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Abstract

We propose an algorithm for simplification of definite sums of ra-
tional functions which, for a given input rational function F(n,k),
constructs two rational functions G(n) and T'(n, k) such that

z”: F(n,k) =G(n)+ zn:T(n, k),

where the degree of the denominator w.r.t. k of T'(n, k) is “small”.

1 Preliminaries

Let K be a field of characteristic 0, F(n,k) € K(n, k). Set

a(n, k)
b(n, k)’

F(n,k) = a(n, k), b(n, k) € K[n, k. (1)
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F(n,k) is defined to be proper if deg, a(n,k) < deg,, b(n, k), and in reduced
form if ged(a(n, k), b(n,k)) = 1. Applying to F(n,k) an algorithm to solve
the indefinite sums of rational functions [1, 2, 6, 7] w.r.t. k results in

F(n,k) = A, S(n, k) +T(n, k), (2)
where S(n,k),T(n,k) € K(n,k), T(n,k) is proper, in reduced form, and

the denominator of T'(n, k) has the minimal degree w.r.t. k. The operator
Ay, denotes the forward difference operator which acts on k, i.e., Ay f(k) =
f(k+1) — f(k) for any function f(k). An indefinite additive decomposition
of F(n,k) consists of the pair (S,T) such that (2) holds. S is called the
summable part of the decomposition, and T' the non-summable part. As a
special case, if T'(n,k) in (2) vanishes, then F(n, k) is said to be indefinite
summable, i.e.,

zk:F(n,k) = S(n,k), S(n,k) € K(n,k). (3)

Note that S(n,k) is defined up to a term p(k) € K(n). Thus, >, F(n, k) is
a set.

For any fixed n € N, if F(n, k) does not have any pole for all 0 < ky < n
(throughout the paper, we assume that F'(n,k) has this property), then it
follows from (2) that

n n

Y F(n.k)=G(n)+ > T(n,k), (4)
k=0 k=0
where G(n) = S(n,n + 1) — S(n,0). A definite additive decomposition of
F(n,k) consists of a pair (G(n),T(n,k)) where G(n) € K(n),T(n, k) €
K(n, k) are such that G, T satisfy (4), and the denominator of T'(n, k) has
the minimal degree w.r.t. k. As a special case, if T'(n, k) in (4) vanishes, then
F(n,k) is said to be definite summable, i.e.,

Z Pln,k) = G(n), G(n) € K(n). )

Note that if F(n,k) € K(n,k) is indefinite summable, then F' is definite
summable. However, the reverse is not necessarily true. As an example,
consider the rational function

1 1
nk—l—Sn—l—l_nz—nk—l—l'

F(n, k) =
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An indefinite additive decomposition of F is

B —2nk + n(n — 3)
(8,T) = (0’ (nk + 3 + 1)(n? — nk + 1))

1.e., F'is not indefinite summable. However, applying our proposed algorithm
(see Example 2) to F(n, k) results in the pair

(G.T) = n(2n° + 16n° +45n* 4+ 600> + 45n® + 18n + 3)
I 2rn+1)(r2+n+1)(n2+2n+1)(n2+3n+1)" )’

i.e., F(n,k) is definite summable.

It is worth mentioning that Zeilberger’s algorithm [8], a very useful tool
for proving combinatorial identities which involve definite sums of hypergeo-
metric terms (including rational functions as a special case), is not applicable
to F(n,k). In other words, it does not terminate for the input F(n,k) [3].
It 1s not applicable to a large class of rational functions which are shown to
be definite summable either [3, Sect. 7).

In order to compute Yp_, F(n,k) for F(n,k) € K(n,k), a standard
method is to compute an indefinite additive decomposition (S(n, k), T(n,k))
of F(n,k), and then to express the part Yp_,T'(n, k) in (4) in terms of the
Digamma and Polygamma functions. For the example mentioned above,

S F(n,k) = 1\IJ(n—|—1—|—(3n—|— )/n)—l—%@(n—l—l—(nz—l—l)/n)—
22((Bn+1)/n) — 2¥(~(n?+1)/n)

while F(n, k) is indeed definite summable. As another example (see Example
4), consider the rational function

1 1 N 1 1 N 1
" k+2 k+1 2k+5 2n—2k+1 mk+1
An indefinite additive decomposition of F' is

(5,7 = 1 (An+4)k*— (20> —12)k — (12n + 1)
O \kE+D (nk+1)(2k+5)(2k—2n — 1) '

Note that the degree of the denominator of T'(n, k) w.r.t. k is 3. Applying
our proposed algorithm results in the pair

12872 + 14472 4+ 233 n + 117 1
(G,T)=|-= ,
3 m+2)(2n+3)(2n+5) nk +1
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where the degree of the denominator of T'(n, k) w.r.t. kis 1.

