H and a labeling
LH , we define our correctness criterion as follows:

Definition 3. Strong session 1SR: A transaction exe-
cution history H is session-level strong one-copy serializable
(strong session 1SR) under labeling LH iff it is 1SR and,
for every pair of committed transactions Ti and Tj in H

such that LH(Ti) = LH(Tj) and Ti’s commit precedes the
first operation of Tj , there is some serial one-copy history
equivalent to H in which Ti precedes Tj .

Note that if LH assigns the same label to all transactions
in H, then strong session 1SR reduces to strong 1SR. Con-
versely, if LH assigns a distinct label to each transaction in
H, then no ordering constraints are important, and strong
session 1SR reduces to 1SR, which provides no freshness
guarantees.
To use Definition 3, we must specify a session labeling for

the transactions. The appropriate choice depends on the



Strong
Strong Session
1SR 1SR 1SR

Treserve < Tavail < Tstatus ok ok ok
Treserve < Tstatus < Tavail - ok ok
Tavail < Treserve < Tstatus - ok ok
Tavail < Tstatus < Treserve - - ok
Tstatus < Treserve < Tavail - - ok
Tstatus < Tavail < Treserve - - ok

Table 1: Serialization Orders Permitted by Various

Correctness Criteria

requirements of the application. For example, one natural
choice might be to associate one session with each client
application connection to a database server. This would
have the effect of ordering the transactions over a single
connection, but not across connections. In the case of the
example in Figure 2, we wish to enforce ordering constraints
among the transactions generated by a single customer, but
not between transactions generated by different customers.
Therefore , it is natural to use a distinct session label for
each customer session with the reservation system. In a
three-tier web services environment, the customer sessions
may be tracked by the application server or web server using
cookies or a similar mechanism. In this case, we can imagine
that the upper tiers create session labels and pass them to
the database system to inform it of the ordering constraints.
Suppose that, using such a mechanism, the first customer’s

transactions (Treserve and Tstatus) get one session label, and
the second customer’s transaction (Tavail) gets a different
session label. Table 1 summarizes the transaction serializa-
tion orders that would be allowed under 1SR, strong 1SR
and strong session 1SR under this labeling. As the example
shows, strong session 1SR allows more flexibility than strong
1SR, while preserving the important ordering constraints.

4. ENFORCING STRONG SESSION 1SR
In Section 2, we described a lazy master base system and

showed that it guaranteed 1SR. In the base system, the
global serialization order of transactions that execute at the
primary site is determined by their commit order at the pri-
mary site. Each primary transaction has a corresponding
refresh transaction at each secondary site, and the refresh
transactions are serialized locally at the secondaries in the
same order as the corresponding primary transactions. A
secondary read-only transaction that is serialized locally be-
tween the refresh transactions corresponding to Ti and Ti+1

is globally serialized between Ti and Ti+1.
1

In this section, we show how to augment the base system
with a global concurrency control that will guarantee strong
session 1SR. We present two global concurrency control al-
gorithms. Both are based on the same local concurrency
control assumptions and the same update propagation mech-
anism used by the base system. Both guarantee global 1SR
for the same reason the base system does (see Lemma 1).
Here, we will show that the augmented system guarantees
the more restrictive strong session 1SR property. To simplify
the presentation, we will assume initially that individual ses-
sions are not distributed across secondary sites. That is, all

1If there are multiple read-only transactions between Ti and
Ti+1, they can be globally serialized in any order.

