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Abstract

Integral representation is applied to various problems of algorithmic indefinite
and definite summation and for generating combinatorial identities. An integral
representation approach to rational summation is compared to known algorithmic
approaches. It is shown that the integral representation can be used for practi-
cal improvements of known summation algorithms. A new solution to Riordan’s
problem of combinatorial identities classification is presented.

1 Introduction and basic notions

Integral representation (contour integration) is a classical technique for evaluating infinite
sums ([13]), evaluating combinatorial sums ([8]), proving combinatorial identities ([6, 8]),
finding inverse combinatorial relations ([9, 28, 30]), etc. In this paper we use ideas of
integral representation to improve known algorithms of indefinite and definite rational
summation (Section 2), show that a similar technique works for evaluation of single and
double Abel-type sums (Section 3) and present an improved integral representation ap-
proach to the problem of classification and generation of combinatorial identities (Section
4). Examples obtained by our Maple implementation are given.

1.1 The notion and properties of the res operator

We briefly recall the definition and manipulation rules of the res operator, together with
an outline of applications of this notion in combinatorial summation problems.

Let G be a set of formal power series in w containing only finitely many terms with
negative powers over a field K.



e The order of a monomial cpw" is k.

o The order of series C'(w) = ¥ cxw® from G is the minimal order of monomials with
nonzero coeflicients.

e Denote by G}, a set of series of order k, then G = U2 __ Gk.

o Two series A(w) = ¥, arpw” and B(w) = ¥, bpw" from G are equal if and only if aj, = by,
for all k. We can introduce in G operations of addition, multiplication, substitution,
inversion, differentiation and integration (as in the well-known Cauchy algebra). After
this G forms a field w.r.t. to addition and multiplication.

e For C(w) from G define the formal residue as res,C(w) = c_.

o Let A(w) = 32, arw” be a generating function for a sequence {a;}. Then

ar, = res,A(w)w™ ', k=0,1,2,...

For example, one of the possible representations of the binomial coefficient sequence
18

(2’) = res,(l+w)"w ™, k=0,1,2,...,n, (1)

for natural n. Similarly, for an exponential coefficient
o _ Kok=0,1,2 2
i res,, exp(aw)w"”, =0,1,2,..., (2)

for an arbitrary complex constant a.

There are several properties (rewriting rules) for the operator res which immediately
follow from its definition and general properties of Cauchy algebras. We list only a few
of them which will be used in this paper. Let A(w) = 32, arpw” and B(w) = 52, brw

be generating functions from G.

R1. ( res removal)

res, A(w)w™*! = res, B(w)w

for all k=0,1,2,...if and only if A(w) = B(w).

—k-1

R2. (linearity) for any o, § from K
a resy, A(w)w ! + B res, B(w)w ¥ = res, (aA(w)+ BB(w))w *L,

R3. (substitution) for f(w) from Gy (k > 1) and A(w) any element of G or for A(w) polyno-
mial and f(w) any element of G including a constant

f: f(w)k resz(A(z)z_k_l) = A(f(w))
k=0

R4. (inversion) for f(w) from G

A(w
f( )d h( ) —(z),

where g(w) from G is the inverse in G of the series h(w) = Flwy from G1.

\_/

Zz res, (A(w)f(w) w™*"1) =



If a formal power series C'(w) from G converges in a punctured neighbourhood of zero,
then the definition of res, C(w) coincides with the usual definition of res,—oC(w) used
in the theory of analytic functions (Grothendieck residue). The formula

ar, = res,A(w)w™ 1, kE=0,1,2,...,

where A(w) = Y72, arw®, is an analog of the integral Cauchy formula

1
a = —f A(w)w_k_ldw
271 Jjw|=p
for coefficients of the Taylor series in a punctured neighbourhood of zero. Similarly it is
possible to introduce the definition of formal residue at the point of infinity, logarithmic
residue and the residues theorem.

1.2 Simple applications

Most of the time one can think of res as a contour or definite integral. Accordingly,
we call a representation of an expression in terms of res an integral representation.
Typically, the application of the integral representation for evaluation e.g. of a definite
sum Y.bo_ f(k) uses the following steps:

1. replace f(k) by an integral representation res, F(k,w);

2. in the resulting problem

b
Y res, F(k,w)
k=a

change the order of the operators res and Y using linearity of res obtaining

b
res, Y  F(k,w);

k=a

solve summation problem under the res sign: find G(w,a,b) = Yo__ F(k,w) (observe,
that in many cases this summation problem is much simpler than initial summation
problem, usually it degenerates simply to geometric summation in k);

3. compute closed form g(a,b) = res,G(w,a,b) which gives an answer to the original
summation problem.

