SNAP User’s Guide

Claude-Pierre Jeannerod
LIP, Ecole Normale Supérieure de Lyon,

46 Allée d’'Ttalie, 69364 Lyon Cedex 07, France
e-mail: Claude-Pierre.Jeannerod@ens-lyon.fr
and
George Labahn
Department of Computing Science
University of Waterloo, Waterloo, Ontario, Canada
e-mail: glabahn@scg.math.uwaterloo.ca

1 Introduction

There are a number of application areas which can be formally described in terms of algebraic operations
on polynomials and matrix polynomials such as division, remainders and greatest common divisors. Areas
which make use of such an approach include control theory, linear systems theory and signal processing
[15]. While an algebraic polynomial formalism is extremely useful for theoretical studies of properties,
it has drawbacks when one tries to take advantage for computations. The primary problem is that
many applications use inexact data and finite precision computations while the formalism assumes exact
information and error-free computations [17, 21].

In this paper we describe the SNAP (Symbolic-Numeric Algorithms for Polynomials) package for
computing with polynomials having inexact coefficients. This package is a first attempt to provide the
standard functionalities for inexact polynomials that exist for exact polynomials, including the taking
of quotients and remainders, determining if two polynomials are relatively prime and finding greatest
common divisors (GCDs). The package is included in the coming release of the MAPLE computer
algebra system.

Several algorithms exist for performing such operations, in particular for computing the various notions
of the so-called approximate GCDs. These algorithms include modifications of the Euclidean algorithm
[11, 17, 20], optimization techniques [6, 13, 14], subresultant-based algorithms [7, 8], and polynomial root
approximation [18]. For the most part, the previously mentioned algorithms resort to either infinite or
adaptive precision. In our case, the software we present works under the customary model of numerical
computation using fixed precision floating-point arithmetic and the underlying algorithms benefit from
round-off error analysis which ensures numerical stability [10].

This approach, based on estimating the distance to the closest pair of polynomials having a common
factor [3], also allows for computations that typically run in quadratic time. Also, the two approximate
GCDs that we focus on in the package (quasi-GCD [20] and e-GCD [3]) are certified in the sense of Emiris
et al [8].

The remainder of the paper is organized as follows. In the next section, we discuss the numerical
computation of quotients and remainders. Section 3 is devoted to testing numerical coprimeness: Section
3.1 recalls the algorithm COPRIME [3], Section 3.2 details how the intermediate linear systems can be
solved in a fast and stable way and Section 3.3 deals with the particular case of equal degree polynomials.
Section 4 is devoted to the possibility of getting approximate GCDs from the output of the algorithm
COPRIME. In Section 5, implementation aspects of the SNAP package are considered, together with

some timings, test examples and a description of each functionality of the package.

For the remaining part of the paper, a(z) = Y. a;z* and b(z) = >_;° b;z" are univariate complex
polynomials with respective degrees m and n. We denote by a(z) and b(z) their “mirror” counterparts
a(z) = z™a(z7!) and b(z) = z"b(z71).

2 Quotient and remainder

Our first goal is to compute in a numerically stable manner the coefficients of the polynomial pair (g, r)
such that a(z) = b(2)g(z) + r(z) and degr < degb. When m < n we can clearly take (¢,7) = (0,a). On
the other hand, when m > n, we see that determining the quotient ¢(z) = Eﬁg" ¢;%" is equivalent to
solving the Toeplitz linear system of order m —n +1

bn Gm-n Om
= (1)

b2n—m e bn qo0 an

Here and hereafter the ith coefficient of a polynomial is zero whenever i < 0 and the blanck areas in
matrix representation are assumed to be filled with zero entries.
After obtaining a backward stable solution to (1), we deduce the remainder r(z) from the identity

r(z) = a(z) = b(2)q(2).

3 Primality testing

The remaining functions in the current version of SNAP are all based on the following approach, developed
by Beckermann and Labahn [2, 3]: compute polynomial solutions u(z), v(z), u(z), v(2) to the Diophantine
equations

a(z)v(z) +b(2)u(z) = 1, degu<m, degv <n, (2)
a(2)v(z) + b(2)u(z) = 2™l degu <m, degv<n, (3)

in a fast and numerically stable way. Here, “fast” means arithmetic complexity in O((m + n)>); “stable”
means weakly stable in the sense of Bunch [4]: the forward error is small when the problem is well-
conditioned.

This approach provides a numerical coprimeness test together with Bézout coefficients. Additionally,
a solution (u,v,u,v) to Equations (2), (3) yields a sharp estimation of the distance €(a,b) to the set
of polynomial pairs with a common root. Indeed, denoting by || || the 1-norm for the space of matrix
polynomials over C, one has

e(a,b) = min{||(a — a*,b—b")|| : degged(a*,b*) > 0, dega* < m,degdb* < n}. (4)
If we let S(a,b) be the Sylvester matrix associated with a(z), b(z) then it is shown in [2] that

If ®

1

—— < 1 <e€(a,b) where k= H[
1S(a,0) 7| — &

SIS

(Y
u

This improves upon the well known lower bound 1/||S(a, b)™"|| for €(a, b).

Of course, a solution to Equations (2), (3) may not exist. However, we will recall that the COPRIME
algorithm of [3] always returns a reduced pair of polynomials from which one often can deduce (under
additional assumptions) some approximate GCDs.

We restrict to the case where m > n in sections 3.1 and 3.2. The case where m < n is considered in
section 3.3.

