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Abstract

A simple, novel, and efficient computational model for a graph
unification method for NL parsing is presented. We rely the body
of existing research on labeled graph unification for natural language
parsing. This model offers several advantages including: simplicity, ef-
ficiency, and amenability to a low-level, efficient, and straight-forward
implementation. A consequence of this is that some earlier considera-
tions with respect to garbage collection and redundant node copying
become obsolete. The model uses a novel feature of sub-node structure
sharing.
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1 Introduction

The various grammar formalisms for natural languages (NL), such as HPSG
(Head-driven Phrase Structure Grammar), LFG (Lexical Functional Gram-
mar), and PATR-II, use labeled graph unification to express grammar con-
straints and to capture other NL phenomena. We describe in section 2 how
graph unification is used to describe NL rules, and how it is implemented at
a conceptual level in actual parsers.



A sufficiently efficient algorithm for unifying two graphs is known. How-
ever, it is destructive to the argument graphs, which is an undesirable effect
in NL parsing. Coping argument graphs is a very expensive solution ([27]),
so several algorithms which reduce the total cost of unifications during pars-
ing have been proposed. These algorithms are described in the review of the
known techniques and related work in section 3.

The essential ideas of the previous algorithms are sometimes obscured by
several unimportant issues, such as considerations with respect to garbage
collection and expensive system calls for memory allocation. The algorithms
were presented as high-level recursive algorithms, without including all de-
tails, such as handling the sets of edges. Memory management is not directly
handled, so it can lead to memory fragmentation. Some data fields, such as
‘status’ and ‘mark’ fields, are redundant, when the algorithm is re-designed.
Motivation for our model with respect to the previous approaches is further
described in section 4.

Our model is described in section 5, and in section 6 we give a detailed
example. Discussion of some of the remaining issues is given in section 7,
and the conclusion is given in section 8. The source code for a C and a Java
implementation of the algorithm is given in the appendix, and it is available

on the Web.!.

In this paper, under the term graph we assume a labeled directed graph
(with labeled nodes and edges). Under the term rooted graph we assume a
labeled directed graph with a distinguished node, called root, such that any
other node is reachable from the root node.

2 Graph unification in NL parsing

Let us consider the following sentence:
The red book is on the table.

If we use a context-free grammar to parse it, then the parse tree shown in
figure 1 can be a typical result (without the dotted line). This representation
does not capture some syntactic phenomena, such as agreement. For example,
we cannot say “*The red book are on the table.” because the noun phrase
and the verb phrase have to agree in number, which is singular for ‘book’
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Figure 1: Context-free parse

and plural for ‘are’. This can be solved by passing and matching the number
information along the path denoted by the dotted line in figure 1.

Issues like these are handled in wnification-based grammars, like HPSG
(Head-driven Phrase Structure Grammar), using feature-structures or attribute-
value matrices (AVM). For the example in figure 1, instead of using lexical
rules

D — The,AD.J — red, N — book,V — 1s, P — on,D — the, N — table,

we rewrite words by the following feature structures:

The red bpok 18 on the table.
[d]  [adj] [Is-|m_[OAbje[cf\| sg]]] [I(ile [A: [N: sg]]] [p] [d] [n]

The feature structures have types, like d or sm_object above, and they include
features, such as H and A above. The features are associated with their
values, which can be atoms, such as ‘sg’, or another feature structures. If a
type is not specified, then the most general type is assumed.?

The types are organized into a type hierarchy. For example, we can
specify that sm_object is a subtype of noun, and be is a subtype of verb, so
that the words ‘book’ and ‘is’ above can be used in rules that require types
noun and verb, respectively. The agreement information ‘number = singular’
is encoded as N:sg, which is part of the agreement (A) structure, which is
part of the head (H) information. The head information is passed from the

2This description illustrates very briefly the use of feature structures and unification in
NL parsing. For a more complete account, see [25, 7].



The red book

Figure 2: Graph representation: sentence rule and a component

head word to the whole phrase, e.g., by the following two rules:

noun ]

[m] — e[
[ a] » [l

The agreement between a verb phrase and a noun phrase in a sentence is
enforced by the following rule:

)= (W Ta oy | [0 TA o) 1)

The indices ‘[0’ denote the same structures, or shared structures, as they are
usually called. Shared structures are also called a reentrancy.

2.1 Graph representation

A feature structure can be represented as a rooted graph. Hence, a grammar
rule can be represented as an array of rooted graphs, which can share struc-
ture. For example, the above rule (1) can be represented as graph shown
in figure 2. Additionally, the figure illustrates the graph representation of
the phrase “The red book,” and the dashed line connects two nodes that are
unified during parsing. In one of the following steps, a graph representing
the phrase “is on the table” is unified with graph rooted at node vp and the
sentence 1s parsed. In this example, the parsing result, which we simply call
a parse, 1s just the node labeled with s. In general a parse is a rooted graph,
and it is usually larger than a single node. Some parse information, i.e., some
parts of the parse graph, originate from the information encoded in the final
rule, and some information is obtained through structure-sharing with the
daughter nodes.



2.2 Chart parsing

Chart parsing is a frequently used algorithm for parsing natural languages.
A chart 1s a table with entries called chart edges. A chart edge covers a
continuous sub-string of the sentence, which is specified by its span. The
algorithm starts by adding chart edges that cover recognized tokens in the
sentence. These edges are passive edges, they are part of the passive chart,
and each of them contains a rooted graph, which is a partial parsing result
of the covered sub-string. For each new passive edge, we attempt to unify it
with a designated daughter in each rule (e.g., the left-most daughter, or the
head daughter). If unification succeeds and the rule has only one daughter,
the result is a new passive edge. Alternatively, if unification succeeds and
the rule has more daughters, an active edge is created, which is added to
the active chart. Active edges are similar to dotted rules in the Earley’s
algorithm—some daughters are parsed and they cover a sub-string of the
sentence, while one or two daughter nodes surrounding this parsed part are
considered for expansion using the passive edges that border the covered
span. When an active edge is expanded by unifying one more daughter, the
result is either a completed passive edge if all daughters are unified, or a new
active edge otherwise.

The process continues until no more edges can be added to the charts.
Any passive edge of an appropriate type that covers the whole sentence is a
parse. Alternatively, the algorithm can stop earlier as soon as one parse is
found.

Unification of the labeled graphs is an operation that uses a significant
portion of the running time.

3 Related Work

A useful introduction to unification is the general survey by Knight [14]
(1989). It briefly describes some of the work that we review here as well.
Some of the early NL parsers that used graph unification were parsers
written for the PATR-II grammar formalism (Shieber [24]). They used an
efficient destructive algorithm for labeled graph unification (Pereira [22]).
The algorithm is sufficiently efficient with respect to the problem of unifying
two graphs; however, it is destructive, i.e., it destroys the original graphs, or
at least one of them, whether the unification succeeds or not. In the chart
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Figure 3: Nalve unification

parsing algorithm, we want to keep the original graphs as well.

In chart parsing, unification is done between a constituent in a rule or in
an active edge, and a passive edge. If unification succeeds, then a new edge
is created. Whether unification succeeds or not, we want to keep the original
rule and the original constituent.

Let us call the original graphs that are unified the argument graphs, and
the resulting graph if unification succeeds, the result graph. A solution is to
make copies of the argument graphs before unification, and then to unify the
copies. This is a simple and expensive solution, which was used in some early
parsers ([24]). Most of the unifications during parsing fails (60% according to
Tomabechi [26]), so this excessive copying becomes a “computational sink,”
as described by Wroblewski [27]. Figure 3 illustrates this simple method with
copying, which is called the naive method.?

The figure illustrates unification of the following two AVMs represented
as graphs:

d: [e: [T]] an 3 [b: Tl
L:[b: [TH] ! [‘; fh [71)

As we can see from the figure, we first copy all 10 nodes with edges, and then

3The example was used in Wroblewski [27].



do destructive unification. There are 6 nodes at the end of unification.

In the process, we did some unnecessary copying. This problem was
described by Wroblewski [27], and he differentiates two kinds of unnecessary
copying in this approach:

over-copying: When two argument graphs are copied, then too many nodes
are copied since the resulting graph has less nodes that the total number
of nodes of the two argument graphs. For example, in figure 3 we copied
10 nodes and 9 edges, while the resulting graph used only 6 nodes and
6 edges.

early copying: The problem of early copying is that we make copies in
advance, without knowing whether the unification will succeed or not.
A better approach would copy as unification proceeds. At a point where
unification fails, we stop copying and do not make any extra copying.