A similar sequence of steps (probably involving multiple residues, and use of more
than just linearity rule) is applied to other problems. Steps 1 and 3 above do not look
algorithmic for an arbitrary f(k), but as we will show further in many particular cases it
1s possible to perform them in algorithmic fashion.

We remark also that res operator commutes not only with the definite summation
operator, but with the shift operator Fj,, difference operator Ap = E; — 1 and indefinite
summation operator Y. If a summation problem under the res sign becomes a geometric
summation problem, then the usual indefinite summability condition has a straightfor-
ward analog in the integral representation. A closed form function f(k) is said to have



a closed form sum g(k) (usually written as g(k) = Yo f(k)) if (Ex — 1)g(k) = f(k). Let
f(k) have an integral representation res,, F'(k,w) with kernel F(k,w) being geometric
with respect to k, i.e.

EyF(k,w) = q(w)F(k,w).

Then
(B — 1) F(k,w) = (q(w) — 1) F(k,w),

and

> F(kw) = q(w)%lF(k,w). (3)

In other words, in integral representation with the geometric in k kernel the application
of the operator Ay corresponds to the multiplication of the kernel by (g(w) — 1), and the
application of the operator Y, corresponds to the multiplication of the kernel by W

1. An operator form of the summability equality
(Ek—l)Z:Z(Ek—l) =1
k &

corresponds to the trivial “summation unit” cancellation equality

1
() = ) =1

If f(k) = res,F(k,w) and g(k) = res,G(k,w), then the summability condition
(Er — 1)g(k) = f(k) translates into divisibility of F(k,w) by (¢(w) — 1). Observe, that
f(k), g(k) do not need to be geometric or hypergeometric in order for F(k,w), G(k,w)
to be geometric. The reasonable question here is, how often the kernel of an integral
representation of the given closed form function f(k) is geometric? In our opinion often
enough in order to try to apply the integral representation in algorithmic fashion, as will
be shown in later sections.

We first demonstrate an application of the above mentioned scheme (1-3) to the
problem of indefinite summation with the help of a simple example.
Example 1. (Indefinite Halmos’s sum) We need to evaluate an indefinite sum S(n) =

Se(—1)F (:) Using (1) write (step 1)
k n, —k-1 (1+w)
S(n) = Z(—l) res, (1 + w)"w = (step 2) = resw E —w)
k k
(we ended up with simple indefinite geometric summation problem )

= resw(ltuw)n ) ) res, (—(l—l—w)"_l (_l)k) _

1+ w w

1This last value is sometimes referred to as a “summation unit” in integral representation literature.



-1
(—l)k_1 res,(l + w)“_lw_k = (using (1) backwards (step 3)) = (—l)k_1 (Z 1).
Observe that the cancellation of (1 4+ w) in the denominator allowed us to use (1) for the
second time. As was mentioned above, such a cancellation plays an important role in the
decision procedure of summability for different classes of summands.

2 Rational summation revised

Consider
y(k+1) —y(k) = F(k), (4)

where F'(k) is a rational function over a field K of characteristic 0. The decomposition
problem is to find whether (4) has a rational solution, and if it does not, then to extract
an additive rational part R(k) from the solution such that the remaining part satisfies a
simpler difference equation, where the denominator of the new right-hand side has the
lowest possible degree. This gives an equality

gm) = R(k) + ;mk), (5)

where H(k) is a rational function whose denominator has the lowest possible degree.
Algorithmic treatment of rational summation and decomposition problems started with
the work of S.A.Abramov [2, 3]. There were a number of algorithms and improvements
developed over the following years, see e.g. [5, 21, 24, 26, 17] (in particular [26] gives
complete overview of these algorithms and improvements to them). Most of these algo-
rithms’ description explicitly avoid polynomial factorization in K[k]. Before discussing
the issues with such an approach we recall a criterion of rational summability as found
in [4, 5] (we essentially quote the definitions and the criterion from [5] here).

2.1 Criterion of rational summability

Consider (5), assuming w.l.o.g. that F(k) is a proper rational function. We temporarily
replace the coefficient field K by its algebraic closure K. The partial fraction decompo-
sition of F'(k) has the form

-5 ©

Write o; ~ o if o — o 1s an integer. Obv10usly, ~ 1s an equivalence relation in the set
{a1,...,a,}. Each of the corresponding equivalence classes has a largest element in the
sense that the other elements of the class are obtained by subtracting positive integers

from it. Let aq,...,a, be the largest elements of all the classes (v < m). Then (6) can
be rewritten as
1
Z E Mi;( Ek J (7)
=1 j=1 )



Here M;;(Ey) is a linear difference operator with constant coeflicients (a polynomial in
Ey over K). Let F(k) have the form (7) and suppose that (4) possesses a solution
K(k

R(k) €

). The rational function R(k) can be written in a form analogous to (7):

1

) Z Lii (B0) g (8)
=1 j=1
This presentation is unique and therefore
Lij(Ei)(Ex — 1) = Mi;(Er). (9)

From here we read the rational summability criterion:

A necessary and sufficient condition for existence of a rational solution of (4) is that for
alli=1,...,v; 7 =1,...,1; thereis an operator L;;(E}) s.t. (9) holds.

