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Abstract

We present a new algorithm for row reduction of a matrix of skew
polynomials. The algorithm can be used for finding full rank decom-
positions and other rank revealing transformations of such matrices.
In particular these reductions can be applied to problems such as the
desingularization of linear recurrence systems and for computing ra-
tional solutions of a large class of linear functional systems. The algo-
rithm is suitable for computation in exact arithmetic domains where
the growth of coefficients in intermediate computations is a central
concern. This coefficient growth is controlled by using fraction-free
methods. At the same time the method is fast: for an m X s matrix
of input skew polynomials of degree N with coefficients bounded by
K the algorithm has a worst case complexity of O(m®s*(N + 1)*K?)
bit operations.
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1 Introduction

In [2] Abramov and Bronstein give a new fast algorithm for determining
what they call a rank revealing transformations for skew polynomial matri-
ces. These are transformations which convert a matrix of skew polynomials
into one where the rank is determined entirely by the leading or trailing co-
efficient matrix. They show that their algorithm can be used for a number
of applications including the desingularization of linear recurrence systems
and for computing rational solutions of a large class of linear functional sys-
tems. In the former application their rank revealing approach improves on
the EG-elimination method of Abramov [1].

In the commutative case the algorithm of [2] is the same as that given
by Beckermann and Labahn [6]. In both cases the algorithms are fast but
their methods require exact arithmetic while not handling coefficient growth
except through expensive coefficient GCD computations.

The main contribution in this paper is a new algorithm which performs
row reductions on a given matrix of skew polynomial into one having a full
rank leading or trailing coefficient matrix. The reductions can be used to
find a full rank decomposition of a matrix of skew polynomial along with
rank revealing transformations used by Abramov and Bronstein. The main
tool used in the algorithm is order bases which describes all solutions of
a given order problem. The algorithm is noteworthy because it uses only
fraction-free arithmetic without coefficient GCD computations, while at the
same time controls coefficient growth of intermediate computations. This
1s similar to the process used by the subresultant algorithm for computing
the GCD of two scalar polynomials [9, 10, 11]. The algorithm is based on
the FFFG fraction-free method used in Beckermann and Labahn [7] which
was developed for fraction-free computation of matrix rational approximants,
matrix GCDs and generalized Richardson extrapolation processes. In the
scalar case the FFFG algorithm generalizes the subresultant GCD algorithm
[8]. For an m x s matrix of input skew polynomials bounded by K the
algorithm has a worst case complexity of O(m°s*(N + 1)*K?) bit operations.

The remainder of the paper is as follows. The next section gives the basic
definitions for the problem and introduces order bases of skew polynomials,



the primary tool that will be used to solve our problem. Section 3 gives a
linear algebra formulation to our problem while the following section gives
our fraction-free recurrence. Section 5 discusses the stopping criterion and
complexity of our algorithm. The paper ends with a conclusion along with a
discussion of future work.

2 Preliminaries

Let ID be an integral domain with @ its quotient field and let Q[Z; o] be the
Ore domain of skew polynomials over @ with automorphism ¢ and § = 0.
Thus the elements of Q interact with the shift Z via Za = o(a)Z. An
example of such a domain is ID = K [n], Q = K (n) with Z the shift operator
and o(a(n)) = a(n+1). We remark that, as in [2], we can map our problems
to general skew polynomial domains including linear differential, difference
and ¢-difference operators.

Given a matrix of polynomials of skew polynomials we are interested in
applying row operations which transform the matrix into a matrix of skew
polynomials which has the property that the rank is determined by either a
trailing or leading coefficient. We will focus on the case of trailing coefficients.
In this section we provide the preliminary definitions and tools which form
the basis for our approach.