Wroblewski [27] describes an algorithm that partially solves this problem:
It reduces over-copying, and eliminates early copying. The algorithm does
not copy the argument graphs. Instead, it works non-destructively on the
original argument graphs. Whenever a change on a node is required, it does
not change the original node but makes a copy of it, and changes the copy.
Once a copy is created, all additional changes are done on it. A copied
object is found by following the forward pointer from the original object.
There can be a chain of the forward pointers. Whether the unification fails
or not, after the procedure the forward pointers from the original nodes to
the copied nodes are invalidated using a simple global counter trick, which we
will explain later. The effects of the Wroblewski algorithm on the graphs in
figure 3 are illustrated in figure 4. The dashed lines depict forward pointers
to the created copies. The copies are made as unification progresses, so early
copying is eliminated. Over-copying can still occur. For example, during
unification, we may unify two nodes A and B, and a copy of the future node
Ay is created. Two other nodes C and D are unified, and a copy (] is created
for them. However, we may later need to unify A and C. It is done on one
of the copies, e.g., Ay, so the copy C; was unnecessarily created, and that
represents over-copying.

Wroblewski algorithm was a relatively simple solution to the problem, as
a modification of the destructive unification algorithm; but it was not the
first offered solution. Two solutions were given before by Pereira [22] and
Karttunen [13, 12].



Figure 4: Wroblewski unification

Pereira [22] proposed a structure-sharing method inspired by Boyer and
Moore [4] method used in Prolog implementations. During unification, the
changes are recorded in an “environment,” so the unification is non-destructive.
An advantage of this approach is the use of hidden structure-sharing, which
will be described later in the context of a similar approach by Emele [10].
The method does prevent over-copying and early copying. The disadvantage
is that an overhead cost of O(logd), where d is the number of nodes, is as-
sociated with each access to a node. Another disadvantage is that this is a
complicated method to implement (Wroblewski [27]).

Karttunen [12] proposed a reversible unification method, in which all
changes are done on argument graphs, but they are recorded so they can
be undone. If unification succeeds, then the result graph is copied and the
argument graphs are reversed to their previous state. This method also
prevents over-copying and early copying, but the final reversal of all changes
and copying in case of a successful unification have significant cost, and these
operations are avoided in some other methods.

Global counter trick. Wroblewski [27] used a global counter trick to
invalidate node changes on the original nodes after the unification is fin-
ished. Suppose that we have a node n, and the field n.forward is used as



Figure 5: Unification without redundant copying

a pointer to its copy. We also have an integer field n.generation, whose
value is equal to the current global generation counter Generation. Let us
assume Generation = 1. After finishing unification, whether it succeeds
or not, we increase Generation to 2, which invalidates all forward point-
ers. Namely, when the next unification is performed, we will find that
n.generation < Generation, which means that the forward pointer is not
valid and the node n does not have a copy. When a new copy is created, we
make the update n.generation < Generation.
The global counter trick is advanced by Emele [10].

In 1990, Godden [11] describes another technique for lazy unification using
closures, which are programming language constructs. In the same year,
Kogure [15] presents a unification method with lazy incremental copying,
and a method that orders the unification of nodes in such way, so that the
paths that fail more frequently are unified first.

Redundant copying and hidden structure sharing. Beside over-copying
and early copying, Emele [10] defines redundant copying. In the previous
example in figure 4, we can see that the branch g : h was unnecessarily
copied, since it was not changed. This is referred to as the redundant copying
(Emele [10]). A solution without redundant copying would produce a graph
as shown in figure 5. The nodes on the paths g, g:h, and d:e are not changed
so we can reuse them in the new graph. The reused structures are shared
between different AVMs, so this approach is called structure sharing.

We have already introduced the term ‘structure sharing’ in a different



context, as intended sharing of constituents in grammar design (it is also
called reentrancy). Although both of these senses of ‘structure sharing’ are
very close, and usually implemented in the same way, there is a crucial dif-
ference between them. If two paths are structure shared by grammar design,
where they are usually part of an graph or a rule, then any change of the
sub-graph at the end of one path is reflected in the other path too. However,
if two paths are structure-shared in our new sense, i.e., they are shared for
the efficiency reasons but they are different at the grammar level, then if
the node at one path is changed it has to be separated from the node at
the other path before changing it, and they are not ‘structure-shared’ any
more. For this reason, we call this new concept of structure sharing hid-
den structure sharing. There are no established terms for these two kinds of
structure sharing. The first kind of structure sharing was called reentrancy,
feature-structure sharing, and structure sharing. The second kind, i.e., hid-
den structure sharing, was called data-structure sharing, subgraph sharing,
and structure sharing (Callmeier [6]).

We are not discussing reentrancies here, so under the term structure shar-
ing we assume hidden structure sharing.

Hidden structure sharing does not only save time since no redundant
copying is done, it also saves memory. These savings can be significant in
chart parsing. For example, a daughter constituent can be included in its
mother node with no additional copying. In chart parsing, various mother
nodes of a node are stored in the chart in the same time, so this copy re-
duction can prevent exponential explosion of the memory and running-time
requirements.

If hidden structure sharing is used, then we have to treat graphs as ‘read-
only.” Namely, a part of a graph can be shared by some other graph that
does not seem to be related, so whenever we change a node in a graph,
it has to be copied before the change. Hidden structure sharing cannot
occur within a graph, and between graphs that are to be unified, as noted
by Malouf et al. [20]. The problem is that if this occurs, then we cannot
distinguish hidden structure sharing from structure sharing. There are ways
to implement hidden structure sharing even in this case (Emele [10]), but
they introduce some overhead and significantly complicate the algorithm. If
we want to avoid hidden structure sharing in this case, then it is sufficient
not to use hidden structure sharing between the grammar (lexicon and rules)
and the chart edges (Malouf et al. [20]).

In the basic hidden structure sharing approach, a node n can be shared
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between argument graphs and the result graph only if it is not changed and
none of the nodes x such that there is a path r — n — z from the root r is
not changed. If a node n is changed, then it cannot be shared, but also any
of its ancestors, i.e., the nodes between the root and n, cannot be shared.
For example, if the node at the end of path g:h was changed in figure 5, then
the node at the end of path g could not be shared. Emele [10] extends this
hidden structure sharing approach so that only the changed nodes are not
shared. In this approach, even though g:h is not shared, the node g can be
shared. This is achieved by keeping several versions of each node and by
using the global generation counter. Each version of the node is associated
with a generation number. At the start of a unification, the global generation
number is incremented, and current environment is defined as a sequence of
valid generation numbers. Using this environment and the global generation
number, we can choose for each node the right version, and we can verify
whether we are allowed to make changes on the node, or we have to make a
copy of it.

This hidden structure sharing method is called lazy copying. It has the
advantage of eliminating over-copying, early copying, and redundant copying.
It eliminates redundant copying in the strict sense, i.e., the ancestors of a
changed node are not copied. A disadvantage is that there is an overhead
cost associated with accessing the right version of the node, similarly to
Pereira [22].

Early copying in the strict sense. Tomabechi [26] takes another ap-
proach in improving the Wroblewski algorithm. He gives a new definition of
early copying, which we will call early copying in the strict sense. By this
definition, early copying is any node copying done before we know whether
the argument graphs can be unified. If they cannot be unified, then no
copying is done at all; otherwise, the result graph is copied from the argu-
ment graphs. Wroblewski’s incremental copying algorithm does not prevent
early copying in the strict sense. Tomabechi [26] offers a modified algorithm,
called “quasi-destructive graph unification,” which prevents early copying in
the strict sense.

The problem is solved by having some temporary fields in the original
nodes, and instead of creating a node copy, additional changes are stored in
these temporary structures. These structures are called scratch fields. The
nodes that are not changed during unification are not copied. The nodes
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that are changed are not copied as well, but the scratch fields are used to
store new values.

Abstract machine. A different approach to parsing unification-based gram-
mars is taken by Carpenter and Qu [8]. They present an abstract machine
for attribute-value logic, with an approach similar to the Warren’s Abstract
Machine (WAM) [3] for Prolog. This approach is not directly related to our
approach, since it does not treat graph unification as a separate issue. In-
stead, elements of a grammar (such as rules and types) are compiled into the
abstract machine code. The code is a complete parser with built-in back-
tracking mechanism.
The approach is implemented in the system LiLFeS [21, 18, 19].