For a given F(n,k) € K(n,k), denote by denom(F(n,k)) € K[n, k]|
the denominator of F. Let (S(n,k),T(n,k)) be an indefinite decomposi-
tion of F(n,k). We present in this paper an algorithm to construct a pair

(G(n),T'(n,k)) such that

n n

Y F(n,k)=G(n)+ > T'(n,k), and

either T"(n, k) vanishes or deg;, denom(T"(n,k)) is “small” in the sense that
degy, denom(T'(n, k)) < degy, denom(T'(n, k)).

The pair (G(n),T'(n,k)) is called a simplification of Y ;_, F(n, k).

2 Indefinite Sums of Rational Functions

Let F(n,k) € K(n,k). Denote by F(n;k) an element from K (n)(k), and
when suitable, as an element from K (n)[k]. We also consider elements of the
rings K (n)[k], and denote these polynomials as ¢(n; k), p(n; k), et cetera.

Let the pair (S,T) be an indefinite additive decomposition of F'(n, k).
Set the non-summable part

(n.t) - L

If T'(n, k) # 0, then g(n, k) has the following property [1]:
P1. If p1(n; k), p2(n; k) are factors of g(n; k) irreducible over K(n) then
o1(n;k + h) # pa(n; k) for all h € Z \ {0}.

The following corollary follows directly.

» f(n, k), g(n, k) € Kln, k]. (6)

Corollary 1 g(n,n — k) has property P1.

If T(n,k) =0, let F(n,k) be written in the reduced form (1). Then the
denominator b(n; k) of F(n,k) has the following property [1]:
P2. If pyi(n;k) is a factor of b(n;k) irreducible over K(n) then there

exist a factor po(n; k) irreducible over K (n) of b(n; k) and a non-zero integer

h such that pi(n;k + h) = pa(n; k).




Lemma 1 For each monic irreducible factor po(n; k) = k— ag(n) over K(n)
of g(n; k), there exists at most one monic irreducible factor p1(n; k) = k —

ai(n) over K(n) of g(n; k) such that

QDo(n,k‘ + h) = —(,01(’!1,,71, - k)v h e Z.

Proof : Suppose there exist hy, hs € Z, and an irreducible factor @s(n; k) =
k — as(n) of g(n; k) such that

@o(n,k+ k1) = —p1(n,n — k), and @o(n,k + hs) = —a2(n,n — k). (7)
It follows from (7) that
p2(n,n — k) = g1(n,n — k + (h1 — ha)).

Since T'(n, k) is the non-summable part of F(n, k), it follows from Corollary 1
that g(n,n — k) has property P1. Consequently, by = hs, and hence, a;(n) =

as(n). -

3 A General Algorithm

3.1 Polynomial Splitting

For a given polynomial P(n,k) € K[n,k|, consider the problem of splitting
P(n, k) into

P(n,k) =U(n,k)V(n, k), Un, k), V(n, k) € K[n, k], (8)

where for each irreducible factor u;(n, k) from K|n, k] of U(n, k), there exist
an h € Z and an irreducible factor v;(n, k) of V(n,k) such that

ui(n,k + h) = cvj(n,n — k), c € K. (9)
Definition 1 Leta,b € K(n|[k]\{0}. Define the function spread as follows:
spri(a(k),b(k)) = {h|h € Z, deggcd(a(k + h),b(k)) > 0}.

The function spread of a and b can be computed as the set of integer roots
of the polynomial R(h) = Resg(a(k + h),b(k)). Another algorithm based on

factorization of polynomials is given in [5].
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Corollary 2 For a given P(n,k) € K[n, k], set Q(n,k) = P(n,n — k). Let
S = Sp’l“k(P(n,k), Q(nvk)) ]fS = {}7 then (U(nvk)v V(nvk)) = (17 P(nvk))
Otherwise, let h € Z be an element of S. Set

f(n, k) =ged (P(n,k+ h),Q(n, k)).