of the transactions of any given session are directed to the
same secondary site.2 At the end of this section, we will
consider how to relax this assumption.
Global concurrency control is implemented by a set of

global concurrency control modules, one at each secondary
site. The individual modules are independent of one an-
other, because of our assumption that each session is di-
rected to a single site. Each module is responsible for ensur-
ing transaction ordering within the sessions that are directed
to its site.
We assume that the primary site is capable of reporting a

commit sequence number for each local transaction when it
commits. We will use seq(T ) to denote the sequence number
for transaction T . These sequence numbers must have the
property that seq(T1) < seq(T2) if and only if T1 commits
before T2 at the primary site. Since the local concurrency
control at the primary site is assumed to guarantee the com-
mitment ordering property, and since the local serialization
order of primary transactions is the same as their global se-
rialization order, this means that the sequence numbers cap-
ture the global serialization order of primary transactions. A
natural choice for seq(T ) would be the log sequence number
of T ’s commit log record at the primary site. However, as
long as the sequence numbers are monotonically increasing
with serialization order, the exact choice is not important.
When a transaction T is propagated from the primary site
to the secondaries, we assume that its propagation record
is tagged with seq(T ). Again, if commit sequence numbers
are log sequence numbers and if the propagator uses the log
to extract updates, this is relatively simple to achieve.
The global concurrency control module at each secondary

site maintains a sequence number for the database at its
site, which we will refer to as seq(DB). When a refresh
transaction applies T at the secondary site, it sets seq(DB)
to seq(T ). Since transactions are propagated in sequence
number order, and applied to the secondary databases in
the order in which they arrive, seq(DB) is monotonically
increasing at each secondary site. (Since the secondary sites
are not synchronized, each will, in general, have a different
value for seq(DB).)
We propose two algorithms for guaranteeing strong ses-

sion 1SR within this framework. The first, called Block, is
summarized in Figure 4. The second, called Forward, is sum-
marized in Figure 5. Both algorithms maintain one sequence
number for each session. Both algorithms immediately for-
ward update transactions to the primary site for execution.
However, they differ in the way they handle read-only trans-
actions. Immediate execution of a read-only transaction at
the secondary site may violate strong session 1SR if up-
dates from a previous transaction in the session are not yet
reflected in the secondary database. The Block algorithm
handles this problem by delaying the read-only transaction
until the secondary database reflects the previous transac-
tion’s updates. The Forward algorithm, in contrast, handles
this problem by forwarding the read-only transaction to the
primary site, where it can see the update immediately.
Figure 4 describes the actions that are taken by the global

concurrency control under the Block algorithm. Each action
describes how a global concurrency control module at a sec-
ondary site reacts when transactions from its sessions either

2The secondary site may then forward some transactions to
the primary.



At start of update transaction T in session s:
start T at primary site

At commit of update transaction T in session s:
commit T at primary site, obtain seq(T )
seq(s)← seq(T )

At start of read-only transaction T in session s:
minseq(T )← seq(s)
begin transaction

d← seq(DB)
end transaction

while d < minseq(T ) do

delay

begin transaction

d← seq(DB)
end transaction

end while

start T at secondary site

At commit of read-only transaction T in session s:
commit T at secondary site

Figure 4: The Block Algorithm

At start of update transaction T in session s:
start T at primary site

At commit of update transaction T in session s:
commit T at primary site, obtain seq(T )
seq(s)← seq(T )

At start of read-only transaction T in session s:
begin transaction

d← seq(DB)
end transaction

if d < seq(s) then

site(T )← “primary”

start T at primary site

else

site(T )← “secondary”

start T at secondary site

At commit of read-only transaction T in session s:
if site(T ) = “primary” then

commit T at primary site, obtain seq(T )
seq(s)← seq(T )

else

commit T at secondary site

Figure 5: The Forward Algorithm

start or commit.3 In particular, the initiation of a read-only
transaction is blocked until the database sequence number
is at least as great as that transaction’s session’s sequence
number, which represents the serialization order of the most
recently committed update transaction in the session. This
ensures that the read-only transaction will “see” the up-
date transactions that precede it in its session. In Figure 4,
this check is implemented by polling the database sequence
number (seq(DB)). Other, more efficient implementations
are also possible. In particular, blocked transactions could
be signaled once the refresh transactions have advanced the
database sequence number far enough.
In both algorithms, each concurrency control action must

be executed atomically with respect to other events from
the same session. An exception is that while a read-only
transaction is waiting for seq(DB) to advance, other events
may occur. Another issue is the contention between the
concurrency control actions, which read seq(DB), and re-
fresh transactions, which update it. When the global con-
currency control module needs to read seq(DB) it uses a
short auxiliary transaction to do so. (These transactions
are delimited in Figures 4 and 5 by begin transaction