Then, (4) has the solution (8) and all other rational solutions of (4) can be obtained by
adding arbitrary constants. If at least one polynomial M;;(Ey) is not divisible by Ej, — 1
then (4) has no rational solution. We want then to construct (5). Consider one term
from (7) writing it for simplicity in the form

1 .
, 7 >1

M=y 7=t

compute the quotient L(Ey) and the remainder w:

and write the right-hand side of (5) in the form
1 w

m ‘|‘Zm (11)

k

L(Ex)

This gives a solution to the decomposition problem for this single term, since the de-
nominator of the rational function under the sign of the indefinite sum has obviously the
lowest possible degree.

Note that instead of (10) one can consider the reduction modulo Ej — 1 of the form

M(Ek) = V(Ek)(Ek - 1) + ’l)Eg,’U € F, (12)

where ¢ is some convenient nonnegative integer. It is easy to see that if ¢ < deg M(E})
then deg V(Ey) < deg L(Ey). It M(Ey) = M;;(Ey) then one can take ¢ = §;, where 4; is
s.t. My, (Ey) is divisible by Ek and is not divisible by E5 +

Now we will describe an analog of this criterion in integral representation framework.
For this we will use the following representation

1 1 00 : 1 oo .
. —(k—a)u, j—1 - —ku au,, j—1
0= o)y = G=1) /0 e w? " tdu = 7(] — )i /0 e (e u? ) du. (13)




Consider again only one term M(Ek)ﬁ (j > 1), from (7). Let for clarity

M(Ey) = 5tEltc + ...+ 1Er + Bo, L(Ep)= ’yt_lE,i_l + ...+ 7EL+ 7.
Consider two commutative polynomials with the same coefficients
P(X)=BX' 4 ...+ 8 X +Po, Qz)=maX" 4. .. +mX +7.
Noting, that

1
BE;

(k — a)

1 o0 :
= G- /0 Bre~ ek (ea"uj_l) du, 0<1<t,

write

1 1 o0 K (o j—1
M(Ek)(k—a)j = (j—l)!/(; P(e™)e” (e u )du,

1.e. the kernel of integral representation of the summand is geometric in k& with the base

e ". Now (as in (3))

1 1 © Ple™)e™ i
;M(Ek)(k—a)j:(j—m/g el G L
If M(Ey) = L(Ex)(Er — 1) then P(e™) = (e —1)Q(e™),

1 1 & —u\, —ku [ au, j-1
%:M(Ek)(k—a)j: (j—l)!/o Qe ™)e (e u )du,

and we can use (13) backwards to get a closed form expression for the result of the rational
summation. In other words, divisibility of M(E) by Er — 1 condition is equivalent to
the divisibility of P(e™*) by (e™* —1) (or P(X) by (X —1)). The last in turn means that
P(1) =0 or 3j_y 8 = 0 and this condition has to hold for all terms (for all 4, j) in (7) in
order for F'(k) to be rational summable.

Note that the property of coefficients of full partial fraction decomposition proven in

[23] is immediate corollary of summability criterion (divisibility of M;;(Ey) by Ex — 1 in
7).

If P(1) = w # 0, then P(X) — w is divisible by X — 1. In this case (10) corresponds
to P(X) = Q(X)(X — 1) + w, and

1 o —uy —ku (ou, j—1
m/; Qe ™)e (e u )du,

provides the rational part of the decomposition (11) while

1 o we—ku au, j—1
(j—1)!/§ T () du

provides the nonrational part of the decomposition (11).

It is easy to see, that P(X)—wX* for 1 < ¢ <t will be also divisible by (X —1), which
leaves us with the same amount of flexibility in expressing the rational decomposition
result as equation (12) does. Needles to say that very similar observations hold in the

case of the definite rational summation.



2.2 Rational summation algorithms

Let F(k) = %. Define the dispersion of F(k) (disF (%)) [2] to be the maximal integer

distance between roots of the denominator g(k). It can be computed e.g. as the largest
nonnegative integer root of the polynomial

r(h) = Res(g(k), g(k + h)).

