A Modular Greatest Common Divisor
Algorithm for Matrix Polynomials

Howard Cheng* George Labahn
Symbolic Computation Group,

Department of Computer Science,
University of Waterloo,
Waterloo, Canada
{hchcheng,glabahn}@scg.math.uwaterloo.ca

Abstract

In this paper we give a modular algorithm to compute one-sided
greatest common divisors for matrix polynomials, improving on the
fraction-free algorithm by Beckermann and Labahn. We define lucky
homomorphisms for the modular algorithm and give bounds on the
coeflicients in the results computed. In addition, the greatest common
left (right) divisor computed by our algorithm is in column (row)
reduced form. For computing a greatest common left divisor of two
matrix polynomials of dimensions m X n; and m X ny having degree N
in which all the coefficients of the entries have sizes bounded by K, the
bit complexity of our algorithm is O(n(m2N)3*K?2) where n = n; + ns.
This is a significant improvement over the fraction-free algorithm. Our
algorithm also solves the extended one-sided GCD problem, and can
be used to transform any matrix polynomial into column reduced form.

1 Introduction

The computation of the greatest common divisor (GCD) of two scalar poly-
nomials is one of the central operations used in computer algebra systems.

*Supported by an Ontario Graduate Student Scholarship.

The primary methods for computing scalar GCDs include the classic Eu-
clidean algorithm [11], the subresultant GCD algorithm [7, 10], the modular
GCD algorithm [7], and the heuristic algorithm [9]. One-sided GCDs also
exist for noncommutative domains, including Ore domains such as the rings
of differential or difference operators and domain of matrix polynomials. Al-
gorithms corresponding to the subresultant and modular GCD algorithms
for Ore domains have been given by Li [16, 17].

In this paper we consider the problem of computing a one-sided GCD of
two matrix polynomials. The one-sided GCD problem for matrix polynomials
arises in many applications particularly in the field of control theory and
linear systems theory. These include determining irreducible matrix-fraction
descriptions and minimal realizations for transfer functions [6, 13] and in
computing matrix Padé fractions [2, 8, 14].

The classic algorithms for computing a one-sided GCD of two matrix
polynomials A(z) and B(z) involve the computation of matrix normal forms.
For example, the left GCD (GCLD) can be computed by finding the col-
umn Hermite or Popov normal form of the rectangular matrix polynomial
[A(z) B(z)] [8, 13]. Other approaches include performing Gaussian elimi-
nation on “generalized Sylvester matrices” of coefficients [6, 13], which take
advantage of the structure of these matrices in order to make the elimina-
tion more efficient. The main difficulty with these approaches is the same as
that encountered using the Euclidean algorithm, that of coefficient growth
in the intermediate expressions. Indeed, this is much more severe in the case
of matrix polynomials and must be controlled by any practical algorithm.
The first algorithm for computing one-sided GCDs for matrix polynomials
which controls coeflicient growth was given by Beckermann and Labahn [4].
For computing a GCLD of two matrix polynomials of degree N, having di-
mensions m X n; and m X n, with the size of the coefficients bounded by
K, they gave a fraction-free algorithm having a worst case bit complexity of
O(n(m?>N)*K?) where n = n; +ny. The algorithm, which includes the scalar
subresultant algorithm as a special case [3], predicts common factors by ex-
amining the linear systems of equations associated with the GCD problem.

In this paper we present a new modular algorithm for computing one-
sided GCDs for matrix polynomials. As in most modular algorithms, there
are three major issues that must be addressed: the problem of “unlucky”
homomorphisms (i.e. when to discard computed results), the number of
images required for the reconstruction of the result via Chinese remaindering,
and the normalization of the result to ensure a unique answer. Although

these issues are well-understood in the case of scalar polynomials, they are
nontrivial for matrix polynomials. For example, one-sided GCDs are only
unique up to multiplication by a unimodular matrix polynomial and can have
varying row or column degrees. The definitions of lucky homomorphisms and
the appropriate normalization are not obvious. We overcome these difficulties
by reducing the GCD problem to a linear algebra problem and finding a
matrix GCD of minimal degree (in our case column degree). The worst case
bit complexity of our algorithm is O(n(m?N)*K?), a significant improvement
over the fraction-free algorithm. Furthermore, our algorithm also solves the
extended one-sided GCD problem, and bounds on the coefficients in the
results can be obtained. Finally, our algorithm can also be used to transform
any matrix polynomial into column reduced form.

The remainder of this paper is organized as follows. In Section 2, we
review the relevant definitions and properties of matrix polynomials and the
extended one-sided GCD problem. Section 3 discusses the issues in designing
a modular algorithm for matrix polynomials. An algorithm for computing
a one-sided GCD over Z, is given in Section 4. The definitions of lucky
homomorphisms and normalization are discussed in Section 5. In Section 6
we discuss the number of homomorphic images required, and the complete
modular algorithm and its complexity are discussed in Section 7. Some
experimental results are presented in Section 8. Concluding remarks and
future research directions are discussed in the closing section.

2 Preliminaries

Let D be an integral domain with quotient field Q and D[z]™*", Q[z]™*"
the sets of m x m matrix polynomials over D and Q, respectively. Let
A(z) € Q[z]™™ and B(z) € Q[z]™*™. Then G(z) € Q[z]™*™ is a Greatest
Common Left Divisor (GCLD) of A(z) and B(z) if

(a) G(z) is a left divisor of A(z) and B(z),
(b) every other left divisor of A(z) and B(z) is a left divisor of G(z).