and end transaction.) The auxiliary transactions are se-
rialized with other transactions at the secondary site by the
local concurrency control.
Figure 5 describe the concurrency control actions taken

under the Forward algorithm. New read-only transactions
are executed locally if the local database state (seq(DB))
is recent enough. Otherwise, they are forwarded to the pri-
mary. When a read-only transaction is forwarded to the pri-
mary site, it obtains a sequence number in the same manner
as an update transaction would.
Both the Block algorithm and the Forward algorithm guar-

antee Strong Session 1SR.

Theorem 1. If each transaction session is directed to a
single secondary site, the local concurrency controls ensure
commitment ordering (primary site) or strong serializability
(secondary sites), and all database copies start in the same
state, then the Block algorithm guarantees global strong ses-
sion 1SR.

Proof. Suppose that the claim is false, which means that
there exists a pair of transactions T1 and T2 in the same
session for which T1 is executed before T2 but T1 cannot be
serialized before T2. There are four cases to consider:

Case 1: Suppose T1 and T2 are update transactions. T1

and T2 both execute at the primary site. Since the
primary site ensures commitment ordering and since
T2 starts after T1 finishes, T1 is serialized before T2, a
contradiction.

Case 2: Suppose T1 is a read-only transaction and T2 is an
update transaction. Since T1 precedes T2 and T2 pre-
cedes its refresh transaction (T R

2 ), T1 precedes T R
2 at

the secondary site. Since the secondary site ensures
strong serializability, T1 is locally serialized before T R

2

at the secondary, and thus it is globally serialized be-
fore T2, a contradiction.

Case 3: Suppose T1 is an update transaction and T2 is a
read-only transaction. When T1 commits, seq(s) is

3No actions are required when a transaction aborts.



set to seq(T1). seq(s) is monotonically increasing over
time, since it is set by the commit of update trans-
actions at the primary. Therefore, when T2 attempts
to start, seq(s) ≥ seq(T1). T2 will be blocked un-
til an auxiliary transaction finds seq(DB) ≥ seq(s),
which implies seq(DB) ≥ seq(T1). Since T2 runs after
the auxiliary transaction(s) and the local concurrency
control ensures strong serializability, T2 also sees the
database in at least state seq(T1). Thus, it is globally
serialized after T1, a contradiction.

Case 4: Suppose both T1 and T2 are read-only transac-
tions. Both transactions run at the secondary site.
Since strong serializability is guaranteed locally there,
T2 sees the database in the same state as T1, or in
a later state. Thus, it can be serialized after T1, a
contradiction.

Theorem 2. If each transaction session is directed to a
single secondary site, the local concurrency controls ensure
commitment ordering (primary site) or strong serializability
(secondary sites), and all database copies start in the same
state, then the Forward algorithm guarantees global strong
session 1SR.

Proof. Suppose that the claim is false, which means that
there exists a pair of transactions T1 and T2 in the same
session for which T1 is executed before T2 but T1 cannot be
serialized before T2. There are four cases to consider:

Case 1: Suppose T1 and T2 both execute at the primary.
This is the same as Case 1 in Theorem 1.

Case 2: Suppose T1 executes at the secondary and T2 ex-
ecutes at the primary. This is the same as Case 2 in
Theorem 1.

Case 3: Suppose T1 executes at the primary and T2 exe-
cutes at the secondary. When T1 commits, seq(s) is
set to seq(T1). seq(s) is monotonically increasing over
time, since it is set by the commit of update trans-
actions at the primary. Therefore, when T2 attempts
to start, seq(s) ≥ seq(T1). At this point, an auxiliary
transaction reads seq(DB). If seq(DB) < seq(s), T2

is run at the primary. Since the primary ensures com-
mitment ordering and T2 follows T1, T1 is serialized
first, a contradiction. If, instead seq(DB) ≥ seq(s),
then we have seq(DB) ≥ seq(s) ≥ seq(T1). Since T2

runs after the auxiliary transaction, and the local con-
currency control ensures strong serializability, T2 sees
the secondary database in at least state seq(T1). Thus,
it is serialized after T1, a contradiction.

