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Abstract

This paper presents an algorithm for factoring a zero-
dimensional left ideal in the ring Q(z,y)[0s, 8y], i-e. factor-
ing a linear homogeneous partial differential system whose
coefficients belong to Q(z,y), and whose solution space is
finite-dimensional over Q. The algorithm computes all the
zero-dimensional left ideals containing the given ideal. It
generalizes the Beke-Schlesinger algorithm for factoring lin-
ear ordinary differential operators, and uses an algorithm
for finding hyperexponental solutions of such ideals.

1 Introduction

For various reasons linear differential equations have been of
particular importance in the history of mathematics. First
of all, the problems connected with them are much easier
than those for nonlinear equations. Second, many nonlin-
ear problems may be linearized in some way such that the
results of the former theory may be applied to them. This
is especially true for Lie’s symmetry analysis of differential
equations which reduces the problem of solving nonlinear or-
dinary differential equations (ode’s) with a sufficiently large
number of symmetries to the study of certain systems of
linear partial differential equations (pde’s). The problem of
finding conservation laws for nonlinear pde’s also leads to
systems of linear pde’s.

It has been possible to generalize many concepts from
commutative algebra suitably such that they may be ap-
plied to linear ode’s, e.g. the greatest common divisor and
the least common multiple, the concept of reducibility and
factorization which finally led to the theory of Picard and
Vessiot and differential Galois theory. This is true to a much
less extent for systems of linear pde’s. In order to obtain
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manageable problems we have to specialize them further.
The constraint that the general solution depends on a fi-
nite number of constants, i.e. that it may be represented
as a linear combination with constant coefficients of a finite
number of special solutions which form a fundamental sys-
tem, turns out to be appropriate. It allows us to generalize
many concepts from the theory of linear ode’s in an almost
straightforward manner to these pde’s. Furthermore, they
have important applications in symmetry analysis.

It is the purpose of this paper to describe a generaliza-
tion of the Beke-Schlesinger factorization algorithm [1, 13] to
systems of linear homogeneous pde’s in one dependent and
two independent variables with a finite-dimensional solution
space. The base field consists of the rational functions in the
independent variables with algebraic number coefficients. In
principle, most problems related to such systems of pde’s
reduce, as shown by S. Lie, to corresponding problems for
linear ode’s. However, such “reduction” may be nontrivial
and usually leads to solving or factoring linear ode’s with
parameters. This makes many known algorithms fail. The
algorithm presented in this paper avoids such complications.

Throughout this paper the following notation will be
used: Q stands for the algebraic closure of the field of
rational numbers, K for the differential field Q(z,y) with
usual derivation operators 9, and 9y, and K[0z, 0] for the
ring of linear partial differential operators generated by 0,
and Jy over K. By an ideal in K[0;,0,] we mean a left
ideal in K[0;,0y]. A system of linear homogeneous pde’s
in 0; and 9y over K can be naturally identified with an
ideal in K[0:,d,] (see, e.g. [9, §1.1]). A solution of a sys-
tem is understood as an element of a universal differential
field extension E of K, which is annihilated by the opera-
tors in the corresponding ideal of K[0;,0,]. A system has
a finite-dimensional solution space over Q if and only if the
corresponding ideal is zero-dimensional. This point of view
enables us to make statements concisely.

In the language of differential operators just described,
our factorization algorithm computes all ideals (in K[9,, 9,])
containing a given zero-dimensional ideal. Besides applica-
tions to solving differential equations and symmetry analy-
sis, the algorithm is also applicable to holonomic systems,
for example, finding Weyl closures (w.r.t. K[0,,0y]) that



properly contain a given holonomic D-ideal in the Weyl
algebra Q(z,y,0z,0,) (see [9, §1.4]). Factoring a zero-
dimensional ideal in K[0;,d,] is more involved than fac-
toring a linear ode. For instance, the notions of factors and
quotients need to be carefully examined; the leading deriva-
tives of a factor are not as obvious as in the ode case; the
notion of Wronskians will be extended; and the normal form
of a factor has to be considered. Most of the results stated
in this paper hold for several variables. We confine ourselves
to the case of two variables, because a generalization of the
algorithm in [7] for several variables is still on the way.

The paper is based on several known results. The the-
ory of linear differential ideals [6] supplies useful conclusions
about dimension and linear dependence over a constant field.
The notion and computation of differential Grébner bases
in K[0;, 8y (see [5, 3, 9]) make sure that the system to be
factored and the factors to be sought are of required di-
mensions. The algorithm in [7] enables us to compute first-
order factors. The idea of associated equations [1, 13, 12, 2]
inspires us to reduce our factorization problem to that of
finding first-order factors. The factorization problem in this
paper has been considered by Tsarev [14], in which chains
of factors of such systems are investigated from the point of
view of the Jordan-Holder theorem. But the results about
algorithms therein are fairly sketchy. We shall clarify a few
points in that paper.