3.1 The algorithm COPRIME

We may assume w.l.o.g. that the input numerical polynomials have been scaled to satisfy 1/2 < ||(a, b)|| <
1. Starting with (a(®,b© ¢©)) = (a(z),b(z), —2""1), the COPRIME algorithm computes for k < m a
numerical polynomial remainder sequence (a(*), b(*), ¢(¥)) by means of so-called unimodular reductions
UK (2) € C[z]2%2 of order k together with associated vectors U¥) () € C[z]2%!. More precisely,

(a®,60) = (a,0) - UW, ™) = (a,b) - U®) — 2m+F (6)
with U*) unimodular and where, for k > 1,
n > dega(k) =m-k> degb(k), degc(’“) <m-k-1,

n—-m+k—1 n—m+k

k-1 k

(k)
deg U™ < [E—1

]’ degg(k)g[n—m-i-k—l].

The two main features of this FEuclidean-like reduction process are summarized in the theorem below.

Theorem 3.1 The pairs (a,b) and (a™®) b(*)) define two different bases of the same ideal with a*) of
smaller degree than a. When k = m, a solution (u,v,u,v) to Equations (2), (3) is given by

[Z]Za(ml)(o) U(m)'[(l)]’ [Z]:Q(m)' (7)

O

In finite precision arithmetic, some remainders defined by (6) may correspond to ill-conditioned sub-
problems in the sense that some Trudy submatrices of S(a,b) may have a large condition number [3,
Appendix A]. In order to ensure numerical stability, such remainders are discarded by a “look-ahead”
strategy: one jumps from (a®), (%), ¢()) to the first (a(k+#), p(k+9) (k+2)) with s > 1 such that

|det U+ (0)| > 7 and ||[U*?|| < 1/7. (8)

Here, 7 is a threshold parameter of order the cubic root of the machine precision and (a(’““), b(k“)) is
the first basis after (a(®),b(*)) that is numerically well-behaved in the sense of (8). The set A of the
indices of all such accepted bases clearly satisfies A C {0,1,2,...,m}.

On the other hand, U*+9 and U***) are determined from a®, b®), c® U® U® in a numerically
stable manner as follows. Consider the 2s x 2s complex matrix

_ A .
asn)_k 0
k k k
a’gn)—k—l asn)—k bsn)—k—l
MS(k) - (k) ()0 ©)
k : k
am—k . bm—k—l
K k) k k :
L agn)—k—Zs—i-l asn)—k—s bgn)—k—2s+1 bgn)—k—s J

and solve the three linear systems M, S(k)m,- = y; whose right hand side is given by

_ T _ (k) _ (k)
Y1 = (07 - '707 1) y Y2 = _(bm—k—j)jzl,,,,237 Ys = (Cm—k—j)jZI,..,Qs' (10)

We use QR decomposition for solving such systems.
Setting up the 2 x 2 and 2 x 1 polynomial matrices

. 25—l .. 1 0 0 0 00
Uhhte)(z) = [0 - oo 0 25l gt R0] - (mlsz) ’ [0 =]
and

s—1 .. 1 0 0

. P cee e
Q(k’k+)(Z) = [0 0 zs—l zl ZO] * &3,
one finally obtains[3]

U(k+s) — U(k) A U(k,k-i—s) and Q(k-i-s) — ng(k) _ U(k) _Q(k,k-‘rs)‘

When k + s € A, additional scaling ensures that 1/2 < |[U**+%)|| < 1. The resulting algorithm, called
COPRIME, is given in Table 1.

Theorem 3.2 The algorithm COPRIME is weakly stable and requires in most cases O((m + n)”) flops.
O

Quadratic complexity can be achieved mainly because for most dense polynomial pairs (a,b) only
small jumps (s < 3) and thus only small linear systems are typically encountered. Note further that the
products of (6) can be replaced with the “shorter” products

(a*F2) pkto)y = (gk) p(k)) . prlkkts) o o(kts) — ps0(k) _ (g(k) p(k)) ykkts)
Remark 3.1 It follows from

am bn

S(a, b) = ag am | bo b, € C(n+m) x (n+m)

ag bo

Method: Construct (scaled) unimodular reductions U*) of (a,b) of order
k € A together with associated vectors U *) for 1 <k<m.

Input: Two polynomials a,b with dega = m > degb.
A stability parameter 7.
Output: If m € A: RETURN 1/k given by (5) and (7).

If m ¢ A: message since 1/k does not exist or is “too small”.

Initialization: k=0, A= {}, U©® = [(1] 2] and U = [8]_
Single Step: For s =1,2,...
Compute Uk-k+s) 7(kk+5) 1y olving the linear systems (9-10)

(if det M,) = 0 then increase s and restart).
Rescale U®*) . U(#:5+3) to obtain U*+9),

Exit s—loop: if (8) holds. In this case k + k+ s and A « AU {k}.
Exit ALGO: Ifk+s=m.

Table 1: The algorithm COPRIME

that the vectors [Up_1,. .-, V0, Um—1,- - -, Uo)L and [Uy_1,---sVgs Up—1,--->Ug]’ associated with the columns

of the matriz polynomial in k are respectively the last and first columns of S(a, b)fl. On the other hand,
S(a,b) is a quasi- Toeplitz matriz in the sense that S(a,b) — ZS(a,b)ZT has rank at lost 2 with

7 = ' _ e Clntm)x(ntm)
1' 0
Hence it ispossible to solve the two linear systems
S(a,b)z = (1,0,...,0)" and S(a,b)z = (0,...,0,1)7 (11)

in a fast and backward stable manner with the algorithm of Chandrasekaran and Sayed [5]. Associ-
ated Bézout coefficients obviously follow from this approach; however, it does not allow us to compute
approzimate GCDs. O

When m € A we conclude that (a,b) are numerically coprime up to perturbations of order € < 1/x.
When m ¢ A then the last accepted basis (a®®, %)) may still provide various approximate GCDs.

