High-Order Lifting

Arne Storjohann
Ontario Research Centre for Computer Algebra
Department of Computer Science
University of Waterloo
Waterloo ON, N2L 3G1, Canada

February 15, 2002

Abstract

The well-known technique of adic-lifting for linear-system solution is
studied. Some new methods are developed and applied to get algorithms
for the following problems over the ring of univariate polynomials with
coefficients from a field: rational system solving, integrality certification
and determinant/ Smith-form computation. All algorithms are Las Vegas
probabilistic.

1 Introduction

Let K be a field and A € K[z]™*™ be nonsingular modulo X. Let B € K[z]"*™.
Then A~!'B admits a unique X-adic series expansion

HXh
AT'B=Co+ C1X +CoX? + - + Cp XM 4. g ChFEX IR Lo (1)

where each C, € K[z]"*™ has degC. < degX. This paper presents fast al-
gorithms for computing only parts of the expansion, eg. H as shown (1) for a
given h and k. We call this high-order lifting. The algorithms for high-order
lifting lead to Las Vegas solutions of many other computational problems. Let
b € K[z]"*! and B € K[z]"*™ be given. The three main problems are:

- Rational system solving Compute A~1b.
- Integrality certification Assay if A~!B is integral.
- Determinant Compute the determinant/Smith-form of A.

Assuming degb = O(ndeg A) and m = O(n/[deg B/ deg A]), all the prob-
lems listed above can be solved in an expected number of O™ (n? deg A) field
operations from K. Here, 6 is the exponent for matrix multiplication (see below
for cost model). These complexity bounds improve on previous results.

Consider first rational system solving. The currently best deterministic algo-
rithm is O"(n® deg A), see [10]. Our algorithm is based on adic-lifting, see [2, 6].
The algorithm is probabilistic because a small degree polynomial not dividing
the determinant of A is required to be chosen randomly. The previosly best Las
Vegas complexity, also using adic-lifting, is about O (n*%% deg A), see [8].

Now consider the integrality certification problem when B = I,,. Then A
is unimodular precisely when A~! is over K[z]. Unimodularity can be tested
by computing det A mod X for a randomly chosen small degree X; this gives
a nearly-optimal O"(n? + n? deg A) Monte Carlo probabilistic algorithm. The
algorithm we give here is deterministic and nearly matches this running time.

The Hermite-form of A (and hence also the determinant) can be computed
deterministically in time O(n?®(deg A)?), see [9]. The Smith-form can be com-
puted in the same time (Las Vegas) using the preconditioning of [4]. The com-
putation of the determinant has been well studied, especially also in the case
of integer matrices. We refer to [5] for a survey; the currently best result for
integers extends to polynomials, giving a Las Vegas algorithm with time about
0" (n?6% deg A).

Outline of the paper Sections 2 and 3 define some notation and recall some
basic facts about X-adic expansions of rational functions, including the recovery
of such expansions using adic-lifting.

Section 4 gives our first high-order lifting algorithm: the purpose is to re-
cover O(logn) coefficients of the X-adic expansion of A~!. This algorithm is
used in almost all subsequent sections, including Section 5, which gives an easy
algorithm for unimodularity certification.

Section 6 gives an algorithm for rational system solving in the case where
degb < deg A. The idea of the algorithm is to reduce the problem of solving one
system up to order k to that of solving two systems up to order k/2; this idea
is applied recursively log k times. Section 7 extends the result of the previous
section to allow degb = O(ndeg A).

Section 8 gives a general algorithm for solving the high-order lifting problem.
This is applied in Section 9 to solve the integrality certification problem.

Sections 10, 11 and 12 deal with determinant/Smith-form computation. It
is well known that if b is the last row of I,,, then the minimal denominator of
bA~1 is the last entry h, of the row Hermite-form of A. Furthermore, if A is
suitably preconditioned, then h, will be the largest entry in the Smith-form
of A. Ideas similar to this are used in [1], [3] and [11]. Section 10 gives a
method of transforming A to a new matrix B such that deg B < deg A and
deg A = h,deg B. Section 11 shows how to recover the trailing m diagonal
entries of the Hermite-form of A, where m is chosen according the degree of
these entries. Section 12 puts all the pieces together and gives the complete
algorithm for determinant/Smith-form.

Finally, Section 13 concludes and mentions something about the integer case.

Model of computation By time we mean the number of required field op-
erations from K on an algebraic RAM; the operations +, —, x and “divide by
a nonzero” are considered as unit step operations. Let O(d') be the time to
multiply degree d polynomials. Let O(n?) be the time to multiply two n x n
matrices over a commutative ring with identity. We are going to assume that
2 <6 <3and 0 <e<1. Sometimes we will make the (emminently reasonable)
assumption that € < 6 — 2.