We say that A(z) and B(z) are left coprime if their GCLD is unimodular,
that is, is an invertible matrix polynomial.

By clearing denominators we may assume that both A(z) and B(z) have
coeflicients in . Note that this operation does not change the GCLDs of

A(z) and B(z). We will make the standard assumption that the matrix
[A(z) B(z)] has full row rank; otherwise, a GCLD may have elements of
arbitrarily high degree [13, page 378]. This assumption also ensures that all
GCLDs of A(z) and B(z) are nonsingular, and that the GCLD of A(z) and
B(z) is unique up to multiplication on the right by a unimodular matrix [13].

A matrix polynomial is said to be column (row) reduced if the leading
coeflicients of each column (row) form a matrix having full column (row)
rank over QQ [13]. For a square matrix polynomial A(z) € D[z]™*™, A(z) is
column reduced if and only if degdet A(z) = Y -, d;, where the d;’s are the
degrees of the columns of A(z).

We are interested in solving a type of extended matrizc GCLD problem.
That is, we wish to find a GCLD G(z) of A(z) and B(z), as well as matrices
S(z), T(z), U(z), V(z) of appropriate sizes, such that

A(z)-8(2) + B(z) - T(2) = G(2), (1)
A(z)-U(z)+ B(z)-V(2) = 0.
In this case, both A(z) - U(z) and B(z) - V(z) are Least Common Right
Multiples (LCRM) of A(z) and B(z). Furthermore, if B(z) is square and

nonsingular, then
B(:) A(z) = —V(2) - U(z)"! 2)

as a matrix rational function, such that U(z) and V(z) are right coprime.
The matrix rational function —V(z) - U(z)™! is called an irreducible right
matriz-fraction description (MFD) of the matrix rational function [13].

Let F(z) = [A(z) B(z)] € D[z]™*" with n = n; + n,. If we can find a

unimodular matrix M(z) € D[z]**" such that
F()-M(2) = R(2) = [G(z) 0] 3)

for some G(z) € D[z]™*™, then G(z) is a GCLD of A(z) and B(z) [13,
Lemma 6.3-3, page 377]. Partitioning M(z) into submatrices of appropriate

Mii(z) Mia(z
ME) =) M) ()

dimensions

and setting

solves the extended GCLD problem (1). This is how matrix GCLDs are
computed, for example, by finding matrix normal forms for F(z).

Similarly, we can define the Greatest Common Right Divisor (GCRD)
and the corresponding extended GCRD problem. To compute a GCRD of
A(z) and B(z), we can compute G(z)T where G(z) is a GCLD of A(z)T
and B(z)T. We can also solve the extended GCRD problem and obtain an
irreducible left MFD in the same way. If the algorithm for computing a
GCLD gives a column reduced GCLD, then the GCRD computed is row

reduced.

3 Issues in Designing a Modular Algorithm

For the remainder of this paper, we will assume that D = Z and the reduction
homomorphisms used are ¢, where p is a prime and ¢,(A(z)) is the result of
reducing each entry of A(z) to Z,[z]. Our results can easily be generalized
to other choices of D. For example, if D = R[z| for some coefficient ring R,
the reduction homomorphisms are evaluations of the matrix polynomial at
z = a. If D is a multivariate polynomial ring, our modular algorithm can be
applied recursively to eliminate one variable at a time.

In order to design a modular algorithm, we must recognize when the
computed result over Z,, can be used to reconstruct the final result. This is
the problem of recognizing lucky primes. In the scalar case, it is well-known
that p is lucky if p does not divide the leading coefficient of A(z) and B(z),
and that deg G(z) = deg G,(z), where G,(z) is the GCD computed over Z,,.
In the matrix polynomial case, it can be shown that if p does not divide the

leading coefficients of det A(z) and det B(z), then
deg det G(z) < deg det G,(2). (6)

Unfortunately it is nontrivial to determine if p divides the leading coefficients
of det A(z) and det B(z) unless the input polynomials are column reduced.
The criteria for the scalar case does not extend to the matrix case easily.

We also need to normalize the computed results over Z,,; so that each of
them is an image of the same result over Z. In the scalar case one simply
needs to scale the input appropriately [11]. For matrix polynomials, however,
simply requiring that degdet G(z) = degdet G,(z) as in the scalar case is
insufficient. While the scaling may be sufficient to normalize det G,(z), it is
not obvious how to normalize G, (z) itself.

5

Finally, we must compute a bound on the number of primes required in
the modular algorithm to ensure that the reconstructed result is correct.

4 Computing a Matrix GCLD over Z,

The computation of a matrix GCLD is nontrivial in comparison to the scalar
case as there is no obvious Euclidean-like algorithm. For our purpose, we
choose the Fast Fraction-Free Gaussian (FFFG) elimination algorithm [4] as a
basis for the algorithm to compute a solution to the extended GCLD problem
(1). The FFFG elimination algorithm computes a solution to (1) over any
integral domain in a fraction-free way, such that the GCLD computed is
column reduced [5]. It also computes a unimodular matrix satisfying (3) in
a fraction-free manner. The algorithm can be viewed as an efficient method
for solving a linear system of equations in which the coefficient matrix is
structured. It is similar to the fraction-free Gaussian elimination algorithm
by Bareiss [1] and computes the Cramer solutions to the linear systems, but
it also takes advantage of the matrix structure to make the elimination more
efficient.