3.2 Fast and stable update of QR factorizations

It may happen that the look-ahead strategy yields several jumps of order s = O(m). In this case,

successively computing QR decompositions of Ml(k),...,Ms(k) by the classical method costs Y. , i3

flops, resulting in an O((m + n)") algorithm. However, by taking advantage of the recursive structure
of the matrix M® of (9) it is possible to reduce the above complexity to O((m + n)?). Indeed, we can
determine the ith QR decomposition from the (i — 1)th one in quadratic rather than cubic time. This is
precisely why such intermediate linear systems are solved via QR decomposition rather than say gaussian
elimination [1].

To see how QR decomposition works with our linear system, we partition the matrix of (9) as M, s(k) =
[Agk) ‘ ng)] with Agk) and ng) of dimensions 2s x s. Then one has

AP, u(a) B, u(b)
M® =

v(a) a’grl:)—k—s—i-l v(b) bg;)—k—s—‘rl

L w(a) ag:)—k—s w(b) bgf)—k—s _
with

u(a) = (0,...,O,agflk,...,asflkfsﬁ)jw,
u®) = (0,...,0,6% b T,
v(z) = (xgs)fk72s+2""’m1(1?fkfs) for z € {a, b},
w(z) = (xﬁ,’i)_k_23+1,...,x§,’j)_k_s_l) for z € {a,b}.

If we have the QR factorization of Ms(f)l = [Agk_)l ‘ Bgli)l], then the QR factorization of Ms(k) can

then be computed in O(s?) flops by means of Givens rotations[9] as follows. Let M 5(2 = @ - R with
R =[R(a) | R(b)] partitioned as with M*),. Let Q; = diag[Q,1,1] and define Ry = QT M". Then

R11 | QTU(G) |R12| QTU(b) -|

R = | v(a ai,’j),k,m v(b) bgs)fkfs+1 :
w(a) ag:)—k:—s w(b) bs:)—k—s

One then forms the product Q2 of s — 2 Givens rotations in order to zero out the “middle spike” in Ry,
that is, the (i,s) entries of Ry = Q4 R; are zero for s + 1 < i < 2s — 2. Then a product Q3 of 2s — 2
Givens rotations yields R3 = QI Ry whose (2s — 1)th row is zero everywhere but for its last two entries.
A product Q4 of 2s — 1 Givens rotations then leads to Ry = QT R3, which is upper triangular. The new
QR decomposition is then given by Ms(k) = (Q10Q2Q3Q4)R4. For example, when s = 3, the sparsity
structure of the matrices Ry, R2, R3, R4 is

X X . X X X X X X X X
X X X X X X X X
X X X X X X
R = — Ry =
X X X X

X X X X X X X X X X X X

X X X X X X X X X X

5 R3: X X X X 5 R4: X X X X
X X X X X X

X X X X

. X

3.3 The case where m <n

The algorithm COPRIME has been designed for polynomial pairs whose first component is of greater
degree than the second component. When m < n, it thus suffices to run the algorithm COPRIME with
(b,a) in order to estimate €(a,b) = €(b,a); when m = n, another lower bound can be obtained for €(a, b)
as follows.

Recall from [2] that

e |[(a(2) b(2) H

@) = nt.ce| (e it o) 2
where C = C U {oo} and let this infimum be attained at some 2* € C. Assume first that [2*| < 1. It is
shown in [2] that €(a,b) = ||(a — a*,b — b*)|| with a*(2) = a(z) — a(z*) and b*(2) = b(z) — b(z*). Now,
let A = b, /am,. One may assume w.l.o.g. that |A| < 1, for otherwise it suffices to swap a and b. We then
have deg(b — \a) < dega = m and it follows from (12) that €(a,b — Aa) < (1 + |\|)e(a,b). In the case
where |2*| > 1, replacing in (12) z with 2! and a(z), b(z) with respectively a(z), b(z), we further obtain
€(a,b— Aa) < (1+ |A])e(a,b). Here, A is such that |A| <1 and deg(b — Aa) < dega. (If dega > degb, we
simply swap a and b and then take A = 0.) Hence the lower bound 1/u defined by

1 {e(a,b—Aa) e(a;b—Aa)
b T+ A 7 14

} < €(a, b). (13)

Since deg(b — Aa) < dega, we can estimate €(a,b — Aa) with the algorithm COPRIME. Another call to
COPRIME yields an approximation of €(a,b — A).

When 1/4 > 0, the Bézout coeflicients associated with the coprime pair (a,b) are v — Au and u with
(v,u) being the Bézout coefficients associated with (a,b — Aa).

4 GCD-like operations

4.1 Approximate GCDs from the last accepted basis

Recall that a polynomial g is a quasi-GCD|[20] with precision € for a, b if there exist polynomials uy,
V1, U2, Uz such that

[I(a,) — g(uz, v2)l| <€, [lavy +bur —g[| <ellgll, degus <m, degvr <m.

Also, g is an e-GCDI7, 3] for a, b if there exist polynomials &, b with degrees at most m, n such that
l|(a,b) — (@,b)|| < € and g = ged(@,b) has maximal degree.