Van Lohuizen [16, 17] improves the Tomabechi’s algorithm by separating
the scratch fields into a separate array. This saves some memory and the
algorithm becomes thread-safe, i.e., unifications can be done in parallel by
different threads on the same collection of graphs. Indexing scratch structures
is a problem and two solutions are offered: using a hash-table and using
indices associated with nodes.

‘Quick-check filtering.’ Finally, let us mention the work described by
Malouf, Carroll, and Copestake [20], which describes the efficient feature
structure operations without compilation. Feature structures are not com-
piled, as in the abstract-machine approach, but they are used in their original
form in unifications. The advantages of not compiling the grammar are: Dur-
ing grammar development, compilation of a large grammar is an expensive
operation, which is done frequently; and additionally, the original structure of
AVMs is lost due to compilation, which makes grammar debugging difficult.

Malouf et al. [20] describe an efficient graph unification, which relies on
the Tomabechi’s quasi-destructive algorithm. They use hidden structure
sharing in non-strict sense, and a new technique called quick-check filter-
ing. Quick-check filtering consists of checking for some frequent points of
unification failure. These points are identified using statistical methods, and
their values are collected in a vector for each graph. Before two graphs are
unified, a check on these vectors is done, and if it fails, the unification is
not started since we know that it will fail. This method leads to significant
running-time savings of 50% [20].
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Platform PET. The platform PET [5, 6] is related to the work done
by Malouf et al. [20]. The platform was designed to be flexible and easy
to experiment with different algorithms and approaches. It is a lower-level
implementation, which uses the Tomabechi’s algorithm with hidden structure
sharing, and with improved memory management.

4 Motivation

A frequently used approach to graph unification in the context of NL parsing
is the abstract machine proposed by Carpenter and Qu [8]. The method is
used, for example, in the system LiLFeS [21, 18, 19]. The graphs are compiled
into the code for the abstract machine, and the graph unification is implicitly
performed by running the code. As suggested by Malouf et al. [20], this ap-
proach is not suitable for all applications. Some of the situations where it is
not suitable, such as for our parser, include: chart parsers with explicit graph
unification operation, which do not need backtracking; during development
of large grammars, where compiling is an expensive operation that is done
frequently; situations where the loss of the original graph structures is not de-
sirable; and for grammars that do not use appropriateness and well-typedness
of feature structures (Carpenter [7]).

On the other hand, the frequently used graph unification algorithm in
the context of NL parsing is Tomabechi’s quasi-destructive algorithm [26],
which offers a good combination of efficiency and simplicity, especially when
enhanced with hidden structure sharing (Malouf et al. [20]). Tomabechi
algorithm eliminates early copying in the strict sense, i.e., it does not copy any
nodes until it is clear that the unification has succeeded and the construction
of the result graph is about to start. However, the algorithm uses scratch
fields in existing nodes to store intermediate results, which require additional
amounts of memory. We observe that the effect of maintaining scratch fields
1s essentially equivalent to the effect of node copying.

The paper that describes the algorithm (Tomabechi [26]) presents some
arguments that emphasize practical considerations of expensive garbage col-
lection and dynamic memory allocation:

Copying takes time and space essentially because the area in the
random access memory needs to be dynamically allocated which is
an expensive operation. (Tomabechi [26])
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and

This time/space burden of copying is non-trivial when we consider
the fact that creation of unnecessary copies will eventually trigger
garbage collections more often (in a Lisp environment) which will
also slow down the overall performance of the parsing system.

(Tomabechi [26])

Tomabechi’s and other algorithms use atomic operations of the intersec-
tion of two sets of arcs and of the set complement. If we assume that these
operations take constant time, then each algorithm is linear in the graph size.
However, they are not constant: a straightforward implementation leads to
a linear running time of those operations, which means that the unification
algorithms are quadratic.

The unification algorithm can be significantly simplified and optimized by
rephrasing it at a lower level with direct and efficient memory management,
without hidden details, and even without recursion or function calls.

One of the problems with previous algorithms that use the global gener-
ation counter is that when automatic garbage collection is used the garbage
collector cannot free the objects that are invalidated only by incrementing
the global counter.

Although some newer contributions ([16, 17, 5, 6]) address the issue of a
better memory management scheme, they still use the old algorithm frame-
work with some old drawbacks. For example, the memory scheme can be
further simplified and optimized; instead of using arc lists we can use arrays
of arcs. It is not clear that the previous algorithms avoid memory fragmen-
tation, which leads to inefficient running-time in garbage collection as well
as in dynamic memory allocation.

This approach. After taking all this into account, we provide a model
which addresses these issues:

e It is a simple model, and it explicitly solves the problem of graph
unification in the context of chart parsing.

o It does not use compilation, does not change the original graphs, and
does not require well-typedness and appropriateness, while providing
the way to add them.
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o It uses the ‘global counter trick’, hidden structure sharing, and it han-
dles cyclic graphs.

e The algorithm is simple and complete, without any complex atomic
operations. It is eflicient and flat (does not include recursive calls or
any function calling). One of the advantages of not expressing arc-set
operations (complement and intersection) as atomic operations is that
we use sub-node hidden structure sharing, i.e., structure sharing at the
edge level.

e The memory model is simple: consists of an array and a small group of
variables. There is no use of garbage collection or memory allocation
system calls, unless we want to expand the array. The memory is not
fragmented.

e The model is a low-level machine which can be directly translated to a
low-level language like C.

We do not want to imply that recursive functions and function calls are
necessarily a disadvantage. It is usually not a difficult task to turn a recur-
sive function into a non-recursive one, and modern compilers provide inline
functions, which avoid inefficient function calls. But, by expanding the al-
gorithm completely as we did, and by optimizing it in this way, we also
achieve a new higher level of understanding the algorithm, and its efficiency
is not dependent on some external mechanisms, which are not necessarily
guaranteed.

5 Graph Unification Machine

Before describing the machine in detail—the memory model and the algorithm—
let us first give a higher-level overview.

The memory model consists of an array of integer cells and some integer
variables. A graph edge is represented as a pair of cells: an attribute and the
address of the end node. An attribute is represented as a negative integer
smaller or equal than —2. The term address refers to the index of the initial
cell of a node. The edges coming out from the same node are grouped into
sequences, which are sorted by the attribute numbers in ascending order. For
example, to sort edges in alphabetic order, we use the following encoding for
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attributes:

attribute:‘ a b d e g h
idnumber:‘—? -6 -5 —4 -3 -2

The number ‘—1’ is reserved as the sentinel that marks the end of the se-
quence. For example,

0 1 2 3 4
EIEIEIECIEY

denotes a node with two edges: one with the label a (—7), which leads to the
node at address 8 (array index 8), and the other with the label d (—5), which
leads to the node at address 18. Instead of writing actual attribute codes,
we can replace them with labels for the purpose of clearer presentation:

[a [s [d [18]1]

Small indices above the cells are used to denote the absolute position within
the array.

The type of a node is encoded in another cell, which we call the T cell. We
do not present details about unification of typed feature structures, but we
do discuss how the type identifiers stored in 7' cells can be easily used to add
type unification to presented algorithm. We also discuss how the algorithm
can be adapted to implement appropriateness and well-typedness. A type is
simply encoded as an integer, and in actual implementations it can be looked
up in a table. Here, we only assume that T = 0 for a leaf type, and T # 1
for a complez type. As in Pereira [22], we define: a leaf to be a place holder
used in structure sharing, and it can be unified with an atom or a complex
type; a compler node is a node that can have outgoing edges and it cannot
be unified with atoms; and, an atom cannot have any outgoing edges, and it
can be unified only with a leaf or the same atom.

When a node is changed in a non-destructive way, we use a generation
counter and a forward pointer using two cells: G and F. These cells are used
only during unification: if GG is equal to the current Generation and F > 0,
then F' is a forward pointer to the actual copy of the node.

Finally, we can describe a typical node representation: It consists of the
cells G, F, and T, and a sequence of outgoing edges. For example,

0 1 2 3 4 5 6 7
(12 1]a|8|d|18]-1] (2)
G F T
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denotes a complex node (T = 1), with two outgoing edges. The cells G and
F can be ignored between unifications. If 7" = 0, the node is a leaf node,
which implies that it does not have any outgoing edges, hence there is no
need for the ‘—1’ sentinel. For example,

0 1 2 3 4 5 6
Lofofr]rjfofofo]
G F T G F T

represent two nodes. The first one (at address 0) is a complex node without
outgoing edges (it cannot be unified with an atom), and a leaf node (at
address 4).