In our case, we will perform the same arithmetic operations modulo p. It
1s unusual to use a fraction-free algorithm for computation over Z, because
there is no coefficient growth. However, this ensures that the result computed
over Z, is the image of the Cramer solutions computed over Z. This solves
part of the normalization problem.

4.1 FFFG

We first give some definitions to facilitate the description of the algorithm.
Let N = degF(z) and write F(z) = Ei]\io F;z' where F;, € D™ for all
0 < i < N. We denote the jth column of F; by Fg"j). Let v € N™ be a
multi-indez, 7) be the ith component of ¥, and |5] = Y.°, 9. We also
define 27 to be the n x n matrix polynomial with 2 in entry (7,4) and 0

elsewhere.
For o > 0, the striped Krylov matriz K(F, v, o) associated to the GCLD

problem is defined to be the matrix consisting of the first o rows of

ng’l) ng’n)

K(F7 17) = F(0.71) ng,l) LRI F(0'7n) ng,n) (7)

#(1) #(n)

We can view K(F,v,0) as a matrix having n stripes, each containing the
columns of F(z) multiplied by zﬁm_l, ..., z, 1. This i1s a generalization of
the Sylvester matrix in the scalar case, and is a special case of the striped
Krylov matrix defined in [4] for matrix rational interpolation problems. The
computation of M(z) and G(z) in (3) can be viewed as performing Gaussian
elimination on K(F,v) for some ¢ until the last column of n — m stripes is
zero. The column operations performed are represented in M(z).

Let K(F) be the infinite matrix

Then K(F,v) is a submatrix of K(F) for any v. We define the sequence
of integers (0(7));j=0.1,.. to be the maximal sequence of linearly independent
rows of K(F). For j > 0, the sequence satisfies

(a) rows 0(0),0(1),...,0(j) of K(F) are linearly independent, and

(b) rows a(0),...,0(j — 1),i of K(F) are linearly dependent for all 0 <
i <o(y).

That 1s, the sequence is the lexicographically smallest sequence among all
possible choices of linearly independent rows. The matrix K*(F, v, j) is de-
fined to be the submatrix of K(F,¥) consisting of rows o(0),0(1),... ,0(j —

7

1). Intuitively, these are the rows that require elimination when we perform
Gaussian elimination on K(F). We also define d*(v) = det K*(F, v, |v]). A
multi-index v is para-normal if d*(¥) # 0, and is o-normal if it is para-normal
and o(|v] — 1) < o < o(|v]).

The algorithm (which we call FF_GCLD) for computing matrix poly-
nomial GCLDs makes use of a subroutine (Algorithm 1) adapted from the
FFFG elimination algorithm [4, 5]. We have modified the algorithm to main-
tain the sign of the determinant as it is required in the modular algorithm
described later. We will also call the variant of Algorithm 1 using arithmetic
operations in Z, FF_ReduceModp.

The FF_Reduce algorithm (Algorithm 1) transforms F(z) into R(z) with
m nonzero columns by performing column operations, which are recorded in
M(z). The matrix polynomial M(z) can be viewed as solutions to systems
of linear systems of equations whose coeflicient matrices are submatrices of
K(F). The algorithm takes advantage of the structure of K(F) by main-
taining only one column per stripe. The multi-index ¥ indicates the number
of times each column of F(z) has been used as a pivot in the elimination
process. In the algorithm, the coefficients of zV are eliminated one row at a
time, followed by the coefficients of zY~!, and so on. The elimination pro-
cess ensures that the entries of R(z) and M(z) remain in D[z]| at each step
by dividing by the previous pivot, in a similar way as Bareiss’ fraction-free
Gaussian elimination [1]. At the end of each iteration, we have

M(z,])(z) — Z_ﬁ(i)—l_(l_&’j)mi,j(:n) (9)

where §; ; is the Kronecker § and m; j(z) is a polynomial of degree at most
gl — (1 — é; ;). Moreover, the constant coeflicient of m;;(x) is d. The ma-
trix polynomial M(z) computed by Algorithm 1 is called the Mahler system
of type U [4]. The rank of the coefficient matrix formed from the leading
coefficients of each column is computed in rank, which allows us to deter-
mine when the nonzero columns of R(z) is column reduced. Note that if
we let B(z) be an “empty” matrix polynomial with n, = 0, the FF_GCLD
algorithm transforms A(z) into column reduced form.

4.2 Properties of the Algorithm

Some properties of the fraction-free GCLD algorithm are stated below to
facilitate the development of the modular algorithm. See [4] for the proofs

Algorithm 1 Fraction-free Reduction for a Matrix Polynomial

Input: F(z) € D[z]™*" such that F(z) has full row rank.