The paper is organized as follows. Section 2 specifies the
notation and states our factorization problem. Section 3
discusses quotient systems. Section 4 presents some simple
and useful facts about factorization. Sections 5 and 6 gen-
eralize the notions of Wronskians and associated systems,
respectively. Section 7 describes ideas about factorization.
Section 8 presents a factorization algorithm. Concluding
remarks are given in Section 9.

2 Preliminaries

We denote by © the commutative monoid generated by 0,
and 0y. An element of © is called a derivative. For a
subset L of K[0z,0y], sol(L) stands for the solution space
of L, which is contained in E and is a vector space over Q.
The (left) ideal generated by L is denoted by (L). An
ideal I of K[0, 0y] is zero-dimensional if the left K-linear
space K[0;,0y]/I is finite-dimensional. It follows from [6,
Chap. 1V, §5] that dimk (K[0x,0y]/I) = dimg sol(I) if the
ideal I is zero-dimensional.
For convenience, we fix a term order

1<0, <8y <02 <00, <0<+

on K[0;,0,] throughout the paper. The reader may easily
find that all conclusions in this paper are valid for any term
order. A differential Grobuer basis in K[0;,dy] will be sim-
ply called a Grobner basis. By “given an ideal”, we mean
to be given its reduced Grobner basis. By “computing an
ideal”, we mean to compute its reduced Grobner basis. In
this paper, Grobner bases may be replaced by coherent au-
toreduced sets in the theory of linear differential ideals [8, 6],
or by Janet bases in symmetry analysis [4, 11, 10], both of
which appeared earlier in the literature than Grébner bases.
We choose Grobner bases because they are well-known and
the computer algebra implementations to compute them are
widely available. For brevity, all Grobner bases are assumed
to be reduced. It seems improper to factor an arbitrary sys-
tem, for such a system may possibly be inconsistent.

For a Grobner basis L, we denote by lder(L) the set of
leading derivatives of L, and by pder(L) the set of para-
metric derivatives of L. Recall that a leading derivative
of L is the highest derivative in an element of L, and
a parametric derivative of L is a derivative not divisible
by any element of lder(L). By [6, Chap. IV, §5] or [9,
§1.4], dimg sol(L) = |pder(L)| if (L) is zero-dimensional.
Note that |pder(L)| is also called holonomic rank of L.
Both |lder(L)| and |pder(L)| can be easily obtained from L.

This paper provides an algorithm for solving

Problem F Given a Grébner basis L with dimg sol(L) = d
and an integer n with 1 < n < d, compute all Grobner
bases F' in K[0;, d,] such that

1. dimg sol(F) = n, or, equivalently, |pder(F)| = n,
2. sol(F') C sol(L), or, equivalently, (L) C (F).
We call F' an nth-order factor of L over K.

Remark 1 If two Grobner bases Fi and F» have the same
solution space, F1 and F> are equal as sets [6, page 151].

Remark 2 As pointed out in the proof of Theorem 2
in [14], the solution spaces of systems in K[9;,dy] contained
in sol(L) form a modular lattice V in which the partial order-
ing is inclusion. For V1, V> € V, both (ViNV2) and (Vi +V2)
are also in V. Indeed, they correspond to the sum (gcd) and
intersection (lcm) of respective defining ideals. Hence, for
two maximal chains of proper factors Fi, ..., Fy and G1,
..y, G, with

{0} C sol(Fy) C --- C sol(F) C sol(L)

and
{0} Csol(G1) C --- Csol(Gm) C sol(L),

we have m = k and the quotient spaces (sol(F;)/sol(F;_1))
and (sol(G;)/so0l(Gj—1)) have the same dimension pairwise
after a rearrangement of indices.

Example 3 Let L be the Grébner basis:

2 9_
{Li =0; + Lo, + 33240, — L,

€z

Ly = 050y + 40y — ¥740: — 3, 1

2
Ls =0, + 20, + 2549, — £}.

492 4y

We find lder(L) = {97, 0.9y, 0, } and pder(L) = {0.,9y, 1}.

Hence, sol(L) is of dimension 3 over Q. The Grébner basis

1 Y T
F = 24— ), — — — 29,
{Bm+ 2:1:8 1z’ Oy ya }
is a second-order factor of L, since Li, Lo and L3 can be
reduced to zero by F. Notice that (Ider(L) N 1der(F)) is
nonempty, which never happens in the ode case. One may
observe that (1) also has a first-order factor {By - i, Bx} .

In the rest of this paper, L C K]0, 0y] is assumed to be a
Grobner basis with dimg sol(L) = d > 0.