Denote p = disF'(k). If p = 0 than we can take in (5) R(k) = 0 and H(k) = F(k) (see
12, 5, 26)).

Now, let p > 0. All algorithms mentioned above carefully avoid factorization in K[k]
and fall into one of the two categories.

Iterative (Hermite reduction like) algorithms will start with R(k) = 0 and H(k) =
F(k) and decrease dispersion of H(k) by 1 at each iteration, reducing nonrational part
H(k) and growing rational part R(k). The number of iterations is equal to p.

Non-iterative (Ostrogradsky analog) algorithms first build universal denominators
u(k) and v(k) such that denominator of R(k) will divide u(k), that denominator of H (k)
will divide v(k) and then reduce the problem to linear algebra, solving a system of linear
equations with size ~ degu(k) (see [24, 5, 26]). In its turn, usually degu(k) = ©(p). The
choice of u(k) of the lowest possible degree is obviously crucial here. In [17] an algorithm
which a gives sharp bound u(k) in the case when F'(k) is rational summable (H (k) = 0)
is presented.

In both of classes of algorithms if p = disF (k) >> deg g(k) the complexity of rational
function decomposition is defined by the value of p.

Another issue with these algorithms is as follows. If H(k) # 0 in (5), then the answer
to the decomposition problem is not unique. Also summation algorithms ensure that the
degree of the denominator of H(k) is the lowest possible, they do not guarantee that the
degree of the denominator of R(k) is minimal. For example,

125 k% — 153 k% — 20k — 2 B> —21k*
1710 125 53 0k — 270 + _
- (k+1)(k—9) (k—3)k (k — 10) (k — 4)

2k5 — 35 k% + 180 k3 — 345k + 195k + 30 1
+ HI5E+30 51
(k—10)(k—4) (k—3) (k—2) k (k- 1) —
6 k7 — 249 kS + 4250 k® — 38235 k* + 191998 k® — 517302 k2 + 624180 k — 151200
(k—10)(k—9)(k—8) (k—7) (k—6) (k—5) (k —4) k

1
+1/10 > =
— k— 10

= —1/5

=1/10

1 1
S re—ty oy Ty

and first two answers are typical for implementation of rational summation in different
CAS’s. The problem of choosing the “right” value of ¢ in the remainder in (12) is easy



to solve ([26]) in cases when only one shift equivalence class is presented in the partial
fraction decomposition of F(k). When there is more than one shift equivalence class, the
desire of authors to avoid factorization does not allow an easy solution to the problem of
minimization of the denominator of the rational part R(k).

2.3 Do not avoid factorization and follow criterion

It was already observed that while solving the rational decomposition problem (5) fac-
torization in K[k] should not be avoided. It is shown in [22] how the use of factorization
improves timings of computing dis F(k).

After computing disF(k) we can use factorization (which is already performed and
which is effective [18]) to easily split F'(k) into shift equivalence classes and explicitly
build (7) using simple observations :

a) if deg g1(k) # deg g2(k) then linear factors over K of the denominators g;(k) and gs(k)
fall into different shift equivalence classes in (7);

b) finding among given polynomials of equal degree those which are shift equivalent is an
easy task ([22]);

¢) full partial fraction decomposition over K is effective [7] at least when K = Q;

d) computing a quotient and remainder in (10) is trivial (e.g., remainder is obtained by
substitution of 1 instead of Ej, into M(Ey) in (10)).

Treating different shift equivalence classes separately will allow one to minimize the
degree of the denominator of the rational part in each class as in [26].

The complexity of partial fraction decomposition does not depend on the dispersion
of the given rational function, which means that at least in the case disF'(k) >> deg g(k)
this leads to practical and efficient algorithms. Efficiency of this straightforward solution
1s confirmed by our prototype implemented in Maple. Compare, for example, the result
of computation of

Z_—7350— 14099 k* — 9198 k3 — 14400 k + k® + 404 k* + 4 k7 + 8k° + 8k
- (B +3Kk2+4k+3)(k—49)(k+1) (B +k+1)(k—50)k B

E* + k* + 50
(B*+k+1)(k—50)%
which takes standard Maple rational summation procedure (Ostrogradski analog) 4.77
seconds, to the result of the same summation problem

1 l—l- E4+1
E—=50 k K34+Ek+1’

produced in 0.24 seconds on the same machine using full partial fraction decomposition,
and treating the shift equivalence classes separately.