We assume that we are given F(Z), a rectangular m x s matrix of skew
polynomials with entries in Q[Z; o]

N
F(Z) =) F;Z’, with F; € D™,

7=0
We adapt the convention to denote the elements of F(Z) by F(Z)**, and the
elements of F; by Ff’ﬁ. For any vector of integers & = (&y,...,Wy), we let
Z% denote the matrix of skew polynomials having Z% on the diagonal and 0
everywhere else. A matrix of skew polynomials is said to have row (column)
degree i if the i-th row (column) has maximal degree fi;. The vector € is the
vector consisting only of 1.

One of the goals of this paper is to construct the type of rank revealing



transformations needed by Abramov and Bronstein [2] for their applications.
Let Q[Z;0][Z7*; 07| be the iterated domain where we have the identities

Z.Z‘1:Z_1-Z:17 Z-a-Z_lza(a), Z_l-a-Z:(T_l(a)
for all a € Q.

The rank revealing transformations of Abramov and Bronstein can be
formalized as follows. Given F(Z) € ID [Z; 0]™** (possibly after a shift with
Z7*), we wish to find T(Z7!) € D[Z7Y;071|™*™ such that

T(Z™")-F(Z)=W(Z)cD[Z;a]™"",

with the number of nonzero rows r of W(Z) coinciding with the rank of the
trailing coefficient Wy, and hence with the rank of W(Z). In addition we
require the existence of S(Z) € Q[Z; o|™*™ such that

S(Z)-T(Z7!) =1,.

Notice that the second formula tells us that the process of elimination for
getting W(Z) is invertible. More precisely, we obtain for F(Z) the full rank
decomposition

F(2)=S(2)-W(2)=5(2)- W(Z) (1)

with W(Z) € ID [Z; o]"*™ obtained by extracting the nonzero rows of W(Z),
and g(Z) € Q[Z; o]™"" by extracting from S(Z) the corresponding columns.
Moreover, the rank of the trailing coefficient of W(Z ) is of full row rank r,
and this quantity coincides with the rank of W(Z) Finally, from this last
equation we see that the rank of F(Z) is bounded above by r, whereas the
first equation tells us that rank F(Z) > rank W(Z) = r. Thus we have found
r =rank F(Z).

2.1 Order Basis

In this subsection we introduce the notion of order and order bases for a
given matrix of skew polynomials. These are the primary tools which will be
used for our algorithm.



Definition 2.1 Let P(Z) € Q[Z; o]'*™ be a vector of skew polynomials and
W a multi-indez of integers. Then P(Z) is said to have order & if

P(Z)-F(Z)=R(Z) - 2° (2)

with R(Z) € Q[Z;0]'**. R(Z) in (2) is called a residual. 0

In contrast to previous papers dealing with order bases [4, 5, 6, 7], we
have chosen an order condition on the right. This has the advantage that
while writing

F(Z) = ZFij, P(2)=> B2,

we have

P(Z)-F(2) =3 8;2°, S;j=3 Puo"(Fjs). (3)

Hence the unknowns P, can be obtained by building a linear system obtained
by putting the undesired coeflicients of S; equal to zero. In order to spec-
ify these coeflicients (see equation (5) below), let us write more explicitly
EHP(2)) = S;?’l for the coefficients occurring in (3).

J

Notice that, though the algebra Q[Z; o] is non-commutative, the matrix
of coefficients will have elements in the field Q. Thus we may build de-
terminants and apply other techniques known from fraction—free algorithms
which enable us to control the size of intermediate quantities and to predict
common factors.

In what follows we will construct elements from Q[Z; o]™*™

™)

(and more
precisely from D [Z; o which will enable us to describe the entire set of

vectors of a given order.

Definition 2.2 Let & be some multi-index. A matriz of skew polynomials
M(Z) € Q[Z;o]™*™ is said to be an order basis of order & and degree i if
there exists a multi-index [ = (fi1, ..., [im) with

a) every row of M(Z) has order &,



b) for every P(Z) € Q[Z; o]**™ of order & there exists a Q(Z) € Q[Z; a]**™
such that

P(Z)=Q(Z)-M(Z), and forall j: degQ(2)" < degP(Z) — ji;,
¢) there exists a nonzero d € Q such that
M(Z) =d-Z" + L(%)

min{ﬁk — l,ﬁg — 1} { 2 k,

] )
where deg L(Z)"* < { min{ iy, jiy — 1} < k.