All the computations in the COPRIME algorithm are done using finite precision arithmetic. As such
there are residual error polynomials af®) and %) so that

(a,b) = U® . (a®) b)) 4 (P gk)

with dega® = m — k > degb®. Additionally, let p;(a,b) be the minimum of the set of all products
[|(a,)|] - ||(ga, gs)T|| where the polynomial pair (g,,gs) is such that degg, < I, deg gy < and

2"a(2)ga(2) + 2™b(2)gp(2) = 2™+ O™ o (14)

Beckermann and Labahn point out that when the last accepted basis has “small” errors then it can often
still be used for computing either a quasi-GCD or an e-GCD.

Theorem 4.1 Let U be the last well-behaved unimodular reduction computed by the algorithm CO-
PRIME. Then

() If [|6®]] + [|(a®), BE)|| < €|det UF)(0)|/12 with 0 < € < 1/6 then a®) is a quasi-GCD with
precision €.

(b) If2[1b® ||+ (2+4pn—m+2k(a, b))-[|(a®, BK))|| < €| det UK (0)| and | det UM (0)| > 4pp—m-y2k(a,b)-€
then a®) is an e-GCD.

O

4.2 Determining p;(a,b) via least squares

In order to check the conditions of Theorem 4.1, we need to estimate p;(a,b) (see Equation (14)). Com-
puting a 2-norm equivalent of p;(a, b) allows to reduce to the following least squares problem.
When [> 0, consider the | x 2] complex matrix

am b,
M =

Am—i4+1 - 0am bn—l+1 - by

In the case where [< 0, it suffices to replace [with —I and a(z), b(z) with 2™a(z71), 2"b(2~1) respectively.
We then compute the Moore-Penrose inverse M of M by singular value decomposition[9]. Then we may
take for p;(a,b) the product ||[M*(.,1)||, - ||(a,b)||, where M*(.,1) denotes the first column of M+.

5 Implementation

The techniques described so far have been implemented in a MAPLE package called SNAP (Symbolic-
Numeric Algorithms for Polynomials). The list of the commands it offers is given below, where a and b
denote univariate polynomials with floating-point coefficients.

e AreCoprime: coprimeness test for (a,b) when known up to a given ¢;

e DistanceToCommonDivisors: estimate the distance between (a,b) and the set of polynomial pairs
with at least one nontrivial divisor in common;

e DistanceToSingularPolynomials: estimate the distance between a and the set of polynomials
with at least one mutiple root;

e EpsilonGCD: compute a polynomial g and a quantity e such that g is an e-GCD for (a,b);

EuclideanReduction: return a degree reduced basis that is numerically equivalent to the basis
(a,b);

IsSingular: decide whether a has at least one mutiple root when known up to a given ¢;

QuasiGCD: compute a polynomial g and a quantity e such that g is a quasi-GCD with precision €
for (a, b);

e Quotient: compute the quotient of a divided by b;
e Remainder: compute the remainder of a divided by b.

Except for Quotient and Remainder, for which we need only set up the set of linear equations induced
by the operations and solve them numerically (see Section 2), the SNAP commands are related to Beck-
ermann and Labahn’s COPRIME algorithm of [3] as shown on Fig. 1.

EpsilonGCD
EuclideanReduction | — T -
COPRIME

|

| DistanceToCommonDivisors |

‘ DistanceToSingularPolynomials

Figure 1: How SNAP relies on the algorithm COPRIME.

The command DistanceToCommonDivisors relies on COPRIME in order to provide the estimate 1/k
of (5) for the distance €(a,b) of (4), whereas EuclideanReduction returns the last basis accepted by
COPRIME. EpsilonGCD and QuasiGCD respectively implement parts (a) and (b) of Theorem 4.1; they
are further used together with DistanceToCommonDivisors in the numeric coprimeness test AreCoprime.
Note also that the commands DistanceToSingularPolynomials and IsSingular simply call the com-
mands DistanceToCommonDivisors and AreCoprime, respectively, with b equal to the derivative of a.
For each of these commands, several options are allowed; for example, the user can adjust the stability
parameter 7 of (8). We detail on such possibilities in the next paragraphs.

Concerning the arithmetic used, recall that MAPLE has two floating point systems, hardware float
and software float. Software floats are used for extended precision arithmetic while hardware float makes
use of double precision arithmetic available on all computers. Hardware floating point is much faster

than software float, but is limited in its useage (see [16]). As such our implementation of COPRIME was
done is such a way that it could run in either setting, making use of hardware floats where valid. In the
case of hardware floating point arithmetic all the computations are done in double precision via a single
call to evalhf and the output data is then converted back to user precision. When hardware float is not
applicable (for example when the number of digits is set high) then the procedure is computed via the
software float evaluator evalf. The structures allowed inside procedures that can work with hardware
are limited (for example sets, lists and sequences are not allowed).

As a result of this evalhf-based approach, the SNAP package allows for numerical coprimeness to be
detected efficiently for most inputs. Dense polynomials of degree of order 1000 can typically be handled
by our implementation of COPRIME within a few minutes (on a Pentium IIT 800 MHz with 512MB of
RAM, under Linux). This is illustrated in the table below. For comparison, we also give the time (in
seconds) required to estimate €(a, b) via setting up the Sylvester matrix S(a, b) and solving the associated
linear systems by LU decomposition (MAPLE’s LinearAlgebra[LinearSolve] command).

m=mn+1 | Sylvester | COPRIME
50 0.33 0.34
100 1.30 1.34
250 8.6 8.7
500 43 33
103 307 126
2-103 3360 515

The remaining part of this section explains how to use the SNAP package and provides a description
of each of the currently available functions.

