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Figure 1: Frames from an animation illustrating an auroral surge (spiral) formation in the northern hemisphere.

Abstract

The auroral displays, known as the Aurora Borealis and Aurora
Australis, are geomagnetic phenomena of impressive visual charac-
teristics and remarkable scientific value. Auroras present a complex
behavior that arises from interactions between plasma (hot, ionized
gases composed of ions, electrons and neutral atoms) and Earth’s
electromagnetic fields. In this paper we present a physically-based
model to perform 3D visual simulations of auroral dynamics. This
model takes into account the physical parameters and processes di-
rectly associated with plasma flow. The set of partial differential
equations associated with these processes is solved using a practi-
cal multigrid algorithm, which can also be applied in the simulation
of natural phenomena such as gas, smoke or water flow. In order
to illustrate the applicability of our model we provide animation
sequences rendered using a distributed forward mapping approach.

CR Categories: I.3.7 [Computing Methodologies ]: Computer
Graphics—Three-Dimensional Graphics and Realism.

Keywords: animation, atmospheric effects, natural phenomena,
numerical analysis, physically-based animation, physically-based
modeling, rendering.

1 Introduction

The Aurora Borealis, or “Northern Lights”, and Aurora Australis,
its southern counterpart, are light emissions caused by the collision
of an ionized stream of charged particles with high altitude atmo-
spheric atoms and molecules [15]. These phenomena are consid-
ered by many to be the most fascinating and mysterious of Nature’s
spectacles. Taylor in National Geographic called them “Earth’s
Grand Show of Lights” [43]. An inherent characteristic of auro-
ral displays is that they move and change shape slowly or rapidly.
These complex and stochastic motions are directly related to the
plasma processes. In this paper a novel physically-based model
to perform 3D visual simulations of the dynamics of the auroral
phenomena is presented. Furthermore, auroral surges (Figure 1),
which have not been previously simulated, are also rendered using
this model.
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The auroras are frequently visible at high latitudes. They can
also be seen less frequently at lower latitudes, especially during a
solar maximum (a period of great solar turbulence that occurs ap-
proximately every 11 years [34]). The present solar cycle reached
the maximum in the year 2000 and it is likely to produce amaz-
ingly bright auroras for the next couple of years. Auroras are also a
strong visible effect in space, and even occur on planets with strong
magnetic fields such as Jupiter and Saturn. Hence, the simulation
of auroral displays is of interest for the production of night sky an-
imation sequences used in film and planetarium shows. Moreover,
the algorithms used in our plasma model may also be applied to the
simulation of other plasma related phenomena, from gas discharges
encountered in neon and fluorescent lights to gaseous nebulae and
visual pulsars.

On the scientific side, the importance of the visual simulation
of auroral dynamics is related to its links to plasma physics. As
much as 99.9 % of the matter in the universe is thought to exist in
plasma state. The auroral displays provide a natural laboratory in
which the complex workings of the plasma universe can be studied.
Therefore, their simulation can be used in the evaluation of auroral
theories as well as in the visualization of other astrophysics phe-
nomena. For instance, plasma kinetic theory can be used to predict
the development of galaxies, since, although stars in a galaxy are
not charged, they behave like particles in a plasma [12].

Yet the main motivation for this research is the spellbinding
majesty of a moving auroral display. As Brekke stated [43]:

Northern Lights give a linkage between science and art.
Even though as a scientist you are supposed to have
some sort of objectivity, like an artist, you are inspired
by them.

1.1 Related Work

Blinn and Wolf [46] produced a film in 1983 entitled “Jupiter’s
Magnetosphere: The Movie”. In this film representations of space-
craft observations as well as analytic models of the plasma and
magnetic fields in the Jovian system were employed to visualize the
morphology and dynamical structure of Jupiter’s magnetosphere.
To the best of our knowledge this film represents the first use of a
plasma model by the graphics community.
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Recently, Jensen et al. [28] developed a physically-based model
of the night sky. Although their model does not include auroral
displays, their night sky images can be combined with our auroral
simulations. They also highlighted the role of naturally illuminated
night scenes in the history of image making and their importance in
the area of realistic rendering.

Baranoski et al. [2] presented a physically-based algorithm for
the rendering of auroral displays which accounts for important au-
roral visual features such as their characteristic spectral and inten-
sity variation. Their work, however, does not take into account the
electro-magnetic instabilities responsible for the time varying be-
havior of the auroras. Although their algorithm cannot be used
to realistically simulate auroral dynamics, which involves a wide
range of spatio-temporal scales, it provides an accurate framework
for the rendering of auroral images.