Output: 7 € N, § € N M(2) € D[z]"*", and R(z) € D[z]™*" such that
det M(z) = d*(v)*, 5%) = o(i — 1), F(z) - M(z) = R(z), and R(z) has m

nonzero columns and is column reduced.

procedure FF_Reduce(F(z))
N < degF(2)
(7,5, M(z),R(z)) « (0,0,L,,F(z),0)
(o,d,€,rank) « (0,1,1,0)
while rank < the number of nonzero columns of R(z) do
if 0 = 0 mod m then
rank < 0
end if
1y coeff(R((Fmodm)+1.6) () N-odivm) for p — 1 ... n
A={te{1,...,n}:r, #0}
if A # {} then
7« min{f € A : 79 = min,cp 7}
Py coeff (M) (2), zl_ﬁ(l)) for{=1,...,n,L#m
7™ (™) 41
s 41
rank «— rank + 1
forall/=1,...,n,{# 7 do
MO (2) ¢ (7 - MOA(2) — 7 - MUT(2)) - d7?
R("l)(z) — (r,T "R (2) — 7 RO™) (z)) .d7!
end for

MO () = (re - - MO (2) = Yy pe - MOA(2)) -

RO7(2) = (re- 1ROV (2) = Xy pe - RO(2)) - d 7
drr, e €- (—1)2?=w+117(')
end if
c+—oc+1
end while

(M(2),R(2)) « (e- M(2) 2% € R(z) - zY)

and details. We first state a result which is used in the definition of lucky
primes in Section 5.

Theorem 4.1 Let (W)r=01,2.. be the sequence of multi-indices defined by
1170 - 6

— — — . . (2 . (7
Wpt1 = Wy + €x, where m = 11%1<nn {z : w,(c) = 1I<1r1];£1n w,(f)} .

After o iterations of the loop in FF_Reduce (or FF_ReduceModp), the multi-
index U is the unique closest o-normal point to sequence (Wy). That is, if ©
s o-normal, then

< ‘max{ﬁ, Wy, — ﬁ}‘ for k>0, (10)

max{0, &), — 7}

where max is defined component-wise. At the end of FF_Reduce (or
FF_ReduceModp), v is the unique closest o-normal point to the sequence
(W), with o = o(|v] — 1) + 1. O

The next result allows us to obtain a bound on the number of images required
in Section 6.

Theorem 4.2 At the end of FF_Reduce (or FF_ReduceModp), d*(v) # 0.
Also, degM9)(2) < 9 and we can write

M(ivj)(z) —
0,...,0,209 .. Z79W-90+1=6:5 0 0

(—1)Zk=1 ™ et , (11)

where the last row of the determinant has nonzero entries in the ith stripe,
and €; is the jth unit vector in the standard basis. a

Theorem 4.3 Let K be an upper bound on the size of the coefficients appear-
ing in A(z) and B(z), and N = max(deg A(z),degB(z)). Then FF_Reduce
(or FF_ReduceModp) terminates in at most m(N + mN + 1) € O(m2N)
iterations. The worst case bit complezity of FF-GCLD is O(n(m*N)*K?),
assuming that the product of two elements in D of size k can be computed in
O(k?) bit operations. O

10

Theorem 4.3 can be applied to any integral domain D in which products can
be computed in quadratic time. In particular, it is applicable when D = Z or
D = R[z] in which multiplications in R can be done in constant time. Even
for small matrices, the run time can be significant in the worst case due to
coefficient growth. The coefficient growth is greatest when the number of
steps in the elimination process is large, corresponding to the case when the

degree of the GCLD is small compared to N.

Example 4.4 Let

A(H) = [324 +325+422 224 245224322 +32+1
| 322 +3224+142+8 2472246224241

B(z):- 22492245241 22422 42224322422+41
_z3—|—15z2—|—19z—|—5 P4 22472246241

FEF_GCLD returns
a 2480256 22 — 4960512 z — 9921024 3720384 z
z) = ,
14881536 22 4 34723584 z + 19842048 7440768 z + 7440768

with FF_Reduce returning
17 = [5747 37 2]7
§=10,2,4,5,6,7,8,9,10,11,12,13,14,15]

and d*(v) = —2480256 = —27 - 3% . 2153. Note that G(z) is column reduced.
The matrices S, T, U, V are not shown. g

5 Lucky Primes and Normalization

Let (¥, s, M(z),R(2)) be the results obtained by FF_Reduce when the oper-
ations are performed over the integers, and G(z) be the m x m submatrix
of R(z) containing the nonzero columns. Similarly, let (v, 8,, M,(2), Ry(2))
and G,(z) be the results computed modulo a prime p. Note that M,(z) and
R,(z) can be used in the reconstruction if

¢p(M(2)) = My(2) (12)
$p(R(2)) = Ryp(2). (13)

11

If this is not the case, we say that p is unlucky. Since we require the com-
puted results to be the exact images of M(z) and R(z), we have solved the
normalization problem as well.

Formally, we define a lucky prime in the following way.

Definition 5.1 Let p be a prime. Then p is lucky if d*(v) # 0 mod p and
|| = |vp|. Otherwise, p is unlucky. O

Since the matrix polynomial R,(z) computed by FF_Reduce is in column
reduced form, this definition implies that degdet G(z) = degdet G,(z). We
also require that the results computed modulo p to be the exact image of
the result over Z instead of the image of an associate of the result. This
eliminates the need to additionally normalize the result computed modulo p.
Thus, it is necessary to maintain the sign of the determinant in FF_Reduce
as it was stated in Algorithm 1. Note also that if deg ¢,(F(z)) < degF(z),
then p is unlucky as row 5 of ¢,(K*(F,#,|v])) consists only of zeros and
therefore d*(¥) = 0 mod p.