2 X-adic representation of polynomials

Let | be nonnegative integer and X € K[z] have degree greater than zero. By
X-adic expansion of a € K[z] we mean to write

a=a0+a1X+a2X2+---+ale,

dega. < deg X. Note that by “degree” we will always means degree in z. In
other words, if deg X = d and g, is nonzero, then dl < dega < d(I + 1). The a.
are called the coefficients of the X-adic expansion of a.

The ring K[z] has the usual arithmetic operations {+,—, x}. We define
three additional operations Left, Trunc and Inverse and gives some of their
properties. These functions will implicitly be defined in terms of a proscribed
X. Let a € K[z] and k be nonnegative. Suppose the X-adic expansion of a is

a=ao+ a1 X +aX?+---.

Then
Left(a, k) = ap + app1 X + appo X2+ --- (2)

and
Trunc(a, k) = ag + a1 X + a2 X2 + -+ + ap_1 XF71. (3)

If a L X, then Inverse(a,k) denotes the unique b € K[z] such that b =
Trunc(b, k) and Trunc(ab, k) = Trunc(ba, k) = 1.

All the above definitions above extend naturally to matrix polynomials. Just
replace a,q € K[z] with A,Q € K[z]"*™. The operation Inverse takes as input
a square matrix A which has det A 1 X.

Let a,v € K[z] and k be positive. A key property of the Left(x, k) operation
is linearity: Left(a + v,k) = Left(a, k) + Left(~, k). This property gives the
following lemma.

Lemma 1. If deg(y) < deg(X*) then Left(a + v, k) = Left(a, k).
The next lemma observes (in essence) that Left and Trunc commute.

Lemma 2. Ifl < k then Left(Trunc(a, k),l) = Trunc(Left(a,l),k —).

Computation with X-adic polynomials

We are working over the K[z] with the operations {+, —, X, Left, Trunc, Inverse}.
The cost of these operations will depend essentially on our choice of represen-
tation for elements of K[z].

For a € K[z] let k be minimal such that a = Trunc(a, k). Then a can be
stored as a list comprised of the first k& coeflicients of the X-adic expansion.
Let a,b € K[z] be nonzero with dega > degb. Then the X-adic expansion of
a+bor a—bcan be computed in O(1 + min(deg a, degb)) field operations, that
of ab in O((1 + dega)(1 + degb)) field operations, and that of Inverse(a, k)
in O((k deg X)'*¢) field operations. Operations Left, Trunc and multiplication
by a power of X are free. For Y € K]z], conversion from X-adic to Y-adic
representation can be accomplished in O((1 + dega)'*¢) field operations.

3 Adic-lifting for linear system solution

Let A € K[z] be nonsingular, det A L X. Let the X-adic expansion of A~1 be

C

A

AL = b s X 4o X X X

For a given B € Z™*™, let the X-adic expansion of A~!B be

D EXF

A

AT B=sx+4«X 4+ +xXF T Xb oo paXhti-14 .

Suppose we have C' and D. Then we can recover E using:
Theorem 3 (Adic lifting). E = Trunc(C Left(B — AD, k),1).

We end this section with a fact which will be useful throughout. Let A €
K[z]"*™ be nonsingular. Then

Fact 4. |det A| < nd.
Let B € K[z]"*™. THen (det A)A !B is over K[z] and
Fact 5. deg(det A)A~!B < deg B + (n — 1)d.

4 High order components of matrix inverse

Let A € K[z]"*™ be nonsingular, det A L X. In what follows, let Z() =
Inverse(A, 2). In this section we show how to recover the high order components
of the inverse of A: E(® = Trunc(Z) 2! —2) for i = 1,2,...,k. To see

more clearly what we are computing, write the X-adic expansion of A~! as
Co+ C1X + CoX? +--- . Then

EQ)
——
Z(l) = Co+Ci X
E(2)X2
——~—
7% = Co+CiX +CoX? + C3X*
E®) x*6
—f——
Z® = Co+CiX +CoX?+C3X% + O X' + C5X° + COXO + Cr X7
Bk x2* -2
ZW = Co+ C1X + CoX%+ -+ Con 5 X273 4 Cor o X2 "2 4 Cpu_, X271

Starting with Z(©) we can recover Z(), Z(?) . Z(¥) using k steps of quadratic
X-adic lifting. This costs O((2F)'t<n?d'*¢) field operations, d = deg X. Algo-
rithm HighOrderComponents recovers only the high order components E*) as
shown above. The cost estimate of O(kn?d'*¢) field operations for the algorithm
is easy to derive.

Algorithm 6. HighOrderComponents[X](A4, k)
Input: A € K[z]"*™ and k > 2

Output: (EW E®) ... E®) as shown above
Condition: X | det A and d =deg X > deg A

1. L := Inverse(4,1);
H := Trunc(L Left(I — AL, 1),1);
EW .= L+ XH,

2. for i from 2 to k do
L := Trunc(Left(E(~Y Left(— AL, 1),1
H := Trunc(Left(E(~Y Left(—AH, 1),
EW .= L+ XH
od;
return (EM, E®) . E®)

), 1);
1),1);

?