Then the polynomial f(n,k — h) € K|n, k], which is a factor of P(n,k), can
be split into

fl(nvk)f2(n7k)7 f17f2 EK[nak] (10)
such that fi(n,k+ h) = c fo(n,n — k), c € K.

Corollary 2 provides an algorithm to split P(n,k) € K[n, k| into the
desired form (8). Note that to obtain a split in (10), one only needs to factor

fin K[n, k], i.e., a complete factorization into irreducibles over K(n) is not
required.

Example 1 Let
P(n,k) = (n—l—k—4)(2n—k—1)(n2k2—2n2k—|—n2—k—|—3)
(n* — 203k + n?k* —n + k + 2) (nk + 1).

Set Q(n,k) = P(n,n — k). Then § = spr(P, Q) = {1, 3}.
For h = 3,

f(n, k) = ged(P(n. k + 1), Q(n, k) = f{ fé
where f, =n+k—1,f, = 2n — k — 4. Since f{(n,k — h) = fo(n,n — k),
f(n,k — h) can be split into f; f» where f1 = f](n,k —h), fo = f5(n,k—h).
Similarly, for A =1,

g(n, k) = ged(P(n,k + h), Q(n, k) = g g5,
where g} (n,k) = n’k* — k + 2, and
go(n, k) = nt— 20k — 203 +n?k2 + 20k + 0t —n+ k+ 3.
Since g;j(n,k — h) = go(n,n — k), g(n,k — h) can be split into g; g» where
g1 = gy(n,k — h), g2 = g5(n,k — h). Consequently, the polynomial P(n,k) is
split into U(n, k)V(n, k) where U = f1 g1, V = (nk + 1) f2 g5.
Note that if P(n, k) has property P1, then it follows from Lemma 1 that

for each irreducible factor u(n, k) in K[n, k] of P(n,k), there exists at most

one irreducible factor v(n, k) in K[n, k| of P(n,k) such that
u(n,k+h) =cv(n,n—k), h€Z, c€ K.



3.2 Algorithm Description
Proposition 1 For any F(n,k) € K(n, k),

7

Y (F(n,k) — F(n,n —k)) = 0.

Proof :
Sheo(F(n,k)— F(n,n—Fk)) = (F(n,0)+---4+ F(n,n)) —
(F(n,n)+---+ F(n,0)) =0
Corollary 3
g: F(n,k) = % kﬁ:(F(n,k) + F(n,n —k)).

For a given P(n,k) € K[n, k|, let split be the algorithm to split P into
the form (8) as described in subsection 3.1. Define an interface for the algo-
rithm, called indefdecomp, which solves the indefinite additive decomposi-
tion problem as follow (see [2, 6] for instance for detailed descriptions of the

algorithm).

algorithm indefdecomp;

input: F(n,k) € K(n, k),

output: an indefinite additive decomposition (S(n, k), T'(n,k)) of F;

Consider the following description of an algorithm, called defdecomp.

algorithm defdecomp;

input: F(n,k) € K(n,k);

output: the pair (G(n), T'(n,k)) such that
(i) koo F(n, k) = G(n) + o T'(n, k),
(i1) degy, denom(T'(n,k)) is small;

(S(n, k), T(n,k)) :=indefdecomp(F(n,k));



. return (G;(n),0);
Fy(n, k) = 1 (T(n, k) + T(n,n — k));
(S1(n, k), Tl(n k)) := indefdecomp(Fi(n,k));
if Si(n,k) =0 then
return (Gi(n),T(n,k));
fi;
Ga(n) := Si(n,n + 1) — Si(n, 0);
if Ty(n,k) = 0 then
. return (Gi(n)+ Gz(n),0);
Set Th(n, k) = U(n, k)/V(n, k), U, V € Kln][k], ged(U, V) = 1;
(a1(n, k), q2(n, k)) == split(V (n, k));
represent T1(n, k) in the form

wy (n,k wa (n,k
Ti(n, k) = q1((n,k)) T qz((nvk))’ wy, wy € K(n)[k];

fﬂn@—ﬂunm—$$3+$$$&

(S’(n k), T'(n,k)) := indefdecomp(Fs(n, k));
G(n) = '(n,m+ 1) — S'(n, 0):

return (Gi(n) + Ga(n) + Gs(n), T'(n, k));