There are even more reasons not to avoid partial fraction decomposition in the case
of the definite rational summation. We refer here to the summation problems of the form
S r—o f(k,n), where partial fraction decomposition of f(k,n) w.r.t. k has pairs of terms as,



1 1 1 1
€.g. nk+1 n(n—k)+1‘ or k241 _ (n—k)2+1 . . ' .
by known summation algorithms, which avoid factorization. For example, the “W-Z”

. These kinds of problems are not directly treatable

method 1s not applicable here, because such terms are not proper hypergeometric. The
usual answer from computer algebra systems for this type of summation involves a linear
combination of values of the ¥ function, which is equivalent to 0 but is not recognized
as such. After performing full partial fraction decomposition it takes little effort to find
such cases. The use of the integral representation is even more advisable here, because
after performing geometric definite summation under integral sign the terms in the kernel
of integral representation corresponding to the above terms of the input expression will
cancel each other.

3 Integral representation and Abel type sums

Abel-type sums and combinatorial identities with them [1] are widely used in combina-
torial enumeration. In [28]-[30] the classical generating functions technique was used to
prove different identities involving Abel-type sums. In [20] the “W — Z” method was used
to check correctness of recurrences related to the Abel-type identities. Evaluation of the
Abel-type sums with the help of the integral representation, considered in this section, is
interesting for several reasons:

— it is a direct method of evaluation of Abel-type sums (methods of [25] can not be ap-
plied to Abel-type sums, because they are not of the hypergeometric type);

— detailed analysis of the condition of summability for Abel-type sums ((22)—(24) and
(20)) leads to new formulae involving double sums of the same kind ((25)—(26));

— finally, it is easy to generate multivariate analogs of Abel-type identities based on the
same form of integral representation (see [8], §§ 3.3, 5.1 — 5.3), their g-analogs [19], some
applications of Abel-type identities in [8] § 3.2, etc).

Proposition 1 Let i,5=0,1,2,...; 2,y — real such that x,y #0,—1,—-2,.... Then

- (e + k) (y+n—kr*d X (ety )

c(s , 14
= El(n — k)! = () (n — s)! (14)
where
N:mln(n7z+]_]—)7 C(S) :EfZO(Z(t77:7$)p(S_t7j7y)7 fO’I"I: > 07] 207 (15)
N=mn, ¢s)=1, fori=20,7=0,
and values p,q are found as
=, t=0,
p(t,i,z) = %p(t,i—l,w)—%p(t—l,i—l,w—l—l), 0<t<i, (16)
0, otherwise,
S p(ti, ), 0 <1< —1,
a(b.i,) = { 0, otherwise. (17)

10



Proof of this proposition uses the method of integral representation and splits into the
following lemmas.

Lemma 1 Let numbers p(t,i,z) be defined as coefficients of expansion (18) in the poly-
nomial basis im—t!kﬁ, t=0,1,...,%,

% _ ip(t,i,w)%. (18)

Then coefficients p(t,i,x) satisfy (16), and
Zp (t,7,2) (19)
Proof follows from representation

T(k,i,z) = (¢4 k) ik = (z+ k) (o4 k)

z -k z-(k—1)! -
= i 12) = (-1 1,e 4 1) =
= - ;1 , T - ’I, T ==
11,—1 ‘ ($+k)k_t li—l . ($+k)k—t+1
= = ti—1z) = ti—lao+1) o =
p 2 pi= L) T — g 2 phi= Let ) G
1i—1 ‘ (w—l—k‘)k_t 1 7 ($+k)k—t
= - t,i—lg)—"——— > p(t—1, 1, 1)——.
g 2= L) S = (- i e+ )

% in the last expansion and in (18) we obtain (16).

The proof of (19) is by induction on 4, taking into account that

Comparing coefficients near

i—1 i—1

Zptzm in(t,i—l,:[:)—lZp(t,i—l,m—}—l):

t=0 z t=0

1 1
= ;Rz_l(lﬂ) - ;Ri_l(iﬂ + ]_)
|

Lemma 2 Consider polynomial Pi(u,z) = Yi_op(t,i,z)ut with p(t,i,z) from (16). It
can be represented as

Pi(uvw) = (1_“’)@1'(“717)7 Qz(uvw) = (1 —u)_lpi(u,:[;), (20)
where
Qi(u,z) = Z q(t,, :c)ut,

and q(t,i,z) are from (17).

