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ABSTRACT
We show that every perturbation A(λ, ε) of an n×n matrix
polynomial A(λ) such that det A(λ) = λm with m ≤ n can
be reduced by equivalence transforms to a perturbed ma-
trix polynomial whose leading matrix has maximal Smith
form. This yields a reduced form for square perturbed ma-
trix polynomials from which one can easily recover all the
eigenvalue leading terms of the form µεβ with β−1 ∈ N∗.
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1. INTRODUCTION
Let A(λ) =

∑d
i=0 Aiλ

i be an n × n matrix polynomial
over Q with det A(λ) 6= 0. Following [20, 11, 13, 12, 22,
23] we consider the problem of the sensitivity of the eigen-
values of A(λ) (i.e. the roots of det A(λ)) to small per-
turbations of the matrix coefficients Ai. Such perturba-
tions can be represented by perturbed matrix polynomials
A(λ, ε) =

∑d
i=0 Ai(ε)λ

i where Ai(ε) =
∑

j≥0 Aijε
j is an

n×n formal power series matrix over Q such that Ai(0) = Ai

for 0 ≤ i ≤ d. Regarding A(λ, ε) as a perturbation of its
leading matrix A(λ) = A(λ, 0), we may also write

A(λ, ε) = A(λ) + ε(A01 +
d∑

i=1

Ai1λ
i) + O(ε2). (1)

The sensitivity of the eigenvalues of A(λ) is described by the
leading terms µεβ of the formal Puiseux expansions λ(ε) =
µεβ + · · · at ε = 0 of the solutions of detA(λ, ε) = 0. (See
e.g. [2].) Such a λ(ε) will be referred to as an εβ-eigenvalue
of A(λ, ε).

Assuming that detA(λ) = λm, we focus on how the zero
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eigenvalue of A(λ) “splits” into m perturbed eigenvalues of
A(λ, ε): when A(λ) is in Smith form, some sufficient condi-
tions on some entries of A01 were given in [11] for A(λ, ε) to

have ri ε1/i-eigenvalues when A(λ) has r invariant polyno-
mials of order i; it is also known how to recover the leading
coefficients µ from these particular entries. However, these
conditions are not necessary. Consider for example the per-
turbed matrix polynomials

A(λ, ε) =

[
1 ε
ε λ2

]

and Ã(λ, ε) =

[
λ ε
ε λ

]

.

Although the eigenvalues are in both cases ε and −ε, the
structure A(λ) = diag[1, λ2] does not indicate a priori a
splitting into two ε-eigenvalues and, in that sense, is mis-
leading. On the other hand, one may easily verify that
Ã(λ, ε) = U(λ, ε)A(λ, ε)V (λ, ε) with

U(λ, ε) =

[
1 0

λ−λ2

ε
1

]

and V (λ, ε) =

[
1 0

λ−1
ε

1

]

.

We thus have found a matrix Ã(λ, ε) equivalent to A(λ, ε)

whose leading Smith form Ã(λ) = diag[λ, λ] is non mis-

leading: we can tell from Ã(λ) that Ã(λ, ε) admits two ε-
eigenvalues.

The two main contributions of this paper are as follows.
First, we establish for m ≤ n that “non misleading” ac-
tually means that the leading Smith form is maximal for
lexicographic ordering. Second, we prove that the observa-
tion made on the above example holds more generally: every
perturbation of an n× n matrix polynomial A(λ) such that
det A(λ) = λm with m ≤ n can be reduced by equivalence
transforms to a perturbed matrix polynomial whose lead-
ing matrix has maximal Smith form. This yields a reduced
form for square perturbed matrix polynomials from which
one can easily recover all the eigenvalue leading terms of the
form µεβ with β−1 ∈ N∗.

These results represent a first step towards the effective for-
mal reduction of matrix polynomials depending on a param-
eter. There are two main motivations. First, many problems
in robust control [3, 1] can be described in terms of pa-
rameterized matrix polynomials. On the other hand, using
matrix polynomials allows to extend some results obtained
for the perturbation A(λ, ε) = λI − J −B(ε) of a nilpotent
Jordan structure J . (See e.g. [14, 16, 15, 10].)

Previous studies about parameterized matrix polynomials
were concerned by either determinant degree and Smith



form computations [17, 18, 19] or perturbation theory for
matrix pencils [7, 21], quadratic matrix polynomials [13, 22,
23] and matrix functions [20, 21, 11, 12]. But the approach
that consists in searching for the “best” leading Smith form
in a set of equivalent perturbed matrix polynomials seems
to be new.