During unification, whenever a node is accessed we first check if G =
Generation. If this is true and F > 0 then we have to follow the address
contained in F' (forward) to find the actual value of the node. Actually, it
is normally sufficient just to check G = Generation, but there is a special
case where G = Generation and F' < 0, which will be discussed later. This
procedure is called dereferencing. The new node may also contain a forward
reference to another node, and so on. The sequence of nodes visited in
this way is called a reference chain. Path compression is performed in each
dereference for efficiency reasons; i.e., the F' cells of all nodes except the last
two in the reference chain are updated with the address of the last node.

An atom cannot be changed, so there is never a need to make forward
reference from an atom; i.e., there is no need for G and F cells in this case. In
order to disambiguate between atoms and other nodes, we assume that the
value of a G cell is always non-negative, and we encode atoms with negative
numbers. Hence an atom node occupies just one cell, with its negative integer
id value. Similarly to attributes, we will present an atom cell as instead

using the actual stored value, i.e., , if the atom ‘A’ is encoded as —1.

A node does not necessarily occupy a continuous memory location. It
can be fragmented into a linked list of memory locations during unification,
and permanently due to sub-node hidden structure sharing. This is done by
using non-negative integers in cells normally occupied by attributes or the
‘—1" sentinel. Whenever such a number is encountered, we dereference it and
continue to read sequence at the given memory location. For example, the
node 2 can have the following fragmented representation in the memory:

0] 1 2 3 10 11 12 20 21 22
|1 [i12f 1 [20])d[18]-1]] a8 |10] (3)
G F T
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Our algorithm relies on the Wroblewski and Tomabechi algorithms, with
hidden structure sharing addition (similarly to [20, 5, 6]). However, the
distinction between Wroblewski and Tomabechi algorithms is greatly reduced
in the context of our memory model. One of the points of this work is to
show that there is no essential difference between copying the changed node
and not copying it but using a scratch structure to keep a temporary list of
edges.

The algorithm proceeds in two phases: In the first phase, we unify the
graphs, similarly to Wroblewski’s and Tomabechi’s unifyl and unify-dg
algorithms. Recursion or any kind of function calling is avoided, since it
introduces processing overhead. If a node is not changed, even after it is
unified with another node, it is hidden structure shared. Parts of a node,
l.e., edges, can also be structure shared. Instead of recursive calls, we use a
stack to store addresses of node pairs to be unified. The stack is also used in
path compression. If unification fails, we simply invalidate all forward cells
for future unifications by increasing the generation counter by 1.

If unification succeeds, the second phase is executed, which is copying.
The result graph is consolidated, by copying and dereferencing. This is also
done without recursive calls. The depth-first search is performed using the
stack. The high-level pseudo-code for the first phase is given in algorithm 1,
and for the second phase is given in algorithm 2.

5.1 Memory model

The memory model can be divided into two parts: the static part, which
keeps its state between unifications, and the nonstatic part, whose value
can be discarded between unifications. We adopt the convention of using
capitalized names for the static variables. All variables are integer variables,
and all arrays are arrays of integers.

Static memory. The static part of the memory model consists of the ar-
ray A, having the length A_len, the index Alloc_last, which denotes the last
used cell of the array, and the generation counter Generation. The initial
value of Alloc_last 1s —1, and the initial value of Generation is 1. Figure 6
depicts the usage of the array A. We will also refer to the array A as the
memory. The first part of the array contains all graphs in the passive and
active charts, from index 0 to index Alloc_last. This is the useful part of the
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Algorithm 1 First phase
1: initialize memory and verify the amount of free memory

2: push addresses of argument graphs on stack
3: while stack not empty do {First phase}

4:  |pop two node addresses and dereference them

5. |if the nodes are equal then

6: ‘continue

7:  |if at least one node is leaf then

8: ‘make forward to another node

9: |else if at least one node is atom then

10: ‘uniﬁcation fails, return

11:  |else {both nodes are complex nodes}

12: merge arc lists into a new location, with pushing node addresses
13: to be unified later on stack, and sharing a tail of the list if possible
14: if the result can be embedded in one node then

15: ‘embed the result in the node

16: else if existing location can be used then

17: ‘make forwards to existing location

18: else

19: ‘repackage the result into existing node(s)

array between unifications, i.e., the static part. The initial value of G cells
for all graphs in the chart is 0.

Additionally, we need to keep initial addresses (array indices) of all graphs
that the parser maintains, and their sizes. This is static information, but we
do not include it in our memory model, since it is application dependent and
should be maintained externally.

charts reserved stack temporary
VRS N\ | ] > e |
arTgl arng res terrpifirst tempIIast repackIIimit

Alloc_last ~ Stack_top

Figure 6: Array usage
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Algorithm 2 Second phase

1: initialization; state <— FORWARD); i < root (7 is the current node)
2: while state # END do

3:

Nelie ]

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

I AN

if state = FORWARD then
dereference 1
if ¢ is atom, or it was visited, or it is being visited,
or it does not have edges and it is in charts area then

state «+ BACKWARD, update size, and mark ¢ as visited (F < —1)
else
push copy of ¢ to reserved area, with replacing F with negative
address of F, and attributes with addresses of original attributes
if ¢ has no edges then

if 7 is in charts area then

‘update size and pop copy from reserved area
else ¢ «+ copy of ¢
mark ¢ as visited, state «+ BACKWARD

else

‘push the pointer address of the last child, and set 7 to the pointer
if state = BACKWARD then
if stack is empty then state + END
else
pop the edge pointer address from stack
if the previously visited tail is shared, and this edge can be shared
then
increase size and share this edge
else
update pointer with ¢
replace attribute address with attribute
if there are more edges then
push new pointer address on stack
1 « the pointer; state «+— FORWARD
else
if the whole node can be shared then
‘pop it from reserved area, update size, and set 1
else ¢ «+ the node address

35: add the size of newly occupied memory to size; increment Generation
36: return ¢ and size
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Nonstatic memory. In order to unify two graphs, we need to know their
initial addresses argl and arg2, and their sizes sizel and size2. Figure 6 may
be misleading since it shows two graphs occupying continuous portions of the
memory. They can be fragmented in general, due to hidden structure sharing.
The size of a graph is the number of cells used by the graph, excluding the
reference cells in fragmented nodes due to sub-node sharing.*

Before starting unification, some memory space starting from Alloc_last 4+
1 1s reserved for the result graph. This can be done since we can calculate an
upper bound on the size of the result graph using the sizes of the argument
graphs.

Additionally, the unification procedure makes use of a stack. The stack
can be handled as a distinct array, but we find it convenient to use a part
of the array A as the stack. We can calculate an upper bound on the size
of stack, so this possible. The reserved and stack areas span from the index
Alloc_last + 1 to temp_first — 1.

Indices temp_first and temp_last delimit the temporary scratch area used
during unification, which grows by increasing the index temp_last. If unifi-
cation succeeds, the result graph is copied at the position Alloc_last + 1, and
the index Alloc_last is updated with the new index of the last used cell. The
size of the result graph is determined in the process. Parts used in hidden
structure sharing are not copied.

We will see that we can save some time if we do not care about frag-
mentation of the temporary space during unification. However, in that case
the temporary area can grow up to the quadratic size to the size of the ar-
gument graphs. If we do care about fragmentation, we apply a procedure
called repackaging in some cases. The procedure takes some extra running
time, but it can keep the size of the temporary area linear to the size of
the argument graphs. In order to do this efficiently, we calculate an index
called repack_limit. If temp_last becomes equal or greater than repack_limait,
we apply repackaging in order to finish unification within available space.
Otherwise, we can use non-repackaging method, without worrying about the
large temporary area.

This memory model provides for a simple and efficient memory man-
agement. We do not have to handle memory fragmentation since the chart
always occupies a continuous initial portion of the array. If unification fails,

*The total size of several graphs can be larger that the actual number of cells they
occupy due to hidden structure sharing.
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there is no need for any memory clean-up. We simply increase Generation
counter and stop execution. There is no need for status fields, as in previous
algorithms: indices provide an easy way to determine a node status. If index
is less or equal Alloc_last the node is not copied, if it is greater or equal
temp_first it is a temporary copy, or it is a final copy otherwise.

Upper bounds on sizes. As already mentioned in this subsection, we can
calculate upper bounds on the sizes of the reserved and stack areas, and we
calculate the repackaging limit. These values are calculated at the beginning
of each unification, and we verify the size of the memory area. Hence, there
is no need to do array-bounds checking afterwards, during unification, which
improves the running time of the algorithm.

