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Abstract. The point of maximum slope on the reflectance spectrum of
vegetation between red and near-infrared wavelengths is known as the red
edge position (REP). The REP is strongly correlated with foliar chlorophyll
content, and hence, it provides a very sensitive indicator for a variety of en-
vironmental factors such as vegetation stress, drought and senescence. Due
to its importance for the application of inversion procedures, a number of
techniques have been developed for determining the REP for foliar spectral
reflectance. In this paper a new approach is proposed. It allows an unsuper-
vised estimation of the REP. The accuracy of the new approach is evaluated
by comparing REP estimates with values derived from measured spectral
data for woody and herbaceous species.

1 Introduction

The abrupt reflectance change in the 680-770nm region of vegetation spectra
caused by the combined effects of strong chlorophyll absorption and leaf
internal scattering is called the red edge. As stated by Horler et al. [11],
the existence of the red edge, although it is not measured directly, provides
the basis for vegetation identification procedures using combinations of red
and infrared radiances. A typical plant leaf reflectance spectrum is shown in
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Figure 1: Spectral reflectance of soy Soja hispida [12].

Figure 1. The point of maximum slope on the red edge is called the red edge
position, abbreviated the REP.

Chlorophyll concentration is usually an indicator of nutritional stress,
photosynthetic capacity and senescence. It turns out that the position of
the REP and the chlorophyll concentration is strongly correlated. Other
constituents of plants such as amaranthin have also been shown to have
functional relationships to the red edge [4].

Experiments by Danson and Plummer [5] have shown a strong non-linear
correlation between leaf area index (LAI), the one-sided area of leaves per
unit of ground area, and the REP. The LAIis a key spatial variable require
to drive models of forest ecosystems [14], since it provides a quantitative
measure of the surface area available for interception of photosynthetically
active radiation (PAR) and transpiration.

The estimation of the REP, usually applying numerical methods for gen-
erating derivatives for leaf reflectance spectra, is, therefore, a valuable re-
mote sensing tool to assess the chemical and morphological status of plants
[2].In addition, the use of derivative spectrophotometry is commonly em-
ployed to resolve or enhance absorption features that might be masked by
interfering background absorption [7, §].



A number of methods for determining the REP have, therefore, been
proposed in the remote sensing literature.

1. The simplest method is based on linear interpolation. It assumes the
reflectance red edge can be simplified to a straight line centred around
a midpoint between the shoulder reflectance maximum and the re-
flectance minimum of the chlorophyll reflectance curve, which is set
usually at about 680nm. The REP is then estimated by a simple linear
equation using the slope of the line [9, 5].

2. The inverted Gaussian technique [1] assumes that the data can be fitted
by a curve of the form
(A=2g)?

p(A) = ps = (ps — po)e 2 (1)
where p()) is the reflectance as a function of the wavelength A, pg is the
reflectance where A = )¢ - usually around 680nm, p, is the “shoulder
reflectance” - frequently set to 800nm and o the gaussian shape param-
eter. The REP is then the inflection point of the curve at A, = o + Aq.
A non-linear equation system would have to be solved in order to find a

least-square fit to (1). Several of the constants are, therefore, estimated
in [1] so that the resulting equation can be linearized to a linear least-
squares system, which can be solved easily. The model was extensively
tested and evaluated in [13]. The results are as good as the quality of
the picked constants.

3. A three-point Lagrange interpolation technique of the derivative of the
spectral data was given in [6]. A finite difference approximation is
applied to four datapoints of p(A) to generate derivative approximations

D(X;), 1 =1,2,3. Then coefficients
D(\)
H?;éj,jzl()‘i - )‘j)

are calculated. These coefficients are used to calculate

A(\) = i=1,2,3

A(AM) (A2 — As) + A(A) (A1 — As) + A(As) (A1 — Ag)

230, AN
The method is simple, but dependent on the quality of the location of
the spectral sampling points as well as the spectral samples. It assumes
that the derivative curve is a parabola.

REP =




4. Another technique locates the REP as the maximum first derivative of
the reflectance spectrum in the region of the red edge using high-order
curve fitting techniques to fit a continuous function to the derivative
spectrum (see for example [11, 7, 16]).