For our analysis, we first need to refine a perturbation re-
sult by Langer and Najman [11]. This is done in Section
2.1. Following the approach of [16], we further interpret
this refinement in terms of the Newton diagram in Section
2.2. We then introduce perturbed matrix polynomials with
maximal leading Smith form in Section 3, together with the
notion of highest Newton envelope. Section 4.1 presents our
reduced form for m ≤ n whereas Section 4.2 discusses the
case m > n. We conclude in Section 5 with two extensions.

Notation. Throughout the paper, l denotes the degree in
λ of p(λ, ε) = detA(λ, ε) and Πn

m denotes the matrix set

Πn
m =

{
A(λ, ε) ∈ Q[[ε]][λ]n×n : detA(λ) = λm}

where A(λ) = A(λ, 0).

2. PERTURBATION OF A SMITH FORM
AND PERTURBED EIGENVALUES

Let A(λ, ε) ∈ Πn
m and assume that its leading matrix A(λ)

is equal to the Smith form

S(λ) = diag[1, . . . , 1, (λm1 )r1 · · · (λmq )rq ] (2)

with 0 < m1 < · · · < mq. Here we wrote (λa)b for the
b× b diagonal matrix whose all diagonal entries are equal to
the monomial λa. One can think of mj as the jth partial
multiplicity of the zero eigenvalue of A(λ) repeated rj times,
and note that r1m1 + · · ·+ rqmq = m and r1 + · · ·+ rq ≤ n.

2.1 A perturbation theorem for eigenvalues
In order to investigate the link bewteen the structure (2)
of A(λ) and the leading terms of the eigenvalues of A(λ, ε),
introduce the partial sums

sj = rj + · · · + rq for 1 ≤ j ≤ q,

and define Lj as the last principal submatrix of A01 in (1)
of order sj . For 1 ≤ j < q, one has sj+1 = sj − rj and
Lj+1 lies in the lower right corner of Lj . The values of the
determinants of such submatrices of A01 — together with
the additional “intermediate” quantities recalled below —
were already considered by Langer and Najman [11, 12].

Definition 1. For 1 ≤ j ≤ q, let ∆j be the determinant
of Lj . For 1 ≤ j ≤ q and 0 ≤ k ≤ rj , we further denote by

∆
(k)
j the sum of the principal minors of Lj with order sj − k

that contain Lj+1.

In this definition, Lq+1 has been assumed to be the empty

matrix, of determinant ∆q+1 = 1. Note that ∆j = ∆
(0)
j and

that ∆j+1 = ∆
(rj)

j for 1 ≤ j ≤ q.

The theorem below provides some sufficient conditions on

the sums ∆
(k)
j for the multiple zero eigenvalue of A(λ) to split

under perturbation according to the number and the order

of its partial mutiplicities. A proof based on the Newton
diagram will be given in Section 2.2.

Theorem 1. Let j ∈ {1, . . . , q}. Assuming that at least

one of the sums ∆
(k)
j for 0 ≤ k ≤ rj is nonzero, let k1, k2

be respectively minimal and maximal so that ∆
(k1)
j 6= 0 and

∆
(k2)
j 6= 0. Then

i) A(λ, ε) admits (k2 − k1)mj ε1/mj -eigenvalues;

ii) writing wj = e2iπ/mj , the leading terms of these
eigenvalues are

(µjk)1/mj wl
jε

1/mj , k = 1, . . . , k2 − k1 , l = 1, . . . , mj ,

where the complex numbers µjk denote the roots of the poly-

nomial
∑k2

k=k1
∆

(k)
j λk−k1 and where (µjk)1/mj is one of the

mj distinct mjth roots of µjk.

In the particular case where (k1, k2) = (0, rj), this result
was obtained by Langer and Najman in [11], describing the
typical eigenvalue splitting when A01 is dense. Note also
that in this case the µjk’s are up to the sign the eigenvalues
of the Schur complement of Lj+1 in Lj . This follows from
∑rj

k=0 ∆
(k)
j λk = det(Lj + λEj) with Ej = diag[Irj

, Osj+1
],

and from the determinantal equality (see e.g. [5, p. 190])

det(Lj + λEj) := det

[
X + λI Y

Z Lj+1

]

= det Lj+1 det(X − Y L−1
j+1Z + λI).

However, though simpler to check, the conditions “∆j 6= 0”
will prove to be not enough for our purposes.