The spectacular auroral motions and shape changes involve to
some extent shear, i.e., differential motions within different parts
of a fluid or gaseous material. Shear is common in nature. Shear
eddies show on the surface of water in streams, or beside boats mov-
ing through water, in smoke curling up from a fire and they are also
responsible for clear-air turbulence and gusty winds. Shear found
in the auroras is associated with plasma processes, whose most fas-
cinating consequences are the formation of rotational distortions
having different spatio-temporal scales [13].

Several papers in the computer graphics literature have addressed
the simulation of natural phenomena involving shear and fluid flow
[17, 20, 19, 30, 33, 41, 40]. Although the plasma instability re-
sponsible for the stochastic and complex nature of the auroras is
similar to the Kelvin-Helmholtz instability (KHI) of sheared fluids
[42], a more natural way to model auroral phenomena is to simulate
the equations of plasma flow directly. The use of a plasma model
allows the control of the simulations by auroral physically mean-
ingful parameters. Moreover, it enables the accurate reproduction
of rapid intermediate scale motions often seen in the auroras such
as the motion of rays and folds along auroral forms.

The simulation of plasma instabilities as well as fluid instabil-
ities involves the solution of systems of partial differential equa-
tions (PDEs). The production of animation sequences require the
solution of such systems many times. Usually standard iterative
methods, such as the Conjugate Gradient (CG) and Fast Fourier
Transform (FFT)[21], are applied. Stam [39, 40] has highlighted
the theoretical advantages of the application of multigrid methods
[22] to solve such systems. In this paper we introduce a practical
and fast multigrid algorithm suitable to solve PDEs arising from
plasma and fluid flow simulations. We note that our multigrid im-
plementation is matrix-free, i.e., it does store coarse grid quantities.
Previous multigrid implementations found in the computer graph-
ics literature, such as the one used by Witkin and Kass in the their
texture synthesis algorithm [48], do not address this issue.

1.2 Organization

The remainder of this paper is organized as follows. The next sec-
tion provides an overview of relevant auroral physics concepts and
describes the main motions and shape changes of the auroras. Sec-
tion 3 outlines the modeling framework used in this research. Sec-
tion 4 presents the algorithms used to simulate the dynamics of the
auroral phenomena. Section 5 addresses rendering issues. Section
6 presents the results of our simulations and discusses performance
issues. Finally, Section 7 concludes this paper providing directions
for future work.

2 Auroral Phenomena

In this section we outline the main physical aspects directly related
to the simulation of auroral dynamics. A reader interested in a de-

Figure 2: Satellite snapshot of an auroral oval around the Earth’s
north magnetic pole. (Courtesy of NASA Polar Ultraviolet Imager.)

tailed description of auroral physics is referred to more comprehen-
sive texts on these phenomena [7, 13, 15, 29, 36]. The diagrams of
auroral distortions presented in this section use as reference an au-
roral local coordinate system represented by xyz, where the z-axis
corresponds to the direction parallel to the Earth’s magnetic field
vector

��
.

2.1 Overview

The particles responsible for the colorful auroral displays are elec-
trons that originate from solar flares and coronal mass ejections and
become the “solar wind”[9]. After interacting with the Earth’s mag-
netosphere, these particles migrate along the magnetic field lines,
and eventually “dive” towards oval regions around the Earth’s mag-
netic poles. These regions are called auroral ovals (Figure 2).

The shape of an aurora is determined by the energy and den-
sity of the electrons entering the atmosphere, as well as the local
variations in the Earth’s magnetic and electric fields. The most
common aurora can be thought of as a “curtain” of light emissions
from “sheets” of falling electrons, which move in parallel with the
Earth’s magnetic field.

As the electrons travel down along the Earth’s magnetic field
lines they suffer many random deflections which are caused by col-
lisions with atoms of atmospheric gases such as oxygen and nitro-
gen. These deflections spread the electrons out horizontally. When
the electrons collide with atmospheric constituents, the atoms are
excited and after a period of time they may emit a photon. Sta-
tistically several collisions must occur before a photon is emitted.
As a result of these photon emissions the curtains will be colored,
brightly yellow-green at the bottom, perhaps red at the top, and a
yellow/orange transition may also be present. Oftentimes they can
form arcs that can extend over ���������
	 whose width (thickness)
may vary from several hundred meters to several kilometers. These
arcs can bend and fold almost like real curtains thereby generating
bright vertical streaks.