The size of the reserved area is determined by the upper bound on the
size of the result graph: maz_size. At the beginning of the graph unification,
we start with two argument graphs with the total size sizel + size2. During
unification, these graphs are unified in a pseudo-destructive way, using their
copies in the temporary area. We will refer to the size of this temporary graph
as the temporary graph size. In the temporary graph size we do not count
forward cells; i.e., G and F cells of the forward references, and references in
fragmented edge sequences. In other words, temporary graph size includes
only G-F-T cells of final nodes, 2 cells per edge, and ‘—1" sentinels.

Whenever two nodes are unified, the temporary graph size decreases, and
it also decreases due to edge unification. If at least one argument graph is
atom, the size of the result graph is at most 1; otherwise, it is the total size
of the argument graphs decreased by at least 3. Hence, an upper bound on
the size of the result graph, i.e., the size of the reserved area is:

maz_size = max(1, sizel + size2 — 3). (4)

In order to find an upper bound of the stack size, we consider two phases
of the algorithm:

In the first phase, the stack is used to store addresses of node pairs that
need to be unified, and it can temporarily store an array of addresses of F
cells for path compression during dereferencing. If at least one argument
graph is an atom, then a stack of size 2 is sufficient. We further assume that
the argument graphs are not atoms. Each pair of node addresses stored on
stack to be unified later is associated with a future node unification. Each
link in a reference chain is associated with one finished node unification.
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Since the initial root unification reduces the temporary graph size by at least
3 (argument graphs are not atoms), and any other node unification reduces
the size by at least 3 (at least 1 for nodes, and 2 for the associated edge
unification), the total number of node unifications is at most %(sizel + size2)
(because the size of the temporary graph cannot be negative). Hence, during
the first phase, we do not need more than

2
max(2, g(sizel + size2))

cells on stack (2 cells are used at most for one node unification).

In the second phase, the stack is used to keep addresses of the currently
visited complex nodes, and the currently visited edges in a depth-first search
of the result graph, and temporarily for path compression during dereferenc-
ing. As we saw before, each reference in a reference chain is associated with
a reduction of at least 3 of the temporary graph size. A currently visited
complex node occupies at least 6 cells of the final graph size (G-F-T, ‘-1’
sentinel, and 2 cells for at least one edge). We conclude that during the
second phase we do not need more than

(sizel + size2)/3

cells on the stack.
Hence, it is sufficient to reserve the stack area of

2
max(2, Lg(sizel + size?)J) (5)
cells.

Regarding the temporary area, we first note that it is possible to maintain
temporary graph structure in %maw_size cells. Namely, during unification
some edge lists can be defragmented, so we may need 3 cells instead of 2 for
some edges. The factor % is used to accommodate these extra cells. Addi-
tionally, for a short-term merge operation, we may need additional maz_size
cells. Hence, we may need 2.5 - maz_size cells in total, so we use the param-
eter repack_limit to mark the last 2.5 - maz_size cells, which is later used as

the ‘repackaging trigger limit’:
repack_limit = A_len — 2.5 - maz_size | (6)

This limit is used in two instances: first, if temp_first < repack_limit initially,
then we are guaranteed to have sufficient memory for unification; second, if
temp_last > repack_limit, we have to apply repackaging.
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5.2 Algorithm

We present the unification method as a single, flat algorithm, and conse-
quently it is relatively long. For this reason, we do not present it separately
and then describe it, but the comments are interleaved with the algorithm
specification.

The algorithm pre-conditions and post-conditions are the following:

Require: arg! and arg2 are starting addresses of the argument graphs, and
sizel and size2 are their sizes

Ensure: —1 is returned if unification fails, and the starting address res of
the result graph and its size size is returned otherwise. If the procedure
fails due to insufficient memory, the special token ERROR is returned.

In an actual parser, it is usually preferable to attempt to increase the
array size, than to return ‘ERROR’.

We first calculate parameters and initialize some variables according to
the discussion in the last section (equations (4,5,6)):

maz_size ¢ max(2, sizel + size2 — 3)

temp_first < Alloc_last + 1 + maz_size + |max(2, %(sizel + size2) |
temp_last « temp_first — 1

stack_top < temp_first

QU = W N —

repack_limit < A_len — 2.5 - maz_size

We verify that the memory size is sufficient:
: if temp_last > repack_limit then return ERROR

The stack is initialized:

: push argl on stack
: push arg2 on stack

[=n]

o =1

5.2.1 First phase

The first phase is unification of the graphs using the temporary memory
space and forward references. If unification fails, then execution stops and
—1 is returned. Otherwise, the second phase continues. The first phase is a
loop, which iterates until the stack is empty:

9: while stack_top < temp_first do
10: |19 < pop stack; 71 < pop stack
11: if ;1 = 7, then continue
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Variables i; and i3 are used as indices to the two argument graphs. The
keyword ‘continue’ starts a new iteration of the loop.

Dereferencing. Variable i1 is dereferenced with path compression. Deref-
erencing is finding the actual version of the node, and path compression is
updating traversed nodes to the address of the actual node, so that later
dereferences are faster. The technique is used in the UNION-FIND structure
for representing disjoint sets (Cormen et al. [9]), and when combined with
ranking it gives practically constant amortized time® for dereferencing, i.e.,
for the FIND operation. Ranking can be easily applied here if we add an
additional cell to the G-F-T cells in each node, but it would use additional
memory and practical time-saving significance is questionable. Asymptoti-
cally, it is not significant since the merge operation that follows takes linear
time in the worst case anyway.

If 2; needs dereferencing, then we follow the forward chain of references
until the node is found while storing the addresses of the traversed F' cells
on stack, and we update the F cells afterwards. There is no need to update
the F' cells of the last two nodes in the chain. The number ‘—1" is used as
the sentinel on the stack.

12:  |if A[i1] = Generation then

13: J « Alin + 1] {F cell}
14: if A[j] = Generation then

15: push —1 on stack

16 repeat

17: Tpush 11 + 1 on stack

18: i+ 757 « Al +1]

19: until A[j] < Generation

20: while A[stack_top] > —1 do A[pop stack]| « 5
21: pop stack

22: 11

Variable j is a temporary variable with the scope limited to the above
part of the algorithm.

Variable iy is dereferenced with path compression in the same way (it is
sufficient to replace 77 with 75 in lines 12-22:

’0(a(n)) time, where « is the inverse of the Ackermann’s function. a(n) < 5 for all
practical purposes.
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23:  |dereference 75 with path compression
24: if 1 = 7, then continue

Unification with an atom or a leaf. At this point we have two different
nodes that have to be unified. First we handle the case where at least one
node is a leaf node:

25:  |if A[i1] > 0 and A[i; 4+ 2] = 0 then {i; is leaf}

26: ‘A[il] — Generation; Aliy + 1] < iz {forward to i,}
27:  |else if Afiy] > 0 and A[iz 4+ 2] = 0 then
28: ‘A[ig] — Generation; Alia + 1] < 14

Otherwise, we check for the case where at least one node is an atom:
29: |else if Afi;] < 0 or Afip] < 0 then

31: Generation <+ Generation + 1; return —1

As we can see, if unification fails, then we just increment Generation by 1
and return —1.

Unifying two complex nodes. In the last case, we know that both nodes
are complex nodes, and we proceed with merging their edge lists. If the nodes
were typed, we would first unify the types. The lists are sorted, so they are
merged in linear time into a new list located after the end of the temporary
area. If an attribute appears in both lists, the corresponding pair of addresses
is pushed on the stack for later unification. If we used well-typed feature
structures, we would also push on the stack the id number of the appropriate
type. We discuss later in detail how this can be done.