As an illustration of the above Theorem 1, consider the 6×6
perturbed matrix polynomial of the form

A(λ, ε) = diag[1, 1, (λ)3, λ3] + ε(A01 + A11λ) (3a)

with A01 and A11 given by

A01 =










1 1 1 0 1 0
1 1 1 0 1 0
1 1 1 0 1 0
1 0 0 1 0 0
0 1 1 1 0 1
0 1 1 0 0 0










(3b)

and

A11 =










0 0 0 1 1 1
1 1 0 0 1 1
0 0 0 1 0 0
0 0 0 1 0 0
1 1 0 1 1 0
1 0 1 0 1 1










. (3c)

Here q = 2, (r1, m1) = (3, 1), (r2, m2) = (1, 3) and

L1 =







1 0 1 0
0 1 0 0
1 1 0 1
1 0 0 0







, L2 =
[

0
]
.

Hence ∆
(0)
1 = 1, ∆

(1)
1 = 1, ∆

(2)
1 = 0, ∆

(3)
1 = 0 and it follows

from Theorem 1 (applied with j = 1) that A(λ, ε) has one
eigenvalue of the form λ(ε) = −ε + o(ε).



2.2 Newton diagram-based characterization
Following Moro, Burke and Overton [16], let us interpret
Theorem 1 in terms of the Newton diagram of A(λ, ε). Let
p(λ, ε) = det A(λ, ε) of degree l in λ be written as

p(λ, ε) =
l∑

i=0

ai(ε)λ
i.

For 0 ≤ i ≤ l, there exists (âi, αi) ∈ Q∗×N such that ai(ε) =
âiε

αi +O(εαi+1) providing that ai(ε) is not identically zero;
we further set αi = +∞ when ai(ε) is zero. The lower
boundary of the convex hull of {(i, αi) : 0 ≤ i ≤ l} in the
cartesian plane is the Newton diagram N associated with
A(λ, ε). (See e.g. [16],[4],[2],[24].) Defining the length of a
line segment as the length of the projection of this segment
onto the horizontal axis, the Newton diagram thus consists
of a finite number of segments with rational, possibly infinite
(−∞) slopes and nonzero lengths. In particular, the length
of the segment with slope −∞ can be considered as equal
to the valuation of p(λ, ε) in λ. We will denote by N− the
negative part of N , i.e. the subdiagram of N which consists
of negative (finite and infinite) slopes only. Note that N
and N− have lengths l, m respectively.

Let (ρ, ν, δ) ∈ N × Z × N∗ be such that gcd(ν, δ) = 1. The
first main property of the Newton diagram is that A(λ, ε)

has ρδ εν/δ-eigenvalues if and only if its Newton diagram N
has a segment S of slope −ν/δ and length ρδ. Now, letting
xS be the minimum index i so that (i, αi) belongs to this
particular segment S, we see that δ divides i − xS for all
(i, αi) ∈ S. This allows to associate with each segment S of
N the polynomial

pS(λ) =
∑

(i,αi)∈S

âiλ
(i−xS)/δ (4a)

of degree ρ. (See e.g. [6, p. 137].) The second fundamental
property of the Newton diagram is as follows: the leading
terms of the ρδ εν/δ-eigenvalues of A(λ, ε) are

(µk)1/δwlεν/δ , k = 1, . . . , ρ, l = 1, . . . , δ, (4b)

where w = e2iπ/δ and where the µk’s are the roots of pS(λ).

For example, A(λ, ε) in (3) has determinant

p(λ, ε) =
(
−ε3 + 2ε4 + ε

)
λ7 +

(

3ε2 + ε5 + 3ε4 + 1 − 3ε3 + 4ε
)

λ6 +
(
−ε5 + 2ε− 2ε6 + 4ε2 + 2ε4 + 3ε3

)
λ5 +

(
7ε5 + 3ε4 + 2ε3 + ε + 4ε6 + 3ε2

)
λ4 +

(
−ε4 + 2ε3 + 9ε6 + ε2

)
λ3 +

(
2ε4 − 2ε5

)
λ2 +

(

ε3 + ε4 + ε5
)

λ + ε4 .

Hence the Newton diagram N shown in Fig. 2. It follows
that A(λ, ε) has one ε-eigenvalue, three ε2/3-eigenvalues, two

ε1/2-eigenvalues and one ε−1-eigenvalue. The corresponding
polynomials of type (4a) — built from the boxed terms of
p(λ, ε) only — are 1 + λ, 1 + λ3, 1 + λ2, 1 + λ respectively.

Theorem 2 below expresses in terms of the characteristics
(r1, m1), . . . , (rq, mq) of the Smith form A(λ) what the right-
most possible vertices for the Newton diagram of A(λ, ε) are.

This will yield a graphical characterization of the sufficient
conditions of Theorem 1 and also allow for a simple proof of
this perturbation result. The structure of A(λ) and an or-
dinate y being given, consider all the perturbations of A(λ)
of the form (1) and denote by x(y) the smallest possible
abscissa for a vertex (x(y), y) of the associated Newton di-
agrams. Additionally, recall that sj = rj + · · · + rq and
define

tj = rjmj + · · ·+ rqmq for 1 ≤ j ≤ q.