Remark 2.3 Note that when & = p - € for a given p, then every row of
7% has order &. Hence part (b) of Definition 2.2 implies that there exists a
M*(Z) € Q[Z; o]™™ such that

M*(Z) - M(Z) = 2%, degM"(2)* < p— ji,

that is, a type of shifted inverse. The existence of a shifted left inverse M*(Z)
will enable us to generalize the notion of unimodular transformations of order
bases to the case of the non-commautative algebra Q[Z; o). a

An essential implication of Definition 2.2(b) is the following:

Theorem 2.4 Suppose that there exists an order basis M(Z) of order w and
degree ji. Then there exists only the trivial row vector P(Z) = 0 with column
degree < fi — € and order > &. Thus, for any k, a row vector with column
degree < [i — € + €, and order > @ is unique up to multiplication with an
element from Q. In particular, an order basis is unique up to multiplication
by constants from Q.



Proof: We only need to show the first part concerning row vectors P(Z)
with column degree i — € and order &, the other parts being an immediate
consequence of the first. Suppose that P(z) # 0, d = degP(Z), and let Q(z)
be as in Definition 2.2(b). We first claim that there exists at least one index
7 with

fis + deg Q) = d @
Otherwise, deg Q(Z)**-M(Z)** < jir, + deg Q(Z)** < d for all k and £ since
degM(Z)** < i}, by Definition 2.2(c), in contradiction with the definition of
d. Let j be the largest index verifying (4). Then again by Definition 2.2(c)

deg Y Q(Z)""M(Z)* < Y d— i — 1+ degM(2)" <d -1,

k=j+1 k=j+1
j-1 g1
deg > Q(Z)""M(2)" < 37 degQ(Z2)"* +jir —1 < d -1,

degQ(Z) V" M(Z)7 = deg Q(Z)" + ji; = d.

This implies that degP(Z)' = d > ji;, which contradicts the assumption of
the degree of P(z). O

3 Determinantal representations and Mahler
systems

In what follows we will propose an algorithm for computing recursively order
bases M(Z) for increasing order vectors. In order to predict the size of these
objects and predict common factors, we derive in this section a determinantal
representation together with a particular choice of the constants d. Suppose
that we are looking for a row vector P(Z) of column degree v/ having order
&. Comparing with (3), we know that P(Z) has order & iff

m mln{Jvﬁk}

b=1,.0,87=0,.,8—1: 0=c*P(2)=Y. . P (F").
k=1 =0

This leads to some system of linear equations of the form

(PoLl,...,Pl-,%l’l,...,POl’m,.--,P;,;m) K(v+e€ew)=0, (5)

7



where the generalized Sylvester matrix is of the form

K(Ij + é:(:)’) = (Kk’l(ﬁk + 1)&[))?::11,...,5

yeeeyTVY

where the v x w submatrix K**(v,w) equals

dO(FY) a%(F) () aO(FS*)
0 o (FY) ot (F o (FLY,)
0 0 oV YEEY L gvTH(ER)

Clearly, K™ (0}, + 1,0)T (and thus K (¥ + €,&)T) may be written as some
striped Krylov matrix [7], that is, a matrix of the form

FO ¢ rFQ ... gh-1p@) | .. | Fm) .. QFn-1R(m)
We™ wy wy wy wy wy

we we

However, by stepping from one column to the next we not only multiply
with a lower shift matrix but also apply in addition the application . Thus,
in contrast to [7], here we obtain a striped Krylov matrix with a matrix C
having operator-valued elements.