We now prove that the algorithm is correct. Let (A4, X, k) be a valid input
tuple. Let (L), H()) be equal to (L, H) as computed during the loop in phase
2 with index i. Phase 1 computes (L), HM) = (Cy, Cy) and EM = Cy + X C.
Using induction on j we now prove that

LY = Chi_y (4)
HY = Coi_1 (5)
E(]) = Czj_g + XCQJ'_l (6)

for j =1,2,...,k. The base case j = 1 has already been established. That (6)
follows from (4) and (5) is clear.
For ¢ > s, quadratic X-adic lifting gives

Left(Z(®, 20 1) = Trunc(Z YLeft(I — Az, 21) 20 1)
while the loop computes
R
HO = Trunc(Left (B0 Left(—~AH(™),1),1),1)).
S

Our goal is to show (4) and (5) hold for j = i. It will be sufficient to show
that (5) holds since the proof of (4) is analogous. In the proof we will use the
following degree estimates, which follow from (5) and (6).

deg(Z0) — X¥THDY < deg(X¥) (7)
deg(Zz0) — X¥2E0)) < deg(X?-2) (8)

The next lemma assumes (by induction) that (7) holds for j =i — 1.
Lemma 7. R= (I — AZ(i—l))/XQi—l.

Proof. Let a = (I — AZ1)/X2™" and let v = —ALeft(E(~1,1) — Xa so
that —ALeft(E(¢~1 1) = Xa + ~. Using (7) for j = i — 1 we may derive that
degy < deg A < deg X. Now use Lemma 1 to conclude that Left(Xa +v,1) =
a. O

At this point we have shown that S = Left(E(*~VR, 1) where R is as in
Lemma 7. For any nonnegative y we have S = Left(XYE(~VUR,y +1). Let
y = 271 — 2. The next lemma assumes (by induction) that (8) holds for
j=i—1

Lemma 8. S = Left(Z6-DR,y +1).

Proof. Let a = ZO~YR and v = XYE(~V)R — a so that a + y = XYE(~-VR,
Using deg(R) < d and (7) for j = i — 1 gives degy < deg(X¥*!). Now use
Lemma 1. O

Lemmas 7, 8 and 2 now give (5) for j = i. The proof that (4) holds for j =4
is analogous. This ends the inductive proof of correctness of the algorithm. We
have shown:

Proposition 9. Algorithm HighOrderComponents is correct. The cost of the
algorithm is O(kn?d*+) field operations.

We remark that typical applications of the algorithm have k = O(logn).

5 Unimodularity certification

A matrix A € K[z]™*™ is said to be unimodular if A is invertible over K[z]. The
unimodular matrices are precisely those with determinant a nonzero constant
polynomial from K[z]. We present an algorithm to assay if A is unimodular.

Algorithm 10. UnimodularCertificate(A)
Input: A € K[z]"*".
Output: True if A is unimodular, false otherwise.

1. if det(A mod z) = 0 then return false fi;

d = deg A;
X :=2z%
2. k:=[logy(n + 3)];
*,%,...,%, H) := HighOrderComponents[X|(4, k);

3. if H is the zero matrix then
return true
else
return false

fi

We now prove that the algorithm is correct. Let k and H be as computed
in phase 1. Let § = Trunc(A~!,2*). Then S = Trunc(A~!,2F — 2) + HX?2" 2
and Trunc(AS,2%) = I. If H is the zero matrix then Trunc(AS,2%) = AS,
whence S = A~!. This shows that a return value of true will always be correct.
The paramater k is chosen so that d(2F — 2) is strictly greater than degrees of
numerators in A=! € K(z)"*". Thus, if A~! is over K[z] then H will be the
zero matrix. We have shown:

Proposition 11. Algorithm UnimodularCertificate is correct. The cost of
the algorithm is in O((logn)n®(deg A)'*¢) field operations.

6 Series solution — small degree rhs

Let A € K[z]"*™ be nonsingular, det A L X. Let b € K[z]**!. We present an
algorithm for computing the X-adic expansion of A~1b up to a given order. The
algorithm requires both degb as well as deg A to be bounded by d, d = deg X.