2.2 Auroral Shear-Type Distortions

The sheets of precipitating electrons form an auroral stream that is
subject to instabilities responsible for the shear-type rotational dis-
tortions seen in auroral arcs. Hallinan and Davis [26] identified the
three distinct types of distortions: curls, folds and spirals (Figure 3).
Curls are small scale and have a diameter of 1 �
	 or less. Folds are
intermediate scale distortions and have a diameter of approximately
20 �
	 or less. Spirals, or surges, are the largest auroral vortices and
diameters typically around 20–1300 ��	 [38]. In addition to the dif-
ferent spatial scales, these phenomena have also different temporal
scales. Curls have a lifetime of a fraction of a second, while folds
can exist for more than a second and spirals may last minutes.
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Figure 3: Line drawings of cross sections of auroral arcs (not in
scale) illustrating the three major shear-type rotational distortions:
a) curls, b) folds and c) spirals. (Redrawn from [23].)

Curls and folds are responsible for distinct visual features present
in auroral displays. The light emanating from convoluted folds in
auroral displays oftentimes creates the impression of vertical, or
near-vertical, “stripes” [8]. Despite their highly transient nature,
curls are largely responsible for another important auroral feature,
namely electron beams evolving into thin field-aligned filaments or
“rays”. An auroral ray typically has a vertical dimension up to sev-
eral hundred kilometers. Curls are usually 2–10 ��	 apart, while
folds are approximately 20 �
	 apart. Spirals are also relative com-
mon auroral structures, visible in more than 30% of the Defense
Meteorological Satellite Program observations 1 [14]. They can
form a street of two or more spirals approximately 100 ��	 apart.
The spirals in the street usually have similar configuration and size,
but they may also grow monotonically along the auroral display
[14].

2.3 Auroral Motions

As pointed out by Davis [13], auroral motions and shape changes
seem bewildering, yet they present some order when examined in
detail. Many of the motions and shape changes associated with the
auroral distortions are caused by warping of the incoming particle
streams by attendant magnetic and electric fields. In this section
we outline the most important of these changes according to their
spatial scale.

2.3.1 Small Scale

When an electron particle stream responsible for producing such
structure becomes slightly more dense in a region, it is likely to
become contorted and a curl develops [13]. The curl formation
process is similar to the spiral formation process and leading to
essentially the same final configuration. However, the entire curl
formation can occur so rapidly (0.25–0.75 � [44]) that an observer
on the ground has difficulty in following the process.

2.3.2 Intermediate Scale

Once a curl vortex develops, it tends to cause the formation of an-
other curl a short distance along the arc. The net result is the de-
velopment of an array of evenly spaced auroral rays along the arc.
If another arc is nearby, the rays come under the influence of its
electrical field and therefore move along the arc [13]. If the process
that leads to curl formation continues a bit longer, then small, uni-
formly spaced folds occur, and sometimes the arc even splits into
two separate arcs as the folds break apart (Figure 4).

1http://www.ngdc.noaa.gov/dmsp/dmsp.html
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Figure 4: Line drawings illustrating an auroral arc break up.

Folds have apparent horizontal velocities in the range of
0–5 �
	

� � [26]. The apparent horizontal velocities of curls lie in
the range of 0–90 ��	

� � , with preferred speeds in the range of
0–8 �
	

� � [44]. To have a better idea of the magnitude of these
speeds, the reader has to recall that an auroral arc may extend over
the entire field of view of an observer on the ground. For this ob-
server the auroral rays will “travel” back and forth between two
extreme points in the horizon in few seconds.

2.3.3 Large Scale

When an incoming stream of electrons that produces an auro-
ral arc develops a slight irregularity, the irregularity can grow
[23, 24, 32, 37]. As it does, the stream becomes distorted, carry-
ing incoming particles to new locations in the auroral atmosphere
[13]. The growth of this irregularity depends on the thickness of
the electron stream. The larger the stream length to thickness ratio,
the faster the irregularity grows with the distance [23, 32]. Figure 5
shows an auroral arc being affected by the warping process, first
developing a fold and then progressing into a complex spiral shape.
These large auroral vortices have an average speed of � �
	

� � [38].
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Figure 5: Sketch showing different stages of an auroral warping
process: a) initial arc, b) fold, c) further distorted fold and d) spiral
array. (Redrawn from [23].)