To save space, we use exterior algebra notation to denote
determinants. For 64, ...,0, € O, the exterior product

A=01ANO:AN---NOp



is understood as a multi-linear mapping from E" to E:

0121 61220 --- 91Zn

922:1 9222 e (92Zn
AZ) =

Hn.Z1 anlzz te an.zn

for Z = (21,...,2n) € E". Besides being multi-linear and
anti-symmetric, A also has the property that, for all a € K,

m

0z (aX) = (aza))\+a2(91 A---

j=1

ANOzO; A+ NBr). (2)

In this way we may regard any K-linear combination of n-
fold exterior products formed by elements of © as a multi-
linear function from E™ to E. Clearly, a derivation operator
can be applied to such a combination.

For a subset S of ©, we denote by A"(S) the K-linear
space generated by all the n-fold exterior products formed
by the elements of S. In particular, A"(©) is a K-linear
space closed under 9, and 8,. For every A € A"(0©), there
exists A\, € A" (pder(L)) such that,

Az1y. e y20) = AL(21, .0, 20) (3)

for z1,...,2n € sol(L). The exterior expression Az can be
computed by replacing each derivative appearing in A by its
normal form w.r.t. L. Equation (3) is crucial in this paper.

3 Quotient Systems

A factor F of L helps us to find a subspace of sol(L). How
can we use the factor to describe all the solutions of L? An
answer is to use the quotient system of L w.r.t. F', which is
briefly described in [14] without proofs. We shall spell out
the details.

Write L = {L1,...,Ly} and F = {F1,..., F,}. Since F
is a factor of L,
q
Li=) QiF; for some Qi € K[d,0,]. (4)
j=1

Since F is a Grobner basis, all the S-pairs of F
q

(JaFa —(Sbe) = Z Pabij, for some Pabj € K[am,ay] (5)

j=1

where d, and §, are the derivatives to form the S-pair of Fj,
and F,. Let wo,u1,...,uq be differential indeterminates
over K. For A € K[d;,0,], the action of A on u; is de-
noted by A(u;) which is an element of K{uo,u1,...,uqh

(see [6]). The quotient system of L w.r.t. F is defined to
be Q={Q:i=0,Tes =01 <i<p,1<a<b<q} where

Z Pab] U]

,Uq) denote the system

s Fo(uo) = ug}-

Qi = ZQU UJ Toy = ((Sa(ua (51; ub

Proposition 1 Let G(uog,u1,...
{Fl(uo) =Ui, ...
Then

L J if(Ul,...,

that (vo,v1, ...

e if vg € sol(L), then (Fi(wo),...,Fy

vg) € sol(Q), then there exists vo € E such
,Vq) € sol(G), so that vo € sol(L);

(v0)) € s0l(Q);
e s0l(Q) is of dimension (d —n) over Q.
Proof To prove the first assertion, we regard
G(uo) = G(uo, v1,...,7)

as a differential system in wo. Its integrability condi-
tions Tup(v1,.-.,74) (1 < a < b < q) vanish, since Ty is
in Q. In other words, {F1(uo) — vi,-..,Fy(uo) — v} is a
coherent autoreduced set. Hence, G(uo) has a solution wo.
It follows from (4) that vg € sol(L). The second assertion is
direct from (4) and (5).

To prove the last assertion, we let h be the dimension
of sol(Q) over Q, and z1, ..., 2n, w1, ..., Wp—q a funda-
mental system of L, in which z1,..., 2, € sol(F'). Then the
vectors ¥; = (Fi(ws), ..., Fg(w;)), where 1 <7 < (d—n), are
nontrivial solutions of () by the second assertion. If these
vectors are Q-linearly dependent, then a nontrivial Q-linear
combination of the w; is a solution of all the F;, a contra-
diction to the selection of the w;. Thus, h > (d — n). For
nonzero ¥ € sol(Q), let vo satisfy G(uo,¥). Since v € sol(L),
it can be expressed as a nontrivial Q-linear combination of
the z; and w;. Applying each Fj in F' to the linear com-
bination yields that ¢ is a Q-linear combination of the v;.
Hence h < (d — n). |

Example 4 Consider the Grobner basis

-1
:{aﬁ-w—am—ﬂ,ay—fam}.
T T Y

It has a first-order factor {F1 = 0y — z, F» = 0, —y}. The

quotient system @ of H w.r.t. F is

0z (u1) — Oy (u2) = yur — xm} .

- X
Oz Uz = —u2, U1 = —U2,
€z Yy

We find that ( = i, Uy = %) is a nonzero solution of Q.

Let vo be a solution of G(ug) = {F1 w) = L, Fo(ug) = 1 }
It follows from Proposition 1 that H has a fundamental Sys-
tem of solutions {exp(zy), vo}. If both z and y are positive
real variables, then vy can be chosen as

—exp(zy)Ei(1, zy) = —eXp(wy)/ wdt'
0

4 Useful facts about factorization

We show that finding first-order factors of L is equivalent to
finding its hyperexponential solutions.

