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Abstract

We consider the problem of finding closed form solutions of linear differential equations having
doubly periodic coeflicients. We give a decision procedure for determining if such equations have
doubly periodic solutions and study algorithms for solving such a decision procedure. In addition,
in the case of a second order equation we show how to find the general solution to such an ode.

1 Introduction

In this paper we look at linear differential equations of the form
an(2)y " (2) + - + a1(2)y'(2) + ao(2)y(z) = 0 (1)

where the coefficients a;(z) are doubly-periodic. Doubly periodic functions are complex-valued func-
tions having two independent periods, that is, two distinct constants 7" and 7" such that

f(z+T)= f(z) and f(z +T') = f(z) for all z.

Classical examples of doubly-periodic functions include the Weierstrass g and ' functions, the Jacobi
sn, cn and dn functions and ratios of Theta functions [2]. A doubly-periodic function that is analytic
everywhere (except at poles) is called an elliptic function. Elliptic functions, under this definition,
must not have any essential singularities. We remark that the term doubly-periodic is often used when
elliptic is really meant, it being assumed that the functions under discussion are also analytic.

Linear differential equations with doubly periodic coefficients appear historically in many in-
stances (cf. [8]). For example, solving Laplace’s equation in three dimensions in ellipsoidal coordinates
using the separation of variables method gives the classical Lamé equation

y"(z) - (n(n+ p(z) + B)y(z) =0 (2)



where n is a positive integer and B is arbitrary. Additional interesting examples can be found in many
texts, for example Kamke [13] and Forsyth [8].

There are two classical representations of doubly periodic functions, the Weierstrass form and the
Jacobi form. In either case, we can convert (1) to a linear ode having coefficients from K (z, y/w(z))
where w(z) is a polynomial of degree 3 or 4 and K is a field of constants. Using standard modern
methods from computer algebra we obtain a decision procedure for determining when (1) has doubly
periodic solutions.

Picard’s theorem [8] implies that when solutions of (1) are single-valued then in general the ode
has a basis of solutions which are doubly-periodic of the second kind. These functions can be expressed
in terms of the Weierstrass Zeta and Sigma functions and the Jacobi Zeta function [2]. In this paper
we show how we can find such a general solution in the case of second order linear odes. We do this
by finding doubly-periodic solutions of the symmetric power of the original ode. This is similar to
finding a basis of exponential solutions for a particular ode having algebraic coefficients. Finally, we
study the problem of ensuring that our procedures can be converted into practical algorithms.

The remainder of the paper is organized as follows. In the next section we show how to obtain
a decision procedure for solutions of (1). Section 3 looks at the case of general solutions for our ode,
and provides details of Picard’s theorem which describes such solutions. Section 4 gives a method for
solving the order two problem while Section 5 discusses a number of different strategies for solving
the linear odes that arise in this study. The paper ends with a conclusion along with topics for future
research.

2 Finding Doubly Periodic Solutions of Arbitrary Order Equations

In this section we consider the problem of finding doubly periodic solutions for linear odes having
doubly periodic coefficients. We show that this problem can be converted into one of solving a 2 x 2
system of linear odes of rational functions. The existence of decision procedures for finding rational
solutions of such systems (c.f. Singer [16, 17]) then results in a decision procedure for doubly periodic
solutions of (1).

There are two classical representations of doubly periodic functions, the Weierstrass form and the
Jacobi form. Let p(z) = p(z; g2, g3) denote the Weierstrass p function where g, and g3 are constants
which are determined by the periods. Then p'(z) = v/4p(z)> — gap(z) — g3 and every doubly-periodic
function can be represented as a rational function of p and g’ (cf. [3]). In the case of Jacobi forms there

are many representations for doubly-periodic functions. For example, let sn(z) = sn(z, k) where k is
a constant determined by the periods. Then sn'(z) = cn(z) - dn(z) = \/(1 —sn2(z)) - (1 — k2snlz))
and every doubly-periodic function can be represented as a rational function of sn and sn’. A similar
statement holds for all the other 11 forms of the Jacobi elliptic functions.

In order to cover the principal representations for such problems we do the following.

Lemma 2.1 Let L be a linear differential operator having coefficients from the domain K(f, f) with
K a field of constants and where f satisfies (f')? = w(f) for some polynomial w(z) € K[z]. Then one
has a decision procedure for finding solutions of L(y) = 0 in the domain K(f, f').



Proof:  Let
L=a,D"+ - --a1D + ag

with the coefficients a; € K(f, f') and where D = %. Elements in K(f, f’) can be written in the form
r(f)+ s(f) - f/ with r(f), s(f) € K(f). Assume that the coefficients of L can be written as

a; = ri(f) + s:(f) - f

for each ¢ and that we are looking for a solution y of the form y = b(f) + ¢(f) - f'. Then for each 7 we
have

di?/ _ 7 . /
doi bi(f) + ci(f)f
with bo(f) = b(f), co(f) = ¢(f) and
. dCi_l Ci—1 dw - dbi_l

bi(f) = de=

af ‘W + 2 -Ean af

for i > 0. From (f')?2 = w(f) we have that 2- f - f/ = w’- f' and hence

!/

=5 K ).
Similarly, f’, f"" are given in terms of elements in K(f, f’). Substituting y = b(f) + ¢(f) f’ in our ode
and simplifying results in a 2 X 2 system of linear odes for b(f) and ¢(f)

L171 L172 . b(:e) _ 0 (3)
L271 L272 C(J:) 0
where L; ; is a linear differential operator in Dy = % of order at most the order of L. The result then

follows from the fact that there exist decision procedures for solving systems of equations given by (3)
(c.f. [17, Prop. 3.2]). O

Remark 2.2 Lemma 2.1 can be used for cases where one has a linear ode with coefficients which are
periodic functions rational in sin and cos when one is looking for periodic functions which are also
rational in sin and cos. Thus for Mathieu’s equation

y"(z) + (p — k202 -cosz(af:)) ~y(z) =0 (4)

one can determine that there are no solutions rational in sin and cos. Unfortunately, this is not
the same as saying that there are no periodic solutions for Mathieu’s equation since not all periodic
functions are rational in sin and cos.