2.3.4 Global Scale

Even if an aurora underwent no changes, an observer on the ground
would see apparent motions due to the Earth’s motion beneath
the auroral ovals. The interactions of solar wind particles with
the Earth’s magnetosphere also result in a westward or eastward
drifting of auroral forms (speeds up to � � �
	

� � can be observed
[35]). When the level of auroral activity increases, the diameter
of the auroral ovals increase and the ovals widen. These changes
cause an observer to see north-south motions (typical speeds of
� ����� � ��� 	

� � [16], � �
	
� � can also be observed [36]). The in-

tensity variations of the auroras are usually a function of where in
the magnetic substorm (large variations in the magnetic field [31])
cycle they occur. This cycle consists of a quiet phase, a growth
phase (up to 2 hours), an active expansion phase (approximately � �
minutes) and a recovery phase (30 minutes to 2 hours) [6]. The
highest intensity variations, often associated with the formation of
spiral streets, occur during the expansion phase (Figure 2).
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3 Modeling Framework Overview

Computer modeling of plasma can be broadly divided in two types:
Eulerian and Lagrangian [27]. The Eulerian model assumes plasma
to behave like a fluid or to obey macroscopic differential equations
for average quantities. The Lagrangian model follows the motion
of a large number of particles as they move in time under their mu-
tual electromagnetic interactions. Although this model acts on the
microscopic particle level, it allows the particle ensemble to “make
its own mind” about its macroscopic and collective behavior. This
aspect is relevant in the simulation of phenomena with noticeable
stochastic traits and different spatio-temporal scales such as auro-
ras.

We use an hybrid Eulerian-Lagrangian approach in our mod-
eling of auroral phenomena. In order to minimize computational
overhead we follow the path of beams of electrons instead of track-
ing � �

���
individual plasma particles provided by Nature. As such,

we use normalized values for the physical quantities involved in
our simulations, namely charge, mass and permissivity. The La-
grangian treatment is used to account for the interactions among
beams and between beams and atmospheric constituents. The Eu-
lerian treatment is applied when spatial scales much greater than
the relatively small amplitude motions of the beams are considered.

The motion of electron beams has two components: parallel and
perpendicular to the electron stream. The parallel component is as-
sociated with the kinetic energy of the incoming particles. The per-
pendicular component is due to the warping of the electron stream.
The key stage of our modeling framework is the simulation of this
time dependent process, which changes the perpendicular velocity,���� , and the position of electron beams,

�
, at the top of the electron

stream at each instance of time. The mathematics of this warping
process can be described by an electro-magnetic version of KHI
[23, 24, 32, 37]. Section 4 describes in detail the warping algorithm
used in our simulations.

The position of each beam at the top of the electron stream is
considered as the starting point of its descending trajectory. The
position update resulting from the warping process is associated
with a steady state of incoming particles. A precipitating electron
beam is tracked down until it becomes indistinguishable from the
ambient electron population. During their descending trajectories
the electron beams may be deflected several times due to collisions
with atmospheric constituents. Light emissions may occur at these
deflection points causing the auroral displays. These emissions are
mapped to the screen plane of a virtual camera using a splatting
approach [47] described in Section 5.

The auroral dynamics simulation uses the auroral local coordi-
nate system previously defined (Section 2). The mapping of auroral
emissions uses as reference a global coordinate system represented
by XYZ, where the Y-axis corresponds to the direction normal to the
ground.

4 Dynamics Simulation

The electron beams interact with one another through the electric
field,

��
, generated by their mutual electrostatic repulsion, and the

Earth’s magnetic field,
��
. Thus, the Lorentz force on an electron

beam �
	 with charge ��	 moving with a perpendicular velocity
�� �	

is
�
 	�����	�� ���� �� �	�� ������

(1)

and the motion of the electron beam of mass 	 	 is determined by
Newton’s law

	�	
� �� �	����� �
 	! (2)

Thus, to update the positions of the electron beams, we need to
compute

��
and

��
. In the auroral warping simulation, the Earth’s

magnetic field is modeled as an uniform magnetic field of strength�
. At any instance of time, the electron beams and hence

��
are

located in the plane perpendicular to
��
. By Gauss’ law,

��
satisfies

"$# �� �&%')( � (3)

where '�( is the permissivity of free space, and % is the charge den-
sity function

% �
�*� �

+,
	.- � ��	�/��

�
�
� 	 �  (4)

Here we model the small mass, low density electron beams with
charge � 	 at the position

� 	 as point particles via the Dirac delta
function /�� # � . The Maxwell equations, which describe the dynam-
ics of interacting charged particles and electromagnetic field, yield

" � �� � �� 
To this end, we introduce the electrostatic potential 0 such that�� � � " 0 . The divergence of the potential gradient results in

�
" � 01�&%'�(  (5)

By solving equations (2) and (5) over time, we can model the per-
pendicular motion of electron beams, which is the crucial aspect of
the auroral dynamics.