A nonzero element h of E is said to be hyperezponential
over K if both (9;h)/h and (9yh)/h belong to K. Two
hyperexponential elements are said to be equivalent if their
ratio belongs to K. Hyperexponential elements play a key
role in algorithms for factoring differential operators. An
easy calculation shows

Proposition 2 The set of all hyperezponential elements
over K s closed under multiplication and division.



Proposition 3 The Gréobner basis L has a first-order fac-
tor if and only if L has a hyperezponential solution.

Proof If h is a hyperexponential solution of L, then

8 h Oyh
= {o.- %20, - 22}
is a first-order factor of L over K. Conversely, let a first-
order factor of L be F = {0, — u, 0y — v} C K[0z,0,]. For
a nonzero h € sol(F'), both (0;h)/h = uw and (Oyh)/h = v
imply that A is hyperexponential. O
The algorithm presented in [7] computes all first-order
factors of a given system L such as the first-order factors
appearing in examples 3 and 4.
For a dth order linear ode w.r.t. 0., its nth order right
factors have leading derivative ;. What is lder(F') if F is
a factor of L 7 The following lemma provides an answer.

Lemma 4 If F is specified as above, then
lder(F) C (1der(L) Upder(L)), pder(F) C pder(L).

and, for every 6 € lder(L), there exists & € lder(F') such
that 6 is divisible by 6.

Proof If § € 1der(F) and ¢ ¢ (Ider(L) U pder(L)), then ¢ is
divisible by some 6 in lder(L). As each member of L can be
reduced to zero by F, 6 is divisible by an element of lder(F’),
so is d, contradicting to the fact that F is reduced. The last
two assertions follow from the same argument. O

This lemma tells us that there are only finitely many
choices for lder(F’). Asshown in Example 3, the intersection
of lder(L) and lder(F') may be nonempty. This point is
neglected in [14].

5 Wronskian representations

A key idea in the Beke-Schlesinger algorithm is to look for
right factors whose coefficients are Wronskian-like determi-
nants. To use this idea, we extend the notion of Wronskians.
Let F' be a Grobner basis in K[0,,dy] with n-dimensional
solution space. Let lder(F) = {6.1,...,0:} and pder(F) =
{&1,...,&n}, where & is lower than & for 1 <7 < j <mn. As-
sume that F = {F1,..., Fi} in which each F; is monic with
leading derivative 6;. We call the element wr = (§1A---Ar)
the Wronskian operator of F. It follows from (3) (replacing
L by F) and A" (pder(F)) = {rwr | r € K} that, for ev-
ery A € A" (0), there exists ry € K such that

Azty. oy 2n) =rawr (21, .-y 2n) (6)
,Zn € sol(F).

Lemma 5 For all z1,...,2, € sOl(F), z1, ...z, are Q-
linearly independent if and only if wr(Z) # 0. Moreover,
let z1, ..., zn form a fundamental system of solutions of F
and denote (z1,...2n) by Z. Then

(wrAB)(Z, ) =wr(D)F;, 1=1,...,k,
where (wr AB;)(Z, -) means the (n+1) X (n+1) determinant

&iz1 &iza -+ E1zn &1
az1 E2z2 -+ E2zn &2

for z1,...

97;,21 97;Z2 Gizn 9i

in which derivatives are placed at the right-hand side in o
product.

Proof If z;, ..., z, are linearly independent over Q, The-
orem 1 in [6, page 86] implies that there exists A in A" (©)
such that A(z1,...,2n) # 0. The first assertion then follows
from (6). The converse is true by the same theorem.

The expression (wr A 6;)(Z, -) can be reduced to zero
by F', because (wr A 6;)(Z,2;) =0for j =1, ..., n. On the
other hand, expanding (wr A 6;)(Z, -) according to its last
column yields, for all ¢ with 1 <i <k,

Y

(WrA8:)(Z,) = wr(2)6; Z O A 8@, ()

w”

where 1, =& A - A1 ANEr1 A--- AN€q. It follows that
((wr A B5)(Z,-) — wr(2)F;) equals zero. m|
We call {(wr A61)(Z, -), ..., (wr AOk)(Z,-)} a Wronskian
representation of F. Any two Wronskian representations
of F' can only differ by a multiplicative constant in Q, be-
cause any two sets of fundamental solutions of F' can be
transformed from one to the other by a matrix over Q.

Corollary 6 The Wronskian representation of the Grébner
basis F' is a Gréobner basis over K < z1,...,2n >.

Example 5 The Wronskian representation of a Grobner
basis F with 1der(F) = {92,9,} is

{(1A3:)(2)0% -
(1A 82)(D)Dy — (1 A,)(2)0a +

(1A32)(2)0: +
(0= NOy)(2) }

where Z = (z1,22) and 21,22 form a fundamental system
of solutions of F. The Wronskian representation of F with
leading derivatives 8; and 0, is

(0= A O2)(2),

{11 0,)(2)9;
(LA9y)(2)0: + (9y AN 02)(2) },

— (LA B2)(D)D, + (B, A B2)(2),

since (1A 0;)(Z) has to be zero, for, otherwise, the represen-
tation would not be reduced, a contradiction to Corollary 6.