Let us return to the case where we are looking for doubly-periodic solutions of linear odes having
doubly-periodic coefficients. Assume first that our coefficients are in Weierstrass form and that we
are looking for solutions in the same form. Setting f(z) = p(z; g2, g3)*, the Weierstrass p function,
allows us to make use of the above formalism using w(z) = 42z° — goz — g3. Hence the problem of
finding a doubly-periodic solution to a linear ode with doubly-periodic coefficients reduces to finding
rational solutions of a 2 X 2 system of linear odes. A similar statement can be made for doubly-periodic
functions represented in Jacobi form.

1 As in classical texts, we drop the g» and gs arguments for p in cases where this is obvious



Example 2.3 Consider Lamé’s equation (2) given in Weierstrass form. In this case, the linear system
of equations is already separated into the two linear odes:

w(9)- g + (657 - ) TE  (nln+ Do+ BYe) = 0

w(so) i dzc(so) + (365)2 -3 92) dc(p)

dp? 2 gp T (2= n(n+1)p - Be(p) =0.

In general these do not have rational solutions and hence the Lamé equation does not have doubly-
periodic solutions. However, if n = 3 and B = 0 then Lamé’s equation is just y"(z) = 12p(z)y(z). It
is easy to see that this has the doubly-periodic solution y(z) = p'(z). Similarly, if n =2, B=g,=10
then y"'(z) = 6p(z)y(z) has the doubly-periodic solution y(z) = p(z). O

3 Finding a General Solution of Arbitrary Order Equations

A second class of functions which are almost doubly-periodic also plays an important role in the study
of linear odes of the form (1). A function F(z) is said to be doubly-periodic of the second kind if there
exist two periods T', T, and two constants s, s’ such that

F(z+T)=s-F(z), Flz+T')=§"- F(z)

for all z in the complex plane. These functions are not, in general, truly periodic, as the value of F'(z)
changes by a constant factor each time z changes by the period.

A classical result in the theory of linear odes with doubly-periodic coefficients is the following
observation given by Picard (see Ince [12]). Picard’s Theorem tells us that in the case of uniform
solutions we can find a general solution to our ode in terms of a basis of doubly-periodic functions of
the second kind. As such we will look for solutions of (1) which are doubly periodic of second kind.
For our purposes it is necessary to see why Picard’s theorem holds, particularly as some of the details
will help guide the development of our new algorithm. Hence we will also sketch a proof here.

Theorem 3.1 (Picard’s Theorem) When the coefficients of a homogeneous linear differential equa-
tion are doubly-periodic functions of the independent variable, the equation possesses a fundamental
set of solutions which, if uniform (that is, single-valued), are in general doubly-periodic functions of
the second kind.

Proof:  Let the given n-th order linear homogeneous ode be given by (1) where the coefficients
a;(z) are all doubly-periodic functions of the first kind, with periods T, T'. Note that if f(z) is a
solution of the linear ode (1), then f(z + T) and f(z + T") also satisfy the equation.

Let {fi(2), fa(z),. .., fa(z)} be a basis (or fundamental system) of solutions of (1). Then fi(z +
T), fale+T), ..., fule+T), and fi(z + 1), fo(ze +T"), ..., fu(z + T') are also solutions of (1).

Hence each can be expressed as a linear combination of the basis functions:

fil@+T)=ayjfi(z) + azifo(2) + -+ an; fu(2) (5)



and
fi(z +T') = b fi(z) + bajfa(2) + - - - 4 b fu(2) (6)

where all the a;;, b;; are constants, independent of z.

These equations may be rewritten in matrix form as
fe+T) = f()4 and f(z+T') = f(x)B (7)

where

f(:l:) = [fl(m)’ T fn(m)]a A= [aij]ana B = [bij]an- (8)

Now, not only is {fi(z),..., fu(z)} a basis for (1), but so are both {fi(z + T),..., fu(z + 1)}
and {fi(z+T'),..., fa(z +T")} (cf. [7]). From this it follows that both A and B are non-singular.

We now wish to show the existence of a non-trivial solution to (1) that is doubly-periodic of the
second kind, that is, a solution F'(z), not identically zero, such that F(z + T) = sF(z), F(z +T') =
s'F(z), for some non-zero constants s, s’ € C. Let us first find a solution F(2) which satisfies the first
condition, F(z + T) = sF(z), and consider the second period 7' later.

Since F(z) is a non-trivial solution of (1), it can be expressed as a linear combination of the basis

{fl(w)a f2($)a LRS! fn(w)}
F(z) = Mfi(z) + Aafolz) + - + A ful2), (9)
where Ay, Ao, ..., A, are constants, not all zero. Then

Flz+T)= Mfl+T)+Xfalz+T)+ -+ Mfulz+T)
M (im0 f5(2) + 20 (T apfi(@) + 4 2 (Tha ainfi2)  (10)
(i e fi(z) + (25 a2ii) fo(z) + -+ (5 anii) fa(2).

We want
Fx+T) =sF(z)

11
= S\ fu(2) + sAafa(2) + ot sAnfu(2). (11)
Equating the two expressions for F(z + T') gives

(Zn: a1\ — s)\l) fi(z)+ (Zn: A\ — s)\z) fa(z)+ -+ (i Ui N; — s)\n) fu(z) =0. (12)

Since {fi(z), fa(z), ..., fu(z)} is a linearly independent set, each coefficient must be zero, i.e., it is
necessary and sufficient that s, A(, ..., A, satisfy

(a11 — 8)A1 +ar2Aa+ -+ apA, =0

a2 A1 + (@22 — §)Aa + -+ asA, =0
) (13)

anl)\1‘|’an2}\2+"'+(ann_S))\n :Oa

where not all of Ay, ..., A, are zero. We see that s is an eigenvalue, and A = (Aq, .. .,)\n)T a corre-
sponding (non-zero) eigenvector, of the matrix A. Since A is nonsingular we also have that s # 0.