During merging we maintain two variables embed; and embed, to keep
track of embedding information: embed; = 0 means that the resulting node
can be embedded into node 7 so far, and embed; > 0 means that the tail
of the resulting node starting from index embed; can be shared with node i,
starting from index srey. After merging, embed;, = —1 is used to denote that
no tail can be shared between the resulting node and the node 1;. Indices j;
and jo are used during merging to read input sorted lists, and j3 is used to
produce the output.
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32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44.
45:
46:
47:
48:
49:
50:
51:

(2 B
[SARTN

Ut
ot "

else
embed; + 0; embedy < 0; srcy < 11; STCy 19
J1 11+ 35 go 19+ 3; J3 « temp_last + 4
Aljs—1] «1 {set F of result}
while A[j;] # —1 and A[j;] # —1 do
while A[j;] > 0 do j; « A[ji]
while A[j;] > 0 do j2 + A[j2]
if A[j1] < A[j2] then
Alps] = Al &=+ 1 g3 g3+ 1
Alps] = Al &=+ 1 g3 < g3+ 1
embedy < j3; sTCy ¢ Jo
else if A[j;] < A[j1] then
Algs] & Alals Ja = g2+ 1 gz g3+ 1
Algs] & Alals Ja = g2+ 1 gz g3+ 1
embed| < j3; srcy — J1
else
Aljs] « Alj]
neEntlpept+lipaeptl
if A[j;] # A[j2] then
‘push Al[71] on stack; push A[j3] on stack
Aljs] « Alj]
neEntlpept+lipeiptl
if A[j1] # —1 then embed, + —1
else if A[j;] # —1 then embed; «+ —1

Location of the result node. After merging lists of edges the resulting
list 1s located at the position temp_last + 4, so that after updating G-F-T
cells at temp_last + 1 the new node can be appended to the temporary area.
There are four possible outcomes regarding the position of the resulting node:

1.
2.
3.

it can be embedded at position i1, and we ignore the merged list,
it can be embedded at position 14,

it 1s added to the temporary area without copying the edge list, or

. the resulting edge list has to be repacked due to memory shortage using

the space used by the argument nodes at 7; and ¢, provided that at
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least one of them is already located in the temporary area.

The first two cases are handled in the following way:

56: if embed; = 0 and (embedy # 0 or 17 < 13) then
5T: ‘A[iz] — Generation; Alia + 1] « 14

58: else if embed, = 0 then

59: ‘A[il] — Generation; Aliy + 1] < 12

Otherwise, in the next two cases we first decide about tail sharing. Usu-
ally, a tail can be shared only with one node, but if it can be shared with
both nodes, we choose the tail ending in the charts area. If the question still
cannot be resolved, we choose the longer tail.

60: else

61: if embed; > —1 and (embedy = —1 or (j; < Alloc_last and
62: Ja > Alloc_last) or embed; < embed; then

63: ‘]3 — embedy; Alj3] + srey; embedy +— —1

64: else j3 < embedy; Aljs] « srey; embedy + —1

The first of the two remaining cases is to add the node to the temporary
area. This is done if we have sufficient memory, or if nodes 7; and 73 cannot
be used for repackaging.

65: if j3 < repack_limit or

66: (i1 < temp_first and iy < temp_first) then

67: Altemp_last + 1] « 0

68: Ali1] < Generation; Alig] < Generation

69: Aliy + 1] « temp_last + 1; Aliz + 1]  temp_last + 1
70: temp_last < j3

Otherwise, we must repackage the resulting node into the space occupied
by the argument nodes, or at least we reuse one node if the other node is in
the charts area. First, we may have to swap 7; and 75, so that we can write
at the position of 7;. If possible, we also prefer 7; not to be the node which
shares a tail with the result:

71 else

72: if o1 < temp_first or

73: (embed, > —1 and iy > temp_first) then
T4: ‘swap 17 and 79

75: Alig] < Generation; Afig + 1] < 14
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6 | | | |A[] <0

Copy T cell, prepare indices i1, 19, and 77, which will be the source index
for copying, and start the loop. If we reach the end of the reusable edge
sequence, we look for the next available space (i3 or extend temporary area):

7 Aliy + 2] « Altemp_last + 3]

78: g1 ¢ temp_last +4; 11 11 + 35 19 ¢ 19+ 3
79: while A[j;] < —1 do

80: if i; < temp_last and Afi;] > —1 then

81: 14— 11

82: while Afiz] > 0 do 4 <+ Alii]

83: if 4 < temp_first then

84: if 15 > temp_first then i « iy; 15 + —1
85: else it < temp_last + 1

86: Ali] « it; 99 < i

87: if 1; = A[y3] then {don’t overwrite shared tail}
88: 14— 11

89: while Afi] < —1 do

90: Algs] « Alit]; Alys + 1] « Aldéi + 1]
91 s jo 4+ 2 i i+ 2

92: while A[:i] > 0 do ii < Afit]

93: if A[ii] = —1 then A[j3] « —1

94: else A[j3] « i

95: Alin] < A[n]; Alir + 1] « A[j1 + 1]

96: Wi+ n+l

97: Ali] « A[j]

98: if 1, > temp_last then temp_last « 1,

5.2.2 Second phase

If the unification was successful in the first phase, the new graph is copied to
the reserved area. During copying, all references are resolved to direct node
addresses, and all nodes are defragmented except for tail sharing with the
nodes from charts area. Whenever possible, hidden structure sharing is used
with previous nodes, but if we do not want some nodes to be shared in this
way, we can easily prevent it.

The algorithm makes a depth-first search through the new graph. The
status of a node is determined in the following way:
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Figure 7: The shared cycle problem

G < Generation : node is not visited
G = Generation and F > (0 : mnode is part of a reference chain
G = Generation and F <0 : mnode visited, or being visited, its

address is final.

As in the first-phase algorithm, we avoid using recursion or function call-
ing, but use the stack instead. Whenever an unvisited node is found, it is
copied to the reserved area with the value of F' cell being equal negative ad-
dress of the original F cell (it cannot be 0), and with replacing all attributes
with addresses of the original attributes. All edges are visited starting from
the last one. In this way, we can easily determine the maximal tail that can
be shared with the charts area, or if the whole node can be shared.

Cycles. An interesting issue is handling of cycles, since the algorithm does
allow cyclic graphs. The problem is illustrated in figure 7. The edges in
figure 7 are numerated in order in which they are visited. Let us assume that
nodes A, B, C, and D are not changed during the first phase. The problem is
whether the node D should be copied. If node E, which has not been visited
yet, 1s changed, we should copy all the nodes; otherwise, if the node E is
shared, all other nodes in figure should be shared as well.

One solution is to repeat the depth-first search until such anomalies are
resolved. However, this can lead to a quadratic search instead of a linear.
For example, let us assume that in the graph in figure 8 only the node G has
been changed. After the first visit, we detect that node A should have been
copied. It can be copied in the next visit, as well as nodes B and C, but the
nodes E and F are not copied, so one more depth-first visit is required. If we
extend example as shown in figure 9, then we need O(n) depth-first visits.

Another solution is not to allow hidden structure sharing of cycles, i.e.,
we always copy them. We use this approach because it is faster and it seems
that cycles do not appear that frequently in practical NL grammars. For
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Figure 8: Two shared cycles
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Figure 9: O(n) shared cycles
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example, the well-known LINGO grammar is an acyclic grammar.

The algorithm consists of a loop and we distinguish three states using
variable state: ‘FORWARD’ for descent to child nodes, ‘BACKWARD’ for
backing up, and ‘END’ to denote end of the second phase. Instead of up-
dating Alloc_last, we use new_Alloc_last and update Alloc_last at the end. In
variable size we accumulate the size of the hidden-structure-shared part, and
the size of the non-shared part (new_Alloc_last — Alloc_last) is added at the
end. Variable ¢ contains the address of the currently visited node. First, the
variables are initialized:

1: size < 0; new_Alloc_last + Alloc_last
2: 1 < argl; state <+ FORWARD

We consider the FORWARD case. Variable 7 contains the address of the

node: it is dereferenced in a similar way as in the first phase.

while state # END do
: if state = FORWARD then

3:

4

5: if A[i] = Generation and A[i + 1] > 0 then
6: Jj« Al + 1]
7.

8

9

if A[j] = Generation and A[j + 1] > 0 then
push —1 on stack
: repeat
10: push 7 + 1 on stack
11: i g5 7+ Al +1]
12: until A[j] # Generation or A[j +1] <0
13: while A[stack_top] > —1 do
14: ‘A[pop stack] « j
15: pop stack
16: R

If the node is an atom, or it was visited, then we go backward. Variable
¢ contains the address of the node.

17: if A[:] <0 then

18: ‘state + BACKWARD:; size + size + 1

19: else if A[i] = Generation and A[i + 1] < —1 then

20: | state + BACKWARD

21: else if ¢ < Alloc_last and (Al +2] =0 or A[i + 3] = —1) then
22: ‘A[z] — Generation; Ali + 1] «+ —1
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if A[i+ 2] =0 then size « size + 3

23:
‘ ‘ else size < size +4

Otherwise, the node is first copied to the reserved area, with replacing
the value of F' cell with the negative address of the original F' cell, and with
replacing attributes with addresses of the original attributes.