The next proposition reveals that the coefficients w;; are
quite simple although they may be outside K.

Proposition 7 Let F be a Grobner basis in K[0y,0y], 21,
.., 2n form a fundamental system of solutions of F', and
denote (z1,...,2n) by Z. Then wr(Z) is hyperezponential
over K. Furthermore, for all X € A™(0), A(%) is either zero
or hyperezponential over K, so is every wi; given in (7).

Proof Lemma 5 implies that wr(Z) is nonzero. It fol-
lows from (6) that the ratio of O,wr (%) and wr(Z) belongs
to K. The same conclusion holds for the ratio of dywr(Z)
and wr(Z). Hence, wr(Z) is hyperexponential over K.
Proposition 2 and (6) then imply that any nonzero )\(Z)
is hyperexponential.

We show how to compute wr(Z) and the coefficients w”
in the next section.

6 Associated Systems

In this section we generalize the notion of associated equa-
tions for factoring linear ode’s. As in the previous sections,
let n be an integer with 1 < n < d. We want to regard



every element of A"(0©) as a function on sol(L)™. Two ele-
ments of A"(0O) are said to be equivalent if they are identical
(as functions) on sol(L)". For an element X\ of A™(0), its
equivalence class is denoted by A. It is easy to verify that
the equivalence relation is compatible with linear operations
and differentiations on A" (0). The K-linear space consist-
ing of the equivalence classes is called the nth Beke space
relative to L, and denoted by B, when L is clear from the
context. From (3) it follows that each equivalence class con-
tains an element of A" (pder(L)). Consequently, B, can be
K-linearly generated by the elements in form

(01 AG2A---Abr) (8)

where the 6; belong to pder(L) and 6; is lower than 6; for
all 4, j with 1 <4 < j < n. The elements in (8) are called
canonical generators of B,. They are not necessarily K-
linearly independent. The following lemma is evident.

Lemma 8 The nth Beke space By, is of dimension less than
or equal to (Z) and closed under differentiation.

Example 6 If lder(L) = {87,0.9,,0;}, then pder(L) =
{1,0z,0y}. The second Beke space B; relative to L is gen-
erated by (1A 0z), (1 A0y), and (0: A Oy).

Set m = (Z) For an element A of B,, the ideal
consisting of all annihilators of X in K[8.,d,] is denoted
by ann(\). It follows from Lemma 8 that the solution
space of ann()) is no greater than m. A finite subset
of ann(A) with finite-dimensional solution space is called
a system associated with XA. The following method com-
putes an associated system by linear algebra and differ-
ential reduction. Lemma 8 implies that both A, 9z A, ...,
Oy and A, Oy A, ..., 0"\ are K-linearly dependent. Sup-
pose that p and g are smallest nonnegative integers such
that 92X + Y 770 fidid = 0 and 9gA + Y170 g; 05\ = 0.
where fp—1,..., fo,99—1,...,90 € K. We find the system

p—1 qg—1
{a£+zfia;, oy +Zgja§;} 9)
i=0 j=0

annihilating X. The solution space of (9) is of finite dimen-
sion, because parametric derivatives of a Grébner basis for
the ideal generated by (9) are contained in

Dy ={0,0)]0<i<p,0<j<q}

Hence, (9) is a system associated with X. Considering all
possible K-linear combinations of (m + 1) elements of Dy,
we may obtain an associated system with m-dimensional
solution space (see the proof of Lemma 1 in [14]).

For factorization, we need systems associated with the
canonical generators. The following method for construct-
ing these systems in form (9) is an easy generalization of
the method described in [2]. Let b, be the m-dimensional
vector consisting of the canonical generators of B,,. Differ-
entiating this vector and using (3), we obtain two (m x m)
matrices M, and N, over K such that

Buby =b, M, and  ,b, = by Nn. (10)

Set M,o = Np,o to be the (m X m) unit matrix, and
set M,,1 = M, and N,1 = N,. Define two sequences of
matrices:

Mn,i = MZMn,i—1+aan,i—1; Nn,i = N2Nn,i—1+ayNn,i—1,
(11)

where i > 2, respectively. An easy induction leads to

-

Oibn =buMn; and 0ibn =buMni (i >0).

For j = 1,...,m, let §,; and hn; be two (m+1)-
dimensional vectors whose kth vector is the (k—1)th deriva-
tives of the jth component of b, w.r.t. z and y, respectively.
Then we have

Jn,j = 6nUn,j and Hn,j = gnVn,j (12)

where the kth column of U, ; (V) is the jth column
of Mpx—1 (Npg-1), for k=1, ..., m+ 1. Since both U, ;
and V,; have more columns than rows, their columns are
K-linearly dependent. From these linear relations we can
extract a system associated with the jth component of b
Briefly, the systems associated with the canonical generators
of B, can be constructed by solving 2m K-linear homoge-
neous algebraic systems whose coefficient matrices are Uy, ;
and Vg, ,j for j =1, ..., m.