Similarly, working with the second period 7", we can show the existence of a solution G(z), not

identically zero, such that G(z + T') = s'G(z), where s’ # 0. We let
G(2) =M fi(2) + Aafal@) + -+ Aufula), (14)



where not all of )\/1, .. .,)\;L are zero. We then find the necessary and sufficient condition is that s’
be an eigenvalue, and A" = ()\/1, .. .,A;)T a corresponding (non-zero) eigenvector, of the matrix B.
Again, since B is nonsingular s’ # 0.

However, we require a solution F(z) = A1 fi(2)+ - - -+ A fn(2) to satisfy both F(z+T) = sF(z)
and also F(z+7") = s'F(z). This could only occur if there exists some vector A = (A1, ..., An)T which
is an eigenvector of both A and B (although the corresponding eigenvalues s, s’ could be different, of
course).

Now, if matrices A and B were completely independent of each other, this could not be guaranteed
to occur. But in fact, because we have assumed that our solutions are single-valued and because the
doubly-periodicity implies that all doubly-periodic solutions satisfy

Flz+T+T)=F(z+T)=F(z)and F(z+ T +T')= F(z +T') = F(z)

we find that A and B commute (for details see [7]). Classical results from linear algebra then implies
that there exists at least one common eigenvector for both A and B. Therefore for any eigenvalue s of

A, there exists an eigenvector of A corresponding to s, A = (A1, ..., An)T, that is also an eigenvector of
B corresponding to some eigenvalue s’ of B. Hence a solution of (1) will exist which is doubly-periodic
of the second kind, as claimed by Picard’s Theorem. a

We remark that in the general case we could expect all n eigenvalues of A to be distinct, and the
same to be true for B. Now, since eigenvectors corresponding to different eigenvalues will be linearly
independent, there exist n linearly independent eigenvectors, which are also eigenvectors of B. Then
the n solutions corresponding to these eigenvectors will also be linearly independent. Hence, in this
general case, there will exist a basis of solutions of (1), each of which is a doubly-periodic function of
the second kind.

When the eigenvalues of A are not distinct, we can no longer guarantee that there exist n linearly
independent eigenvectors, common to both A and B, and hence there is no guarantee that there exists
a basis of n solutions, all of which are doubly-periodic of the second kind. But there will always be
at least one non-zero eigenvalue s of A, and at least one non-zero eigenvalue s’ of B, which have a
corresponding eigenvector A in common. Hence, if the general solution is uniform, there will always
exist at least one solution which is doubly-periodic of the second kind.

From the proof of Picard’s Theorem, we may deduce the following:

Lemma 3.2 If an ode satisfies the conditions of Picard’s Theorem, then for the two periods T and

T', the products of the eigenvalues, taking multiplicities into account, are exp (— I +T %)ﬂ du) and

exp (— I +T a;;(lu;t du), respectively. In particular, if a,—1(u) = 0, then the two products are both 1.

Proof:  Consider the period T, and the corresponding multipliers s1,ss,.. .,s,. As shown earlier,
the s; are precisely the eigenvalues of A so det(A) = sys3---s,,. Now, consider (7) for the period T
fz+T) = f(z)A (15)

Differentiating n—1 times w.r.t.  gives n—1 additional equations of the form

fle+T)=Ff @4, ..., f" I 2+T)=fV ()4 (16)



Combining these into a single matrix equation, we have
[f+T) | - | O De+T)I=0f@) | - | fo() A (17)

Taking determinants and noting that det {f(a:)| x -|f(”_1)(m)} is just W(f(z)), the Wronskian of the
basis f(z), and similarly the left hand side is W (f(z + T)) we have that

fle+T
det(4) = YU+ T)) (18)
W(f(z))
By Abel’s identity, the ratio of the two Wronskians is exp (— fmm+T % du). Hence we have,
fz+T =+T q,,_
51898, =det(4) = w = exp (—/ an-1(u) du) ) (19)
W(f(=)) = an(y)
as desired. Similarly, for the other period 7’ we have
1o / f T! e+ T n—
8189 -5, = det(B) = w = exp (—/ an-1(u) du) . (20)
W(f(=)) @ an (1)

Finally, if a,,_1(z) = 0, so that the term of order n—1 is not present in the ode (1), then the equations
reduce to

8189 -8, = 1 and 5'13;...5;:1, (21)

O

We can sometimes make make use of Lemma 3.2 for helping to find solutions of (1).

Lemma 3.3 Assume that equation (1) has a,_1(z) = 0 and that {yi(2),...,yn(2z)} is a basis of
solutions with each y;(z) doubly-periodic of the second kind. Then z(z) = yi(z) - -yn(2) is doubly-
periodic.

Proof: Let T and T' be the periods for the coefficients of the linear ode and suppose that
vi(z+T)=s;-vi(2), yi(e+T) =s, yi(e), fori=1,...,n. Then s; ---s, = 1 so that

z24+T) =p(e+T) yu(z+7T)
= (s191(2)) - - - (snyn(2))
22
— 81...Sn)y1(m)...yn(m) ( )
= z(z).
Similarly, z(z + T') = z(z) for the second period T”, hence z(z) is doubly periodic. O
Remark 3.4 One can use the transform u(z) = exp(— [ C:fa_nl(;) dz) - y(z) to convert an ode in u(z)

into an ode in y(z) having the second highest term 0. In the case of second order equations this
converts

as(z) - u'(z) + a1(z) - v'(z) + ao(z) - u(z) =0
into

y'(2) +a(z) - y(z) = 0 (23)
with a(z) = 242 _ (al(z) )/ B (al(m) )2.




If {y1(2),...,yn(2)} is a basis for a given linear ode, then the n-th symmetric product gives a
linear ode having a basis the products y; ()™ - - -y, (2)™" with m; > 0 and my + - - -+ m,, = n. From
Picard’s theorem and Lemma 3.3 we can therefore find a doubly periodic solution to the symmetric
power ode. If one could recover the individual solutions y;(z) to (1) from the doubly periodic solution
of the n-th symmetric product ode then one would have a method for finding the general solution for
an arbitrary order linear ode having doubly-periodic coefficients. Unfortunately, the recovery process
is only known for the case of second order equations.