How can we exploit this representation in order to derive a determinantal
representation of order bases? According to (5), it follows from Theorem 2.4
that if there exists an order basis M(Z) of order & and degree i then K (ji,d)
has full row rank, and more precisely

kE=1,...,m: rank K(g,&)=rank K(g+ e, )= |l (6)

Suppose more generally that i and & are multi-indices verifying (6). We
call a multigradient d = d(ji,d) any constant +1 times the determinant of
a regular submatrix K.(fi,&) of maximal order of K(ji,&), and a Mahler
system corresponding to (f,&) a matrix polynomial M(Z) with rows having
order @ and degree structure

M(z)=d- 7% 1 lower order column degrees.

In order to show that such a system exists, we write down explicitly the linear
system of equations needed to compute the unknown coefficients of the kth



row of M(Z) denote by b*(fi, &) the row added while passing from K (fi, &)
to K(gi + €x,&). Then, by (5), the vector of coefficients is a solution of the
(overdetermined) system

which by (6) is equivalent to the system

where in b%(ji,d) and in K.(fi + é,&) we keep the same columns as in
K.(ji,&). Notice that, by Cramer’s rule, (7) leads to a solution with co-
efficients in ID. Moreover, we may formally write down a determinantal
representation of the elements of an determinantal order basis, namely

M(Z)" = tdet | K.(ji+ &, &) | Br145,,(2) | (8)

with

E.(Z)=10,...,01,Z,...,2"|0,...,0]%, (9)

bl
the nonzero entries in Ey,,(Z) occurring in the £-th stripe. In addition, we
have that

ZM Z)HIF(Z) = Ldet | Ku(ji+ 6. @) | Boaee,(2) |, (10)

Es(2) = [F(2)",... . 27" "F(2)|.... . [F(2)™,... 27 (z2)™]".

In both (8) and (10) the matrices have commutative entries in all but the
last column. It is understood that the determinant in both cases is expanded
along the last column.

We finally mention that, by the uniqueness result of Theorem 2.4, any
order basis of degree ji and order & coincides up to multiplication with some
element in @ with an Mahler system associated to (f,&), which therefore
itself is an order basis of the same degree and order. The converse statement
is generally not true. However, by a particular pivoting technique we may
recover order basis by computing Mahler systems.

9



4 The Algorithm

In this section we show how to recursively compute order bases in a fraction-
free way. For an order basis M(Z) of a given type (g, &) having a Mahler
system normalization, we look at the first terms of the residuals. If they are
all equal to zero then we have an order basis of a higher order. Otherwise,
we give a recursive formula for building an order basis of higher order and
degree. However, a priori this new system has coefficients from Q since we
divide through some factors. In our case, however, the new system will be a
Mabhler system according to the existence and uniqueness results established
before, and hence we will keep objects with coefficients in ID .

In the following theorem we give a recurrence relation which closely fol-
lows the commutative case of [7, Theorem 6.1(c)] with the resulting order
bases having properties similar to [7, Theorem 7.2] and [7, Theorem 7.3].

=

Theorem 4.1 Let M(Z) be an order basis corresponding to (ji,d), & :=
w+ex. Furthermore, denote by r; = céi‘(M(Z)), the first term of the residual
for the j-th row and A-th column of M(Z).

a) If ri = ... = 1y = 0 then M(z) = M(Z) is an order basis of degree
V=i and order .
b) Otherwise, let w be the smallest index with rr # 0 and
fin = min{z; : r; # 0}.

Then an order basis M(Z) of degree U := [i + €, and order & with
coefficients in Q 1is obtained via the formulas

pr - M(Z)" = rp - M(2)"* — 1y - M(Z)™F (11)
forlk=1,2,...m, L+, and
o(pe) - M(Z)™ =1 Z-M(Z)™* = Y o(p) - M(Z2)** (12)
LE£T

for k =1,2,...,m, where p; = coefficient(M(Z)™3, ZAi+o=i-1),

10



c) If in addition M(z) is a Mahler system with respect to (ji,d), then also
M(Z) is a Mahler system with respect to (¥, w) In particular, M(Z)
has coefficients in ID .