4.1 Warping Algorithm

The potential equation (5) and the electron beam velocity equations
(2) form a coupled continuous-particle system, which is simulated
using the particle-mesh method exploiting the force-at-a-point for-
mulation and a field equation for the potential. For the former, we
use a Lagrangian grid approach whereas for the latter, we use an
Eulerian approach. The perpendicular velocities and positions of
the electron beams are advanced in time as follows:

(1) from the positions of electron beams, a charge distribution is
derived;

(2) from the charge distribution, using Poisson equation, the elec-
trostatic potential is calculated;

(3) from the potential, the electric field acting on each electron
beam is derived;

(4) Newton’s law of motion using the local electron field and the
Earth’s magnetic field is then integrated.

This calculation gives a new position and velocity for each elec-
tron beam, and the cycle repeats at step (1). The aurora dynamics
initiates from incoming sheets of particles at the auroral oval (Fig-
ure 2) forming an auroral stream, which is modeled by a strip of
incoming electron beams with periodic boundary conditions in the
x-axis (Figure 6). As an initial condition, the electron beams are
distributed randomly in the interior of this strip of thickness 2 and
length 3 , and have zero perpendicular velocity. Faster initial growth
of auroral distortions will occur for a larger value of the 3 / 2 ratio.
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Figure 6: Auroral stream modeled by a strip of electron beams with
periodic boundary conditions in the x-axis.

4.1.1 Charge Assignment

In the hybrid Eulerian-Lagrangian formulation, the field and par-
ticle quantities are defined on different grids. To obtain the charge
density at mesh points from the distribution of particles, we allocate
the particle charges based on the CIC (cloud-in-cell) [3] charge as-
signment scheme: the charge density % ��� � at the grid point ��� ��� �	� is
given by the sum of weighted charges, 
 	 � 	 , of the electron beams� 	 in the cells surrounding the grid point � � ��� �	� divided by the cell
area:

% ��� � �
�

cell area

,
�
��� cells with vertex (i,j)


 	 � 	��

as indicated in Figure 7(a). However, instead of finding which elec-
tron beams contribute the charge to the grid point � � ��� �	� , we sweep
through each electron beam and distribute its charge with weights

 	����� ��� , � ����� � � � � ��� , � ����� � � � � ��� , to the vertices of the grid
cell it belongs to; as indicated in Figure 7b. To be consistent with
the definition of the continuous charge density (4), the weight 
 	��� �
must be given by


 	��� � ������� � � ��� �
� � � 	 ���

where � � � # � is a modified Dirac delta function with compact sup-
port parameterized by ' , which has the property that

!#"%$
�'& ( ����� # � ��/!� # ���

in the sense of distribution. It can be interpreted physically by as-
cribing a finite width ( ' ) to the distribution of charge in each parti-
cle. In the CIC scheme, � � is given by the hat-shape function [3].
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Figure 7: a) Charge accumulation at grid point � � ��� �
� . b) Charge
distribution of � 	 to the neighboring grid points.

4.1.2 Poisson Equation

The gradient of the potential function satisfies the following equa-
tion:

�
" � 0�� %' ( �

where
" � 0 is the Laplacian of the potential. On an Eulerian grid

with mesh size ( , the partial differential equation can be discretized
as

� 0 ��� � � 0 �%) � � � � 0 ��* � � � � 0 ��� ��* � � 0 ��� �+) �
( � � % ��� �')( �

which leads to a set of linear equations, denoted by ,�- � % where
- is a vector of unknown potentials and % is a vector of (scaled)
charge densities. The matrix , is large, sparse, symmetric and pos-
itive definite. The complexity of most matrix solvers depends on
the size of , . For the simulation of auroral dynamics, especially
the formation of surges, a fine grid is required to resolve the layer
structure. Thus, an efficient linear solver is indispensable.