3.3 Algorithm Correctness

Proposition 2 For a given F(n, k) € K(n, k), algorithm de fdecomp returns
a pair (G(n), T'(n, k)) such that

n

gmezmm+ZTwm- (11)

k=0
Proof : By defdecomp,

Yi=o F(n,k) = Xj_o(AkS(n, k) + T(n,k))

S(n,n+1)— S(n,0)+ X, %(T(n, E)+T(n,n—k))

Gi(n) + Xi=o(Ak Si(n, k) + Ti(n, k))

= Gi(n)+ Si(n,n+ 1) — S1(n,0) + X5_, Fa(n, k)+
Shoo (20 — o)

= Gi(n) + Ga(n) + Zi—o (A §'(n. k) + T'(n, k) + 0

= G(n) + i T'(n, k)

8



where G(n) = Gi(n) + Ga(n) + G3(n), Gs(n) = S'(n,n+1) — §'(n,0). a

Proposition 3 If there exists an h € 7Z such that

E+h—ain)=k+ajn)—n, a;, aj € K(n), (12)
then there exists an hy € Z such that
E+hi—aj(n) =Fk+ ai(n) —n.

Proof : The claim is proven by setting k = n — k in (12) and h; = h. -

Let T'(n, k) of the form (6) be a non-summable part of F(n, k). Consider
Fi(n,k) = T(n,k) + T(n,n — k). Let (Si(n,k),Ti(n,k)) be an indefinite
additive decomposition of Fi(n, k). Set

1(n, k
Ti(n, k) = Al ), fi, g1 € K[n, k].

g1(n, k)

Observe that all monic irreducible factors of g(n; k) and g;1(n; k) over K(n)
are of the form k — a;(n) and k + a;(n) — n, a;, a; € K(n), respectively.
The following theorem verifies the correctness of algorithm de fdecomp.

Theorem 1 For a given F(n, k) € K(n,k), algorithm defdecomp returns
a pair (G(n),T'(n,k)) such that (11) holds and deg; denom(T'(n,k)) <
deg;, denom(T'(n, k)).

Proof : The returned pair (G(n),T'(n, k)) satisfies (11) follows from Propo-
sition 2. Consider the case where S;(n,k) does not vanish. Since g(n;k)
has property P1, and g;(n; k) also has property P1 (by Corollary 1), it fol-
lows from [2] that there exists a non-empty set of monic irreducible factors
@i(n; k) = k — a;(n) over K(n) of g(n; k) such that for each simple fraction
of the form

Bi.(n) Y

goi(n,k)s’ Bi. € K(n), s € N\{O} (13)

of Fi(n,k), there exist an h € Z and exactly one monic irreducible factor

pi(nik) = k+ a;(n) —n of gi(n; k) such that pi(n,k + h) = @;(n, k),

Bi.(n) K
oam e e € K(0)



is a simple fraction of Fi(n, k), and

( Pi(m) _Pi(n) )EK(n).

‘Pi(nvk)s (pj(nvk)s

Considering the sets of simple fractions of T'(n, k) and T'(n,n — k), it follows
from Proposition 3 that if we extract a simple fraction p(n, k) of the form (13)
from T'(n, k), we also extract the corresponding simple fraction p(n,n — k)
from T'(n,n — k). As a consequence, for each simple fraction

=P e R, s
pl—(k_ai(n))sv 259 lEK( )7 EN\{O}

of Ti(n,k), there exists exactly one simple fraction also of Ti(n, k) of the
form ps(n,k) = pi(n,n — k). By defdecomp, the fraction p; belongs to
the term wi(n,k)/q(n, k) of T1, while the fraction ps belongs to the term
wy(n, k)/q2(n, k). Also, for each pair (p1,p2),

pl(nak) ‘|‘p2(n,k) _p2(n7k) —I—pg(n,n - k) = 2p1(n,k).
(We just applied the step

wy(n, k) wa(n,n — k)

q2(n, k) ga(n,m — k)

Fy(n, k) :==Ti(n, k) —

in defdecomp locally.) Since p;(n, k) is a simple fraction of T; which is a
non-summable part of Fi, p; is a non-summable part of p;.