We now show that this definition is sufficient. To facilitate the proofs,
we let K*(F, v, |v]) be the submatrix of the associated striped Krylov matrix
with rows indexed by 8, and K;(¢,(F), vy, |v,|) be the corresponding matrix
with rows indexed by s, over Z,. We denote their determinants by d*(v) and
dy(vp), respectively. We first prove a lemma which will be used for detecting
whether a prime is lucky.

Lemma 5.2 Let p be a prime such that deg F(z) = deg ¢,(F(2)). If |0, =
|U|, then

(a) U is at least as close to (W) as vp.

(b) 8 <iexw Sp, where <jep compares two vectors in lexicographical order.
O
Proof.

(a) Let ¢ = o(|v| — 1) 4 1. Then @, is o-normal over Z,, and so d;(%,) # 0.
Hence, d*(v,) # 0 and ¥, is o-normal over Z. The result now follows
from Theorem 4.1.

(b) The rows indexed by s, in K(¢,(F)) are linearly independent over
Z,. The same rows in K(F) are also linearly independent over Z. By
definition, § is the lexicographically first set of rows such that K(F)
are linearly independent over Z. It follows that 5 <j., 5.

12

O
We now give an equivalent definition of lucky primes which is more useful
for the detection of unlucky primes.

Theorem 5.3 Let p be a pmme such that deg F(z) = deg ¢p(F(2)). Then p
is lucky iof and only if v, =¥ and 5, = 5. a

Proof. Suppose p is lucky. Since d*(¥) # 0 mod p, ¢,(K*(F,v,|v])) is
nonsingular over Z,. Thus, the rows indexed by § are linearly independent
over Z,, so that s, <j, 8. But § <., 8, by Lemma 5.2(b), hence s, = §.
Now let 0 = o(|v]| —1) + 1 = o(|t}] — 1) + 1. Then ¥ is o-normal over Z,
and hence it is also o-normal over Z, because d*(v) #Z 0 mod p. Thus, v, is
at least as close to (wi)r as v by Theorem 4.1. On the other hand, ¢ is the
unique closest o-normal point to (wy),. Therefore, v, = v.
Conversely, assume that v, = ¢ and s, = §. Clearly |J| = |v,|. Moreover,
¢p(K*(F, 7, [v])) = K;(Cbp(F)vﬁpv |Up]), s0 d;(ﬁp) = d;(ﬁ) # 0 mod p. O
Finally, we show that Definition 5.1 provides the property that the com-
puted results modulo p are the desired images.

Theorem 5.4 Ifp is lucky, then ¢,(M(2)) = M,(2) and ¢,(R(z)) = R,(2).
0

Proof. Suppose that p is a lucky prime, so that ¥ = v, and § = s, by
Theorem 5.3. Then ¢,(K*(F,v + €}, |17|)) K5 (6,(F), vp + €5, |Up]) for all j.
It follows by (11) that ¢,(M(z)) = M,(z). Also,

BIRE) = 4P M) = GFE) HME)
= &p(F(2)) - Mp(2) = Rp(2).

0

We need to check that v, = ¢ and s, = § to determine if p is lucky.

However, ¥ and s are not known in advance. Instead, we can compare the
results computed modulo two primes and detect which, if any, are unlucky.

Theorem 5.5 Let p and q be primes such that deg F(z) = deg ¢,(F(2)) =
deg ¢y (F(2)), and let (vp, 35, My(2), Rp(2)), (Vy, Sg: My(2), Re(2)) be the re-
sults computed by FF_Reduce modulo p and q, respectively. Then p is unlucky
if any of the following holds:

(a) [0p| # |94l;

13

(b) |Up| = |Uy] and Uy is closer to ()i, than U,;
(c) |Up] = |U,] and S, >1ex 8y

Furthermore, if p is unlucky and q is lucky, then at least one of the above
must hold. d

Proof. Condition (a) follows from Definition 5.1, (b) and (c¢) follow from
Lemma 5.2. Letting v, = ¢ and s, = §, we see that one of the conditions
must hold if p is unlucky, since either v, # v or 5, # § by Theorem 5.3. O

Note that when ¢ is lucky but |v,| # |v,|, we cannot determine whether
q is lucky or not by the criteria above. Thus, we must discard both p and ¢
even though ¢ may be lucky. Also, even when ¢,(F(z)) does not have full row
rank, it is not difficult to see that M, (z) and R,(z) computed by FF_Reduce
are solutions to the extended GCLD problem (1) over Z,. If p is also lucky
then M, (z) and R,(2) can still be used to reconstruct the final result.

6 Number of Images Required

We need to determine the number of lucky primes required to reconstruct
the final result. This can be done by obtaining a bound on the coefficients
appearing in M(z) and R(z). The key observation is that these coefficients
are simply determinants of various submatrices of K(F). Therefore, we can
apply Hadamard’s inequality [12]

n n 1/2
[det A| <] (Z \A(i’j)\z) (15)
=1 7=1

for any n x n matrix A to obtain the bounds on the coefficients.