Direct methods, such as banded Gaussian elimination (GE), can
be used to exploit the banded structure of , . For matrices of size. � . , the complexity of banded GE is /�� . � � which is compu-
tationally impractical. Iterative methods, such as preconditioned
conjugate gradient (PCG) with incomplete Cholesky factorization
as preconditioner, have been used in computer graphics for fluid
simulations [17, 19]. While the theoretical complexity is reduced to
/�� . �10 2 � , it is still too expensive for long time simulation. The FFT
method [40] can improve the complexity further to /�� . !%354 � . � but
still it is not optimal.

4.1.3 A Practical Multigrid Implementation

The multigrid method is an optimal scheme in which the conver-
gence rate is independent of the problem size. Thus, it has a linear
complexity, as opposed to the methods above. It exploits the prop-
erties of the linear equations at the PDE level, rather than the matrix
structure. It was first proposed by Fedorenko [18] in the 1960’s, and
made popular by Brandt [5] and others for scientific applications.
We refer the interested reader to the survey paper by Chan and Wan
[11] on recent developments of linear elliptic multigrid methods.
Early attempts of using multigrid methods to solve a multiple scat-
tering problem [39] raised the issue of memory due to storage of
coarse grid quantities. Here, we introduce a matrix-free implemen-
tation which is extremely memory-efficient. We remark that similar
multigrid schemes can also be used in fluid simulations.

The idea of multigrid method is to accelerate the convergence of
iteration by solving the PDEs on a sequence of coarse grids. The
basic principle is to eliminate high frequency errors by relaxation
smoothing and low frequency errors by coarse grid correction. Let
-76 be the current approximate solution on the fine grid with mesh
size ( , and

� 6 ��- �8-76 be its error. By the dissipative nature of
Poisson equation, the error of the numerical solution, 9-76 , obtained
from a few relaxation steps, will become smooth. Thus, one can
easily compute an accurate coarse grid approximation by projecting
the residual error, :�6 � % �;, 9-76 , onto the coarse grid with mesh
size < and solving the coarse grid error equation

,>= � = �@?A=6 : 6 �
with less computational effort since there are fewer grid points on
the coarse grid. Here , = is the coarse grid matrix and ? = 6 the full
weighting restriction operator. Finally, the coarse grid error is then
interpolated back to the fine grid to update the fine grid solution

-7B �
C � 9- 6 �8D 6=
� = �
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Figure 8: A multigrid V-cycle: pre-smoothing, restriction, coarse
grid correction, interpolation and post-smoothing.

where
D 6= is the linear interpolation operator. This process com-

pletes one multigrid V-cycle (Figure 8).
We note that only the actions of the coarse grid, interpolation

and restriction operators are needed. Thus, we never form nor store
these matrices. Consequently, only 3.5 fine grid vectors are needed
in our implementation, which requires even less memory than CG.

In contrast to GE and PCG methods, the number of multigrid
iterations to convergence is independent of the grid size. In prac-
tice, we observe that 1 to 2 multigrid V-cycles will be sufficient,
compared to hundreds of PCG iterations. We address performance
issues further in Section 6.

4.1.4 Velocity and Position Update

The electric field
� ��� � is defined on the Eulerian grid whose value

is given by numerical differentiation of 0 ��� � . However, electron
beams are located on the Lagrangian grid which in general does not
overlap with the former. Thus, the electric field on an electron beam�
	 located at

� 	 is obtained by interpolating the electric fields at the
nearest four corners, i.e., the reverse process of charge distribution
as in Figure 7(b). Then, we update the perpendicular velocities and
positions of the electron beams by integrating equation (2).

4.2 Trajectories of Electron Beams

The electron beam’s velocity vector,
�� , is defined as the overall di-

rection of progression during its descending motion. As the beams
travel down they may suffer several random deflections. Their tra-
jectories are simulated incrementally using the stochastic algorithm
presented by Baranoski et al. [2]. This algorithm takes into account
the spatial inhomogeneity of auroral electrons and their initial en-
ergy to compute the deflection points and the displacements of an
electron beam along the magnetic field lines.

v

B

Y
Z

X

deflection 
point

starting
point

Figure 9: Diagram showing vertical displacements of an electron
beam along the magnetic field lines.