Example 7 Let L be given in (1) and n = 2. Write
L={32 4+, 0.0y +12, 0] +13}

where the l;’s are K-linear combinations of 1, 0., and J,.
Three canonical generators of By are

by = (1A0z), ba =(1Ady), bs=(0z ADy).
By differentiation we get

O:b1 =1A02 =—1AI;.

Oubs =0y NOy +1ND2 =0, NOy — 1 A ls.
Oobs =02 N0y + 0o N3Oy = =11 ANDy — 0z N La.

Substituting concrete expressions of the I; yields

zy—24zy 242y =1
4z 4y 4
2
My = i’} i’} v
4z 4 4z
=1
0 1 T

as described in (10). In the same vein, we have

8

242y 2(@y=2) -
2

4y 4y E

= -y —z 1
N2 1 1 1
-1 0 1

N
<

Using (11) to find Maa, Mas, N2z and Na3, and construct-
ing Us; and V3, for j = 1, 2, 3, we find that the systems
associated with by, by and b3 are, respectively,

3 392 =3+
{02+ 208 - =aivo,

T 8z2»

9% — 2wu=6 52 42—23my+z2y2a + 72—30 zy+22y?
v y(zy—6)"Y 1yZ(zy—6) Y 8y3 (xy—6) ’



3 2 +1 2
{am w(2+my)0 mfmi 9 + 8w(2y+my)’

—12423 Y —12(21; 22 y a
4y2 (4 4my+z2y2)

3 zy—6 2
9y + y( 2+my)a

_ xz(—10+my)
8y(4—4 my+m2y2)

and

3 15+ zy 0 2 zy—2
{a” 6w % 24x % = 2y 6” 4y [
7 1Idea about factorization

As before, we let F' be a Grobner basis in K[0,,d,] such
that sol(F') C sol(L) and dimg sol(F) = n, where1 < n < d.
Let Z be the vector (z1,...,2,) where z1, 22, ..., 2, form a
fundamental system of solutions of F'.

7.1 Compute candidates for the canonical genera-
tors of B,

Let bi,...,bn be the canonical generators of B, with re-
spective associated systems A, ..., A,,. Lemma 4 implies
that wr is a canonical generator of B,. Hence, the func-
tion value wr(Z) is a hyperexponential solution of its asso-
ciated systems by the first assertion of Proposition 7. For
every b;, the function value b;(Z2) is a solution of A;, which
is either 0 or hyperexponential by the second assertion of
Proposition 7. Applying the algorithm in [7], we can find all
possible candidates for b1(Z), ..., bm(2).

Example 8 Consider the system L given in (1). According
to the associated systems presented in Example 7, we find
the candidates of b1(Z), b2(2), and b3(Z) are

1y = C2T —
{mwleq},{mmm}, and {0}, (13)

respectively.

7.2 Compute candidates for the Wronskian repre-
sentation of a factor

Assume that

lder(F) = {61,...,0r} and pder(F)={&,...,&}.

The Wronskian coefficients of F'
wi; = (1) (n; A 6:)(2)

given in (7) are K-linear combinations of the b;(Z)’s, be-
cause n; A 0; € By, and z1,...,2, € sol(L). Hence, we can
obtain all candidates for the w;;’s as long as the candidates
for the b;(Z)’s are known.

Example 9 Again, let L be given in (1). The Wronskian
representation of F' given in Example 5 is

{(1A8:)(Do; -
(1A 0:)(2)0y —

(1A 82)(2)0 +
(0= A Oy)(2) }

(82 A O2)(2),
(1A 3,)(2)0a +

Let b1, b2, bs be the same as in Example 8. In B> we have

2— I
i - Z—xb2, Bs NO2 =

1A02 =— yp

2
Y, Y
4xb1 4xb3'

As the components z; and z> of Z belong to sol(L), the
above equalities and Example 8 imply that the Wronskian
representation of F' must be in form

c1y 52 2—zy c1y y> coz _ Y cy
{ ‘/myaw-i-( 4z | Jzy + 4z my)aw 4z Jzy°?

g _cwa}

(14)

Veyty o oyt
where c1,c2 € Q with ¢; # 0.

By computing hyperexponential solutions of systems asso-
ciated with the canonical generators and performing linear
operations in B,,, we can get all possible candidates for the
Wronskian representation of F'. There are only finitely many
such candidates, each of which may involve a finite number
of unspecified constants in Q. This is due to the structure
of hyperexponential solutions of L (see [7, Theorem 3.2]).