Theorem 6.1 Let k be an upper bound on the absolute values of the coeffi-
cients of A(z) and B(z). Then the absolute values of the coefficients of M(z)
and R(z) are bounded by tt/z&t, where t = m(N +mN + 1) 4 1. O

Proof. Let s = |v]. By Theorem 4.2, we see that the coefficients of M(z)
are simply minors of K(F) of order s. Since F(z) - M(z) = R(z), we have

G (3) — (1) ks 9§ K*(F,v + ¢, |v])
R"(z) = (—1)&*k=i+ ;det[EO(z) ; (16)

14

where
EW(z)=10,...,0,2" . F0O V04105 g o 0l (17)

The sum in (16) can be written as a single determinant of order s + 1 by
multilinearity of determinants. Thus, the coeflicients of R(z) are minors of
K(F) of order s + 1. By Hadamard’s inequality, we see that the absolute
values of the coeflicients of M(z) and R(z) are bounded by

(s 4 1)0HD/206+1) (18)

From Theorem 4.3, we have s < m(N 4+ mN +1). The result now follows by
setting t = s + 1. Ol

Note that Theorem 6.1 provides an upper bound on the size of the
coeflicients in the computed solution to the extended GCLD problem (1).
Therefore, we must have enough lucky primes py, ..., p, such that [[I_, p; >
2tt/2kt. If we choose primes that have approximately the same magnitude as
&, then we need O(tlogt + t) lucky primes. In practice we may assume that
t < k and in that case, so that log, t behaves like a constant and we only
need O(t) lucky primes [11, 18].

Finally, we wish to bound the number of unlucky primes. It can be shown
that if p is unlucky, then p divides d*(¢") for some ¢’ encountered when
FF Reduce is run over the integers, or p divides the product of some other
minors of sizes 1,2,... ,|v|. Since each of these minors have size bounded by
t*/2k* and there are O(t) of them, it follows that the number of unlucky primes
p > K is at most O(t*logt). An analogous result in the scalar case is that an
unlucky prime divides the product of the contents of the subresultants [11,
Theorem 7.5]. In practice, however, this upper bound is grossly pessimistic
and we rarely encounter any unlucky prime.

7 Complete Algorithm and Complexity

We now give the complete modular extended GCLD algorithm (Algorithm 2).
We will denote by FF ReduceModp the algorithm that is the same as
FF Reduce (Algorithm 1) except that arithmetic operations are performed
modulo p. We also assume that there is a CRA algorithm that updates the
reconstructed matrices by Chinese remaindering after each additional image
has been computed. For example, Garner’s algorithm can be applied to the

individual coeflicients of M(z) or R(z) [11].

15

Algorithm 2 The Modular Matrix GCLD Algorithm
Input:

A(z) € D[z]™*™ B(z) € D[z]™*™ such that [A(z) B(z)] has full rank.
Output:

e G(z), a column reduced GCLD of A(z) and B(z);

e S(z), T(z) such that A(z)-S(z) + B(z) - T(z) = G(z);

e U(z),V(z) such that A(z)-U(z) + B(z) - V(z) =0.
procedure Mod_GCLD(A(z), B(z))

Compute &
(¢,7, 5 F(2), M(z), R(2), done) « (1,0,0,[A(z) B(2)],0,0, false)
while NOT done do
repeat
p < a new prime with the same magnitude as &
until deg ¢,(F(2)) = deg F(2)
(Up, 5p, M(2), Ry(2)) < FF_ReduceModp(¢,([A(z) B(2)]),p)

if ¢ =1 then
(¢,7,5 M(z), R(2)) « (p, Up, Sp, Mp(z), Rp(z))
else

if |0] # |v,| OR ¥ is further from (wy)y than o, OR § >, 5, then
(¢,7,5,M(z),R(2)) « (1,0,0,0,0)
end if
if ¢ =1 OR (7, 5) = (¥p, 5p) then
(M'(2),R/(2)) « (CRA(M(z),M,(2),¢q,p), CRA(R(z),R,(2),¢,p))
q<qp
if (M(z),R(2)) = (M'(z),R/(z)) AND F(z) - M(z) = R(z) then
done + true
end if
(M(2), R(2)) & (M'(2), R'(2))
end if
end if
end while
Permute the columns of M(z) and R(z) so that the nonzero columns of R(z)
are in the first m columns
G(Z) — R(l...m,l...m)(z)
S(z) — M(l"'”hl"'m)(z), T(z) - M(n1+1...n1+n2,1...m)(z)
U(Z) — M(l...n1,m—}—l...nl—l—ng)(z), V(Z) — M(n1+1...n1+n2,m—l—l...nl—l—ng)(Z).

16

We modified our modular algorithm so that when M(z) and R(z) have
not changed for an additional prime, we compute F(z)-M(z) and compare it
to R(z). If the two quantities are equal then we may terminate the algorithm
and accept the results constructed. Although M(z) and R(z) may not be
the same as the ones computed by the FF_GCLD algorithm, they still satisfy
the extended matrix GCLD problem (1). This idea of early termination is
similar to the trial division technique commonly used in the case of modular
algorithms for scalar polynomial GCD, and is useful in practice because the
Hadamard’s bound is usually too pessimistic.