Methods 1-3 above are compared by Dawson and Curran [6] taking into
account different chlorophyll concentrations. It is noted that the red edge
position at 50 mg m~™2 concentration is 705nm for the Lagrangian, 707nm
for the inverse Gaussian and 715nm for the linear interpolation. These dif-
ferences cast some doubt as to where the actual red edge position is located.
Furthermore, the red edge position for the linear method at 50 mg m™2
chlorophyll concentration is exactly the same as the red edge position for
both the Lagrangian and the inverse Gaussian methods at 350 mg m™2
chlorophyll concentration.

A different issue is highlighted by Pierce [15] in the description of REDR(1.0)
(Red Edge Detection Engine), which is an application designed to detect the
spectra that correspond to vegetation in multi- and hyper-spectral image
datasets, and to compute a red edge location. Pierce distinguishes between
supervised and unsupervised computations. The former is a computation su-
pervised by a human expert. The later is a computation done automatically,
i.e., it seeks to achieve reasonably accurate results without the intervention
of an expert. Pierce argues that the methods in the literature are satisfactory
for supervised, but not for unsupervised computations for the REP. These
remarks beg the questions of what exactly is the red edge, how can it be
computed, how can the results be reproducible and to what accuracy can the
results be trusted.

The aim of the present work is to first abstract the essential features
of the reflectance spectrum which determine the red-edge position so that
the red edge is as uniquely defined as possible. The results of a red edge
position should also be reproducible, that is, given data on the spectrum two
computations should give the same result. Also, the computation of the red
edge should be unsupervised without introducing undue complexity. Finally,
the evaluation of the technique used to estimate the REP should be based on
comparisons with values derived from measured data, so that one can assess
its usefulness to remote sensing applications.
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Figure 2: Regions in the reflectance spectrum of a soy (Soja hispida) leaf

12].

2 The Proposed Approach

Railyan and Korobov [16] acknowledged that the origin and behavior of the
red edge is not described and explained completely. In fact one can find
slightly different ranges for the red edge in the remote sensing literature.
Most works in this area consider the lower bound to be 680nm, while values
for the upper bound vary from 740 to 800nm.

If we consider the graph in Figure 2, we note that there are essentially
three regions of reflectance in the general spectral region of the red edge. Ini-
tially, there is a region of low and relatively constant reflectance p;, followed
by a rapidly rising reflectance curve, which corresponds to the site of the red
edge. Finally, we observe a region of high and relatively constant reflectance

Ph-
Our goal here is to abstract these features by a new function:

a+ bx + cx?
flz) =

= 2
1+ dx + ex? (2)

of five parameters that will encompass the features mentioned above. Four



of the conditions determining the parameters are

fn) = m (3)
f') =0 (4)
fn) = pn (5)
f'(An) (6)
which requires a decision on the locations of (A;, p;) and (An,pr). The re-
maining condition is that a point (/\c,pc) in the red-edge region be chosen
from the data.

These five equations result in a mildly non-linear 5x 5 system of equations.
Although it is possible to solve this system directly, it is simpler to shift the

= 0

coordinate system with a linear transformation, so that the origin is given by
the pair (A, p1), and the upper point of the curve is given by the pair (W, R),
where W = A, — A; and R = pp, — p;. A function

A+ Bz + Cz?
9(w) = 14+ Dz + Ex? (7)

is then considered and equations (3)-(6) are replaced by

g(0) = 0 (8)
g0) =0 (9)
gW) = R (10)
g(w) = 0. (11)

To solve these equations we first consider g(0) = 0 which results in A = 0.
From ¢'(0) = 0 we get B = 0.
Now g(W) = R results in

2
=17 Divmjr EW? (12)
and ¢'(W) = 0 gives
2CW (1 + DW + EW?) = (D + 2EW)CW?. (13)
These two equations can be simplified to
DRW 4+ ERW?* = CW?-R, (14)
DR +2EWR = 20CW. (15)



Using Cramer’s rule we get

D = —2/W, (16)
E = C/R+1/W? (17)

which determines D and E in terms of a parameter C. Equation (7) can now
be written as

Cz?