Case 4: Suppose T1 and T2 both execute at the secondary.
This is the same as Case 4 in Theorem 1.

The Block and Forward algorithms were presented under
the assumption that each session is the responsibility of a
single secondary site. Relaxing this assumption introduces
two complications which are not addressed in Figures 4 and
5. First, the session sequence number seq(s) must be repli-
cated across all secondary sites to which session s may direct

Parameter Description Default

num clients number of clients varies
num sec number of secondary

sites
5

think time mean client think time 7 sec.
session time mean session duration 15 min.

update tran prob probability of an update
transaction

20%

conflict prob transaction conflict prob-
ability

20%

tran size mean number of opera-
tions per transaction

10

op service time service time per opera-
tion

0.02s

update op prob probability of an update
operation

30%

propagation delay propagator think time 0.001s

Table 2: Simulation Model Parameters

transactions. The replicated sequence numbers must be rel-
atively tightly synchronized, so that the global concurrency
control actions for each new transaction on s are taken using
the latest value of seq(s).
The second problem is more subtle. Suppose that T1 and

T2 are read-only transactions in the same session, and T2 fol-
lows T1. Strong session 1SR requires that T2 be serializable
after T1. If T2 and T1 are directed to different secondary
sites, the global concurrency control must ensure that T2

sees at least as current a database state at its site as T1 sees
at its site. Thus, a limited form of secondary site synchro-
nization is required. This can be accomplished by updating
seq(s) after each read-only transaction. The value assigned
to seq(s) must be at least as large as the value of seq(DB)
seen by the read-only transaction. This can be accomplished
using an auxiliary post-transaction (run after the read-only
transaction) that reads seq(DB) and updates seq(s).

5. SIMULATION MODEL
We have developed a simulation model of the lazy mas-

ter replicated database system described in Section 2. We
have used the simulator to compare the Block and Forward
global concurrency control protocols described in Section
4 and to determine the impact of the correctness criterion
(1SR, strong session 1SR, or strong 1SR) on system perfor-
mance. The model is implemented in C++ using the CSIM
simulation package.[11]
The model consists of one resource for each site in the sys-

tem, and a set of processes that use those resources. For each
client there is a transaction execution process that simulates
the execution of transactions requested by that client. Each
client is associated with a particular secondary site, and it
submits all of its transactions to that site. The clients are
uniformly distributed over the available secondary sites. In
addition, there are processes that simulate update propaga-
tion and refresh transactions at the secondary sites. The
model’s parameters are summarized in Table 2.
The transaction execution model used by each client is

shown in Figure 6. Each client iteratively generates trans-
actions, with exponentially distributed think times averag-
ing think time between them. A transaction is an update
transaction with probability update tran prob, otherwise it
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Figure 6: Logical Transaction Execution Model

is a read-only transaction. Our default transaction mix is
80% read-only, 20% update. We also ran some experiments
with a 95%/5% mix. (For comparison, the “shopping” mix
specified in the TPC-W benchmark is an 80/20 mix of read-
only and update web interactions, and the “browsing mix”
is 95/5. However, there is not necessarily a one-to-one cor-
respondence between web interactions and database trans-
actions.)
The sequence of transactions generated by a client is con-

sidered to form a session for the purposes of enforcing Strong
Session 1SR. Periodically, each client ends it current session
and immediately begins a new one. Session lengths are ex-
ponentially distributed with a mean length of session time.
The default think time and session time values are taken
from the TPC-W benchmark specification.[16]
Figure 6 illustrates the transaction execution model. In