10

5.1 Introduction to the SNAP package

Calling Sequence
function(args)
SNAP [function] (args)

Description
The SNAP (Symbolic-Numeric Algorithms for Polynomials) module provides tools for handling numeric
polynomials in a stable and efficient way. The module consists of the following main components:

1. Approximate GCDs;
2. Coprimeness and singularity tests;

3. Distance problems;

N

. Quotients and remainders.

Each function in the SNAP package can be accessed by using either the long form or the short form of
the function name in the command calling sequence. For example, the coprimeness of two univariate
numerical polynomials can be tested by using the following long-form calling sequence.
SNAP[AreCoprime](arguments)

The long form of the function name is necessary if the short form of the function has not been previously
defined via with(SNAP, function), or if all of the package function short forms have not been previously
defined via with(SNAP). Additionally, if another object in the current Maple session has the same name
as a function in the SNAP package, the SNAP function can be accessed with the aid of unevaluation
quotes, as SNAP[function’](arguments).

References
- B. Beckermann and G. Labahn, When are two numerical polynomials relatively prime? Journal of

Symbolic Computation 26 (1998) 677-689.
- B. Beckermann and G. Labahn, A fast and numerically stable Euclidean-like algorithm for detecting
relatively prime numerical polynomials, Journal of Symbolic Computation 26 (1998) 691-714.

Examples
> with(SNAP):
1. Primality test
>a = 0.1%z"2+1.5%z-0.2;

a:=0.122+1.52—-0.2
>b := 0.2%xz"3+0.15;

b:=0.22° +0.15

> AreCoprime(a,b,z,0.5);

false

11

> AreCoprime(a,b,z,0.1);

true

2. Approximate GCD computation (example from [19])
> a := (z74-0.9999999) *(z"4-3.0000003*z-2.9999999) ;

a:= (2! —0.9999999)(z* — 3.0000003z — 2.9999999)
>b := (2°4-1.000001)*(z"3-3.000001%z+0.99999999) ;
b:= (z* —1.000001)(2* — 3.000001z + 0.99999999)
> EpsilonGCD(a,b,z);
0.49999999982* 4 0.2599345661 - 10~ 2% 4 0.2902317086 - 10~ 2% + 0.4936931434 - 1052 — 0.5000002917,

0.0006481143605

12

5.2 SNAP[AreCoprime]

Determine if two numeric polynomials are relatively prime up to a given error bound.

Calling Sequence
AreCoprime(a,b,z,€e,0ut)

Parameters
a - univariate numeric polynomial;
b - univariate numeric polynomial;
z - a name, the indeterminate for a and b;
€ - nonnegative numeric, error bound;
out - (optional) equation of the form output = obj where obj is 'BC’ or a list containing one or

more of this name; selects result objects to compute.

Description

The AreCoprime(a,b,z,¢) function checks whether univariate numeric polynomials a, b in z remain coprime
after perturbations of order e. Therefore we consider the set of polynomial pairs

{(a*,0%) : [l(a—a*,b—b")[| <€, dega® < m, degh* < n} (15)

where m = dega and n = degb. When € = 0, the pair (a, b) is considered to be exact and an exact GCD
computation is done. Otherwise we compare € > 0 to the following two estimates of the distance e(a, b)
of (4): we recalled in Section 3 that 1/x of (5) is a lower bound for €(a, b); additionally it is not hard to
verify that an upper bound p is given by

p = min([lal, |1p]}) = min(Y lail, Y [bal).
=0 =0

Therefore, we return true when € < 1/k, false when € > p and FAIL otherwise; in the latter case, it is im-
possible to decide from estimates 1/ and p whether the set (15) has only coprime polynomial pairs or not.

The estimate 1/k is obtained by calling the SNAP [DistanceToCommonDivisors] command (see Section
5.3). In the case where the algorithm COPRIME fails to produce a meaningful estimate but yields one
of the approximate GCDs of Section 4.1, the output of AreCoprime is false; if no approximate GCD can
be guaranteed, we return FAIL.

The output option (out) determines the content of the returned expression sequence. Depending on what
is included in the output option, every occurrence of BC yields the list [v, u] of the Bézout coefficients for
a and b, i.e. the numeric polynomials in z that satisfy (2). This list is empty when the answer is either
false or FAIL.

Examples
> with(SNAP) :
>a := 0.1%z"2+1.5%z-0.2;

a:=0122+1.52-0.2

13

>b := 0.2%xz73+0.15;

b:=0.22° +0.15

> AreCoprime(a,b,z,0.5);

false

> AreCoprime(a,b,z,0.1);

true

> AreCoprime(a,b,z,0.1,output="BC’);
true, [—0.87100410081776558122—0.1122329072639631632—0.05851459268, 0.4355020504088827342+6.588647210]
> expand(a * %[21[1] + b * %[2]1[2]);

1.000000000 — 0.1 - 10222

See also SNAP[DistanceToCommonDivisors], SNAP[DistanceToSingularPolynomials]

14

5.3 SNAP|[DistanceToCommonDivisors]

Lower bound on the distance between a pair of univariate polynomials and the set of univariate polyno-
mial pairs with a common root.

Calling Sequence
DistanceToCommonDivisors(a, b, z, tau = T, out)

Parameters

a - univariate numeric polynomial;

b - univariate numeric polynomial;

z - a name, the indeterminate for a and b;

tau =71 - (optional) equation where 7 is of type numeric and nonnegative; stability parameter;

out - (optional) equation of the form output = obj where obj is one of ’LB’, 'BC’, 'E’, "LAB’, ’"QGCD’,

'RB’ or "UR’, or a list containing one or more of these names; selects result objects to compute.