7.3 Determine coefficients

It remains to determine which candidate leads to a factor
of L. A monic associate of a candidate is the set consisting
of monic associates of all elements in the candidate. Accord-
ing to (6), the ratio of wr(Z) and any coefficient appearing
in some equation of a candidate belongs to K. Therefore,
we exclude those candidates whose monic associates do not
belong to K[0,,dy]. Let M be a monic associate of a candi-
date contained in K[9,,d,]. The system M is a factor of L
with dimg sol(M) = n if and only if

e M is a Grobner basis with lder(M) = {61,..., 6k}
e For each element of L, its normal form w.r.t. M is zero.

Example 10 The monic associate of (14) is

{oa+(at+ )0 -4, 0 - S0} (15)

where ¢ = ca2/c1. This system has leading derivatives 02
and 0y. A simple calculation shows that (15) is a Grébner
basis if and only if ¢ = 1. Setting ¢ =1 and computing the
normal form of every element of L given in (1) w.r.t. (15),
we confirm that L has a factor F' as given in Example 3.

Example 11 Let us determine factors of L given in (1)
with leading derivatives 9 and d,. Assume that G is such
a factor with a set of fundamental solutions z; and z2, and
denote (z1,22) by Z. In this case the Wronskian operator
of G becomes wg = (1 A 0y). The candidates for wg(Z)

are { 2| € Q,c2 # O}as given in (13).

Example 5, the Wronskian representation of G is
{(1A0,)(2)05 — (1A 0;)(2)Dy + (8y A 0))(2),
(1A 0y)(2)0s + (Oy AN 02)(2) }-

The candidates for the Wronskian representation are

(i (22)0

As shown in

r Ca2T Cz.’L‘ }
vy



with monic associate M = {35 + (%) O — 45 Bz} . But M
is not a Grobner basis. So F' has no factor with leading
derivatives 0, and 9.

The system (1) has only one second-order factor by Exam-
ples 10 and 11.

8 Factorization algorithm

For simplicity, we describe an algorithm for finding nth-
order factors F' of L under the assumption that lder(F) is
given. It is easy to adjust the algorithm to compute all
factors of L by Lemma 4.

Algorithm F Given a Grobner basis L with d-dimensional
solution space, and A C (lder(L) U pder(L)) whose ele-
ments are mutually reduced, compute all factors F' of L
with lder(F) = A.

1. [compute pder(F)] Find A~ C © consisting of all deriva-
tives not divisible by any elements of A. If |[A7| > d, exit
[no such factors exist]. Set n to be |A~|.

2. [candidates for the Wronskian] Construct the system A;
associated with wr, and compute hyperexponential solu-
tions of A;. If no hyperexponential solution is found, exit
[no such factors exist]. Organize the solutions as equivalence
classes:

{hn = p11 €xp (f(fndm + gndy)) A

hix = pix exp ([ (firde + girdy) }

(16)

where the f1; and g1; are in K, and the pi1; are polyno-
mials whose coefficients are elements of Q and unspecified
constants (see [7, Theorem 3.2]).

3. [candidates for other canonical generators] Construct the
systems As, ..., A, associated with other canonical gener-
ators, and compute their hyperexponential solutions equiv-
alent to some hy; (1 <7 < k). Set hj; to be the hyperex-
ponential solution of A; equivalent to hi; if such a solution
exists. Otherwise, set hj; to be zero. Let
H = {(h11,h21,...,hm1), ..., (hik, hok, ..., hmi)}
where the hi; are in (16), and the h;; with j > 1 are either
zero or hyperexponential elements equivalent to h1;.

4. [candidates for factors] Construct the Wronskian repre-
sentation defined by A. Construct the matrix transforming
the canonical generators to the Wronskian coefficients. Use
this matrix and the elements of H to get all rational monic
associates {Fi,..., Fi} of the candidates for factors.

5. [true factors] Check if each F; satisfies the two conditions
given in Section 7.3, and solve algebraic equations in un-
specified constants when necessary. Return the true factors.

A few words need to be said about Algorithm F. The first
step is clear. The second step is a direct application of
the algorithm in [7] whose outputs are distinct equivalence
classes of hyperexponential solutions (after a formal inte-
gration). If no hyperexponential solution is found, then
factors with leading derivatives A do not exist by Propo-
sition 7. In the third step, (6) implies that we need only
hyperexponential solutions equivalent to some hi;. Since
these solutions belong to one equivalence class, all of them
can be expressed as g;hi;, where ¢; is a polynomial in z

and y whose coefficients are elements of Q and unspecified
constants. Thus, H contains at most k elements. Finding
these solutions amounts to computing rational solutions of
some zero-dimensional ideals, which is easier than comput-
ing all hyperexponential solutions of other associated sys-
tems. This technique is introduced in [2] for the ode case,
and is extended to the pde case in [14]. The last two steps
have been explained in Sections 7.2 and 7.3, respectively.
The techniques to use invertible matrices to avoid finding
hyperexponential solutions in [2] can also be generalized to
our case, in which the matrices U,; and V,; in (12) play the
same role as Ags in [2]. The results in Remark 2 also help to
detect factors, as will be shown in the next example.