Theorem 2. Let j ∈ {1, . . . , q} and k ∈ {0, . . . , rj}. If
y = sj − k then x(y) = m− tj + kmj and the coefficient of

εyλx(y) in p(λ, ε) is ∆
(k)
j .

Proof. By definition, p(λ, ε) is the sum of all the prod-
ucts (up to the sign) of n entries of the matrix A(λ, ε) =
A(λ) + ε(A01 + O(λ)) + O(ε2) such that no two entries be-
long to the same column or row. The entries involved in
a product can be ε-terms from A(λ, ε) − A(λ) or λ-terms
from A(λ). Let us examine how to form a product of or-
der εy in ε and of minimal order in λ. For ε-terms, we pick
y ≤ s1 ≤ n entries in εA01. It then remains to choose n− y
λ-terms. In order to exhaust the largest powers of λ from
A(λ), these ε-terms further lie on the last sj+1 columns and
on any group of rj−k columns with index between n−sj +1
and n − sj+1. The row indices for the ε-terms must vary in
exactly the same ranges, for otherwise the diagonal structure
of A(λ) leads to a product equal to zero. Finally, we com-
plete the product by taking the first n− sj diagonal entries
of A(λ) together with a group of k invariant polynomials of
the form λmj . This product thus has order λm−tj+kmj in
λ, from which x(y) follows. Deleting from A(λ, ε) the rows
and columns corresponding to each of the above choices of

λ-terms yields the sum ∆
(k)
j εy.

Now, for 1 ≤ j ≤ q and 0 ≤ k ≤ rj , let P(k)
j be the point

given by (x(y), y) as in Theorem 2 and write Pj = P(0)
j

and Pj+1 = P
(rj)

j for 1 ≤ j ≤ q. In particular, one has
Pq+1 = (m, 0). Using the terminology of Moro, Burke and
Overton [16, p. 808], we call Newton envelope associated
with the Smith form of A(λ) the diagram E(A(λ)) obtained
by successively connecting the points P1,P2, . . . ,Pq+1. (See
Fig. 2 for an example.) It then follows from Theorem 2 that
for any perturbation A(λ, ε) of an A(λ) with given structure
(2), the negative part N− has no point lying below the en-
velope. Furthermore, the sufficient regularity conditions of
Theorem 1 can be characterized graphically as shown below.

Corollary 1. Let j ∈ {1, . . . , q} and k ∈ {0, . . . , rj}.

The sum ∆
(k)
j is nonzero if and only if the point P (k)

j of the
envelope is also a point of the Newton diagram.

We end this section by providing a Newton diagram-based
proof of Theorem 1.

Proof. [Proof of Theorem 1] It follows from Corollary
1 that the Newton diagram of A(λ, ε) has a segment Sj =



[P(k1)
j ,P(k2)

j ] with length (k2−k1)mj and slope −1/mj . The
first property of the Newton diagram thus yields (i). In order

to prove (ii), recall that the leading constants of the ε1/mj -
eigenvalues are given as in (4) by the roots of

pSj
(λ) =

∑

(x(y),y)∈Sj

âx(y)λ
(x(y)−xSj

)/mj .

Now, let k ∈ {k1, . . . , k2} be such that P(k)
j = (x(y), y) lies

on Sj — or equivalently, ∆
(k)
j 6= 0. One has αx(y) = y

and it follows from Theorem 2 that the coefficient of p(λ, ε)

in εyλx(y) is âx(y) = ∆
(k)
j . On the other hand, one may

easily verify that x(y)− xSj
= (k − k1)mj . Hence pSj

(λ) =
∑k2

k=k1
∆

(k)
j λk−k1 .

With the approach above, the Smith form A(λ) and thus
E(A(λ)) are given, and we identified among all the pertur-
bations A(λ, ε) compatible with A(λ) the ones that allow to
recover as much of N− as possible. In the next section, the
question we consider is the opposite: A(λ, ε) and thus N−

being given, what is the “best” possible Smith form for A(λ)
compatible with N−?

3. PERTURBED MATRIX POLYNOMIALS
WITH MAXIMAL LEADING SMITH
FORM

Let A(λ, ε) ∈ Πn
m. In this section N is assumed to be known

from the outset whereas the Smith form of A(λ) is not. We
denote by Πn

m(N−) the subset of Πn
m that consists of the

perturbed matrix polynomials whose Newton diagram has
negative part N−. Let further Σn

m(N−) be the set of the
Smith forms of the corresponding leading matrices. This set
is lexicographically ordered by identifying the Smith form
(2) with

(0, . . . , 0, m1, . . . , m1
︸ ︷︷ ︸

r1

, . . . , mq, . . . , mq
︸ ︷︷ ︸

rq

) ∈ N
n.