11



Proof. Formula (19) is equivalent to P;(1,z) = 0, which proves (20). Since
Qi(u,z) = (1 —u) ' Pi(u, ) =(1+ > u")P,
t=1

comparison of coefficients near u* gives the relation (17). n

Lemma 3 The following integral representations hold

(Gl + ’“ Z res, Pi(v, z) exp((z + k)o)o 1, (21)
i :c—l—k (y—l—n—k)“_k_j _
l;) ! (n —k)! N
= res,———— Pl(u’ :B) - Pj(u,y) exp((z +y + n)u)u™ ! = (22)
R (23)

Proof. From (18), integral representations

p(t,i,z) = res,Pi(u,z)u"",
(xz + k)k_t/(k —t)! = res,exp((z+ k)v)v_k"'t_l,

and linearity and substitution rules for res it follows, that

k k)k
(Gl + Zp (¢4, 2 ((+ Z res, P, ~t=! res, exp((z + k)v)v FH71 =

(we can extend the summation to oo here because p(t,i,z) = 0 for t > )

Z res, b, Ju=""! res, exp((z + k)v)o "t =
t=0

= res, (exp(( + E)v)o=r 1{21) res, P;(u, z)u H}) —

= res, (exp((:n + k)v)v~Ft {Pz(u,:v)}‘ B ) .
"
From (21)-(22) for each multiplier of summand in (14) using linearity and inversion

rules of the operator res, we obtain

S (@R (y o — k)
k! (n —k)!

k=0

12



= Zj: res, (Pi(v, z) exp((z 4 k)v)v ™" res, P;(u,y) exp((y + n — k)u)u‘"+k‘1) =

(we can extend the summation to oo here using standard properties of residues)

o0

E res, ( ,z) exp((z + k)v)v™""! res, P;(u,y) exp((y + n — k)u)u‘“+k—1) _

k=0

= res, (Pj(u, y) exp((y + n)u)u """
. {i (exp(—u)u)® res,P;(v, z) exp(zv)(exp v)kv—k—l}) —

_ (P explly 4 mpuuet { PR

which gives (22).

Formula (23) follows from (22), taking into account (20).

Writing in (23) the coefficient near u™ of the series under the res sign, we obtain
(14) and first clause of (15). Similarly from (22) for ¢ = 5 = 0, taking into account

Py(u,z) = Py(u,y) = 1, we obtain in the right hand side of (14) the desired expression

21.::0 (m-}_(i+zgn :

which completes the proof of proposition. -

Corollary 1 With the same conditions as in Proposition 1 and a = const

r a—r (n—r) (m_l_k)k—z (y_l_,r _k)(n—k—j) B

>y

iz (n—v) k! ' (r —k)!
= res, exp((a+ z + y)u) Py(u, z) Pj(u, y)(1 — u) 2u™""! = (24)
St o+ y) (s 1)/ (n =) fizj=0,
= Z2_:(0z—|—3r:—|—y)"“’ n—s'(iiqlzm) 1=1,2,...,7=0,
e i
Y o (a+z+y)""/( n—s)‘(thzw t,j,y)), i, =1,2,....
= (25)
For small a (@ # 1)
SRR, z + k)F +n — k)R
PO exp(-an)’ k!) = (n—k))! =
exp((z +y)a)/(L - a)?, ifi=j=0,
=< exp((z+y)a)Qi(a,z) /(1 —a), i=1,2,...,5 =0, (26)
exp((z + y)a)Qi(a, 2)Qj(ay), i,j=12,....
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Proof of (24)—(25) uses a scheme similar to the above and integral representation
(22) for the sum (14). One can easily obtain the following integral representations for

sums (24) and (26):
res, exp((a + = + y)u) Pi(u, ) Pj(u, y)(1 — u) " u™""",

res,(exp((z + y)a) (e, ) Pj(a, y)(1 — o) *u™"71).

These formulae generate (taking into account (20)) the right hand sides of (25) and (26)
for different values ¢ and j.

Note that the summability condition in (14) for ¢ = 1,2,... is equivalent to the
representability of the polynomial P;(u,z) as (1 —u)@Q;(u, z), which allows one to remove
the factor —=— under the res sign. This effect is analogous to the summability condition
of rational function in the previous section. Note also, that the inversion formula of
Lagrange and cancellation effect was used twice when obtaining (25) and (26). That
is why the result of evaluation of double sum for ¢,7 = 1,2,... in these formulae are
sometimes simpler (more compact) compared to the result of summation in (14) for the
same values of ¢ and 3.

We have a Maple implementation which tries to recognize Abel-type sums and pro-
duces the answer using (14)—(17) as in the following example (with proper assumptions
on symbolic parameters a, z):

kz:jl (az + k)2 (n — k)" (Z) -

—(az 4+ n)" azx — (az +n)" + (az + n)n_l nar + n"axr + n®
a’z?(azx + 1) '

4 On Riordan’s problem of combinatorial identities
classification

J.Riordan ([28], Introduction) posed the problem of characterization of known pairs of
inverse identities of the form

Ayy = Zcmkbka bm = Edmkak, m = 0,1,2,..., (27)
k=0 k=0

where C' = (¢mi) 1s an invertible infinite lower triangular matrix whose general term is
a linear combination of known combinatorial numbers, and D = (d,,;) is its inverse. An
interpretation of such identities with the help of generating function technique is given
n [28, 29, 30]. Each identity of this form generates for m,n = 0,1,2,... a combinatorial
identity

3 eurdim = 8(m,n), n,m=0,1,2,...,

k
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where d(m,n) — Kronecker symbol.