Description

The DistanceToCommonDivisors(a,b,z) function computes the estimate 1/k associated with the distance
€(a,b) to the set of numeric polynomial pairs with at least one common root. (See (5)).

When the input polynomials have “small” degrees (typically m + n < 600), we simply solve the linear
systems (11) with the MAPLE command LinearSolve. Otherwise, the method used is the fast and
weakly stable algorithm COPRIME recalled in Section 3.1; When no reliable estimate 1/ can be
obtained, the cause of failure can be displayed by setting infolevel [DistanceToCommonDivisors] to 5.

The optional stability parameter tau (see (8)) can be set to any nonnegative value 7 in order to monitor
the quality of the output: decreasing 7 yields a more reliable solution; increasing 7 reduces the risk of
failure.

The output option (out) determines the content of the returned expression sequence. Depending on what
is included in the output option, an expression sequence containing one or more of the following quantities
can be returned:

e The lower bound LB is a nonnegative float or FAIL.

e The list BC is equal to the Bézout coefficients [v, u] associated with (a,b), i.e. the numeric polyno-
mials in z that satisfy (2). The list [] is returned instead if and only if the algorithm COPRIME
failed to compute a reliable lower bound.

e The list LAB contains the last basis of (6), say (a(*), b(*0)) accepted by COPRIME.

e E can take the following values: the residual error for the computed lower bound (which allows to
verify the numerical quality of the solution); if no reliable lower bound was computed and if an
e-GCD g for (a,b) was found, then E = € and g = a(*0) (i.e. the first component of the last accepted
basis) when dega > degb, and g = b*0) (i.e. the second component of the last accepted basis)
when dega < degb; if no e-GCD for (a,b) could be found or if dega = degb then E = FAIL.

15

e QGCD can take the following values: the precision of the quasi-GCD found; in this case, the quasi-
GCD is a'%0), the first component of the last accepted basis. When no quasi-GCD can be found,
QGCD is assigned to FAIL.

e RB is the list of the indices of all the bases (a(*),b(¥)) of (6) which were rejected by COPRIME.
¢ UR contains a 2 by 2 unimodular matrix polynomial U(z) such that (a,b) - U = (a(k0), p(k0)).

Note that choosing any of the above options but BC implies that, even for small degree polynomials, the
method used is the algorithm COPRIME.

Examples
> with(SNAP) :
> a = z72+3.1%z-2;
a:=2"+312-2
>b := 2%xz"3+1.5;

b:=2z+1.5

> DistanceToCommonDivisors(a,b,z);

0.8761833704

> DistanceToCommonDivisors(a,b,z,tau=1e-2,output=[’LB’,’BC’,’LAB’,’E’,’RB’]);

0.8761833704, [—0.1446350696 — 0.12462626392 — 0.265488242027, 0.4738199072 + 0.13274412102],
[0.,0.4999999999], 0.265799999610~7, []
> expand (ax*%[2] [1]1+bx%[2]1[2]);

—0.37-107%2%2 + 0.3 - 10722 + 1.000000000 — 0.65 - 10782

See also SNAP[AreCoprime], SNAP[DistanceToSingularPolynomials], SNAP[EpsilonGCD], SNAP[QuasiGCD]

16

5.4 SNAP|[DistanceToSingularPolynomials]

Lower bound on the distance between a univariate polynomial and the set of univariate polynomials with
a double root.

Calling Sequence
DistanceToSingularPolynomials(a, b, z, tau = T, out)

Parameters
a - univariate numeric polynomial
b - univariate numeric polynomial
z - a name, the indeterminate for a and b
tau =71 - (optional) equation where 7 is of type numeric and nonnegative; stability parameter
out - (optional) equation of the form output = obj where obj is one of "LB’, 'BC’, 'E’, '"LAB’,
’QGCD’, 'RB’ or "UR’, or a list containing one or more of these names; selects result objects
to compute
Description

For a given numeric polynomial @ in 2z, the DistanceToSingularPolynomials(a,z) function returns an
estimate of the distance between a and the set of univariate singular polynomials, i.e. the set of complex
polynomials with a double root. This distance is clearly equal to €(a, da/dz).

The method used is to call SNAP [DistanceToSingularPolynomials](a,b,z) with b(z) = da(z)/dz.

All the optional arguments of SNAP [DistanceToSingularPolynomials] are also available for this com-
mand.

Examples
> with(SNAP) :
> a = z72+3.1%z-2;
a:=2>+31z—2

> DistanceToSingularPolynomials(a,z);
0.5985723997

> b := diff(a,z);

b:=22+3.1

> DistanceToCommonDivisors(a,b,z);

0.5985723997

See also SNAP[DistanceToCommonDivisors]

17

5.5 SNAP[EpsilonGCD]

Epsilon-GCD for a pair of univariate numeric polynomials.

Calling Sequence
EpsilonGCD(a, b, z, tau = T)

Parameters

a - univariate numeric polynomial

b - univariate numeric polynomial

z - aname, the indeterminate for a and b

tau =71 - (optional) equation where 7 is of type numeric and nonnegative; stability parameter
Description

The EpsilonGCD(a,b,z) function returns a univariate numeric polynomial g together with a positive float
€ such that g is an eGCD for the input polynomials (a,b) (see Section 4.1). If no such approximate
GCD can be certified by means of Theorem 4.1 then FAIL is returned.