_ Proof:  Part (a) is clear from the fact that the rows of M(Z) have order
@ when ry = ... =7, =0.

For part (b) notice first that M(Z) has order & by construction, as re-
quired in Definition 2.2(a). Also, verifying the new degree constrains of Def-
inition 2.2(c) (with /i being replaced by #) for the matrix M(Z) is straight
forward and is the same as in the commutative case, see [7, Theorem 7.2].
Also, notice that the leading coefficient of all IVI(Z )¢ equals r, by construc-
tion (though for the moment we are not sure to obtain a new order basis
with coefficients in ID ).

We now focus on the properties of Definition 2.2(b). If P(Z) € Q[Z; o]'*™
has order & then it has order & and so there exists an Q(Z) € Q[Z; o] *™
such that

= > Q(2)"-M(Z)" with deg Q(Z)" < deg P(Z) — fi;

i=1

where M(Z)?" denotes the j-th row of M(Z). Applying the first set of row
operations in (11) to rows £ # 7 results in

ZQ (2P +Q(Z)"" - M(2)™ (13)

JFET
where

A

Q(2)" = Q(Z)l’j =~ for all j # m and Q =3 Q(Z

™ =0
Note that deg Q(Z)l’j < deg P(Z) — ji; = deg P(Z) — v for all j # «
while deg Q(Z)l’7r < deg P(Z) — jir because of the minimality of i,. Since
P(Z) and all the M(Z)J terms have order & this must also be the case for
Q(Z)l’7r - M(Z)™. Hence Qt™ -7, = 0 and so by assumption on m we have
that Q3™ = 0. Writing Q(Z)V™ = Q(Z)lﬂf . Z gives

7“7r

ZQ (Z2)" +Q(2)'™ - Z-M(Z)™ (14)
J#m

11



with deg Q(Z)'™ < deqg P(Z) — (jix + 1) = deg P(Z) — . Completing the
row operations which normalize the degrees of M(Z) in (12) gives a Q(Z)
with P(Z) = Q(Z) M(Z) having the correct degree bounds. Consequently,
the property of Definition 2.2(b) holds.

Finally, for establishing part (c) we know already from Section 3 and the
existence of order bases of a specified degree and order that both (/i,&) and
(V,) satisfy (6). By the uniqueness result of Theorem 2.4 we only need
to show that the “leading coefficient” d of M(ZLin Definition 2.2(c) is a

multigradient of (17,@), the latter implying that M(Z) is a Mahler system
and in particular has coefficients from ID .

Denote by d the corresponding “leading coefficient” of M(Z). In the case
discussed in part (a), we do not increase the rank by going from K (i, &) to
K(7,&) (we just add one column and keep full row rank), hence d = d being
a multigradient with respect to (ji,d) is also a multigradient with respect to
(V,d). In the final case described in part (b) we have d = r,. Using formula
(10) for the residual of the 7th row of M(Z) we learn that r, coincides (up
to a sign) with the determinant of a submatrix of order |7] of K (#,&). Since
r= # 0 by construction, it follows that d = ry is a new multigradient, as
required for the conclusion. a

Theorem 4.1 gives a computational procedure that results in the FFreduce
algorithm given in Table 1. The stopping criterion and the complexity of this
algorithm is given in the next section.

Example 4.2 For the domain D = Z[n], let

F(Z):[”z_f 8]+[302 —01]“[0 onlzz‘

At the first iteration, we have & = ji = (0,0), and the constant coefficients
in the first column are [n? + 2, —1]T. Choosing ® = 1 and performing the
reduction, we obtain

M(2)

195 3,

12



0 0 n*4+ 202 +5m2+4n+6 0
M(Z)-F(Z) = [0 Ol—l-[ 39 1 Z
32n? + 64 —n? -2 72
n? 4+ 2 32n° + 64n )

Note that the constant coefficients in the second column of R(Z) are zero, so
no operations are required to increase & to (1,1).