Algorithm 12. SeriesSolutionSmallRHS[X](A,b, k)
Input: A € K[z]™*", b € K[z]"*!, k > 2

Output: Trunc(Inverse(A4, 2¥) b, 2F)

Condition: X | det A and d = deg X > max(deg A, degb)

1. (EM,E@ ... E%-1) .= HighOrderComponents[X](4, k — 1);

2. B:=[b | O] where 0 is the n x (2¥ — 1) zero matrix;
for i from k — 1 by —1to 1 do
B := the first 2 — 2! columns of B;
B := Left(—A Trunc(Left(E) B), 1), 1), 1);
B:=[O | B | where O is the n x 2¢ zero matrix;
B :

=B+ B;
od;
B := Trunc(EW B, 2);
3. #Let B=[do|0]|dy|0]--- |dor_p]|O0].
Bi=do+ds X2+ +doe_o X272
return B

We now prove that the algorithm is correct. Let (4,b, X, k) be valid input
tuple. Let Z() = Inverse(4,2') for i > 0. Phase 1 computes the high order
components of Z*~1) at a cost of O(kn’d'*<) field operations.

Now consider phase 2. The purpose of this phase is to compute all the
coefficients of Trunc(Z*)b,2%). We begin by giving an example when k = 4.
A formal proof will follow. Let b; = (b — A Trunc(Inverse(4, j)b,j))/ X7, j €
{0,2,4,...,14}. Then by = b and we claim that

16/2¢ '
Trunc(Z®8,16) = 3 Tranc(ZVbig; sz, 2) X4/
j=0

for i = 4,3,2,1. Our initial problem is to compute the solution to a single linear
system up to order 16. At the start of the loop we have

B=[b 00000000O0O0OO0O0O0O0].

The i’th column of B may be thought to be implicitly multiplied by X¢~!. After
the loop completes with index ¢ the matrix B looks like:

1=3 b() b8
=2 bo b4 bs b12
i=1]bo bo b4 bs bs bio bio bi4

Thus, each pass through the loop doubles the number of systems we need to
solve, but halves the order of precision to which we need the solutions. After
the loop completes we need to solve 8 systems up to order X2. The last line of
phase 2 does this to compute

B=[c+caX 0 ca+cX 0 -+ cuu+esX 0]

where ¢g+ ¢, X + ¢ X2 +- - - is the X-adic X-adic expansion of Trunc(Z®b, 16).
Now we give a formal proof of the above. At the same time we estimate
the complexity in terms of n, k and d. Let f(i,m) be the cost of computing

Trunc(Z™® B,2%) for a given B € K[z]"*™, deg B < d. For i > 1, quadratic
X-adic lifting gives the identity

. . . _ . 1
Trunc(Z®¥ B,2¢) = Trunc(Z(~Y [B| B],2"") [2!]

where B . . _
B = Left(B — ATrunc(Z0V B,2¢71)), 211, (9)

It is easy to derive that deg B < deg A < d. Thus we get
f(i,m) < f(i —1,2m) + cost of computing B.

Consider equation (9) for B. We may consider X 2-25() to be an approxima-
tion of Z(). If we expand formula (9) for B we get the new formula

Lemma 13. B = Left(—A Trunc(Left(E¢~1B,1),1),1)

When i = 1 we may compute B = Trunc(ZM)B,2) directly since E() =
ZM). Since the number of nonzero column in B is doubling each time, the last
iteration of the loop dominates. The cost is O((2* /n)n?d**¢) field operations if
2k > n. If 2% < n the cost is is dominated by that of phase 1.

Finally, phase 3 multiplies each column of B by the appropriate power of X
and adds all the columns together. Under our cost model this is free.

We have shown:

Proposition 14. Algorithm SeriesSolutionSmallRHS is correct. The cost of
the algorithm is O((k + 2% /n)nd'*¢) field operations.

A7 € K(z)™*! can be recovered from Trunc(Inverse(4,2n),2n) using ra-
tional reconstruction. In this case k¥ = O(logn). The rational reconstruct costs
O(n(nd)**¢). If § — 2 > € (an emminently reasonable assumption) then the
rational reconstruction does not dominate.

Corollary 15. Let (A, b, X, *) be a valid input tuple to Algorithm 12. Assuming
€ < 0—2, the vector A~'b € K(z)™*! can be computed in O((logn)nfd'*¢) field
operations.

7 Series solution

Let A € K[z]™*™ be nonsingular, det A 1 X. Let b € K[z]**™. We present
an algorithm for computing the X-adic expansion of A=!b up to a given order.
The algorithm makes no assumption on the degree of b.

Algorithm 16. SeriesSolution[X](A,b,k)
Input: A € K[z]"*", b € K[z]"*™, k > 2
Output: Trunc(Inverse(4, 2¥) b, 2F)
Condition: X | det A and d =deg X > deg A

1. (EM,E@ ... E%1) .= HighOrderComponents[X](4, k — 1);

2. # Let the X-adic expansion of b be by + b; X + by X2 +---.
Bi=[b by |- | by];
for i from £k —1by —1to 1 do
B := the first m2*¥ — m2? columns of B;
B := Left(—A Trunc(Left(E) B), 1), 1), 1);
B:=[O | B | where O is the n x m2¢ zero matrix;

B :=B+ B;
od;
B := Trunc(EW B, 2);
3. # Let B = [d()|d1 | |d2k_1]
Bi=do+d X +do X2+ -+ dox_o X2 =2 + Trunc(doe _;,1) X2°1;
return B

We now prove that the algorithm is correct. At the same time we estimate
the complexity in terms of n, k and d. Let (4,b, X, k) be valid input tuple. Let
Z®) = Inverse(A, 2¢) for i > 0. Phase 1 computes the high order components of
Z*=1) at a cost of O(kn?d"t¢) field operations.