Figure 6 (and also in Figures 7 and 8), steps shown in bold
consume time at either the primary resource or at a sec-
ondary resource. The remaining steps may introduce delays,
but they do not consume resources. As shown in Figure 6,
each transaction proceeds first to the global concurrency
control. The global concurrency control directs each trans-
action to either the primary site or the secondary site for
execution. If the global concurrency control is the Block
algorithm, it may also cause the transaction to block.
After global concurrency control, each transaction pro-

ceeds to the local concurrency control at the site to which
it is assigned. We use a simple model of the local concur-
rency control, which works as follows. Each newly arriving
transaction has a probability conflict prob of conflicting with
each transaction that is already in the local system (either
running or waiting to run). If a newly arriving transaction
does not conflict with any existing transactions, it begins
running immediately. Otherwise, it waits for all conflicting
transactions to complete before it begins running.
Once a transaction has finished with the local concurrency

control, it can run. Each transaction consists of a number
of operations. The total service time for a transaction is
the number of operations it has times op service time. The
number of operations in each transaction is randomly chosen
in the range tran size plus or minus 50%. For update trans-
actions, each operation has probability of update op prob of
being an update, otherwise it is a read. All transactions
running at a given site share a single server, which uses a
round-robin queuing discipline with a time slice of 0.001 sec-
onds.

broadcast updates to secondary sites

delay

collect
updates

get
updates

updates
enqueue

Primary Site Secondary Sites

Figure 7: Update Propagation Model

The update propagation model is illustrated in Figure 7.
At the primary site, a propagation process cycles between
propagating updates and pausing. The duration of each
pause is propagation delay. During each propagation cy-
cle, the propagator propagates all transactions that have
committed at the primary since the last propagation cycle.
For each committed transaction, the propagator enqueues
a record in an update queue at each secondary site. The
record indicates the number of update operations that were
performed by the committed update transaction. This batch
of records is then broadcast to propagation processes at the
secondary sites. The primary’s propagation process con-
sumes op service time during each propagation cycle. As
can be seen from Figure 7, the propagator does not use the
local concurrency control at the primary site. This is be-
cause we assume that the propagator is implemented as a log
sniffer. Finally, note that the simulation does not include
a resource to represent the network. We assume that the
network has sufficient capacity so that network contention
is not significant. As for latency, we use the propagator’s
propagation delay parameter to model propagation latencies
from all sources, including the network.
Each secondary site also includes a propagation process,

which reads batches of propagation records broadcast by
the primary and installs them in an update queue in the
local database. These processes consume op service time at
their secondary site for each batch of update operations that
they install. The secondary propagators do not use the local
concurrency control when they install their updates. These
operations conflict only with the refresh processes and, as
discussed in Section 2.2, the conflict is at a reduced isola-
tion level. Thus, we assume that any contention would be
insignificant.
At each secondary site there is a set of refresh processes.

The execution model for refresh processes is illustrated in
Figure 8. Each refresh process iteratively waits to obtain one
transaction’s update records from the local update queue,
and then runs a single refresh transaction to apply those
updates to the secondary database. The refresh transac-
tion must pass through the local concurrency control at the
secondary site. It has probability conflict prob of conflict-
ing with each read-only transaction at the site. In addi-
tion, we force a conflict between every pair of refresh trans-
actions at a site. This ensures that refresh transactions
are not reordered by the local concurrency control. As
discussed in Section 2, this is needed to ensure complete-
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Figure 8: Refresh Model

ness at the secondary sites. The refresh process consumes
op service time at the secondary server to retrieve the trans-
action record from the update queue. It consumes an addi-
tional op service time times the number of updates to run
the refresh transaction itself.

6. PERFORMANCE ANALYSIS
We ran a series of experiments using the simulation model,

with two goals in mind. The first was to determine the cost,
in terms of transaction throughput and response time, of
providing strong session 1SR rather than the weaker 1SR.
The second was to compare the two algorithms, Block and
Forward, that guarantee strong session 1SR. To facilitate
these comparisons, we implemented two global concurrency
controls in addition to Block and Forward.