4 Finding a General Solution of Second Order Equations

From Remark 3.4 we can assume that we want to find a general solution of a second order linear ode
of the form (23). We show in Lemma 4.1 that solutions of such an equation can be determined by
looking for solutions of

Z"(z)+4-a(z) 2'(z) +2-d(z) 2z(z) =0. (24)

(z)
the second symmetric power of equation (23). It is well known that a basis for solutions of equation
(24) is given by {y1(2)?,y1(z) - y2(2), y2(z)?} where {yi(z),y2(z)} is a basis for equation (23). We
make use of the converse.

Lemma 4.1 Let {y1(z),y2(z)} be a basis of solutions for (23) and let z(z) = y1(z) - y2(z) a solution
of (24). Then

n(e) = 2(a) exp(= 5 [ 25 and (o) = /() - exnl 5 [ 255 (25)

where C' is a nonzero constant given by

C*=7(z)? -2 z(z) 2"(z) — 4 a(z) - 2(z)* (26)

Proof:  Let z(z) = y1(z) - y2(2) and C be the Wronskian of y;(z),y2(z). Note that C is a
constant by Abel’s identity [12] and is nonzero since y;(z) and ys(z) are independent. From 2/(z) =
y1(2) - y2(2) + y1(z) - y5(2) we have that

Y@) () | B
@) 0@ nE 27)

while C' = y5(2) - y1(z) — y2(2) - y; (2) implies that

C 4@ B
2@ w@®  w@E) (28)

Taking equations (27) and (28) together gives
y(e) @) -C L y@) Z@)+C
= an =
y1(z) 2 z(z) y2(z) 2 z(z)

¥ (z)
y1 ()

which gives (25). In addition, differentiating gives

yi(z) <y1($)>2 _2-2(z) 2"(z) - 2-2(2)’ +2-C -2 (z)
yi(z) \yi(z) 4-z(z)?



so that
yi(e) _ 2-z(z) 2"(x) - 2'(2)* + C?

y(z) 4. z(z)?
= —a(z) we get identity (26). o

vy (=)

1 ()

Since

Remark 4.2 Lemma 4.1 appears to have been known in the 1800’s by Hermite [11], Brioschi [4], and
Halphen [10] at least in the case of Lamé’s equation. Brioschi also used the result to analyze Mathieu’s
equation (where a(z) = p — k*v%cos®(z)). Indeed, in this case equation (26) is known as Brioschi’s
Identity.

In the case of second order linear odes having doubly periodic coefficients, Lemma 4.1 provides
a simple method for finding a general solution for the ode since we are always able to find a doubly-
periodic solution for the linear ode defined by the symmetric power. Classically these solutions are
given in terms of the Weierstrass Zeta and Sigma functions which are defined in terms of p via

i C))
o(z)

These Weierstrass functions are not periodic but quasi-periodic (cf. [2]).

¢'(2) = —p(z) and

= ((2). (29)

Example 4.3 Consider Lamé’s equation (2), with n any positive integer, B, g2, and gs arbitrary
constants. We search for solutions that are doubly-periodic of the second kind. The corresponding
symmetric product is given by

2"(z) — 4 (n(n +1)p(z) + B) 2'(z) — 2n(n+ 1)p'(z)z(z) = 0. (30)

and this must have a doubly-periodic solution (obtain via the methods of Section 2) if our equation has
a solution doubly-periodic of the second kind.

We can illustrate with some examples for n small. For ezample, if n = 1, then a basis for solutions
z(z) of (80) which are rational in p and ' is {p — B}. Then C* = 2/(z)* - 2z(z)2"(z) — 4a(z)z(z)* =
4B3 — g4B — g3, a constant. If C # 0, two independent solutions are
- B3—g,B—
) = o (1 ) o (1 o
g2(z) =exp (f zl(mHCda:) = exp< f@ )+V/4B g2 B=gs 4, )

221 () w(z)—B

We can return the final solution in a form found in standard texts as follows. We have

/‘KJ \/433—ng 9 _}/ ACI PN V/4B3 — g,B — 9 5
2 )- B 7 2 p(z) — B

(32)

In this case, the first integml on the right is %ln(go(az) — B), while if a is a constant such that p(a) = B,
then (cf. [2]):

dz 1
p(z) —pla)  ¢'(a)
Since p(a) = B, ¢'(a) = /4p>*(a) — g2p(a) — g3 = \/4B3 — g2 B — g3. Thus the second integral is

(Ino(z +a) —Ino(z — a) — 2z((a)). (33)

LB mBg g, 1 ole)
2 j‘ p(m)—B d£ - 2}]‘ @(f_@(a) dw
— 9 (o no(eta) - (a0 -20(@)) (9

= —% (Ino(z+ a) —Ino(z — a) — 22{(a))



and so (32) becomes

1 _ 1. ((p(2) — p(a))o(z + a)
3 (n(p(2) — p(@) + (no(z +0) ~ Inae - a) — 2¢(a))) = 3 1n (LA E ) mC((f;);)
where B has been replaced by p(a). Using the identity [2]
2)— o) — _a‘(:r:—l—a)cr(m—a)
o) - pla) = - T A7 ), (36)
we can substitute into (35) and simplify the integral (32) to be
1n 7*(z +a) ma:ln— nm—ma
5! ( iols )) (@)= 3 (-1 +1n (ZEED) — aca). (37)
Similarly,
o' ( \/4B3 —g2B—-g3, 1 o(z — a)
2/ =B dz = §ln(—1)—|—ln (W> + z((a). (38)
Hence, from (81), we have the solutions
n(e) =exp (§n (D) +In (F555) - 2¢(@) = irye )

p(z) =igithe®),

where a is such that p(a) = B and i = —1.