Example 12 Apply Algorithm F to find all factors of L:

{£+§3m;@m+%§x+@wﬁm%
(17)
02 4 Wlziletup? | 3y 4 (34 9y2)8w} .
All the ¢ with subscripts are hereafter unspecified constants.

We start to compute first-order factors. By Proposition 3
the algorithm in [7] yields all the first-order factors Fi:

2¢2 6c2y
{am 2¢1 + 2cax — 3y2co’ oy + 2¢1 + 2cox — 3y2co } ’

To find second-order factors, we need canonical generators
of the second Beke space, which are:

b1 =1A0,, b2=1/\8y b3 =1A02
b4:8m/\6y bs = 0, N O2 bezay/\a%.

We do not display their associated systems, for they are
quite large. Note that associated systems only depend on L.

First, compute factors with leading derivatives {97, 0,}.
Step 1 yields A~ = {1, 9, }. Hence, the Wronskian operator
is b1. Step 2 finds candidates

2 z’
{011, (c11 + c12x + c13z7) exp (—7) }

for b1. Step 3 finds candidates (ci1, c21, 0, 0, 0, 0) and

((011 + crox 4 c137°)u, (ca1 + Coox + 23y + c2azy)u, 0, 0,0, 0) ,

where u = exp (—“”2—2), for canonical generators. Step 4 gets
the Wronskian representation

{610 — b30: + bs, 619y — b20s + ba }

and, thus, yields two candidates

{aﬁ7 Ay + 210, }, {0,23, 8, + c21 + c22% + c23Yy + 024a:yam}

c11 + c12x + ci13z?

for factors. In the last step we obtain a factor
Fy : {63, ay +3y6m}

from the second candidate.



Next, we compute factors with leading derivatives 85
and 0;. The Wronskian operator then becomes ba. Step 2
yields six candidates

{021, c21 exp(—z?), (co1 + 222 + ca3y + C2azy) exp (‘Tlxz)
C21 €Xp (_TE‘y2 — m2) , (€21 + c227) exp (_Tgy2 + 3t 2) ,
C21 €Xp —TSy2

for by. Note that by has to be zero in this case, for otherwise,
we would not have factors with desired leading derivatives.

Step 3 gives six candidates for by. Deleting repetitions, we
find that three of them are left. They are

(0, ¢21, 0, 0, 0, 0), (0, c21u, 0, carzu, 0,c61(1 — $2)U)
where u = exp (—%y2 — w2), and
(0, (c21 + c22x)v, 0, (ca1 + ca2z)v, 0, co1(1 — mz)v)

where v = exp (—%y2 - %z‘2) . In Step 4 we find the Wron-
skian representation

{bzag —AADDD, + (B, NOD), bsds — b4} ,

and transformations (1 A 87) = rbs — 3ybs — (9y* — 3)b1 and
(8y A B7) = rbe + (9y> + 3)ba, where r = %ﬂ. They
lead to two candidates for factors. Step 5 yields a factor

Fos : {(9; +3y0dy +vy, Oz + z}.

We have found all second-order factors of L.

Instead of algorithm F we use the results in Remark 2
to find all third-order factors. A straightforward calculation
shows that every factor F11 obtained from a specialization of
unspecified constants in F satisfies sol(F11) C sol(F»1), and
that sol(F»1) Nsol(Fz2) = {0}. Therefore, F; is irreducible.
It follows that

{0} C sol(Fi1) C sol(F»1) C sol(L)

is a maximal chain, for, otherwise, there would be a chain
starting with {0} C sol(F32) and having length greater
than four. Hence, any third-order factor F3 must sat-
isfy sol(F22) C sol(F3). The dimension formula from linear
algebra shows

dimg (sol(F3) + sol(F»1)) + dimg (sol(F3) Nsol(Fa1)) = 5.

We conclude that (sol(F3) N sol(F1)) is of dimension one
over Q, because (sol(F3) + sol(F»1)) is contained in sol(L)
whose dimension is four over Q. It follows that a third-order
factor has a first-order factor, which is an instance of F3.
Hence, the ideal generated by a third-order factor is the
intersection of the respective ideals generated by F»» and an
instance of Fy. All third-order factors can then be computed
by standard techniques from Grobner basis arsenal.

9 Concluding remarks

The results of this article are a first step toward generaliz-
ing the theory of linear ode’s to pde’s. The limitation to
two independent variables is justified by its applications to
the symmetry analysis on nonlinear ode’s. A more complete
theory will deal with any number of dependent and indepen-
dent variables. In this way it will be possible to generalize
Loewy’s decomposition of linear ode’s to systems of linear
pde’s with a finite-dimensional solution space.
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