Each path is simulated incrementally, using a parametric dis-
placement � ���

��  ��� such that

� B �
C � �����
	 � � ����
 � �
where


 � is an uniformly distributed random number in the interval�
��  ��� , and

� �
is a vertical displacement (resulting from collisions

between auroral particles and atmospheric constituents) which is
adjusted according to the initial energy of the incoming particles.

5 Rendering Issues

Auroras are view dependent phenomena, i.e., the apparent surface
brightness of an aurora is proportional to the integrated emission
per unit volume along the line of sight (Figure 10). Hence, a for-
ward mapping, or splatting, approach can be used to map auroral
emissions to the screen plane [2, 47].

s

Y
Z

X

Figure 10: Sketch showing that the apparent surface brightness of
an auroral display is proportional to the number of emissions along
the line of sight represented by the vector

�� .

Recall that after being hit by an electron, an atmospheric atom
becomes excited and after a period of time it may emit a photon.
Statistically, the intensity contribution spreads radially around the
propagation direction, and follows a Gaussian distribution along
that dimension [4]. In order to account for this phenomenon, we
implemented an algorithm to perform a distributed forward map-
ping of auroral emissions. The world coordinates of each deflection
point are used to compute the line of sight vector

�� . This vector is
randomly perturbed to generate a light emission ray

�: . This pertur-
bation is performed through angular displacements � and � (Fig-
ure 11). The angle � represents the azimuthal angle around

�� . The
angle � represents the polar angle with respect to

�� , and it corre-
sponds to the exponential glow decay observed in auroral arcs [4].
These angles are given by

��� � � � � � � � � *����������� � ��� 
��
���
where


 � and

 �

are uniformly distributed random numbers
���
� � ��� ,

and 2 represents the auroral stream initial thickness.

deflection point

β

s

r

α

Y
Z

X

Figure 11: Diagram showing angular displacements used to dis-
tributed emission rays.
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The number of emission rays, given by
�

, affects both accu-
racy and performance. Experiments show, however, an asymptotic
convergence of the results as larger values are assigned to

�
.

The emissions mapped to the screen plane are scaled according
to auroral spectral emission and intensity profiles [2], which cor-
relate with the height of the emission point [7]. The conversion
of auroral spectral emissions to a color space follows a straightfor-
ward CIE XYZ to RGB mapping procedure. We consider in our
simulations the strongest auroral spectral emissions, namely 630.0. 	 (red line), 557.7 . 	 (green line) and 427.8 . 	 (blue line).
More wavelengths can be considered at the expense of higher com-
putational time.

The different lifetime of transition states in auroral emissions
cause distinct spread areas around the principal direction of photon
emission — 110s for the red line, 0.7s for the green line, and 0.001s
for the blue line. In order to simulate this distribution of auroral
emissions we convolve the image with a color-dependent Gaussian
low-pass filter [2, 47].

An auroral display also exhibits global temporal variations cap-
tured in photographs as blurred forms, due to finite exposure times.
For simulating this global blurring effect we perform a convolution
using a temporal low-pass filter [2, 10]. The longer the sampled-
window is in time, the blurrier the results, similar to the effects
captured in real photographs with longer exposure times.

The final stage of our rendering pipeline consists of blending the
auroral display with a night sky background and a foreground. We
use a composite approach in which we initialize the color buffer
with the background scene, superimpose the auroral display, and fi-
nally filter out regions of the image that would be covered by fore-
ground objects.

6 Results

In this section we present examples of simulations of auroral mo-
tions and shape changes at different spatio-temporal scales. The
stochastic nature of auroral displays reduces the viability of a quan-
titative analysis of their visual simulations. An alternative avail-
able is to qualitatively analyze the simulations in comparison with
photographs of real auroral displays. However, as mentioned ear-
lier, photographs of an aurora are usually blurred due to low light
conditions and significant exposure times, and sometimes present
background artifacts caused by the grain of the high speed film (Fig-
ures 12 and 15).

Figure 12: Photograph of an auroral spiral. (Courtesy of Norbert
Rosing.)

Although in our simulations we accounted for photographic blur,
features readily recognizable by viewers in real auroras were pre-
served, e.g., presence of rayed structures and vertical distribution of

intensity (Figure 13), as well as their characteristic spatio-temporal
variations. This aspect was verified through comparisons with ob-
servations of the real phenomena, including the positive feedback
from scientists working in the auroral imaging field [25, 45].

Figure 13: Simulation of an auroral spiral showing a rayed struc-
ture and an arc break up.