25: else

26: Alr] « Generation; Ali + 1] < new_Alloc_last + 1

27: Alnew_Alloc_last + 1] + Generation

28: Alnew_Alloc_last 4+ 2] « —1 — 1 {F cell}
29: Alnew_Alloc_last 4+ 3] « Ali + 2]

30: new_Alloc_last +— new_Alloc_last + 3

31: src +— 1+ 3

32: loop

33: while A[src] > 0 do src + Alsrc]

34: if A[src] = —1 then

35: new_Alloc_last + new_Alloc_last + 1

36: Alnew_Alloc_last] + —1

3T: break

38: Alnew_Alloc_last + 1] « src

39: Alnew_Alloc_last + 2] < A[sre + 1]

40: new_Alloc_last + new_Alloc_last + 2 src +— src + 2
41: i Afi + 1]

If the node has no edges, then we go backward. Otherwise, we start
visiting edges starting from the last one.

42: if A[i 4+ 3] = —1 then

43: if —A[i+ 1] < Alloc_last then

44: A[-A[i+1]] « -1

45: new_Alloc_last < new_Alloc_last — 4
46: size — size + 4

47: i —Ali+1] -1

48: state < BACKWARD

49: else

50: push new_Alloc_last — 1 on stack

51: i + Alvarnew_Alloclast — 1]

The FORWARD state i1s finished. In the BACKWARD state, we first
check if the depth-first search is finished. If it is not finished, we check
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whether the finished edge can be tail-shared. If it cannot, we update the
address of the destination node.

Ot Ot Ot Ot Ot Ot
=] O Ot = W o

58:
59:
60:
61:
62:
63:

if state = BACKWARD then
if stack_top = temp_first then state + END
else
p_adr < pop stack
if A[p_adr 4+ 1] > —1 and ¢« < Alloc_last and
i = Alp_adr] and A[p_adr — 1] < Alloc_last then
new_Alloc_last < new_Alloc_last — 2
size — size + 2
else
Alp-adr] <1
Alp-adr — 1] « A[A[p_adr — 1]]
p_adr < p_adr — 2

We visit the next edge. If there are no more edges, we check if the whole

node can be shared, and go backward:

64:
65:
66:
67:
68:
69:
70:
71:
72:
73:

if A[p_adr — 1] > 0 then
push p_adr on stack
i + Alp_adr]; state <+ FORWARD
else
if A[p-adr+1] >0 and — A[p_adr — 1] < Alloc_last then
new_Alloc_last < new_Alloc_last — 4
size +— size + 4
i —Alp-adr — 1] —1
Ali +1] + -1
else 1 « p_adr — 2

At the end, we update the size and Alloc_last, and increment Generation.

74:
75:
76:
e

size — size + new_Alloc_last — Alloc_last
Alloc_last < new_Alloc_last

Generation — Generation + 1

return (¢, size)
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Figure 10: Graph encoding

6 Example

In this section we illustrate the memory layout and the algorithm on an
example. Figure 10 illustrates how the two graphs used previously in section 3
are encoded. The following attribute encoding is used:

a b d e g h
-7 —6 -5 —4 -3 -2

The root of the first graph is located at position 0, and the graph has size 24.
Unlike the graphs in section 3, the node at the path a:b is atom, which is
introduced to illustrate the atom representation as well. The second graph
is located at position 24, and its size is 28. The last allocated cell is 51. The
graphs shown in the figure includes the starting addresses of all nodes. The
atom A is represented as negative number —1.

After executing the first phase of the unification algorithm, the layout
shown in figure 11 is obtained. The unification has succeeded, and the result-
ing graph can be found starting from address 0. In this intermediate stage,
forward references are used, so the graph shown includes the node addresses
obtained after dereferencing. The temporary area starts at position 136 and
ends at 141.

Figure 12 shows the memory layout after the second phase of the algo-
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Figure 11: Memory after the first phase

rithm. The shaded area of the result graph covers the shared nodes and
edges. The result graph starts at address 52 and its size is 31.

7 Discussion

When is hidden structure sharing allowed? We have already discussed
in section 3 the problem that hidden structure sharing cannot occur within
a graph, and between graphs that are to be unified (as noted by Malouf et
al. [20]). In our approach, the problem can be solved by storing all encoded
grammar rules in the first part of the memory. This rules area occupies a
continuous initial part of the memory, so we can easily tell if a node belongs to
an original rule image by comparing the node address with the last occupied
address of the rules area. Whenever this is the case, the node cannot be
shared.

One way to handle lexicon entries is to store them in the rules area.
Because of the lexicon size, a better approach is to add a new copy of a lex-
ical entry during char initialization from some external source. The original
addresses used in encoding of a lexical entry can be relative, and they are
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Figure 12: Memory after the second phase

recalculated according to the final absolute position of the entry.

Another way to handle the problem is to allow hidden structure sharing
in all situations, but to introduce the notion of safe hidden structure sharing
which could be safely used within one graph or between argument graphs.
This approach would be similar to the solution given by Emele [10]. However,
this would add significant complexity to the original algorithm and it is
not clear without empirical evaluation that it would lead to any kind of
performance improvement with actual NL grammars.

Typed feature structures. Asin the Wroblewski’s and Tomabechi’s work,
we do not include any feature-structure types, except distinguishing between
an atom, leaf, and complex node. However, the T cell in the node reserves
the whole integer range (without 0), for type identifiers. When two nodes
are unified their types could be unified by calling an external procedure, and
the resulting type would be stored in the T' cell of the resulting node. Hence,
our algorithm can be easily adapted for handling typed feature structures.
In order to support well-typedness and appropriateness, we have to make
sure that in merging edge lists all destination nodes have appropriate types.
This can be solved by going through the list of appropriate attributes of the
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type and by pushing a pair of a type and a node address to the stack for each
attribute that appears in the merged list. These type restrictions would be
resolved later, after popping the information from the stack.

Discontinuous memory. Although our continuous memory model pro-
vides a simple and efficient solution, it can be desirable in practical appli-
cations to have a discontinuous memory, with stack, temporary area, and
parts of the charts area placed at various locations of the actual computer
memory. The algorithm is appropriate for this model as well. We have to
take into account that memory is not necessarily linearly ordered as in the
previous case, and consequently tests for determining where certain address
belongs to should be made more strict. For example, for testing whether a
node belongs to the temporary are it was sufficient to test ¢ > temp_first. In
the new setting, the test should be (i > temp_first and ¢ < temp_last).

Parallel algorithm. For executing parallel algorithms, it is important to
have “thread-safe” structures, i.e., multiple threads must be able to access
shared data structure without race conditions. Our algorithm can be made
thread-safe by using the local thread memory for keeping the stack, tempo-
rary area, and the G-F cells. Using a separate stack and temporary area is a
straight-forward modification. For using separate G-F cells, Van Lohuizen’s
solution [16, 17] for the Tomabechi’s algorithm could be used.

8 Conclusion

We have presented a computational model for graph unification in context
of NL parsing. It is a novel algorithm.

The first contribution of this work is that it presents a unified, low-level
algorithm that incorporates hidden structure sharing and global counter.
Hidden structure sharing is not only used for non-modified nodes, but it
is also recognized in situations where a node is unified with another node
but it is not essentially changed. Additionally, we introduce a novel feature
of sub-node hidden structure sharing, i.e., sharing of edges. According to
reported information, the graph representation used here is the most compact
representation until now. It also demonstrates that memory management for
this task can be done directly and efficiently. This approach makes obsolete
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some previous arguments that assumed the use of garbage collection and
frequent memory allocation system calls.