Phase 2 is identical to the corresponding phase in Algorithm 12 except that
here we solve m2* systems in parallel. We need only observe that

2k_1

Trunc(Z®b, k) = ZTrunc(Z(k)biXi,k)
=0

2k 1
Z X Trunc(Z®b;, k — i)
1=0

The cost of phase 2 bounded by O((km2¥ /n)n?d**¢) field operations if m2* > n.
If m2* < n the cost is is dominated by that of phase 1.

Phase 3 multiplies each column of B by the appropriate power of X and
adds all the columns together. The cost of this phase is dominated by that of
phase 2.

We have shown:

Proposition 17. Algorithm SeriesSolution is correct. The cost of the algo-
rithm is O((k(1 +m2* /n))n?d'*e) field operations.

Corollary 18. Let (A,b,X,%) be a valid input tuple to Algorithm 16, with
b € K[z]"*!. Assuminge < 6—2 and degb = O(nd), the vector A=1b € K(z)"*™
can be computed in O((logn)n’d'*€) field operations.

8 High order lifting

Let A € K[z]™*™ be nonsingular, det A 1 X. Let b € K[z]**™. We present
an algorithm to recover a contiguous segment of coefficients from the X-adic

10

expansion of A~'b. For example, the algorithm can be used to recover H =
Left(Trunc(Inverse(A, h + 2F) b, h + 2%), h).

HX"

A =bg+ -+ bpg XM by XM e by XM 4

If h = 0 then we can use Algorithm SeriesSolution to recover H. In high
order lifting, what is important is that A be larger than some specified bound,
say h > 2! for a given I. The particular value of h is not important, only that
h > 2!. The point of the algorithm here is that the complexity depends on
2% and degb but not (essentially) on h. This is important because in typical
applications h > 2F.

Algorithm 19. HighOrderLift[X](A4,b,1, k)

Input: A € K[z]"*", b e K[z|"*™,1>2,k>2

Output: Left(Trunc(Inverse(A4, h + 2¥) b, h + 2¥), h) for some h > 2.
Condition: X | det A and d =deg X > deg A

1. k := the smallest integer > 2 such 2F > deg b;
H := SeriesSolution[X]|(4,b,k);
H := Left(—ALeft(H, 2% — 1),1);

2. (%,%,...,%, E®) := HighOrderComponents[X](A4,1);
H := Left(—A Trunc(Left(EW H, 1),1),1);

3. H :=SeriesSolution[X](A4, H, k);
return H

Correctness of the algorithm is easy to verify. Since the cost estimate de-
pends on many paramaters, we only give a special case that interests us.

Proposition 20. Algorithm HighOrderLift is correct. If | = O(logn) and
m = O(n/[degb/d]+n/[2*/d]), then the cost of the algorithm is O((logn)n’d'*c)
field operations.

9 Integrality certification

Let A € K[z]"*™ be nonsingular, det A L X. Let B € K[z]"*™ and T €
K[z]™>*™. We present an algorithm to assay if A~'BT is over K[z]. The algo-
rithm works by computing a high order lift H of A= B.

HX"
AT'B=By+---+ By X! +rBhXh+ ---+Bh+k—1Xh+k_f+---

Recall that H = Left(Trunc(Inverse(A4,h + k)B, h + k), h). Let

C = Trunc(HT, k).

11

Proposition 21. If h and k are chosen to satisfy hd > (n—1)d+deg B+degT
and kd > d+degT, then C as computed above has deg C' < (k—1)d if and only
if AT BT is integral.

Proof. Let S = Trunc(A='BT,h + k). Then Trunc(AS,h + k) = BT and

degree < hd + degT
S= :I‘runc(Ale,h)fZ: +COX™". (10)

By choice of k we have hd +degT < hd + (k —1)d. If degCX" < hd+ (k—1)d
also, then AS = Trunc(AS, h + k), whence S = A~1BT. This shows the “only
if”. Now for the “if”. The paramater h is chosen so that hd is strictly larger than
an a priori bound on the degrees of numerators in A~'BT. Thus, if A~'BT is
integral, then it follows from (10) that deg C < degT. O

The next two corollaries will be useful later on. The first follows from the
proof above and the second is obvious.