Additionally, Σn
m(N−) is finite, for every element has deter-

minant equal to λm and m is the length of N−. Denote by
S(λ)max the maximum of Σn

m(N−).

Definition 2. We will refer to S(λ)max as the maximal
leading Smith form associated with Πn

m(N−) and we will say
that A(λ, ε) is a perturbed matrix polynomial with maximal
leading Smith form when A(λ) = S(λ)max.

When m ≤ n, perturbed matrix polynomials with maximal
leading Smith form enjoy the property that the sufficient
conditions of Theorem 1 are also necessary. In order to de-
rive this result (Corollary 2), we first introduce a refinement
of the Newton envelope of Section 2.2; this tool will then be
used to characterize S(λ)max graphically.

3.1 Highest Newton envelope
We define the highest Newton envelope Emax compatible with
N− as the best lower approximation of N− by a convex dia-
gram whose length is m and whose every segment has slope
equal to the inverse of a negative integer: the segment of
N− with slope −∞ is lower bounded by a segment of Emax,

say S0, with the same length and the same rightmost point,
but slope −1; each segment of N− with slope of the form
−1/N with N ∈ N∗ is also a segment of Emax; the segments
of N− whose slope is strictly comprised between −1/N and
−1/(N+1) are best lower bounded by two segments of slopes
−1/N , −1/(N + 1) and respective lengths Nx, (N + 1)y.
More precisely, assume that N− has s segments with slopes
given by −1/N < β1 < · · · < βs < −1/(N + 1) for some
positive integer N . For 1 ≤ j ≤ s, let us write βj = −νj/δj

with νj , δj positive and coprime, and let the corresponding
segment have length ρjδj . Then, the pair (x, y) ∈ N∗ × N∗

is the unique solution of the linear system

[
1 1
N N + 1

][
x
y

]

=
s∑

j=1

ρj

[
νj

δj

]

. (5)

This is illustrated in Fig. 1.
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Figure 1: Best approximation of a group of segments
of N− by a pair of segments with slope −1/N and
−1/(N + 1) for N ∈ N∗. Illustration with N = 1 and
(β1, β2, β3) = (−3/4,−2/3,−3/5).

Now, let v(N−) be the set of vertices of N− with finite
ordinate. (If it exists, the point (0, +∞) is thus disregarded.)
In order to provide an explicit formula for Emax we introduce
the integer sequence (σi)i∈N∗

given by

σi = 2νi − νi+1 − νi−1 (6a)

and

νi = min{k + iαk : (k, αk) ∈ v(N−)}. (6b)

Graphically, the νi’s can be interpreted as follows. For i ≥ 0
let N−

i be the diagram deduced from N− by transforming
(k, αk) ∈ v(N−) into (k, k + iαk) ∈ v(N−

i ). Applying the
same transform to the vertices of Emax\{S0}, we obtain the
highest Newton envelope Ei compatible with N−

i . A seg-
ment of N− or Emax\{S0} with finite slope s is thus trans-
formed into a segment of N−

i or Ei with the same length but
slope is+1. By definition of the highest envelope, νi is thus
the smallest ordinate for the vertices of both N−

i and Ei.

Consider now the σi’s. They are nonnegative, for the se-
quence (νi+1 − νi)i∈N

is nonincreasing. Additionally, it fol-
lows from Lemma 1 below that (iσi)i∈N∗

defines an integer
partition of m − ν0 and that (σi)i∈N∗

is zero almost every-
where. Theorem 3 also relies on this lemma.



Lemma 1. The sequence (σi)i∈N∗
given by (6) satisfies

∞∑

i=j+1

(i− j)σi = m− νj for all j ∈ N.

Proof. Let s < 0 be the largest slope of N− and let N =
d−s−1e. For i ≥ N , the diagram N−

i therefore has slopes in
Q− only. Since (m, 0) is a point ofN−, it follows that νi = m
for all i ≥ N . Hence σi = 0 for i > N and intermediate
cancellations in the sum yield

∑N
i=j+1(i − j)σi = −νj +

(N − j + 1)νN − (N − j)νN+1. This is m− νj .

Theorem 3. Let σm1
, . . . , σmq denote the nonzero values

of (σi)i∈N∗
numbered so that m1 < · · · < mq. If additionally

one defines Q0 = (0, ν0 +
∑q

k=1 σmk
) and, for 1 ≤ j ≤

q + 1, Qj = (ν0 +
∑j−1

k=1 mkσmk
,
∑q

k=j σmk
), then Emax is

the diagram obtained by successively connecting the points
Q0,Q1, . . . ,Qq+1.