We now discuss the complexity of Mod _GCLD. For this analysis, we will
assume that ¢ < &, where ¢ and & are defined in Theorem 6.1. We will also
assume that we rarely encounter unlucky primes, so that there are at most
O(t) unlucky primes. Both assumptions are satisfied in most applications in
practice.

Theorem 7.1 Let K be a bound on the size of the coefficients appearing
in A(z) and B(z), and N = max(deg A(z),degB(z)). The worst case bit
complezity of Mod_GCLD is O(n(m*N)*K?), assuming that the product of

two k-bit numbers can be computed in O(k*) bit operations. g

Proof. Let t be defined as in Theorem 6.1. Since each prime p has size
approximately K, we need to use O(t) lucky primes in Mod_GCLD (see
remarks after Corollary 6.1). By the assumption on the number of unlucky
primes, the total number of primes required is O(t). Since t € O(m2N), a
total of O(m?N) primes are needed.

For each prime p, we can compute ¢,(F(z)) in O(mnN K?) bit operations.
Using the same analysis as done in Theorem 4.3, the bit complexity for each
invocation of FF _ReduceModp is O(n(m*N)?>K?) (see [4]). Thus, the total
bit complexity over all primes is O(n(m?N)>K?).

Finally, we need to perform the reconstruction of the final result by Chi-
nese remaindering. By Theorem 6.1, each coefficient has size O(tK) because
t < k and K € O(log k). Thus, each coefficient in M(z) and R(z) can be
reconstructed in O(t?K?) bit operations [19]. There are O(nt) potentially
nonzero coefficients in M(z) and O(mnN) potentially nonzero coeflicients in
R(z). Since t € O(m2N), it follows that the total cost for the reconstruc-
tion is O(n(m?N)*K?) bit operations. Therefore, the total number of bit
operations required is in O(n(m*N)*K?). O

Compared to the O(n(m?N)*K?) worst case complexity of the fraction-
free algorithm (Theorem 4.3), the modular algorithm is at least one order of

17

magnitude faster. The modular algorithm provides a significant improvement
when m or N is large. The same complexity applies if D = R[z] for some
ring R in which multiplication can be performed in constant time. In that
case, K is the maximum degree in z of all coefficients in A(z) and B(z). We
also remark that our algorithm computes a solution to the extended GCLD
problem (1), and the complexity is not reduced if only a GCLD is needed.

Example 7.2 Let A(z) and B(z) be the those given in Example 4.4. We saw
that v = [5,4,3,2]. When p =2, FF_ReduceModp returns v, = [3,3,2,2], and
when p = 3, FF_ReduceModp returns v3 = [3,2,2,2]. These two primes are
unlucky because they both divide d*(v). Since |Us| # |Us|, both are considered
unlucky and their corresponding results are discarded. The prime p = 5 s
lucky. However, v7 = [4,3,3,2] and so p =T is unlucky as |v7| # |¥|. Since
|Us| # ||, both results are discarded. The primes p = 11,13,... .37 are all
lucky, and we can terminate the algorithm because F(z)-M(z) = R(z). The
computed results are the same as in Example 4.4. a

8 Experimental Results

Both the fraction-free and modular extended GCLD algorithms have been
implemented in Maple 7. Instead of using primes of size K, we chose primes
that are half the machine word size, so that modular arithmetic can be
performed efficiently. We used the modp1 representation for polynomials for
the efficient implementation of the modular algorithm.

We now present some experimental results to support the complexity
analysis given in Theorem 7.1. We chose m = n; = n, in our experiments.
In the first set of experiments, we chose various values of m, ny, n,, N, and
k, and generated A(z) and B(z) randomly. In these cases, A(z) and B(z)
are usually left coprime. The experimental results are presented in Table 1.
In the second set of experiments, we randomly generated C(z) of degree d.
We generated A(z) and B(z) by multiplying C(z) on the left to random
matrix polynomials of degree N — d. This allows us to have some control
over the degree of the computed GCLD!. The results in the second set of
experiments are presented in Table 2. We see that as m, ni, ny, N, and
k increases, the advantage of the modular algorithm over the fraction-free
algorithm becomes clear. Moreover, this advantage is also apparent when

1To precisely control the degree, we would have to control the degree of det C(z).

18

m,ny,ny | N | & | Size | FF_.GCLD (s) | Mod_GCLD (s) | Ratio
1 20 | 10* | 302 1.53 3.93 0.39
1 40 | 10* | 599 14.21 17.63 0.81
1 60 | 10* | 905 61.36 44 .82 1.37
1 20 | 10° | 699 5.12 9.82 0.52
1 40 | 10° | 1428 86.58 47.70 1.82
1 60 | 10° | 1533 114.58 60.04 1.91
2 20 | 10* | 622 28.16 79.10 0.36
2 40 | 10* | 1210 413.55 342.67 1.21
2 60 | 10* | 1680 1511.62 940.47 1.61
2 20 | 10° | 1507 158.79 231.82 0.68
2 40 | 10° | 2751 1664.87 827.86 1.99
2 60 | 10° | 3933 6432.79 2191.53 2.94

Table 1: Comparison of FF_GCLD and Mod_GCLD for various values of m,
n1, ne, N, and k. Also shown is the size (in number of decimal digits) of the
largest coefficient in the result.

d | Size | FF_.GCLD (s) | Mod_GCLD (s) | Ratio
1 | 3858 6895.10 2315.51 2.98
10 | 3213 3381.31 1432.72 2.36
20 | 2719 2200.21 1130.49 1.95
40 | 1425 212.83 256.36 0.83

Table 2: Comparison of FF_GCLD and Mod_GCLD for various values of d

with m = ny = np = 2, N = 60 and & = 10°. Also shown is the size (in

number of decimal digits) of the largest coefficient in the result.

the degree of C(z) is small. These conditions encourage coefficient growth,
and so the modular algorithm is significantly better in these cases. For small
values of these parameters, the modular algorithm is slower because of the
additional overhead performed.