Corollary 22. deg C < degT if and only if A1 BT is integral.
Corollary 23. If A~'BT is integral, then C is invariant of the choice of k.
In case of integrality, the algorthim returns also C, the integrality certificate.

Algorithm 24. IntegralityCertificate[X](A,B,T)

Input: A € K[z]"*", B € K[z]"*™, T € K[z]™*™

Output: An integrality certificate if A~ BT is over K[z], false otherwise.
Condition: X | det A and d =deg X > deg A

1. 1 := the smallest integer such that 2!'d > (n — 1)d + deg b + deg T;
k := the smallest integer such that 2¥d > d + deg T;
H :=HighOrderLift[X](A4, B,l, k);

2. C := Trunc(HT,2*);
if degC' < degT then
return (true, C)
else
return false

fi
We get:

Proposition 25. Algorithm IntegralityCertificate is correct. If m =
O(n/[degB/d] + n/[degT/d]), and assuming € < 6 — 2, the cost of the al-
gorithm is O((logn)nfd'*¢) field operations.

12

Worked example

The integrality certification technique described above can be adapted for inte-
ger matrices. Let

—-28 —-11 -56 -39

-5 42 -10 37

22 —44 -25 44

-32 3 38 46

Let B to be the last two columns of I>. Let T' = sI; where s = 3969. Compute
H = iquo(mods(A~1B,10"**) 10") and C = mods(HT,10%) for sufficiently
large h and k. For h = 90 (overkill) and k& = 8 we get

A=

—12194507 —23935500 1717 500
—24086671 42529604 2801 —1724

H= and C = . (1)
—5946082 33232552 542 —1112
24086671 —42529604 —2801 1724

We conclude that A~! BT is integral since entries in C have substantially fewer
than 8 decimal digits. Indeed, the analogue of Corollary 22 guarantees that
IClle0 <m|T||oo-

10 Determinant reduction
Let R denote the ring of integers Z or K[z]. Let A € R®*" be nonsingular. We
are concerned with the principal (n — 1) x (n — 1) submatrix H of the Hermite

basis of A. This depends only on the first n — 1 columns of A and is invariant
under a permutation of the rows. Thus, we may assume wlog that

-k

where A nonsingular. Suppose A has Hermite basis

H| *
hn |-
In this section we show how to construct a matrix B, obtained from A by
replacing the last column, such that B has Hermite basis

el

Thus, the determinant of B will be a factor of h,, smaller than that of A.

13

Now we sketch the procedure to construct B and at the same time give an
example. Consider the matrix

15 17 18 -9 1 00 0] 5193
-14 10 -9 -3 1 0 0] 7144
A=| 5 -3 7 7 with HF 1 119657
~14 5 29 37 313421
31 -1, -25 —19]1 21619

First recover the unique u € R'*™ such that ud = [0 | h, |. We get
w=[a|u, | =[359110 639246 335397 —86830 | 21619].

Do an extended ged computation to recover a v € R**! such that uv = 1. We
get

0

5 0
v= ["] =| 6933
n 26780

0

The matrix obtained from A by replacing the last column with v will have
Hermite-form as desired. The problem is that the entries in v may be too large
(in general about n times the size of entries in A). We may obtained a reduced
v by continuing as follows.

Compute the rational vector ¢ = h, A~'v. Compute an integer vector 7 such
that each entry of ¢ + h,,7 has magnitude < h,,. Set B equal to

po [Al _erdr]
a | U, — WAT [uy,
In this example we get
15 17 18 -9 21 1 0 00
-4 10 -9 -3 -9 1 00
B = 5 =3 7 7T =12 with HF 11
-14 5 29 =37 -28 3
31 —-15 —-25 —-19 -9 1

In the case that R = K[z] the analogous procedure will produce a B that
satisfies deg B < deg A. We get the following:

Proposition 26. Let A € K[z]"*" and X € K[z] satisfy detA L X and
deg X > degA. If e < 0 — 2, then the construction of B as described above
can be accomplished in O((logn)n?d*+€) field operations.

14

11 Partial determinant computation

Let A € K[z]"*™ be nonsingular. Let X € K[z] with X L detA and d =
deg X > deg A be given. Let 1 < m < n be given. Throughout this section let
H, S, s and L be defined as follows:

e H is the trailing m x m submatrix of the Hermite basis of A.
e S is the Smith-form of H.
e 3is the largest invariant factor in S.

o [is the last m rows of A~ 1.

This section gives a novel algorithm to compute S. The next two lemmas follow
easily from the uniqueness of H and 5. For sundry such facts about lattices, see
[12, Chapter 5].

Lemma 27. Let T € K[z]™*™ be such that TL is integral. Then T = TH for
some T € K[z]™*™,

Lemma 28. Let s € K[z] be such that sL is integral. Then s = t5 for some
t € K[z].