Proof. Emax consists of p + 1 segments S0,S1, . . . ,Sp

where S0 is the segment of slope −1 corresponding to the
slope −∞ of N− and where, for 1 ≤ j ≤ p, Sj has slope
−1/nj and length rjnj with n1 < · · · < np. For j ∈
{1, . . . , p} we prove that σnj

= rj as follows. Denote by
(x1, y1), (x2, y2) the cartesian coordinates of the extreme
points of Sj . When successively looking at the transformed
envelopes Ei for i ∈ {nj − 1, nj , nj + 1}, we see that

νnj−1 = x1 + (nj − 1)y1;

νnj
= xi + njyi for i = 1, 2;

νnj+1 = x2 + (nj + 1)y2.

Writing (x2, y2) = (x1 + rjnj , y1 − rj) then yields σnj
=

y1 − y2 = rj . On the other hand, it follows from the rj ’s
being positive that the σnj

’s define p out of the q nonzero
values of (σi)i∈N∗

. For i = 0, it follows from (6b) that the
length of S0 is equal to ν0. Hence m = ν0+

∑

i∈{n1,...,np}
iσi.

Since n1 < · · · < np, Lemma 1 then implies that p = q and
nj = mj for all j ∈ {1, . . . , q}. Hence the coordinates of the
Qj ’s, noticing that (m, 0) is the rightmost point of Emax.

For example, N− in Fig. 2 has vertices (0, 4), (1, 3), (4, 1),
(6, 0) and it follows from (6) that σ1 = 2, σ2 = 2, σ3 =
σ4 = · · · = 0. The corresponding highest envelope Emax is
represented on the second graphic.
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Figure 2: Newton diagram and Newton envelopes
for the matrix A(λ, ε) of (3).

3.2 Recovery of some eigenvalue leading terms
When m ≤ n, recovering some eigenvalue leading terms is
made possible by the following relation between the highest

envelope and the maximal leading Smith form. (We discuss
the case where m > n in Section 4.2.)

Theorem 4. Let m ≤ n and let A(λ, ε) ∈ Πn
m with New-

ton diagram N . Then Emax is the Newton envelope associ-
ated with S(λ)max.

Proof. Let S(λ) ∈ Σn
m(N−). If S(λ) < S(λ)max then

E(S(λ)max) has at least one vertex strictly above E(S(λ)),
and thus E(S(λ)) 6= Emax.

In order to prove that the converse holds true, let us first
construct T (λ, ε) ∈ Πn

m(N−) such that T (λ) is in Smith form
and E(T (λ)) = Emax. Let T (λ, ε) = diag[1, . . . , 1, B(λ, ε)]
where we choose for B(λ, ε) the block diagonal matrix whose
kth block corresponds to a segment (or a group of segments)
of N− as follows. To the infinite slope of N− of length,
say ρ, we associate the block B(1)(λ, ε) = λIρ. To a seg-
ment of N− with slope −1/N and length ρN , we associate

the ρ × ρ matrix B(k)(λ, ε) = diag[λN − ε]1≤i≤ρ. With the
same notation as before, consider now a group of s seg-
ments with slopes −1/N < β1 < · · · < βs < −1/(N + 1).
For 1 ≤ j ≤ s, let (xj, yj) ∈ N∗ × N∗ be the solution of
the linear system deduced from (5) by replacing the right

hand side with ρj [νj , δj ]
T . Additionally, let C

(k)
j (λ, ε) =

(λN )
xj (λN+1)

yj + C
(k)
j (ε) with C

(k)
j (ε) the ρjνj × ρjνj ma-

trix of the form







0 ε
. . .

. . .

0 ε
ε 0








.

Clearly, C(k)(λ, ε) = diag[C
(k)
1 (λ, ε), . . . , C

(k)
s (λ, ε)] has ρjδj

εβj -eigenvalues for 1 ≤ j ≤ s. Since x =
∑s

j=1 xj and

y =
∑s

j=1 yj , we take for B(k)(λ, ε) the matrix deduced from

C(k)(λ, ε) by permuting some rows and columns in such a

way that the new leading matrix is B(k)(λ) = (λN )
x
(λN+1)

y
.

Note that the size of B(λ, ε) is at most n by assumption on
the length m of N−.

Now, assume that E(S(λ)) 6= Emax. Considering the first
vertex of E(S(λ)) that lies strictly below Emax and since
T (λ) is an element of Σn

m(N−) whose envelope is Emax, we
obtain S(λ) < T (λ). Hence S(λ) < S(λ)max.