Now, & = (1,1), fi = (1,0), and d = n* + 2. The coefficients of Z in the
first column is [n* +2n% +5n% +4n 46, 32]T. Choosing ® = 2 and performing
the row reductions, we get

| (-n*-2n-3)+32Z -b5n’—4n—n*-2n%-6
M(2) = [ 1 (n?+2)+ 322
0 n24+2n+3
M(Z)-F(Z) = lo 1 ]Z

+[—n4—2n3—5n2—4n+1018 —32 (n® 4 2n* + 5n3 + 4n? 4+ 6n + 1) pe

n? 4 2 32(n® + 2)n

0 n2+2n+3 3
T [ 32 1024(n—|—1) ] Z%

where we have divided row 1 by d and row 2 by o(d) = n? + 2n + 3. O

Finally, with respect to the rank revealing transformation mentioned in
Section 1, we have the following.

Corollary 4.3 Let M(Z) be the final order basis of order & = ke and degree
@, and let M*(Z) be the shifted left inverse of M(Z) as ezplained in Remark
2.3. Then the quantities

W(Z) = Z7%.R(Z) 2%
T(Z') = Z7".-M(2)
S(z) = z7%.M*(2). 2"

solve the full rank decomposition problem (1). O

13



Table 1: The FFreduce Algorithm

ArLGoriTHM FFreduce
INPUT: Matrix of skew polynomials F € ID [Z; o]™**.

OuTtpuT: Mahler system M € ID [Z; o]™*™,
Residual R € D [Z; o]™**
Degree i, order &, rank p

INITIALIZATION: M« L, R« F,d« 1,i+< 0,6+ 0, p« 0

While (number of zero rows of R + p # m):
p—0
For A\=1,..,sdo

Calculate for £ =1, .., m: first term of residuals ry + Ré’)‘
Define set A = {£ € {1,..,m} : 7, # 0}.

If A # {} then
Choose m € A such that: 7 = min{f € A : i, = min,cr{f, }}.

Calculate for £ =1,..,m, £ # m: py < coefficient(M™*, Z#tdm 1),

Increase order for £ =1,..,m, { # 7
M4 « L[p, MY — 1y M™]
RY « I[rr-RY — 1y R™]

Increase order and adjust degree constraints for row :
M™ ¢ i5lre Z - M™ = 3y 0(pe) - M)
R™ ﬁ[ﬂr Z-R™ = Yy 0(pe) - RY

Update multigradient, degree and p: d=1r,, i+ g+ e, p—p+1
end if

Adjust residual in column A: for £ =1,...,m
R** « R%/Z (formally)
=4+ é)
end for

14




In the case where one is only interested in determining W(Z ) in a full rank
decomposition (1), then one can do a simple modification of our algorithm
to obtain an answer with smaller coefficients. Indeed, it will be shown in the
next section (Remark 5.4) that one can in fact use the residual one iteration
before completion for our rank revealing transformations. One simply uses
the rows corresponding to the pivot rows in the last iteration.

Example 4.4 We look at Example 2 from [2]. Let D = Z[n,2"] and consider

0 -1 ~80 0
F(Z) = [ 0 —12356 ] * [ 088480 —8029 ] “
32 0 ], 0 0 1,
* [ 1037712 750 ] o [ 196928 300 ] “
0 1 ], [2°m+1) 0 ;
+l0 120]Z+[ 0 3077(n—|—1)]z’

which is the same as the example from [2] except that it is multiplied (on the
right) by Z*. Using our algorithm, we terminate at & = (6,6) in which the
residuals are not all zero in the last two steps. The trailing coefficient of the
residual R(Z) obtained one iteration previously (that is, two steps ago) at
w = (5,5) has a determinant that is an integer constant times 2"(n+ 1) — 80.