Let B be the last m rows of I,,. Let C be the integrality certificate produced
by calling IntegralityCertificate(At, Bt, X,sl,,), except that C be trans-
posed. Then deg C' < degs (Lemma 22) and can be produced in time O™ (n“d)
field operations if m = O(nd/ degs) (Proposition 25).

Proposition 29. S is the Smith-form of sD™', where D is the principal m xm
submatriz of the Smith form of [C | sl |.

Proof. Let H be the high order lift computed in the algorithm, except that H
be transposed. The algorithm computes C' = Trunc(sH, k) for some choice of
k, kd > d + degs. We have sI,,, = TH for some T over K[z] (Lemma 27), so

c
_—
C = Trunc(T Trunc(H H, k), k). (12)

Since HA !B is integral deg C' < deg H (Corollary 22). Since T and C' are over
K[z], we may conclude from (12) that C = TC (Corollary 23).
We have established that

[C|sln |=T[C|H].

Let G be the column Hermite-form of [C' | H |. If G = I,;, then the D in the
statement of the proposition is equal to the Smith-form of T. Using sT~! = H
it is easy to derive that sD~! is equivalent to H. Thus, we will be finished if
we can show that G = I,,,.

To arrive at a contradiction, suppose G # I,,. Both G™'C and G™'H are
necessarily integral with degrees bounded by deg C and deg H respectively. But
then deg Trunc((G~1H)H,k) < degC which shows (G"'H)A~!B is integral
(Proposition 21). Lemma 27 now gives a contradiction. O

15

The Smith-form in Proposition 29 can be computed in O(nm?~!(degs)*+¢)
field operations (Lemma 7.14 in [12]).

Proposition 30. Let A, X, s and m as described above be given. If m =
O(n/[degs/d]), and assuming € < 6 — 2, then S as described above can be
computed in O((logn)n?d') field operations.

Worked example

The ideas described above carry over to the case of integer matrices. The matrix

—28 -5 22 —32 1 220 ‘0 379
4= :étls —4120 :;1;1 338 has HEF H = = ?, 3677902
—39 37 44 46 ‘ 3969
and
= [; g;zg] has Smith form 3 = [% o]

Let s = 3969 and C be the integrality certificate shown in (11), except trans-
posed. Then the principal 2 x 2 submatrix of the Smith form of

1717 2801 542 —2801 | 3969
500 —1724 -—-1112 1724

. 1
3969] ISD_[1323]'

Note that sD 1 = 8.

12 Determinant computation

Suppose A € R"*" ig nonsingular with det L X and deg X > deg A. We present
an algorithm to compute the determinant of A. We are going to assume that A
satisfies some rather strong conditions. First, assume wlog (up to augmentation
with an identity matrix) that n = 2¥*1 — 1 for some k. Decompose the Hermite

basis H of C as
H, * * *

H1 X
H,

where H; has dimension 2! x 2¢. Let S; be the Smith-form of H;. The algorithm
requires that

e (C1) diag(Sk,Sk—1,---,51,50) is in Smith-form.

e (C2) The Hermite basis of A[1...m + 1,1...m] is equal to the Hermite
basis of A[*,1...m],m=2F+2k"1 ... 421 =k k—1,... 1

16

If any of these conditions are not satisfied, the algorithm will detect this and
report failure. Given (C2) holds for a given m, we will assume wlog (up to a
permutation of the first m rows) that A[1...m,1...m] is nonsingular.

The algorithm proceeds in stages for ¢ = 0,1,2,...,k. Stage i = 0 is to
compute Sy. Now fix some 4, ¢ > 0. Let m = 2F + 21 4 . 4+ 2/, Let B
be the matrix constructed from A[l...m + 1,1...m + 1] using the algorithm
supporting Proposition 26. Let C = A[m +2...n,1...m)].

Lemma 31. (C2) holds for i if and only if CB~! is integral.

In case R = K[z], the integrality of CB~! can be assayed using Algorithm 24.
Assume henceforth that CB~! is integral. (If it isn’t, report failure and termi-
nate.)

At this point we have constructed an (m + 1) x (m + 1) matrix B which has
Hermite-form equal to

% %

H;

1

Our goal now is to recover the Smith-form of H;. Let s be the smallest invari-
ant factor in S;_1, computed during the (previous) stage ¢ — 1. Finally, use
Proposition 30 to either determine that diag(S;,Si—1) is not in Smith-form or
to recover S;—_1. Since diag(Si—1,Si—2,--.,S0) is in Smith-form, we must have
degs < nd/m. The cost is given by Proposition 30. Summing over all stages
gives

Proposition 32. Let A € K[z]™*" be nonsingular. Let X € Klz] with X L
det A and deg X > deg A be given. The algorithm described above will as-
say if A satisfies conditions (C1) and (C2). If so, the algorithm will pro-
duce diag(Sk,Sk—1,...,50). Assuming € < 6 — 2, the cost of the algorithm
is O((logn)?n?d'*¢) field operations.