Theorem 4 has two consequences: first, it can be combined
with Theorem 3 in order to yield the formula

S(λ)max = diag[1, . . . , 1, (λ)ν0(λm1 )σm1 · · · (λmq )σmq ] (7)

when m ≤ n. For example, the matrix of (3) satisfies m =
n = 6 and we deduce from Emax in Fig. 2 that ν0 = 0, q = 2,
(m1, σm1

) = (1, 2), (m2, σm2
) = (2, 2) and, therefore, that

S(λ)max = diag[1, 1, (λ)2, (λ2)
2
]. Second, using Corollary 1,

it follows that the sufficient conditions of Theorem 1 can be
necessary too:

Corollary 2. [Converse of Theorem 1 i)] Let m ≤ n
and let A(λ, ε) ∈ Πn

m be a perturbed matrix polynomial with



maximal leading Smith form (2). Then, if A(λ, ε) has ri

ε1/i-eigenvalues, there exists j ∈ {1, . . . , q} such that i = mj

and r = k2 − k1 with k1 minimal and k2 maximal so that
∆

(k1)
j 6= 0 and ∆

(k2)
j 6= 0.

This means that such perturbed matrix polynomials are pre-
cisely those for which all the eigenvalue leading terms of the
form µεβ with β−1 ∈ N∗ can be recovered via Theorem 1.
For example, A(λ) in (3) is not maximal, for otherwise ap-
plying Theorem 1 to A(λ, ε) would have revealed not only

its ε-eigenvalue but also its two ε1/2-eigenvalues. Neverthe-
less, as shown in the next section, A(λ, ε) can be reduced to
an equivalent perturbed matrix polynomial whose leading
Smith form is maximal.

4. MAXIMIZATION BY EQUIVALENCE
TRANSFORMS

Let F = Q[[ε]][ε−1 ]. Regarded as elements of F[λ]n×n, two

perturbed matrix polynomials A(λ, ε), Ã(λ, ε) are equivalent

when Ã(λ, ε) = U(λ, ε)A(λ, ε)V (λ, ε) for some unimodular
U(λ, ε), V (λ, ε) in F[λ]n×n. (See e.g. [8, vol. 1, p. 135].) It
follows that two equivalent perturbed matrix polynomials
have the same eigenvalue leading terms. Since their Newton
diagrams coincide up to a translation along the y-axis, they
also have the same sequence (σi)i∈N∗

. More precisely, for
any perturbed matrix polynomial equivalent to A(λ, ε), the
invariant sequence of (6) is given by

σi = 2νi − νi+1 − νi−1, νi = valε p(λε, εi), (8)

where valε is the valuation in ε and p(λ, ε) = detA(λ, ε).

4.1 Reduction theorem
Theorem 5. Let m ≤ n. Then for every A(λ, ε) ∈ Πn

m

one can define a pair of equivalence transforms U(λ, ε) and
V (λ, ε) such that U(λ, ε)A(λ, ε)V (λ, ε) is a perturbed matrix
polynomial with maximal leading Smith form.

Proof. Over F[λ], the matrix polynomial A(λ, ε) is equiv-
alent to its Smith form diag[In−x, s1(λ, ε), . . . , sx(λ, ε)] with
sk monic in λ and of positive degree for 1 ≤ k ≤ x. Multi-
plying the last x rows by suitable constants of F yields an
equivalent matrix

P (λ, ε) = diag[In−x, p1(λ, ε), . . . , px(λ, ε)]

with no negative power of ε and such that

p(λ, ε) =
x∏

k=1

pk(λ, ε).

Let mk = deg pk(λ, 0). Since m ≤ n, one can partition n
as n1 + · · · + nx so that nk ≥ mk for 1 ≤ k ≤ x. The
matrix A(λ, ε) is therefore equivalent to diag[Pk(λ, ε)]1≤k≤x

with Pk(λ, ε) = diag[Ink−1, pk(λ, ε)].

Now let Nk, Ek,max = Ek,max(N−
k ) and Sk,max(λ) be re-

spectively the Newton diagram, the Newton envelope and
the maximal leading Smith form associated with Pk(λ, ε).
It follows from the equations of (5) being linear that the
equality Emax(∪N−

k ) = ∪Ek,max(N−
k ) holds. Here, the

union denotes the convex diagram obtained by merging con-
vex diagrams for 1 ≤ k ≤ x. For example ∪N−

k = N−.

Since mk ≤ nk for 1 ≤ k ≤ x, we deduce S(λ)max from
diag[Sk,max(λ)]1≤k≤x by row and column permutations. The
Pk’s can thus be handled independently and we may assume
without loss of generality that A(λ, ε) = diag[In−1, p(λ, ε)].