Alg-1SR: Alg-1SR is the global concurrency control used
in the base system that was described in Section 2. It
provides only global serializability (1SR), not strong
session 1SR. Alg-1SR simply routes all update transac-
tions to the primary site, and all read-only transactions
to the secondary site. Transactions are never blocked
by Alg-1SR itself, although they may, of course, be
blocked by the local concurrency control at their as-
signed site.

Alg-Strong-1SR: Alg-Strong-1SR is the same as the Block
algorithm of Figure 4 except that there is only a sin-
gle session per secondary site, rather than one session
per client. Thus, Alg-Strong-1SR maintains only one
session sequence number (seq(s)) at each secondary
site. Alg-Strong-1SR does not guarantee strong 1SR,
since that would require a single session for the en-
tire system, rather than one per secondary site. It
enforces many more transaction ordering constraints
than must be enforced by Block and Forward, but
fewer than would be required by a true implementa-
tion of strong 1SR. In our experiments we have used it
as a surrogate for a strong 1SR algorithm. Alg-Strong-
1SR should result in performance no worse than (and
probably significantly better than) that of any algo-
rithm that provides true strong 1SR.

6.1 Methodology
For each run, the simulation parameters are set to the

default values found in Table 2, except as indicated in the
descriptions of the individual experiments. Each run lasted
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for 35 simulated minutes. We ignored the first five minutes
of each run to allow the system to warm up, and measured
transaction throughput, response times and other statistics
over the remainder of the run. Each reported measurement
is an average over 5 independent runs. We computed 95%
confidence intervals around these means. These are shown
as error bars in the graphs.

6.2 Default Con£guration
We ran an initial series of experiments in which our default

configuration, with five secondary sites, was subjected to
load from an increasing number of clients. Figures 9 and 10
show the results of this experiment. Each curve describes
the behavior of one of the four global concurrency control
algorithms (Alg-1SR, Block, Forward and Alg-Strong-1SR)
that we considered.
The most important property of our default configuration

is that the propagation delay is very small. This makes it
possible to keep the secondary databases very fresh. Under
these conditions, the Block and Forward algorithms have
nearly identical throughput, and both algorithms are indis-
tinguishable from Alg-1SR, which does not guarantee strong
session 1SR. Thus, strong session 1SR comes almost for
free. However, Alg-Strong-1SR, which enforces unneces-
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sarily strong ordering constraints, also performs as well as
strong session 1SR (Block and Forward) and Alg-1SR. All
of the algorithms perform equally well because read-only
transactions are rarely delayed or forwarded to the primary
site. This, in turn, is because the secondary databases do
not lag far behind the primary.
Under very high load conditions (num clients > 150), Fig-

ure 10 shows that the Forward algorithm results in lower re-
sponse times for read-only transactions than does the Block
algorithm, and even Alg-1SR. With 150 clients, utilization at
the secondary sites is approximately 95% under Alg-1SR and
Block, causing read-only response times to grow. However,
the utilization of the primary is slightly lower. Since the For-
ward algorithm deflects load (read-only transactions) from
the secondary sites to the primary, it reduces resource con-
tention at the secondary sites, resulting in improved read re-
sponse times. This load balancing effect is short-lived, how-
ever, since the primary site quickly becomes over-utilized.
Furthermore, as might be expected, response times of up-
date transactions (not shown) are significantly higher under
Forward than under the other algorithms because of the ex-
tra load it places on the primary site.

6.3 Propagation Latency
In the default configuration, updates are propagated from

the primary site almost as soon as possible after they oc-
cur. In practice, however, this may be difficult to achieve.
Scheduling at the primary site, network latencies, and batch-
ing may introduce propagation latencies. We model this
using the propagation delay parameter.
A nice feature of strong session 1SR is that it should