The optional stability parameter tau (see (8)) can be set to any nonnegative value 7 in order to monitor
the quality of the output: decreasing 7 yields a more reliable solution; increasing 7 reduces the risk of
failure.

Examples
> with(SNAP) :
> a := (2°4-0.9999999) * (z~4-3.0000003%z-2.9999999) ;
a:= (z* —0.9999999)(z* — 3.0000003z — 2.9999999)
>b := (2°4-1.000001)*(z"3-3.000001%z+0.99999999) ;
b:= (z* —1.000001)(2* — 3.000001z + 0.99999999)
> EpsilonGCD(a,b,z);

0.49999999982* 4 0.2599345661 - 10~ 2% 4 0.2902317086 - 10~ 52> + 0.4936931434 - 10~52 — 0.5000002917,

0.0006481143605

See also SNAP[DistanceToCommonDivisors], SNAP[QuasiGCD]

18

5.6 SNAP[EuclideanReduction]

The smallest degree pair of univariate polynomials obtained by Euclidean-like unimodular reduction.

Calling Sequence
EuclideanReduction(a, b, z, tau = T, out)

Parameters
a - univariate numeric polynomial
b - univariate numeric polynomial
z - aname, the indeterminate for a and b
tau =71 - (optional) equation where 7 is of type numeric and nonnegative; stability parameter
out - (optional) equation of the form output = obj where obj is "UR’ or a list containing
one or more of this name; selects result object to compute
Description

The EuclideanReduction(a,b,z) function returns the last basis of (6), say (a(#0), (ko)) accepted by the
algorithm COPRIME.

The optional stability parameter tau can be set to any nonnegative value 7 in order to monitor the
quality of the output: decreasing 7 yields a more reliable solution; increasing 7 reduces the degrees of
the returned basis.

Depending on what is included in the output option, an expression sequence containing one or more of
the following quantity can be returned: UR contains a 2 by 2 unimodular matrix polynomial U(z) such
that (a,b) - U = (atko), p(ko)),

Examples
> with(SNAP):
> a = z76-12.4%z"5+62.53*xz"4-163.542%=z"3+232.9776*%=z"2-170.69184*=z+50.18112;

a:= 2% —12.42° 4+ 62.532* — 163.5422° + 232.97762% — 170.691842 + 50.18112
>b = z75-17.6%z"4+118.26%z"3-372.992%z"2-274.09272+538.3333*z;
b:= 25 —17.62* + 118.262% — 372.9922? + 538.33332 — 274.09272
> EuclideanReduction(a,b,z);
[4.0000000002* — 45.320145262° + 182.64349822% — 301.30564732 4 164.9022927,

3.4899929092° — 25.441239042% + 55.505503852 — 34.91733545]

> EuclideanReduction(a,b,z,tau=1e-8);

[0.250000000022 — 0.87500037652 + 0.6600005057, —0.907264 - 10~ "2 4 0.1335296 - 10~

See also SNAP[DistanceToCommonDivisors], SNAP[EpsilonGCD]

19

5.7 SNAP[IsSingular]

Determine if a numeric polynomial has a double root up to a given error bound.

Calling Sequence
IsSingular(a,z,c,0ut)

Parameters
a - univariate numeric polynomial
z - a name, the indeterminate for a
€ - nonnegative numeric, error bound
out - (optional) equation of the form output = obj where obj is 'BC’ or a list containing one or

more of this name; selects result objects to compute

Description
The IsSingular(a,z,e) function checks whether the polynomial a(z) has no double root up to perturba-
tion € by calling AreCoprime(a,b,z,€) with b = da/dz. Hence the answer can be true, false or FAIL.

The output option (out) determines the content of the returned expression sequence. Depending on what
is included in the output option, every occurrence of BC yields the list [v, u] of the Bézout coefficients for
a and da/dz, i.e. the numeric polynomials in z that satisfy (2) with b = da/dz. This list is empty when
the answer is either false or FAIL.

Examples
> with(SNAP) :
> a := 0.00103*z"3 - 0.00195%z"2 - 0.00501 * z + 0.00604;

a = 0.001032% — 0.0019522 — 0.005012 + 0.00604

> IsSingular(a,z,le-1);

true
> IsSingular(a,z,le-2);
FAIL
> IsSingular(a,z,le-4);
false

See also SNAP[AreCoprime]

20

5.8 SNAP[QuasiGCD]

Schonhage’s quasi-GCD for a pair of univariate numeric polynomials

Calling Sequence
QuasiGCD(a, b, z, tau = 7)

Parameters

a - univariate numeric polynomial

b - univariate numeric polynomial

z - aname, the indeterminate for a and b

tau =71 - (optional) equation where 7 is of type numeric and nonnegative; stability parameter
Description

The QuasiGCD(a,b,z) function returns a univariate numeric polynomial g together with a positive float €
such that g is an quasi-GCD of precision € for the input polynomials (a,b) (see Section 4.1). If no such
approximate GCD can be certified by means of Theorem 4.1 then FAIL is returned.

The optional stability parameter tau (see (8)) can be set to any nonnegative value 7 in order to monitor
the quality of the output: decreasing 7 yields a more reliable solution; increasing 7 reduces the risk of
failure.

References
A. Schonhage, Quasi-GCD computations, J. Complezity 1(1985) 118-137.