Let us now reduce A(λ, ε) to an equivalent Ã(λ, ε) such that

Ã(λ) is equal to the maximal Smith form of (7). Let τ =
ν0 +

∑q
j=1 σmj

. It suffices to find a pair of τ ×τ unimodular

matrices U(λ, ε), V (λ, ε) such that UBV = B̃ with B given

by A = diag[In−τ , B] and where B̃ is the lower right block of

Ã partitioned conformally. From now we focus on the case
where ν0 = 0. (When ν0 > 0, it suffices to replace m1 with
ν0 in the argument below.) When τ = 1, one has U = V = 1;
otherwise, writing p = r + s with r(λ, ε) =

∑

i<m1
ai(ε)λ

i

and s(λ, ε) =
∑

i≥m1
ai(ε)λ

i, we notice that all the ai(ε)’s
in the “regular” part r have valuation in ε greater than τ−1
whereas the “singular” part s has at least one coefficient of
valuation τ − 1 or less. This allows to define

U
(0)
1 =





1
Iτ−2

λ−m1ε1−τs(λ, ε) 1





and

V
(0)
1 =





λm1 ετ−1

Iτ−2

−ε1−τ 0





and to transform

B =





1
Iτ−2

p(λ, ε)





into

U
(0)
1 BV

(0)
1 =





λm1 ετ−1

Iτ−2

−ε1−τr(λ, ε) λ−m1s(λ, ε)





=





λm1

Iτ−2

λ−m1s(λ, 0)



 + O(ε).

We have obtained the first diagonal entry of the target lead-
ing matrix B̃(λ). More generally, let τj = σmj

+ · · · + σmq

for 1 ≤ j ≤ q. One can then repeat the process and suc-
cessively multiply on the left and on the right by, respec-

tively, τ × τ unimodular matrices diag[Iτ−τj+k, U
(k)
j ] and

diag[Iτ−τj+k, V
(k)

j ] where U
(k)
j , V

(k)
j are defined for 0 ≤ k ≤

σmj
and 1 ≤ j ≤ q on the same model as U

(0)
1 , V

(0)
1 . (In par-

ticular, U
(0)
j+1 = U

(σmj
)

j and V
(0)

j+1 = V
(σmj

)

j .) It follows that

defining U = U
(σmq )
q · · ·U (0)

1 and V = V
(0)
1 · · ·V

(σmq )
q allows

to transform B into B̃ = UBV . Note that the last diagonal
entry of B̃(λ) stems from the term λm of p(λ, 0).

Theorem 5 thus defines a rational reduced form for equiv-
alent square perturbed matrix polynomials over F[λ]. The
invariants of A(λ, ε) it gives access to are all the eigenvalue
leading terms of A(λ, ε) of the form µεβ with β−1 ∈ N∗. Of
course, this reduced form is not unique, for only its leading
matrix is required to be normalized as S(λ)max.



4.2 Case where m > n

In this case the maximal leading Smith form can still be
misleading. Consider for example A(λ, ε) = λ2 − ε2. Here
(m, n) = (2, 1) and S(λ)max = A(λ) but Theorem 1 fails to
recover the leading terms of the two ε-eigenvalues. There
is thus no point in trying to systematically reduce A(λ, ε)
itself. It is however always possible to reduce B(λ, ε) =
diag[Im−n, A(λ, ε)]. Returning to our example, it is not hard
to see that B(λ, ε) = diag[1, λ2 − ε2] would be transformed

into the matrix Ã(λ, ε) shown in introduction. The possi-
ble need for embedding can be explained as follows: the
perturbation theory of Section 2 is linear in the sense that
only A(λ, ε) mod ε2 is used. Embedding may thus be needed
to “linearize” A(λ, ε) into an augmented reduced matrix to
which Theorem 1 applies successfully.

5. CONCLUDING REMARKS
This study suggests two natural extensions. First, our re-
sults can easily be translated to hold in the general case
where A(λ) has some nonzero eigenvalues. In that case we
can consider the local Smith form of A(λ) at λ = 0 ([9,
p. 330]) and use local equivalence of matrix functions rather
than matrix polynomials. Second, the constructive proof of
Theorem 5 yields a naive reduction algorithm that requires
the computation of the Smith form S(λ, ε) of A(λ, ε) with
A(λ, ε) viewed as a polynomial matrix over F. However, it
would be interesting to know how to compute an equivalent
perturbed matrix polynomial with maximal leading Smith
form without resorting to the full knowledge of S(λ, ε). This
is left for further research.
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