We have shown that when S;(n, k) # 0,
deg,;, denom(T'(n,k)) < deg, denom (T (n, k)).
By following the same argument, we have
deg,;, denom(T'(n,k)) = deg denom (T (n, k))

for the case where Si(n,k) = 0. In this case, one can return the result
obtained from an indefinite additive decomposition of the input F(n, k) right
away. -
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4 Examples

Example 2 Consider the following rational function as mentioned in sec-
tion 1.

1 1
nk+3n+1 B n2—nk+1
An indefinite additive decomposition (S(n,k), T (n,k)) of F(n,k) is

F(n,k) =

—2nk + n(n — 3)
T)= .
(5,7) (07 (nk—|—3n—|—1)(n2—nk—|—1))
Set Fi(n,k) = 3 (T(n,k)+T(n,n—k)). An indefinite additive decomposition
(S1(n, k), T1(n, k)) of Fi(n,k) has Ty = 0, and S; = %:EZ:; where

u(n, k) = n(—2k+n+1)((6k+2+3k*)n®+ (—6k>+ 28k + 16)n°+
(—6k>+45 —19k* + 3k* + 40k) n* + (60 — 18 k> + 24 k) n®+
(45 — 6k* + 6k)n® + 18n + 3),

and

v(n,k) = (rk+2n+1)(n* —nk+n+1)(nk+n+1)
(n? —nk+2n+1)(nk+1)(n* —nk+3n+1).

Since Ti(n, k) = 0, F(n,k) is definite summable, and

" n(2n° + 16n° +45n* + 600> + 45n® + 18n + 3)

kz:%F(”’k): T 2ntlmrnt D@2t 2nt (2 +3n+ 1)

Note that the “sum” command in Maple 7 returns the answer in terms of the
U function as shown in Section 1. The “Sum” command in Mathematica 4
returns an answer (of rather large size) which involves the cot function.

Example 3 Consider the rational function

1 1 1 1
F(n.k) = .
(n, k) P R T R A S T—

Applying inde fdecomp to F(n,k) results in

n—2k+2 n—2k+2 )

(S(n. k), T(n, k) = ((k—|—1)(n—k—|—3)’ "Rt 2k kntnt3
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Set Fi(n,k) = 3 (T(n,k)+T (n,n—k)), and applying inde fdecomp to Fi(n, k)
results in the pair (S1(n, k), Ti(n, k)) where 77 = 0, and

8+ 11n — 14k —6k>—2kn —6k’>n +2kn?+3n% +4Kk°
(kn+2n — kK2 +4)(—k*+2k+kn+n+3) '

Since T1(n, k) = 0, F(n,k) is definite summable, and

51:

n 13n2+11n+8
;F(n,k) = S(n,n+1)+S51(n,n+1)—5(n,0)—S51(n,0) = 2 (n+2)(n+3)

Maple 7 is unable to compute this definite sum, while Mathematica 4 returns
a very long answer which involves the Polygamma function, the RootSum
structure (sum of the roots of a given expression), Euler’s constant, et cetera.

Example 4 Consider the rational function

Fln. ) = 1 Lo, 1 1 L2
) TR T k41 2k+5 2n—2k+1 nk+1l

Following the same steps as those in Example 1 results in

1 287n3 4 144702 4 233n + 117
3 n+2)(2n+3)(2n+5)
1 n? + 2

203k —n2k2+n2+1°
Applying split to the denominator of T'(n, k) results in

and

Gi(n) + Ga(n) = —

Ti(n, k) =

q(n, k) =nk +1, ga(n, k) =n> —nk + 1.
Therefore,

_wi(n, k) wy(n,m—Fk) 1
-~ q(n, k) g@(n,n—k)  nk+1

It is easy to see that the application of indefdecomp to Fa(n,k) results in
the pair (S'(n, k), T'(n,k)) where

1

S'(n, k) =0, T'(n, k) = 1

12



Therefore, a simplification of >7_, F(n, k) is

19803 + 14402 + 2 1 .

3 m+2)2n+3)(2n+5) " nk+1
Equivalently, the value of Y7_, F(n, k) is

1 28n° + 144n? + 2330 + 117 1
-z S (B(n+1/n+1) — B(1/n)).
3 i@t @nts) | ntetl/ndl) - 2(1/n)

Note that Maple 7 returns

niQ_§+%\p(n+7/2)_%w(—n—1/2)+%@(n+1/n+1)—%‘I’(l/n)-

Mathematica 4 returns a very long, complicated result.
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