T2 /W4 (S + et

g(z)

The point (p¢, Ac) on the ascending part of the curve is also translated to a
point (AL, p!) in the shifted coordinate system and used to determine C as

(/A — 1/W)*

(18)

= 1
VRV (19)
Let now O
T

where C, D, E are defined by Equations (19), (16), (17) respectively. The
first derivative is given by:
Cz(2+ Dx)
! = 21
g(2) (1 + Dz + Ex?)? (21)

and the second derivative is given by:

") = —2C(—1+ Ex*(3 + Dx))
g\r)= (1 + Dz + Ez?)3

(22)

Finally, we set ¢”(z) = 0 and solve for z. This equation has three roots, one
of which is in the interval [0, W] of interest. Using the auxiliary quantity

P =((D*-2E)E*+ \/D?E*(D* — 4E))'*|E (23)

we get

Tr —=

1 (_(1 —iV3) P1+iV3) 1) 24)

D 2/3p 943
and REP =z + ).

In general we can write down an algorithm for the estimation of the REP
as follows:



FindREP

L. IHPUt ()\I7Pl)7 ()‘hvph)v ()‘Cvpc>‘

2. Compute
W = /\h_plv
R = pn—p,
o= A=A,
Pe = pe—pL-

3. Calculate D using Equation (16).
4. Calculate E using Equation (17).
5. Calculate C using Equation (19).

6. Solve for z in the equation ¢”(z) = 0 in [0, W] using Equations (23)
and (24).

7. REP =z, )\

3 Evaluation

3.1 Data and Methods

In our evaluation of the proposed approach we compare estimated red edge
curves with spectral curves originated from measured data. More specifically,
in our experiments we consider specimens whose reflectance spectra are avail-
able in the LOPEX (Leaf Optical Properties Experiment) [12] database. This
database consists of 70 leaf samples representing 50 woody and herbaceous
species that were obtained from trees and crops near the Joint Research Cen-
tre in Ispra, Italy. Reflectance spectra were originally scanned in 1 — 2nm
steps, but the wavelength interval was averaged over bnm to reduce noise.
The derivate for these curves were computed using a three-point numerical
differentiation formula [3]. We also applied a local average smoothing to
reduce noise.



The estimated red edge curves are plotted using the following algorithm:

PlotRED

L. IHPUt ()\17,01)7 ()‘hvph)v ()‘Cvl{)c)'

2. Compute
W = )‘h_plv
R = pn—pi,
Moo= A=A,
Pe = pe—pL-

3. Calculate D using Equation (16).
4. Calculate E using Equation (17).
5. Calculate C using Equation (19).

6. Plot estimated red edge, g()), using Equation (20) shifted in wave-
length axis according to ;.

7. Plot derivative of the estimated red edge, ¢'(}A), using Equation (21).

The accuracy of REP locating procedures is sensitive to the red egde
bounds used as input parameters. Supervised approaches usually tailor the
choice of sample wavelengths to the specimen at hand. Unsupervised ap-
proaches, like the one proposed in this paper, use fixed values for these pa-
rameters. As mentioned earlier, one can find slightly different values for
these bounds in the literature. In our experiments we use A\; = 680nm
and A\, = 770nm. An optimal choice for a point in the red edge would
be given by p. = REP. Clearly this is not an option. since if we already
knew the REP, we would not need to estimate it! Therefore, we simply use
Ae = (M + An)/2 = 725nm in our estimations.

In order to perform a comprehensive validation of a REP estimation
method it would be necessary to consider a large number of specimens. For
practical reasons, in our comparisons we considered six specimens represent-
ing herbaceous and woody species: maize (Zea mays L.), iris (Iris germanica



L.), poplar (Populus canadensis), soy (Soja hispida), maple (Acer pseudo-
platanus L.) and tomato (Lycopersicum esculentum). Table 1 presents the
specimens’ reflectances (p;, p. and pp)sampled from LOPEX measured data
and used in our estimations.

Specimen P Pe Ph

maize 0.0648 0.2839 0.4657
iris 0.0331 0.3749 0.4916
poplar 0.0627 0.3189 0.4691
soy 0.0410 0.3464 0.4655

maple 0.0382 0.2870 0.4126
tomato 0.0452 0.3215 0.4399

Table 1: Reflectance values for the six specimens at the specified wavelengths:

A = 680nm, A\, = 725nm and A, = 780nm. Source: LOPEX [12].