Consider assaying the integrality of B~1A[1...m + 1, %] at each stage.

Corollary 33. Let diag(Sk, Sk—1,---,S0) be as in Proposition 32. Then we can
assay that diag(Sk, Sk—1,-..,S0) is the Smith-form of A in the same time.

13 Conclusions

The algorithms in sections 4—11 are deterministic but require as input a small
degree X such that X L det A. See [7, Proof of Theorem 29] for a method of
finding such an X randomly.

The algorithms in Section 12 requires that A satisfy some conditions. These
are easy to achieve using the preconditioning technique as shown in [4]. Choose
(nonsingular) matrices U and V' uniformly and randomly from S™*", S a subset
of K with #S > 4dn*. Then UAV will satisfy all required conditions with
probability at least 1/2 (see [4, Algorithm 3.2] and [13, Algorithm REDUCE]).
If #K is too small, work over an algebraic extension field.

17

Arguably the most important contribution of this paper is the idea of using
high-order lifting to certify integrality. Without this technique, many of the al-
gorithms we propose would be Monte Carlo instead of Las Vegas. The algorithm
we have proposed for integrality certification and determinant/Smith-form com-
putation are of immediate practical interest, especially because they certify the
output.

The main task remaining is to extend the results here to the case of integer
matrices. The reader may have already noticed that the key ideas in Section 5
and 9—12 carry over easily. The main difficulties to be solved are:

e Achieve a suitable preconditioning for the input matrix of the Smith-form
computation.

e Get analogous versions of the lifting algorithms in Sections 4, 7 and 8.

To solve the first difficulty the results in [3] and [8] should prove useful. The idea
is to modify the determinant algorithm to allow considerably weaker conditions
than those outlined at the beginning of Section 12.

The crux of the second difficulty is that the absolute value norm over Z,
unlike the degree norm over K[z], is Archimedean; because integer addition has
carries, the analogue of Lemma 1 does not hold. One solution to this is to do
computation in a shifted-adic number system. We will present this in a future

paper.

References

[1] J. Abbott, M. Bronstein, and T. Mulders. Fast deterministic computation
of determinants of dense matrices. In S. Dooley, editor, Proc. Int’l. Symp.
on Symbolic and Algebraic Computation: ISSAC 99, pages 197-204. ACM
Press, 1999.

[2] J. D. Dixon. Exact solution of linear equations using p-adic expansions.
Numer. Math., 40:137-141, 1982.

[3] W. Eberly, M. Giesbrecht, and G. Villard. Computing the Smith form of
a dense integer matrix. In Proc. 81st Ann. IEEE Symp. Foundations of
Computer Science, 2000.

[4] E. Kaltofen, M. S. Krishnamoorthy, and B. D. Saunders. Parallel al-
gorithms for matrix normal forms. Linear Algebra and its Applications,
136:189-208, 1990.

[5] E. Kaltofen and G. Villard. Computing the sign or the value of the deter-
minant of an integer matrix, a complexity survey. 2002. Submitted to the
special issue on Congres International Algebre Linéaire et Arithmétique:
Calcul Numérique, Symbolique et Parallele, held in Rabat, Morocco, May
2001, 17 pages.

18

[6]

[7]

[10]

[11]

[12]

[13]

R. T. Moenck and J. H. Carter. Approzimate algorithms to derive exact
solutions to systems of linear equations., pages 65-72. Springer-Verlag,
Berlin-Heidelberg-New York, 1979.

T. Mulders and A. Storjohann. Diophantine linear system solving. In
S. Dooley, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computa-
tion: ISSAC 99, pages 281-288. ACM Press, 1999.

T. Mulders and A. Storjohann. Certified diophantine dense linear system
solving. Technical Report 355, Departement Informatik, ETH Ziirich, Dec.
2000.

T. Mulders and A. Storjohann. On lattice reduction for polynomial ma-
trices. Technical Report 356, Departement Informatik, ETH Ziirich, Dec.
2000.

T. Mulders and A. Storjohann. Rational solutions of singular linear sys-
tems. In C. Traverso, editor, Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC 00, pages 242—249. ACM Press, 2000.

V. Pan. Computing the determinant and the charactersitic polynomial of a
matrix via solving linear systems of equations. Inf. Proc. Letters, 28:71-75,
1988.

A. Storjohann. Algorithms for Matriz Canonical Forms. PhD thesis, ETH
— Swiss Federal Institute of Technology, 2000.

A. Storjohann and G. Labahn. Preconditioning of rectangular polynomial
matrices for efficient Hermite normal form computation. In A. H. M. Levelt,
editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC
’95, pages 119-125. ACM Press, 1995.

19