For higher values of n, solutions for z(z) and C, and hence for y1(z) and y2(z), are still obtained.
However, it becomes more difficult to evaluate the integrals for increasing values of n so we just give
z(z) and C?, forn =2 to 5:

n=2:2(z)= ~lg+ 1B 1Bp+ o’
C?= 73;4(Gp+ B)(9g2 — 4B% + 12Bp — 36p?)?

n=3 :z(:e): 4g3+ 15Bg2_ EB3_ %ngﬂ—l- 72_5B2$0_ %BP2‘|’K93
C? = 55a=55(12p + B)(—225g3 + 60Bgs — 4B® — 225950 + 24pB? — 180Bp* + 900p°)?

n=4:z2(z)= %393 ‘|' 40092 2;3201‘7232 + 11025B - 9935’9‘1' 1260B92$O 2205335O
5920° + 53 B*p* — $Bp° + p*

Cr= 1 (20p+ B)(77003g3 + 396992 — 9049, B2 + 16 B — 39200g3p + 74209, Bp
“160B%p — 52920g5p° + 2160B%p* — 25200Bgp® + 176400p%)2
_E. 27 298 44B 538° B’ B 25 191
n=>5:z(z)= %91293 . 1134093 - 11024592 + 297675921 893025 + %ng + @93293 7938092‘32@
+5a535 B0 — 49350 +%Bg25° — B0’ - 49250 + 567 B°p Bgo + p°
C? =  co3550583000 (30 + B)(—688905g295 + 365409332 + 5702492B — 2544g2B3 + 16B°

—396900Bgsp — 455625920 + 34380g2B2p — 240pB* + 3572100g3p% — 532980 Bgp*
+5040B3p? 4+ 5103000920 — 100800B2p> + 15876008 p* — 14288400°)>
(40)
Using the computer algebra system Maple, the solutions yi(z), y2(z) generated from these solutions

for z(z) and C' have all been verified to be solutions of the corresponding instance of Lamé’s equation.
O
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5 Algorithms for Finding Doubly-Periodic Solutions

In this section we consider the computational problem of finding an answer for the decision procedure
given in Section 2. We will discuss two methods for solving this problem, one using methods from
Ore algebra, a second based on converting the problem to one of finding algebraic solutions to a linear
ode having algebraic coefficients. In the latter case, our procedure is a direct extension of methods for
finding rational solutions to one which finds algebraic solutions.

5.1 Ore Methods

The first method builds on the discussion in Section 2 where the decision procedure reduced our
problem to one of solving a 2 x 2 linear system of differential operators M - v = 0 where M = [L; ;]
with each L; ; € K(z)[D] a differential operator in D = 4 and v a 2 x 1 vector of elements from K (z).
The method is described in Singer [16, 17].

If the matrix M was made up of polynomials and we were searching for polynomial solutions
to M - v = 0 then the classical methods for solving such a problem is to convert the matrix M to
its Hermite (i.e. triangular) or Smith (i.e. diagonal) normal forms. Such a conversion can be done
when the coefficient domain is a Euclidean domain. It can also be done if the entries of the matrix
come from an Ore domain where there are one-sided Euclidean operations. Thus, the linear system of
differential operators can be solved by using row and column operations in the Ore domain K(z)[D] in
order to diagonalize the 2 X 2 coefficient matrix L. Thus there are invertible matrices U,V € K(z)[D]
such that U1, V~! € K(2)[D] and where U - L-V = L is a diagonal matrix. In this case a solution to
L-v=0is given by v = V"% where ¥ solves Lo =0. Since L is a diagonal matrix we have reduced
our problem to two problems of finding a rational solution of linear odes have rational solutions.

This method is particularly convenient when the 2 X 2 system is already in diagonal or anti-
diagonal form as in Example 2.3. In this case it reduces the problem to 2 calls to a decision procedure
for linear odes having rational function coefficients, both of the same order. However, in other cases
one has to finding rational solutions of equations of higher order. In addition, the elimination process
increases the size of the coefficients of the differential operators and hence increases the difficulty in
finding rational solutions of the associate linear odes. For these reasons, the usefulness of this method
is considerably reduced since the cost of finding rational solutions depends significantly on the order
of the linear ode along with the size of its coefficients.

Example 5.1 Let
(=2¢°(2) = Fp(2) - 95— 2¢'(2))y"(2) +(120°(2) - 92 + 6¢°(2)p'(2) + 5 (2))y ()
—(12¢*(z) — 6920 (z) — 12g3p(z) — F)y(z) = 0

In this case the 2 x 2 linear system of differential operators does not separate into two linear odes.
Using elimination via Ore algebras one can decide if doubly-periodic solutions exist. In this case we
have a basis of doubly-periodic solutions given by

11 (@) = ple) and ys(2) = /(=) - 2

The elimination reduces the problem to finding rational solutions of two linear odes, each of order 4
and both having coefficients approzimately twice the size of the original operators (both in terms of
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degrees of the coefficients and also in terms of the sizes of the coefficients of the rational functions).
Details of the computation can be found in [7]. O

5.2 An Algebraic Rational Solver

Throughout this subsection we will assume that our problem is given in an algebraic form. That is, we
are given a linear ode having coefficients in K(z, /w(z)) and wish to find a solution to the equation
which lies in the same coefficient domain (but with perhaps the field of constants being enlarged).
Using the algebraic form of the equation allows us to make use of many well known constructions that
parallel those used for finding rational solutions of linear odes having rational functions as coefficients.

Let L € K(z, w(z))[D] with w(z) a polynomial, square-free, and suppose that we are looking
for a solution to Ly = 0 of the form y = A(z) + B(z)y/w(z) with A(z), B(z) € K(z). By clearing
denominators we can assume that L € K[z, \/w(z)|[D]. Furthermore, if a,(z) + b,(z) - \/w(z) is the
leading coefficient of L then if b,,(2) # 0 we can multiply the equation by the conjugate a,,(z) — b, (z) -
Vw(z) to ensure that the leading coefficient lies in K[z]. We will find a solution to our homogenous
equation in K(z, v/w(z)) (if it exists), with K an algebraic extension of K, by following the main steps
used in the rational function case. The main difference is that we will work over an algebraic curve
rather than a line. In this case this translates into a singular point a (i.e. a root of the leading
coefficient) mapping to possibly two points of the algebraic curve.