3.2 Results

Figures 3 and 8 present comparisons between red edge and derivative curves
plotted using PlotRED and curves derived from LOPEX reflectance data.
A visual inspection of these plots suggests a good agreement between the
estimated and measured reflectance curves.

While the estimated derivative curves present good qualitative agreement
with the derivative curves determined from measured data, quantitative
discrepancies are noticeable, especially for some of the species considered,
namely maize (Figure 3) and maple (Figure 7). The inflection points of the
curves are, however, fairly close, suggesting that the proposed approach for
the estimation of REP presents an acceptable level of accuracy.

Table 2 presents the REP values derived from the measured reflectance
spectrum of each specimen considered, and values estimated using Find REP.
For all specimens considered the relative error is smaller than 1%, and for
four of the specimens tested it is smaller than 0.3%. These figures confirm
the observations derived from the visual inspection of the derivative curves,
i.e., the estimated REP values closely approximate the actual values for the
tested specimens.
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Figure 3: Estimated (PlotRED) and measured (LOPEX) reflectance and first

derivative curves for maize (Zea mays L.).
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Figure 4: Estimated (PlotRED) and measured (LOPEX) reflectance and first

derivative curves for iris (Iris germanica L.).
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Figure 5: Estimated (PlotRED) and measured (LOPEX) reflectance and first

derivative curves for poplar (Populus canadensis).
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Figure 6: Estimated (PlotRED) and measured (LOPEX) reflectance and first

derivative curves for soy (Soja hispida).
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Figure 7: Estimated (PlotRED) and measured (LOPEX) reflectance and first

derivative curves for maple (Acer pseudoplatanus L.).
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Figure 8: Estimated (PlotRED) and measured (LOPEX) reflectance and first

derivative curves for tomato (Lycopersicum esculentum).
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Specimen  Red Edge Position  Relative Error
LOPEX FindREP

maize 727Tnm  722.20nm 0.66%
iris 708nm  709.67nm 0.24%
poplar 719nm  717.09nm 0.29%
soy 71lnm  711.42nm 0.06%
maple 710nm  714.96nm 0.70%
tomato 712nm  712.68nm 0.10%

Table 2: Comparison between measured (LOPEX) and estimated (FindREP)

red edge positions for different plants leaves.

4 Discussion

The proposed approach for the estimation of the REP assumes no a priori
knowledge about the reflectance spectrum of a given specimen. As previous
techniques used to estimate the REP, it may be affected by the choice of
input parameters, namely the three wavelength sample positions (A, A, and
An). Instead of supervising the choice of these values for each specimen, fixed
values (680nm, 725nm and 770nm respectively) were used in the evaluation
experiments. As a result the relative errors fluctuate, but their magnitudes
remain within reasonable limits, especially considering that the comparisons
are performed with respect to values derived from actual measured data,
instead of values estimated by other techniques.

The analytical solution provided by the proposed approach has the prop-
erty that the complex parts cancel out if the arithmetic is exact. Floating
point arithmetic, however, is not exact. As a result, an estimation may have
tiny complex parts, in the order of 10714, which should be discarded. Alter-
natively, instead of using the closed formulas given by Equations (23) and
(24), one could apply a numerical root finding procedure, such as fzero in
Matlab [10], or an equivalent in any other numerical software package, with
Equation (22) as the target function.

Selecting the “best” REP estimation method is delicate, and no single
method is superior in all the cases. The relative accuracy depends on the bi-
ological characteristics of the specimen at hand. Furthermore, the evaluation
of a computer method is less predictable than measuring physical phenom-
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ena. Nonetheless, our experiments suggest that the proposed algorithmic
approach provides REP estimates with reasonably high accuracy/cost ratio,
without requiring human intervention. Hence, it may be suitable for the
estimation and analysis of red edge data in field, laboratory, airborne and
spaceborne settings. Our future efforts will be focus on the application of
the proposed approach to estimate REP shifts due natural seasonal cycles
affecting the concentration of chlorophyll.
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