The first complete solution to the Riordan problem was given in [8]-[10] by defining
and studying properties of special type of matrices. In this section we extend the results of
[8]-[10] and demonstrate how the integral representation can be used in a unified approach
for generating new types of combinatorial identities. Proofs of theorems from this section
are technical and can be found in [12].

Definition 1 We say that relation (27) is relation of type R (R? or RY(am, Br; @, f 1)),
if the general term of matriz (cuk) is defined by the formula

Cnk = f—i res,(o(z) f(2) 1 (2)™ 27",

where q s a natural number, am, Br # 0; ¢(2), f(2),9(2) € G(0).
In particular, for ¢ = 1, the matrix (¢,,) is infinite lower triangular with the general term
ek = 25 xes, [(p()f(2) ()" ). (29
A finite m x m matrix of the type R . k= 0,1,...,m, is called matrix of the type R,,.
Theorem 1 (/8]) Relations of the type R' are equivalent to the functional relations be-
tween generating functions A(w) = 3,50 Ammw™, B(w) = Yiso Brbrw® :
A(wip™ (w))2' (w)ip(w) = @(w) B(wf(w)),

where = = w/pw), (w) = & (w/h(w).
Matriz (dny), the inverse of the matriz (cm) of the type R exists, is of the type R',
and has the following general term

At = g—k res; {90_1(w)z'(w)t/(w)qp_k"'lf—m—l(w)/wm—k+1} 7

where t = wf(w) € G(1).

Theorem 2 (on splitting) A matriz of the type R(m,Br; ¢, f,¥) splits into the product
of matrices of the types

R(ama Ck; P1, 17 ¢)7 R(cm7 dk7 P2, 17 ]—) and R(dmwgka ©3, f7 1)7 (29)
where p; € G(0),5 = 1,2,3, p1paps = 1 and ¢1(0) = ¢3(0) = p3(0) = 1.

Remark 1. Theorem 2 is stronger than the analogous result in [8] (see also [10, 11]),
while the scheme of the proof remains almost the same. The presence of new weighting
coefficients and series @y, @2, s in matrices of type R in elements of expansion (29):

— allows us to formulate new results on algebraic characterization (Theorem 5);

— gives new classification of known pairs of inverse identities (Theorem 6);

— generates new identities of Riordan type and introduces new objects (methods), as e.g.
the Lagrange summation matrix below.

15



Theorem 3 (on classification [8]) Inverse identities of the standard type, of Goulde,
of Legendre—Tshebyshev, of Abel (standard and exponential), of Legendre ([29], Tables
2.1-2.6, 3.1-3.6) are identities of the type R (o, Br; e, f,9).

Theorem 4 (on combinatorial characterization) Binomial coefficients, Stirling numbers
(standard and generalized) of the first and second kind and many other combinatorial
numbers belong to the type R.

The proof of this theorem is by comparison of integral representation for combinatorial
numbers ([8], pp.269-274) with the matrix of type R. For example, formula (1) for
binomial coefficients implies that <Z‘) = (nfk) is of type R(1,1;1,1,1 + w).

Remark 2. Results of Theorems 3 and 4 are not surprising, because an integral
representation of the type R typically appears in the evaluation of combinatorial sums of
different kinds (see [8], main theorem). This allows one to give a combinatorial interpre-
tation to summation formulae, related to matrices of the type R. Weighting coefficients
a,, could be interpreted for example as a number of terms or a value of the sum under
investigation. Operations of multiplication, substitution and inversion in Cauchy algebra
of series, hidden in the construction of matrix of the R type, also have a combinatorial
interpretation (see [14, 16]), explaining in every particular case the algebraic structure
of the enumeration object under investigation. The result of Theorem 2 plays a similar
role (compare to the result of Theorem 7 below). Example 2 of the generation of in-
verse identities of Legendre-Tshebyshev type can be viewed as an extension of Riordan
approach.

Theorem 5 (algebraic characterization) Let G be the set of all matrices of the type R.
Then G forms a subgroup of the unitriangular group UT N(R), when

A = Pmip(0)f(0)9™ (0).
The Riordan group [31] is a subgroup of the group G.