Let a(z) be an irreducible factor of the leading coefficient of L and assume that a € K(a)
satisfies a(a) = 0 where K(a) = K[z]/(a(z)). Then there are three possibilities for singular points
associated with a. If 22 — w(a) factors in K(a)[2] into (z — B)(z + B) with 8 € K(a) nonzero, then
both (o, ) and (o, —f) are finite singular points of L on the algebraic curve defined by /w(z).
If on the other hand z? — w(a) is irreducible in K(a)[z] let 8 € K(a, 8) satisfy 82 = w(a) where
K(a, 8) = K(a)[z]/(2% — w(a)). Then (a,f) is a finite singular point of L on the algebraic curve.
Finally, if w(a) = 0, then (¢, 0) is a singular point of L.

For a given finite singular point P = («, ), let T be a local parameterization about the point on
the algebraic curve. Then any expression of the form y = A(z) + B(z)+/w(z) can be expanded in the
form

A(z) 4 B(z)Jw(z) = upnT™ + U1 T -+, (41)

with u,, # 0. Let
L(T™)
. 42
be the indicial equation for L at a with local parameterization T'. Then it is well known that when

y solves Ly = 0 then m is an integer root of Ef, p7(m) = 0. Define v(P) to be the smallest negative
integer root of Ef, pr(m) = 0. We can extend this definition to the irreducible factor by setting

EL,P,T (m) = tcoeﬂ'T(

v(P), P=(a0)
v(a) = v(P), P = (a,p) with 22 — w(a) irreducible in K(a)[z]
min(v(P;),v(Ps)), P1=(a,f), P2 = (a,—p) with 22 — w(a) = (z — B)(z + B), 8 € K(a)

(43)
As done in the standard rational case, our algorithm for the algebraic case will first find de-

nominators of the algebraic expression, in this case two polynomials in an extension field of K. The
numerators of both A(z) and B(z) are then determined by bounding their degrees by analyzing the
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singularity at infinity. Once upper bounds for the degrees have been found, we find the undetermined
coeflicients for the numerator polynomials by plugging in our expression into the ode and solving the
resulting linear system of equations.

Theorem 5.2 Letai(z),...,ar(z) be the irreducible factors of the leading coefficient of L and suppose
that y = A(z) + B(z)\/w(z) solves Ly = 0 with A(z), B(z) rational functions over an extension of K.
Then there are integers py,...,pr and q1,...,q; such that

denom (A(z)) | a1(z)?* - -ar(2)?* and denom (B(z)) | ai(2)? - - - ar(z)%*. (44)

In particular,

(a) if w(z) # 0 mod a;(z) then p; = ¢; = max(0, —v(a;)) ;

(b) if w(z) =0 mod a;(z) then p; = max(0, —[U(;i)J) and ¢; = max(0, —LHZ(‘“)J).

Proof:  Let a;(z) be an irreducible factor of the leading coefficient of L and assume that a € K(a)
satisfies a;(@) = 0 where K(a) = K[z]/(a(z)). Assume first that 2% — w(a) is irreducible in K(a) and
let 8 € K(e, B), nonzero, satisfy 8% = w(a) where K(a, 8) = K(a)[z]/(2? — w(a)). Since 8 = w(a) # 0,
one can expand /w(z) as a power series in the local parameter T' = (2 — a). Therefore any solution
y = A(z) + B(z)y/w(z) can be expanded in the form (41) with m > v(ae;). In particular, if an
algebraic solution exists for L then one must be able to write the solution in the form (41) for the
smallest negative integer root m of the indicial equation, implying that

A(z) = (2 — a)™A(z) and B(z) = (z — o)™ B(z) with A(z), B(z) € K(a, 8)(2).
Since a;(z) is irreducible, we also then have that
A(z) = a;(z)™A(z) and B(z) = a;(z)™B(z) with A(z), B(z) € K(a, 8)(). (45)

A similar statement is true in the case that z% —a factors over K(a). Since (45) is true for all irreducible
factors part (a) holds.

When 8 = w(a) == 0 then \/w(z) no longer has a Laurent series in  about . In this case one
can use T with T? = (z — @) as a local parameter so that

m =c1T 4 ¢2T? + - - - with ¢; € K(a).
We can repeat the previous arguments to determine that
A(z) = T™A(z) and B(z) = T™ 1 B(z) with A(z), B(z) € K(e, B)(2).
In terms of (z — &) we then have that for v(a;) = 2s even
A(z) = (z — a)*A(z) and B(z) = (¢ — o)’ B(z) with A(z), B(z) € K(a, 8)(z)

SO

A(z) = a;(z)*A(z) and B(z) = a;(2)*B(z) with A(z), B(z) € K(a, 8)(z). (46)
If v(a;) = 2s + 1 is odd then

A(z) = (z — a)**1A(z) and B(z) = (z — a)* ' B(z) with A(z), B(z) € K(a, 8)()
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SO

A(z) = a;(z)* ' A(2) and B(z) = a;(z)* ' B(z) with A(z), B(z) € K(e, 8)(2). (47)
Equations (46) and (46) then give part (b). O

It remains to determine the numerators of an algebraic solution of Ly = 0. To this end, let L
be the linear ode in T obtained by transforming L via 2 = 1/T (if w(z) has even degree) or z = 1/T?
(if w(z) has odd degree). Then 0 is a finite singular point of L., on the algebraic curve defined by
vw*(T) where w*(T') is w(T') but with the coefficients in reversed order. Set v, = v(T') where v(T)
is defined by (43).

Theorem 5.3 Let y = A(z) + B(z)\/w(z) be a solution of Ly = 0. Then the numerators of A(z)
and B(z) have the following degree bounds.

(a) If w(z) has odd degree then

degnumer (A(z)) < degdenom (A(z)) + L_;w |

degnumer (B(z)) < degdenom (B(z)) — | 2= d‘;g(w(”)) |
(b) If w(z) has even degree then

degnumer (A(z)) < degdenom (A(z)) — v

degnumer (B(z)) < degdenom (B(z)) — va — w.