allow a certain amount of propagation latency to be tol-
erated without impacting transaction throughput and re-
sponse time. In particular, inter-transaction think times
within a session should effectively hide propagation latency.
To explore this effect, we ran experiments with propaga-
tion delay set to 10 seconds. Because the propagator sends
a batch of updates after each propagation delay, this has the
effect of introducing a delay of between zero and ten seconds
for each individual transaction’s propagation, or about 5 sec-
onds on average. The mean client inter-transaction think
time remained fixed at its default value of 7 seconds. The
results are shown in Figures 11 and 12.
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With propagation delay, the results look significantly dif-
ferent than they did under the default configuration. The
Block algorithm suffers a only small throughput penalty as
compared to Alg-1SR, right up into high load conditions. It
also suffers a response time penalty (compared to Alg-1SR)
which is most significant under low loads. However, overall
the performance degradation is small considering that Block
enforces strong session 1SR and Alg-1SR does not.
At low loads, the Forward algorithm provides better read

response times than Block, and approximately the same
overall throughput as Alg-1SR. However, as the load in-
creases, Forward breaks down because it saturates the pri-
mary site. The difference between Forward’s performance
with low propagation delay (Figure 9) and its performance
with high propagation delay (Figure 11) is that it deflects
more read-only transactions to the primary site when prop-
agation delays are higher. This quickly turns the primary
site into a bottleneck.
The performance of Alg-Strong-1SR is very poor under

these conditions because many read-only transactions are
delayed at the secondary sites. A comparison of the perfor-
mance of Alg-Strong-1SR with that of Block and Alg-1SR
shows that an overly restrictive correctness criterion can sig-
nificantly impact performance.
In summary, the Block algorithm is effective at using the

flexibility provided by strong session 1SR to mask much of
the effect of the propagation latency.

6.4 Scalability
A desirable feature of the base system on which the global

concurrency controls are implemented is that the number of
secondary sites can be scaled with the client load. To ex-
amine this, we ran an experiment in which both the number
of secondary sites and the number of clients were gradually
increased, with the number of clients per secondary site held
constant at 20. propagation latency remained at 10 seconds.
Figures 13 and 14 show the results of this experiment.
In these experiments, the Block algorithm again performed

about as well as Alg-1SR, and significantly better than Alg-
Strong-1SR. Throughput for both Block and Alg-1SR even-
tually peaks (with about 12 secondary sites) when the pri-
mary site saturates. Since the primary site is the bottleneck
that eventually limits throughput, the key scalability pa-
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rameter is the mix of read-only and update transactions in
the workload. As might be expected, similar experiments
with a 95/5 transaction mix (not shown here) showed much
greater scalability than the 80/20 mix shown here.
The Forward algorithm does not scale as well as Block,

again because of the extra load it places on the primary
site.

7. RELATED WORK
The techniques described in this paper are global, mul-

tiversion concurrency controls implemented in a federated,
replicated database system. Gray et al provide a relatively
recent discussion of synchronization in replicated database
systems and the challenges that that poses.[8] According to
Gray’s classification, the system described in this paper has
a lazy master architecture. Breitbart, Garcia-Molina and
Silberschatz have provided a thorough overview of concur-
rency control issues for federated databases.[3] That overview
is not concerned with issues of replication and data fresh-
ness. However, many of the general concerns of transaction
ordering that are addressed by our base system (Section 2)
arise in all federated systems, whether they manage repli-
cated data or not. Our definition of strong serializability is

based on the one in that paper.
A general overview of multiversion serializability theory,

including a definition of 1SR, and multiversion concurrency
control algorithms is provided by Bernstein, Hadzilacos and
Goodman.[2] The multiversion mixed method they describe
distinguishes between read-only and update transactions.
It serializes update transactions using locking, and allows
read-only transactions to see stale versions of the data. Of
the concurrency controls they describe, it is closest to the
technique presented here. However, those algorithms ignore
issues of distribution and do not explicitly consider the im-
pact of data freshness. Read-only transactions are shown
the latest committed state.
Some recent work has considered the specific problem of