Definition 2 We refer to the matriz (28) as the summation method of type

R = R(aum, Br; ¢, [, %), if all cpup, are nonnegative and lim,,,_ o ¢ = 0 for any k.
We refer to summation methods of types

R(am,cr; 1,1,9), R(em,dr; 9, 1,1) and R(dpm, Br; 1, f,1)

as summation methods of Lagrange, of Voronoy and analytic respectively.

Theorem 6 Let A(w), B(w), C(w) and D(w) be generating functions for sequences oy,
Br, cx and dy, respectively. For a summation matriz of type R to be reqular ([15]), it
necessary and sufficient that

A(w/P)(w/9) = ¢B(wf(w)).

Similarly, summation matrices of Lagrange, Voronoy and analytic will be regular, if an
only if respectively
A(w/p)p(w/ep) = C(w),
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C(w) = ¢D(w),
D(w) = B(wf(w)).

The proof follows immediately from the Toepliz-Shur theorem [15].

Theorem 7 The well known summation matrices of divergent series due to Vallee-
Poussin, Obreshkov, Cezaro, Euler, P(q,r,s), general methods of Lagrange, Voronoy,
Gronwall etc. are particular cases of the reqular summation method of type R.

A regular summation method of type R splits into the product of summation methods of
Lagrange, of Voronoy and analytic.

Remark 3. Summation method of Lagrange is introduced here for the first time.
Gronwall’s method is a particular case of the summation method of type R for ¢(w) =
1. The second part of the last theorem is an extension of known result in divergent
summation theory, that Gronwall matrix splits into the product of matrices of summing
divergent series of Voronoy and analytic.

Note, that construction (28) and results of theorems 1-7 can be easily extended in
several variants to the multidimensional case with the help of the main theorem in [8].

Example 2. Inverse identities of Legendre—Tshebyshev type ([29], table 2.6, relation
5). Let p > 0,7 >0, and in (27)

C = (i) = ((Tm“)) —(r—1)(mrT;fl)), m,k=0,1,2,....  (30)

m —k

Then
a) matrix (30) defines the relation of type

RY = RW(1,1;(1 + 2)P(1 — (r — 1)2), 1, (1 + 2)");
b) inverse identities defined by matrix (30) are equivalent to the following functional

identities

A(z(1+2)7") = (1 + 2" B(2),
B(z)=(1+ z)_p_lA(z(l +2)7").
¢) matrix D = (dni) (inverse of the matrix (30)) is defined as

d) matrices C and D can be expanded as C = ABI, D = I B~ A™', where I is the

identity matrix,
mr
A — m — ,
oo =((,7))

st (7)o, )
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e) matrix relations

CD=I, C=ABI, D=IB"'A™",
ABB'A'=1, BB 'A'=A"' ABB'=A

generate the following combinatorial identities

S {(z2) I s

— m— 8 m—s—1
s=k

m7k:O71727"'7

()

s=k

_ rm —+p B B rm —+p _
_((m—k> (’I“ U(m—k—l))’ mvk_071727 9

SO () el i)

t— E—k—-1
.(P—I— n)(n—l—r ):J(m,k), m,k=0,1,2,--,
t—n n—k

tzikg:t ((mp—s) _(r_l)(m_i_l)) (_l)s_k(pji;t) .

t+rk—k—1 B mepfm+rk—k—1 B
( t—k )_(_1) ( m — k )7 mak_071727"'7
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Proof. From the definition of the general term of matrix C' and from the integral repre-
sentation of binomial coefficient (1) taking into account (29), it follows that

Cmp, = res,(1+ z)rm+pz_m+k_1 —(r—1) res,(1+ z)rm+p mtk

= res, ((1 + z)rmﬂ?(l (r—1)z)/2™" k+1)
Comparison of this expression for ¢, with (28) proves the claim a) of this example,
if we let

am = Pe=1, p(z) = (1+2)°(1 = (r = 1)2), f(2) =1, P(2) = (1 + 2]’

Other claims follow from properties of the operator res and of the relations of type

R n

5 Conclusion

We have shown that ideas of integral representation can be used in an algorithmic fashion
and can be implemented in computer algebra systems. Our Maple implementation of
improvements to the rational summation algorithms and of Abel-type summation is based
on a few simple formulae of the integral representation. The use of wider set of basic
formulae of integral for different classes of expressions ([8], pp.269-274, [27]) will allow
further extensions. We also plan to continue investigation of the applicability of similar
ideas to the Gosper and “W-Z” types of summation problems. Improvements to some
classes of hypergeometric summation based on the integral representation ideas are given
in [12] and implemented in Maple.
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