Proof:  Since L has a polynomial as a leading coefficient, co is a singular point. If w(z) has
even degree then we can use T = 1/z as a local parameter. Finding the smallest negative integer root
m of the indicial equation for L transformed by T gives

(@) + B(2)yf0(2) = enT™ + ey T 1+
Since # = 1/T we have degree bounds for the numerators given by
degnumer (A(z)) — degdenom (A(z)) < —m (48)
and 1
deg numer (B(z)) — deg denom (B(z)) + §deg w(z) < —m. (49)
If now w(z) has odd degree then we need to use T = 1/z2 as a local parameter. Finding the
smallest negative integer root m of the indicial equation for L transformed by T gives
A(z) + B(2)\/w(z) = cpT™ + Crppr T™ T 4 - .
Since 22 = 1/T we have degree bounds for the numerators given by

deg (numer (A(z))) — deg( denom (A(z))) < —% (50)
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and
deg ( numer(B(z))) — deg( denom(B(z))) + = degw(:e) < _mT—I—l (51)

The theorem follows from (48), (49), (50) and (51). o

Theorem 5.2 implies that if there exists a solution y = A(z) + B(z)\/w(z) to Ly = 0 then one
can write
na(z) np(2)
al(;p)pl .. .ak(m)pk a; (;E)(h .. .ak(m)%
with n4(z),ng(z) polynomials. Theorem 5.3 gives degree bounds for n4(z) and ng(z). One can
therefore determine if there is a solution (and if so then find all of these solutions) by using a method

of undetermined coefficients. That is, if d4 and dp are degree bounds for n4(z) and ng(z), respectively,
then one can set

Az) = and B(z) = (52)

da

4 Zazz and np(z szzz

=0

Plugging in y = A(z) + B(z)y/w(z) into Ly = 0 then results in a system of linear equations for the
da + dp + 2 unknowns a; and b;. Solving such a system either finds all possible solutions or else
determines that no solution exists.

Example 5.4 Consider the following linear ode given by
(42> — 22 — 3)%(z* — 423 + 22 4 3)%y""(z) + 3(62% — 1)(4z® — 2z — 3)(z* — 42> + 2z + 3)%y(2)
—(z*—42342243) (42> —22—3)[(z'°—-16 2°+108 25— 146 7 — 122 2°—36 £°+-583 2* +126 2> — 135 2~ 330 z—9)
—2(2® — 102" +122% + 1325 + 102* — 54 2% — 522 — 212 — 27)/w(z))y' (2)
—((42® -2z —3)(z"® - 1022 + 24 2™ — 632" — 312° + 2522% — 52827 + 9322° — 117 2° 4 269 z* — 240 2>
+675 22 +249 £ —315) — (=6 21 +76 £ —375 22 4296 21 +700 2'°— 383 2°— 610 2° — 1376 ="+ 1227 2°+4610 z°
+795 2% — 2386 2> — 2949 22 4 9z + 54)/w(z))y(z) = 0 (53)
where w(z) = 4z® — 2z — 3. Equation (53) is already in the form Ly = 0 with L € Q[z, \/w(z)] and
with the leading coefficient in Q[z].

There are only two irreducible factors of the leading coefficient of the associated linear operator.
In the case of the irreducible factor 4z> — 2z — 3, the finite singular point is given by (a,0) where
40® — 2a — 3 = 0 in the domain Q(a). The indicial equation in this case is a constant times (N —
2)(N? — 4N — 6) and hence v(4z® — 22 — 3) = 2. Therefore this factor appears to the power 0 and
hence is not part of the denominators of any algebraic solution.

In the case of the second irreducible factor z* — 4z 4 2z + 3 there are two finite singular points,
(o, 0?) and (o, —a?) where &® — 2a — 3 =0 in Q(a). In the first case, the indicial equation is

- N(N-1)(N -2)
while for the second integer root the indicial equation is given by
ez (N+1)(N -1)(N -3)

with ¢; and ¢y constants. Therefore 'v(:c4 — 423 4 22 + 3)=-1.
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By Theorem 5.2 an algebraic solution would be of the form

e k)
y 24— 423+ 22 +3 2t — 42342243

-2z -3 (54)
with a(z) and b(z) polynomials. It remains to find a(z) and b(z).

Since w(z) has odd degree we make use of the local parameterization T? = 1/z. Transforming the
linear ode one determines that the indicial equation is 16N — 32 = 0 and so vo, = v(T) = 2. Hence,
by Theorem 5.8

deg (a(z)) < 3 and deg(b(z)) < 1.

Letting a(z) = ag + a1z + a22? + asz® and b = by + by z, substituting (54) into (53) and then setting
the resulting rational function to 0 gives the solution ag = —by, arbitrary, and ag = a3 = as = by = 0.
Thus our linear ode has a single algebraic solution given by

3

y= d — i Va3 — 2z — 3. (55)

24— 4234+ 224+3 2t —423+22+3

O

Example 5.5 If we wish to find the general solution for

(9°(2) +¢'(2))y"(2) — (607 (2) + 9" (2) + p(2)p'(2))y' () — (p(2)$"(2) + p(2) ' () — ' (2)")y(2) (: ())

56
an equation that appears in Forsyth [8]. Then we can follow the steps of the previous section. This
would require that we convert the second order to invariant form by removing the middle term and then
look for doubly periodic solutions to its second symmetric power. Converting this third order equation
to algebraic form results in equation (58), at last when g» = 2 and gs = 3 (the same results hold for
arbitrary g, and gs).