Writing W(Z) = Z=5% . R(Z) - Z®¥), the determinant of the trailing
coefficient of W(Z) is the same as that in [2], up to a constant. We remark
that the product of all the factors removed during the complete process is

2350159171880334461640000000000 (2™(n + 1) — 80).

We remark that the algorithm of [2] also avoids the use of fractions by
taking advantage of fraction-free Gaussian elimination of Bareiss [3] for the
kernel computations used in their algorithm. However, extraneous factors
introduced in previous iterations are not removed by such a process.

15



5 Stopping Criteria and Complexity

In this section, we show that the stopping criteria of our algorithm ensures
that the result is correct and discuss the worst case complexity of the algo-
rithm. For convenience, we call the computation to increase |&| by 1 as a
step, and the computation to increase & = ke to &' = (k + 1)€ an iteration,
so that there are s steps in each iteration. As in the algorithm itself we drop
the need to specify the variable Z. Let M;, be the Mahler system of degree
ji* and Ry, be the residual after the k-th iteration with R4(0) denoting the
trailing coefficient of Ry.

We first prove a lemma which relates the number of pivots used during
the (k + 1)-st iteration and the rank of Ry(0).

Lemma 5.1 Letk > 0, and r be the number of times p is incremented during
the (k + 1)-st iteration of FFreduce. Then r = rank Ry(0).

Proof: Denote by Hy, € D™, A = 1, ..., 5, the coefficient of Z* of M- F
during the k-th iteration at the beginning the single step & < & + € (thus
H, is transformed into Hyy; during this step). First, we claim that when row
m is chosen as a pivot for column A, the subspace generated by the rows of
H, is the same as the subspace generated by row m of Hy (called a pivot row)
and the rows of Hyy;. This is clearly true after the order has been increased
for rows £ # 7w as the recurrence (11) is invertible. Multiplying row 7 of M
by Z produces zeros in row 7 in the updated matrix, so that row « of H)
must be kept. Finally, the adjustment from rows ¢ # 7 is again invertible.
Thus, the subspaces are the same.

In particular, it follows that, after the k-th iteration, the rows of H; =
R (0) span the same space as all pivot rows plus the rows of H,;;. Recalling
the first A — 1 columns of H) are zero by the order condition for Mahler
systems, we see that H,,; = 0. Since in addition the A-th component of the
pivot row at stage A equals 7, # 0, the pivot rows form a full row rank upper
echelon matrix, and H,;; = 0. Hence rank Ry (0) = . a

We next prove a lemma on the pivots used in each iteration.

16



Lemma 5.2 The pivots used in one iteration of FFreduce are distinct, that
is, p*tt < ji* + €. Moreover, rank Ry(0) is increasing in k.

Proof: By Definition 2.2(b), there exists a polynomial Q € Q[Z; o]™*™
such that

Z-My = Q-My1, degQ™ < jif +1— iyt for all j, 4.

Comparing the coefficients at ZA+ i position (j,£), we have on the left
a nonsingular lower triangular matrix (with o(d) on diagonal), and on the
right the leading row coeflicient matrix B of Q (with coefficients at power
ﬁ? +1— ji¥*!) multiplied by a lower triangular matrix A. Since we are now in
the quotient field, A must be nonsingular, and so B is also nonsingular and
hence lower triangular. Hence the degrees on the diagonal cannot be smaller
than 0, showing that ﬁ;“ +1> ﬁ?“, or, in other words, ji*+* < ji* + €. Thus,
the pivots in one iteration are distinct. Also, denoting by C the trailing
coeflicient of Q, we easily obtain that C - Rj41(0) coincides with the matrix
obtained by applying o to all elements of R;(0) (which has the same rank
as Ry(0)). Hence the rank of Ry(0) is increasing. O

We are now ready to prove the correctness of the algorithm.

Theorem 5.3 The matriz R returned by FFreduce satisfies rank R(0) =
rank F.