Figures 1, 10 and 12 present still frames from animations pro-
duced using our model. For these animations we used a 1024x1024
mesh for the starting points, and varying values for the vertical dis-
placement of the electron beams. The length and thickness of the
initial auroral stream used in these simulations were 2000 ��	 and
9 �
	 respectively. The computations were performed on a SGI550
with dual 850 �@(�� Pentium3 processors.

Figure 14 presents eight frames from an animation showing the
motions and shape changes of an auroral rayed band. In this anima-
tion one can observe the rapid movement of auroral rays, the for-
mation and motion of folds and a rotational distortion of the auroral
band. In this simulation the number of electron beams considered
was 4x10 � , with a vertical displacement (Section 4.2) of 0.05. The
time spent to compute the starting points and the descending tra-
jectories for each time step was 2.6 � and 10.8 � respectively. The
frames were rendered at a resolution of 320x240 pixels, and using
10 rays per emission point.

Figure 15 presents two all-sky photographs taken during an au-
roral surge formation. Figure 16 presents eight frames from an an-
imation illustrating the simulation of such natural phenomena. In
this animation, besides the warping process leading to an auroral
spiral, we can also notice the formation and motion of folds. In
this simulation the number of electrons beams considered was 10 � ,
with a vertical displacement of 0.2. The time spent to compute the
starting points and the descending trajectories for each time step
was 1.7 � and 10.27 � respectively. The frames were rendered at a
resolution of 320x240 pixels, and using 20 rays per emission point.

Recently, scientists using NASA’s polar spacecraft have captured
the first film of auroras dancing simultaneously around both mag-
netic poles2. This film show the Aurora Borealis and Aurora Aus-
tralis expanding and brightening in parallel at opposite ends of the
Earth, confirming the three-century-old theory that auroras in the
northern and southern hemisphere are nearly mirror images of each
other. In the case of auroral spirals, the distinct feature is their op-
posite sense of rotation. Usually they are counterclockwise in the
southern hemisphere when viewed from the ground, and clockwise
in the northern hemisphere. Figure 1 presents four frames from
an animation illustrating an auroral surge formation in the northern

2http://eiger.physics.uiowa.edu/ � vis/conjugate aurora/
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hemisphere at twice normal speed. In this simulation the number
of electrons beams considered was 10 � , with a vertical displace-
ment of 0.1. The time spent to compute the starting points and the
descending trajectories for each time step was 1.7 � and 6 � respec-
tively. The frames were rendered at a resolution of 480x360 pixels,
and using 5 rays per emission point.

Using the multigrid algorithm we were able to reduce substan-
tially the time required in the warping computations. For instance,
on the 1024x1024 auroral mesh used in our simulations, multigrid
is 96 times faster than CG. Due to this reduction, the computation of
the descending trajectories became the bottleneck of our simulation
pipeline. A divide and conquer strategy can be applied, however,
to decrease the total running time of these computations. In other
words, one can process . trajectories separately in several proces-
sors. For instance, for � �

2
electron beams, Baranoski and Rokne

obtained a speedup of 4.6 using five Compaq Alpha 500 � (�� PWS
processors [1]. Nonetheless, we believe that there is still room for
improvement on the parallelization of the algorithms.

7 Conclusion and Future Work

In this paper we have presented a novel physically-based model for
the 3D visual simulation of auroral dynamics. It allows an accurate
and efficient visualization of auroral phenomena at different spatio-
temporal scales. To the best of our knowledge, although static and
KHI free auroral simulations have been performed [2], 3D dynam-
ical auroral simulations have not previously appeared in the scien-
tific literature.

The algorithms used in our hybrid plasma model can be incor-
porated into most animation frameworks. The fast and memory-
efficient multigrid method used to solve the linear equations arising
from our simulations can also be applied in the simulation of other
natural phenomena such as gas, smoke or water flow.

As future work we plan to extend the application of the algo-
rithms presented in this paper to other plasma related phenomena
found in Nature. We also intend to continue to work on their paral-
lelization, and to exploit graphics hardware for the real time simu-
lation of moving auroral displays.
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Figure 14: Frames of an animation showing the motions and shape changes of an auroral rayed band.

Figure 15: Black & white all-sky photographs showing different stages of an auroral surge formation (Courtesy of Kirsti Kauristie.)

Figure 16: Frames of an animation illustrating the simulation of an auroral surge formation in the southern hemisphere.