Examples
> with(SNAP):
> a := (2°4-0.9999999) *(z~4-3.0000003*z-2.9999999) ;
a:= (z* —0.9999999)(z* — 3.0000003z — 2.9999999)
>b := (2°4-1.000001)*(z"3-3.000001%z+0.99999999) ;
b:= (z* —1.000001)(z* — 3.000001z + 0.99999999)
> QuasiGCD(a,b,z);

0.49999999982* 4 0.2599345661 - 10~ 2% 4 0.2902317086 - 1072 + 0.4936931434 - 10~52 — 0.5000002917,

0.0005263828643

See also SNAP[DistanceToCommonDivisors], SNAP[EpsilonGCD]

21

5.9 SNAP[Quotient], SNAP[Remainder|

Quotient and remainder of two numeric polynomials.

Calling Sequence
Quotient(a, b, 2)
Quotient(a, b, z, 'r’)
Remainder(a, b, 2)
Remainder(a, b, 2, ’q’)

Parameters
a - univariate numeric polynomial
b - univariate numeric polynomial
z - aname, the indeterminate for @ and b
q,r - (optional) unevaluated names
Description

The Remainder function returns

The Quotient function returns the quotient of a(z) divided by b(z).
the remainder of a(z) divided by b(z). The quotient g(z) and remainder r(z) satisfy degr < degb and

[la = (b-q+r)|| is small.

If a fourth argument is included in the calling sequence for Remainder or Quotient, it will be assigned

the quotient ¢(z) or remainder r(z), respectively.

The method used is the one of Section 2. We solve the associated linear system via QR decomposition
with the MAPLE function LinearAlgebra[LinearSolve].

a = —852% — 552* — 372% — 3522 + 97z + 50

Examples
> with(SNAP) :
> a := -85%z"5-5b*%z"4-37*%z"3-35%z"2+97*z+50;
> b := 79%z"3+56%z"2+49%z+63;

b:=792% + 5622 + 492 + 63

> q := Quotient(a,b,z,’r’);

—1.075949367088607332> + 0.06649575388559517142 + 0.1518703389

> r;

21.021779202% + 85.369120902 + 40.43216865

> expand (a-bxq-r) ;

—0.1-10772°—-0.1-10772*-0.1-10772% - 0.1- 1078

22

References

[1]

B. Beckermann, The stable computation of formal orthogonal polynomials, Numerical Algorithms 11 (1996)
1-23.

B. Beckermann and G. Labahn, When are two numerical polynomials relatively prime? Journal of Symbolic
Computation 26 (1998) 677-689.

B. Beckermann and G. Labahn, A fast and numerically stable Euclidean-like algorithm for detecting rela-
tively prime numerical polynomials, Journal of Symbolic Computation 26 (1998) 691-714.

J.R. Bunch, The weak and strong stability of algorithms in numerical linear algebra, Lin. Alg. Appl. 88-89
(1987) 49-66.

S. Chandrasekaran and A.H. Sayed, A fast stable solver for nonsymmetric Toeplitz and quasi-Toeplitz
systems of linear equations, STAM J. Matriz Anal. Appl. 19(1) (1998) 107-139.

R.M. Corless, P.M. Gianni, B.M. Trager and S.M. Watt, The singular value decomposition for polynomial
systems, Proceedings ISSAC’95, ACM Press (1995) 195-207.

I Z. Emiris, Symbolic-numeric algebra for polynomials. Survey available at
http://www-sop.inria.fr/galaad/emiris (1997).

I. Z. Emiris, A. Galligo and H. Lombardi, Certified approximate univariate GCDs, J. Pure and Applied
Algebra 117 (1997) 229-251.

G.H. Golub and C. Van Loan, Matrix computations, Johns Hopkins University Press (1989).
N.J. Higham, Accuracy and Stability of Numerical Algorithms (SIAM, Philadelphia, 1996).

V. Hribernig and H.J. Stetter, Detection and validation of clusters of polynomial zeros, J. Symbol. Comput.
24(6) (1997) 667-681.

C.P. Jeannerod and G. Labahn, SNAP User’s Guide (2002).

N. Karmarkar and Y.N. Laksmann, Approximate polynomial greatest common divisors and nearest singular
polynomials, Proceedings ISSAC’96, ACM Press (1996) 35-43.

N. Karmarkar and Y.N. Laksmann, On approximate GCDs of univariate polynomials, Journal of Symbolic
Computation 26 (1998) 653-666.

T. Kailath, Linear systems, Prentice-Hall (1980).

M.B. Monagan, K.O. Geddes, K.M. Heal, G. Labahn, S.M. Vorkoetter, J. McCarron and P. DeMarco,
Maple 7 Programming Guide, Toronto: Waterloo Maple Inc., 2001.

M.-T. Noda & T. Sasaki, Approximate GCD and its applications to ill-conditioned algebraic equations, J.
Comput. Appl. Math. 38 (1991) 335-351.

V.Y. Pan, Numerical computations of a polynomial GCD and extensions. Technical Report 2969, INRIA,
Sophia-Antipolis (1996).

D. Rupprecht, Eléments de géométrie algébrique approchée: étude du PGCD et de la factorisation, These
de PUniversité de Nice-Sophia Antipolis (2000).

A. Schénhage, Quasi-GCD computations, J. Complezity 1 (1985) 118-137.

H. Stetter, Numerical Polynomial Algebra: Concepts and Algorithms, ATCM 2000, Proceed. 5th Asian
Technology Conf. in Math. (Eds.: W.-Ch. Yang, S.-Ch. Chu, J.-Ch. Chuan), 22-36, ATCM Inc. USA
(2000).

C.J. Zarowski, X. Ma and F.W. Fairman, QR-factorization method for computing the greatest common
divisor of polynomials with inexact coefficients, IEEE Trans. Signal Processing 48(11) (2000) 3042-3051.

23