Proof: Since the rank cannot increase after multiplication with a square
matrix, we get from My, - F = Ry - Z* the relation rank F > rank (Ry - Z%) =
rank Rg. On the other hand, using the shifted left inverse Mj of M of
Remark 2.3 we have that

rank F = rank (Z* - F) rank (M} - Ry, - Z%)

< rank (R - Z%) = rank Ry,

showing that rank F = rank R, for all k. If the algorithm stops after the
(k 4 1)-st iteration, then

r = rank Ry (0) < rank Ryy1(0) <rankRyyq <7

17



by Lemma 5.1, Lemma 5.2 and the fact that Ry, contains r nonzero rows.

Consequently, we have equality everywhere, and r = rankRy,; = rankF.
O

Remark 5.4 We have shown implicitly in the proof that, if we stop after
iteration (k + 1), that the trailing coefficient of Ry already has full rank
r. Since all the pivots in one iteration are distinct by Lemma 5.2, the set
of pivot rows in Ry(0) also has rank r. Therefore, the submatriz of Ry,
consisting of the pivot rows already leads to a full rank decomposition (using
the corresponding columns of the shifted left inverse of the previous Mahler
system). O

In order to determine the bit complexity of the FFreduce algorithm we
make the assumption that the sizes and costs of coefficient arithmetic satisfies

size(a-b) = size(a)+ size(b), cost(a-b) = O(size(a) - size(b)).

Here size measures the total storage needed while cost measures the number
of boolean operations. With this assumption we give our complexity in the
following.

Theorem 5.5 If F(Z) has total degree N then Algorithm FFreduce requires
at most m(N + 1) iterations. Moreover, if K is a bound on the size of the
coefficients appearing in F(Z),Z -F(Z),..., 2N+t . F(Z), then the bit
complezity of the algorithm is O(m®s*(N + 1)*K?).

Proof:  From the definition of Ry, we see that (N — k)e+ i* is an upper
bound for the sum of the row degrees of Ry. After iteration k + 1, we know
from Lemma 5.2 that a component of this upper bound either is constant
(for pivot rows) or otherwise decreases by one. Since, by Lemma 5.1, for
all but the last iteration there is at least one nonzero row in R; which is
not pivot (but which potentially could become a zero row in Ryy1), we may
conclude that either the sum of the degree bounds of nontrivial rows in Ry,
is lowered by at least 1, or we have created an additional zero row. Taking
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into account that the initial sum is bounded above by m N, we conclude that
there are at most m(N + 1) iterations.

For bounding the bit complexity, we follow the complexity analysis in [7]
where the upper bound O(m|&|*K?) has been established. 0

6 Conclusion

In this paper we have given a fraction-free algorithm for transforming a given
matrix of skew polynomials into one where the rank is determined only by
the trailing or leading coefficient matrices. The algorithm is a modification
of the FFFG algorithm of [7] in the commutative case and improves on the
algorithm of Abramov and Bronstein in the non-commutative case. The
algorithm has been implemented in the Maple computer algebra system and
is available from the authors.

There are a number of topics for future research. We plan to see how
our algorithm can be used to compute GCDs of scalar skew polynomials and
compare it to the subresultant algorithms of Li [12]. We are also interested
in extending our results to nested skew polynomial domains, allowing for
computations in Weyl algebras. This is a difficult extension since then the
corresponding associated linear systems do not have commutative elements.
As such the standard tools that we use from linear algebra, namely determi-
nants and Cramer’s rule, do not exist in the classic sense.

Our approach increases the degree of the rows of an order basis from first
to last. In fact it is easy to see that one can alter this order, for example based
on the minimum degree of the rows of the residual. We plan to investigate
our algorithm using alternate row ordering strategies in order to find other
rank revealing transformations.

Finally, it is well known that modular algorithms improve on fraction-free
methods by an order of magnitude. We plan to investigate such algorithms
for our rank revealing computations.
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