9 Conclusions and Future Work

In this paper we developed a modular algorithm for computing one-sided
GCDs for matrix polynomials. Our contribution includes the definition of
lucky primes and the normalization of the matrix GCLDs, as well as deter-
mining the number of images required. The algorithm is significantly faster
than the fraction-free algorithm, as shown by both theoretical analysis and
experimental data. Our algorithm also solves the extended one-sided GCD
problem, and can be used to transform any matrix polynomial into column
reduced form.

The GCLD computed by our algorithm is column reduced, but unfor-
tunately, there are infinitely many GCLDs in column reduced form. The
GCLD computed is normalized in the sense that the computed Mahler sys-
tem 1s normalized as the Cramer solutions to the associated linear systems
of equations. This means that we normalize the cofactors S(z), T(z), U(z),
V(z) instead of the computed GCLD. We intend to investigate algorithms
which directly compute a GCLD in a normal form such as the Hermite form
or the Popov form [13]. We would also like to investigate modular algorithms
computing only a GCLD without the cofactors. This is especially useful in
the cases in which a GCLD with small coeflicients exists. It may also be pos-
sible to develop early termination criteria such that the reconstructed result
is provably correct without reaching the Hadamard’s bound or performing
explicit verification [15].

There are also a number of interesting extensions to our modular algo-
rithm. It is possible to apply the same technique to the rational matrix
interpolation problem in [4] to obtain a modular algorithm. It is also of in-
terest to extend this algorithm for matrices of Ore polynomials. This may
generalize the modular algorithm by Li [16] for two Ore polynomials.

20

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

E. Bareiss. Sylvester’s identity and multistep integer-preserving Gaus-

sian elimination. Math. Comp., 22:565-578, 1968.

B. Beckermann, S. Cabay, and G. Labahn. Fraction-free computation
of matrix Padé systems. In Proceedings of ISSAC 1997, pages 125-132.
ACM Press, 1997.

B. Beckermann and G. Labahn. Effective computation of rational ap-
proximants and interpolants. Reliable Computing, 6(365-390), 2000.

B. Beckermann and G. Labahn. Fraction-free computation of matrix
rational interpolants and matrix GCDs. SIAM J. Matriz Anal. and
Appl., 22(1):114-144, 2000.

B. Beckermann and G. Labahn. On the fraction-free computation
of column-reduced matrix polynomials via FFFG. Technical Report
ANO436, Laboratoire ANO, University of Lille, 2001. Available at
http://ano.univ-1lillel.fr/pub/2001/ano436.ps.Z.

R. R. Bitmead, S. Y. Kung, B. D. O. Anderson, and T. Kailath. Greatest
common divisors via generalized Sylvester and Bezout matrices. IEEE

Trans. Automat. Contr., AC-23:1043-1046, 1978.

W. S. Brown. On Euclid’s algorithm and the computation of polynomial
greatest common divisors. Journal of the ACM, 18(4):478-504, October
1971.

A. Bultheel and M. van Barel. A matrix Euclidean algorithm and the
matrix Padé approximation problem. In C. Brezinski, editor, Continued

Fractions and Padé Fractions. Elsevier, North-Holland, 1990.

B. W. Char, K. O. Geddes, and G. H. Gonnet. GCDHEU: Heuristic
polynomial GCD algorithm based on integer GCD computation. Journal
of Symbolic Computation, 9:31-48, 1989.

G. E. Collins. Subresultants and reduced polynomial remainder se-

quences. Journal of the ACM, 14(1):128-142, January 1967.

K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for Computer
Algebra. Kluwer Academic Publishers, 1992.

21

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

R. A. Horn and C. R. Johnson. Matriz Analysis. Cambridge University
Press, 1985.

T. Kailath. Linear Systems. Prentice-Hall, 1980.

G. Labahn and S. Cabay. Matrix Padé fractions and their computation.
SIAM Journal of Computing, 18:639-657, 1989.

G. Labahn and S. Cabay. A modular algorithm where all primes are
lucky. Submitted to Journal of Symbolic Computation, 2001. 25 pages.

Z. Li. A Subresultant Theory for Linear Differential, Linear Difference
and Ore Polynomials, with Applications. PhD thesis, RISC-Linz, Jo-
hannes Kepler University, Linz, Austria, 1996.

Z. L1 and I. Nemes. A modular algorithm for computing greatest com-
mon right divisors of ore polynomials. In Proceedings of ISSAC 1997,
pages 282-289, 1997.

J. D. Lipson. Elements of Algebra and Algebraic Computing. Addison-
Wesley, 1981.

J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cam-
bridge University Press, 1999.

22