concurrency control for lazy master replicated database sys-
tems.[5, 4] Unless care is taken in how updates are propa-
gated and applied, lazy master architectures do not auto-
matically guarantee 1SR.[8] Breitbart et al proposed several
protocols for guaranteeing 1SR in lazy master systems.[4]
These protocols, called DAG(WT), DAG(T), and Backedge,
operate in a more general environment than the one consid-
ered here. Different database objects may have their pri-
mary copies located at different sites, and an acyclic (ex-
cept in the case of the Backedge protocol) site graph is used
to guide the propagation of updates among the sites. Like
our protocols, these rely on in-order propagation and ap-
plication of updates. Other work on concurrency control
protocols in lazy master systems includes the virtual sites
protocol of Breitbart and Korth, and the quorum consen-
sus protocol of Satyanarayanan and Agrawal, which uses a
gossip mechanism to lazily propagate updates to sites that
have missed them.[5, 15] None of these protocols consider
data freshness, and none have a notion of transaction ses-
sions. All guarantee 1SR, but not strong session 1SR or
strong 1SR.
Pacitti and Simon have studied the effects of different

update propagation techniques on the freshness of repli-
cated data.[12] They considered whether the primary site
should begin propagating updates before the updating trans-
action commits, or whether propagation should instead wait
for commit. If propagation begins early, they also consid-
ered whether the application of propagated updates (refresh)
should or should not wait for the original update transaction
to commit at the primary. The approach we have assumed
here, in which propagation occurs after commit, is called
deferred-immediate by Pacitti and Simon. These propaga-
tion issues are essentially orthogonal to the techniques we
have considered here. It should be possible to combine our
global concurrency controls with any one of these propaga-
tion options. The goal of Pacitti and Simon’s work is to
keep the replicas as fresh as possible as efficiently as possi-
ble. They did not consider the relationship between fresh-
ness and transaction ordering and execution that we have
attempted to exploit in our work.
King et al considered techniques for maintaining a repli-

cated database to be used as backup in case the primary
copy fails.[9] According to Gray’s classification, their ap-
proach is lazy master. King et al call their techniques 1-safe,
which emphasizes the fact that between the time an update
commits at the primary and the time the corresponding up-
date is applied at the secondary, a failure may cause the
update to be lost. In their work, King et al did not con-
sider execution of application transactions at the backup



(secondary) site, so they were not concerned with global
concurrency controls. However, they faced an issue that
arises in all lazy replication techniques: how to ensure that
the updates are applied in the same order at the secondary
site as they were at the primary. King et al propose to use
transaction conflict analysis to allow non-conflicting refresh
transactions to run in parallel at the secondary site. A sim-
ilar approach could be used in our system. However, it does
require an analysis of transactions’ read sets, as well as their
updates. King et al propagate the read sets to the secondary
site for analysis there. Alternatively, the analysis could be
performed at the primary site.

8. CONCLUSION
In this paper, we proposed a new correctness criterion

for transaction scheduling, called strong session 1SR. Strong
session 1SR is a generalization of one copy serializability
(1SR) and strong serializability (strong 1SR) that allows
important transaction ordering constraints be be captured
and unimportant ones to be ignored.
Starting with a base system that provides only 1SR over

lazily synchronized replicated data, we showed how to mod-
ify the system so that it ensures strong session 1SR. We
proposed two simple global concurrency control algorithms,
called Block and Forward, to achieve this. One works by de-
laying transactions that need to see fresher data, the other
works by redirecting such transactions to the fresh database
copy at the primary site.
We developed a simulation model of the lazily synchro-

nized system, and used it to study the impact of the new
correctness criterion and the performance of the Block and
Forward algorithms. We found that when propagation la-
tencies are low, that is, when the secondary database copies
can be kept very fresh, ensuring strong session 1SR costs
very little in terms of transaction throughput and response
time. However, even strong 1SR costs very little, so strong
session 1SR does not provide any significant benefits. How-
ever, as the propagation latencies increase, strong 1SR be-
comes very difficult to achieve, while strong session 1SR can
be maintained with only a small penalty relative to 1SR.
Of the two algorithms, Block has consistent performance at
all load levels. The Forward algorithm performs somewhat
better at low load, but deteriorates rapidly as the load in-
creases. We conclude that strong session 1SR appears to
be a useful and practical way of capturing data freshness
and transaction ordering constraints in scalable replicated
database systems.
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