Ezample 5.4 gives

B (z) ) o(z) ,
Y= i) dp%(a) 1 2p(@) 13 pi(e)  4g(e) 1 2p(e) 137 )

as the doubly periodic solution to the corresponding third order problem. This gives a solution basis to

(56) as

ni(@) =exp ([* ),

y2(:r:) = exp (fm 403 (1) — 92;2;@ g;) (463 (¢ )(t)g;ji e \/450 9250(t) - ngt>

— exp (— [” p(t)dt)

which simplifies to

y1(2) = p(e) and ya(2) = explle) (57)

Remark 5.6 While our procedure follows the same essential steps as the method for finding rational
solutions of linear odes having rational coefficients, there are still technical difficulties that arise. In
particular, one has the problem of finding the indicial equation without an apriori knowledge of how

16



many terms of a Laurent ezpansion are needed for a given local parameterization. In our case, for a
given number of terms h we compute the terms and set

h—1
Vw(z) = Z w; T + ¢ T"
=0

where ¢ is an indeterminiant. If there is a ¢ present in the trailing coefficient computation of the
indicial equation, we then know to increase the number of terms and repeat our computation.

6 Finding Doubly-Periodic Solutions of Second Kind

In this section we show how to find doubly-periodic solutions of the second kind for (1). As done in the
last section it is convenient to first convert our input linear ode into one having algebraic coefficients.

The method that we describe in this section is based on finding first order right factors of the
associated differential operator. Such a factorization is available for the case of linear differential
operators having rational function coefficients [19]. Our approach is similar to Trager’s algorithm
for factoring polynomials over an algebraic number field. Trager’s algorithm takes a polynomial p(z)
having coefficients in the algebraic number field, forms the polynomial Norm(p(z)) in order to remove
the algebraic numbers, factors the resulting polynomial using standard methods and then obtains the
individual factors using gcd operations. In some cases the algorithm needs to translate the parameter
¢ by some random amount to ensure that Norm(p(z)) is square-free.

In our case, we replace the norm operation by an LCLM operation, the factorization by one
which finds all right factors (called an LCLM factorization) and finally the gcd operation by a right
ged operation. The operation which is equivalent to ensuring a square-free Norm occurs when the
LCLM operation produces an operator which has order less the sum of the two orders. In this case, if
the coefficient domain is K(z, \/w(z)) we translate the variable via 2 — z + ¢y/w(z) for some random
c.

More precisely, let L € K(z,+/w(z))[D] be formed by replacing all occurrences of \/w(z) by

—y/w(z) and let

L=LCLM(L,L). (58)

Then L € K(z)[D] rather than in K (z,/w(z))[D] since all coefficients of L are invariant under the
substitution \/w(z) — —+/w(z). All right factors of L can be found using LCLM factorization. Thus
we have right factors Ry, ..., Ry € K(z)[D] such that in addition

L = LCLM(Ry,...,Ry).
Right factors of L are then obtained using

R; = GCRD(L, R;) € K(z,\/w(2))[D].

Example 6.1 Let
ZApy e (59)

L=D%+
by by

17



where

a1 = —(4y/w(z)z® + 42° + Jw(z)gaz — 3z3g-
+2y/w(z)gs — 42’gs — 2¢/w(z)z*)z)
by = 2w(z)(—4z> + gaz + g3 + %) (60)
a = (4yw(z)z®+ 42° + Jw(z)g2z — 3239,
+2y/w(z)gs — 42%g3 — 2¢/w(z)z*)

with w(z) = 423 — goz — gs.

Replacing all occurences of \/w(z) by —w+/(z) to get a new differential operator L and taking
the LCLM of the two operators gives

L= LCLM(L,L)

825 —48z° —|—10:r4gg —40m392 -|—16:L‘393 —96m293 —}—mgg +4g293 2

_ 3
= D+ 2(8m7—16m6—292m5—2m4gg—4z3g3+m29§+3mg3gg+2g§)
. 222 (24395 +g0 )
87 —16x6 —2go x5 — 2t g3 —4x g3 +x? g3 +3xg3ga+29;
+ 22(z! +3g3+g02)

87 —16z0 —2g, 25 —2z% g3 —4algs +a? g3 +3pg3g2+29;5

An LCLM factorization of L is then given by

- 1 41:3—}—921:—}—293 22
L={R,,R,}={D-=, D? D — .
(R, Ba} { z’ * 2z (42° — g2z — g3) 423 — g2z — g3

Then two right factors of L are

F, =GCRD(L,Ry)

1 D - %1
F, =GCRD(L,R;)=D -

z(z2—1/4z® —gaz—g3) (61)

4rd—goz—g3 —\/4903 —g2z—gsx?

Thus a basis of solutions to Ly = 0 is {y1,y=}, where

y1(z) =exp (f d?m),
y2(a) = exp (f (o1 gro—gs) dm)_ (62)

423 —grz—gs —/4z3 — g —gsz?

Remark 6.2 Converting the linear ode (56) from Ezample 5.5 into algebraic form gives the algebraic
linear ode of Frxample 6.1. Conversion of the results of the above example back into Weierstrass form
and simplfying gives (57).

7 Conclusions

For linear odes having doubly periodic coefficients, it is possible to determine if such an ode has doubly
periodic solutions. We have shown how this can be used to find the general solution of such linear
odes for order two in terms of functions which are doubly periodic of the second kind.

It is of interest to find a similar procedure for finding general solutions of higher order. Unfor-
tunately, the method used in this paper (finding solutions of a symmetric power and then recovering
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a basis to the original ode) does not extend to higher order. In addition, the order of the symmetric
power increases quickly and even finding doubly periodic solutions of these equations becomes a sig-
nificant problem with our methods. We expect that it may be possible to do such an extension for
order three using the methods given in Singer and Ulmer [18].

In some cases it is possible that a linear ode of the form (1) does not have solutions which are
doubly periodic of the same period as the original ode, but does have solutions which are periodic of
a multiple of the periods. For example, when our methods are applied to the linear ode

3

y" () — 3p(z,92,93) ¥'(z) — 5@’(93,92,93)3/(%) =0,

then we find that there are no doubly-periodic solutions. However there is a basis of solutions of this
equation given by

Ls e
55/’ 55/’ 55/
where 6 = p(5;%,%) and §' = ¢'(5; %, %), doubly-periodic but with twice the periods. Such a

method is presented in [7]. However this method requires further investigation, particularly when a
decision procedure is desired. We plan to investigate this in the future.
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