The second contribution of this work is that it shows that Wroblewski’s
and Tomabechi’s algorithms are not significantly different, if the approach
is sufficiently low-level. A difference with previous approaches is that we do
not assume that union and complement of sets of edges are unit operations.
This is the first paper that reveals all relevant details of graph unification for
NL parsing and makes an attempt at optimizing them in a single, complete,
automaton-like model.
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A Java code

/*

*  $Source: /home/vkeselj/cvsroot/unifmachine/unifmachine.java,v $
* $Revision: 1.10 $

* $Date: 2002/01/23 11:08:04 $

* Authors: (c) 2001-2002 Vlado Keselj and Nick Cercone
x/

import java.util.x*;
public class unifmachine {

static int A_len = 10000;
static int[] A = new int[A_len]; /* the array */

static int Alloc_last = -1; /* last allocated cell */

/* Attributes (features) */
static final int att_a = -7;

static final int att_b = -6;
static final int att_d = -5;
static final int att_e = -4;
static final int att_g = -3;
static final int att_h = -2;

/* Atoms */
static final int ATOM_A = -1;
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static String[] att_name = { null, null, "h", "g", "e", "d", "b",
uau };

static String[] atom_name = { null, "A" };

/* Global generation counter */
static int Generation = 1;

/* Root nodes bookkeeping (2 entries per root):
* 1. entry: root address

* 2. entry: graph size */

static int[] root = new int[10];

static int root_last = -1;

[ **
Set initial configuration.
*/
static void init() {
Alloc_last = -1;

/* First graph */
root[++root_last] = Alloc_last + 1; /* address 1 */
{
int[] a=4{0, 0, 1, att_a, 8, att_d, 15, -1,
0, 0, 1, att_b, 14, -1,

ATOM_A,
0, 0, 1, att_e, 21, -1,
0, 0, 0 };

System.arraycopy(a, 0, A, Alloc_last+1l, a.length);
Alloc_last += a.length;
root [++root_last] = a.length; /* size 1 *x/

/* Second graph */
root[++root_last] = Alloc_last + 1; /* address 2 */
{
int[] a=9{0, 0, 1, att_a, 34, att_d, 34, att_g, 43, -1,
0, 0, 1, att_b, 40, -1,
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0, 0, 0,
0, 0, 1, att_h, 49, -1,
0, 0, 0 };

System.arraycopy(a, 0, A, Alloc_last+l, a.length);

Alloc_last += a.length;

2

root [++root_last] = a.length; /* size 2 *x/
}
}
[ **
The main function
*/
public static void main(String[] args) {
init();
print_latex(”Initial configuration", ”initialconfiguration”);

System.out.println( "%" +

" argl=" + root[0] +
" sizel=" + root[1] +
" arg2=" + root[2] +
" size2=" + root[3] );

int result = unify1(0, 1);
print_latex("After first phase", "firstphasenorepackaging'");

if (result > -1)
result = unify_copy(result);

print_latex("Final",'"secondphase");

System.out.println("}, Result adr=" + root[root_last-1] + " size="
+ root[root_last]);

System.exit(0);
} /* end of main */
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/* Non-static variables */
static int stack_top = -1;

static int temp_first = -1; /* first temp allocated cell */
-1; /* last temp allocated cell */

static int temp_last
static int repack_limit = -1;

VELS
Unify two graphs: first phase.
Q@param gl index of the first graph (2*gl in root array)
Q@param g2 index of the second graph (2*g2 in root array)
@return -1 if unification fails,
index of the resulting graph otherwise
*/
static int unifyi(int gi, int g2) {

/* max_size = max(2, sizel + size2 - 3) */
int max_size = root[2*gl+l]+root [2*g2+1]-3;
if (max_size < 2) max_size = 2;

temp_first = 2*(root[2xgl+i]+root[2xg2+1])/3 + 1;
if (temp_first < 2) temp_first = 2;

temp_first += Alloc_last + 1 + max_size;
temp_last = temp_first - 1;

stack_top = temp_first;

repack_limit = A_len - 5 * max_size / 2;

/* Check the size of the array. Keep doubling them until the
length is sufficient.
*/
while (temp_last >= repack_limit) {
int[] tmp = new int[2 * A.length];
System.arraycopy(A, O, tmp, O, A.length);
A = tmp;
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A_len = A.length;
repack_limit = A_len - 2 * max_size;

b

A[--stack_top]
A[--stack_top]

root [2*gl];
root [2*g2] ;

while (stack_top < temp_first) {
int 12 = A[stack_top++];
int i1 Alstack_top++];

if (i1==1i2) continue;

/* Dereference il with path compression */
if ( A[il1] == Generation ) {
int j = A[i1+1];
if ( A[j] == Generation ) {
A[--stack_top] = -1;

do {
A[--stack_top] = i1 + 1;
i1 = j;
j = A[j+1];

t

while ( A[j] == Generation );

while (A[stack_top] > -1)
ATA[stack_top++]] = j;

stack_top++;
i1 = j;
b
/* Dereference 12 with path compression */
if ( A[i2] == Generation ) {

int j = A[i2+1];
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if ( A[j] == Generation ) {
A[--stack_top] = -1;

do {
A[--stack_top] = i1 + 1;
i2 = j;
j = A[j+1];

t

while ( A[j] == Generation );

while (A[stack_top] > -1)
AlA[stack_top++]] = j;

stack_top++;

i2 = j;
t

if (i1==1i2) continue;

/* Unify =/
/* at least one node is a leaf node */
if ( A[1i1]>=0 && A[i1+2]==0 ) {
A[i1] = Generation;
Afi1+1] = i2;
} else if ( A[i2]>=0 && A[i2+2]==0) {
A[i2] = Generation;
Afi2+1] = i1;
t
/* at least one node is an atom */
else if (A[i1] < 0 || A[i2] < 0) {
/* they have to match */
if ( ALi1] '= A[i2] ) {
Generation++;
return -1; /* unification fails: atoms mismatch

*/
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/* otherwise, we have two complex nodes: we will merge them */
else {
int embedl = 0, embed2 = 0; /* can result be embedded in one
of the graphs (0), otherwise,
index of the attribute from
which the tail can be shared */
int srcl = il, src2 = i12; /* shared source */

int j1=1i1+43, j2=12+3, j3=temp_last+4; /* j1 and j2 are merged
to create j3 */

/* types should be merged here for typed feature structures */
Alj3-1] = 1;

/* Merge lists */
while ( A[j1] '= -1 && A[j2] '= -1 ) {

/* dereference */
while (A[j1] >= 0) j1 = A[j1];
while (A[j2] >= 0) j2 = A[j2];

/* merge step */

if ( A[j1] < A[j2] ) {
A[j3++] = A[j1++];
A[j3++] = A[j1++];
embed2 = j3; src2 = j2;

}

else if ( A[j2] < A[j1]1 ) {
A[j3++] = A[j2++];
A[j3++] = A[j2++];
embedl = j3; srcl = ji;

b

else {
A[j3++] = A[j1++];
/* If values do not match? */
if ( ALj1] '= A[++j2]1 ) {

/* push refs on stack */
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A[--stack_top] = A[j1];
A[--stack_top] = A[j2];
}
ALj3++] = A[j1++];
j2++;
}
}
/* Final check for complete embedding */
if (A[j1] '= -1) embed2 = -1;
else if (A[j2] !'= -1) embedl = -1;

/* let’s see what to do with the result */

/* Is embedding possible? For typed feature structures,
the resulting type should be copied. */
/* embedding into i1 */
if ( embed1==0 && (embed2!=0 || i1l <= i2 ) ) {
A[i2++] = Generation;
Afi2] = i1,
by
/* embedding into i2 */
else if ( embed2 == 0) {
A[i1++] = Generation;
Afi1] = i2;
b
else { /* no embedding */
/* let us first decide about tail sharing */
if ( embedl > -1 &&
(embed?2 == -1 ||
( j1 <= Alloc_last && j2 > Alloc_last ) ||
embedl <= embed2 ) ) {
A[ j3 = embedl ] = srci;

embed2 = -1;

} else {
A[ j3 = embed2 ] = src2;
embedl = -1;
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/* Can we leave it as it is? */
if (j3 < repack_limit ||
( i1 < temp_first && 12 < temp_first )) {
Al++temp_last] = 0;
A[i1++] = A[i2++] = Generation;
Ali1] = A[i2] = temp_last;
temp_last = j3;

b
/* Else repackage */
else {

if ( i1 < temp_first ||
( embedl > -1 && i2 >= temp_first ) )
{ int tmp=il;i1=i2;i2=tmp; }

A[i2++] = Generation;

A[i2++] = i1; i2++; /* let i2 be on the first edge */
Ali1++] = 0;

++i1;

jl1 = temp_last + 3; /* use jl as the source index */
Alit++] = A[j1++]; /* copy T */
while (A[j1] < -1) {

if (i1 < temp_last && A[i1] >

-1) { /* we have to find
new destination */

int iil1 = ii;

while (A[iil] >= 0) ii1l

Alii1];

if ( iil < temp_first ) { /* have to break the chain */
if (i2 >= temp_first) { /* we can switch to i2 */
iil = i2; i2 = -1;
}

else iil = temp_last + 1; /* we continue after temp_last */

by

Ali1] = iit1; i1 = ii1;
b
if ( i1 == A[j3] ) { /* we hit the shared tail! */
int iil1 = ii;
while (A[ii1] < -1) {
A[j3++] = A[iitl++]; A[j3++] = A[iil++];
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while ( A[ii1] > 0 ) ii1 = A[ii1l;

A[33] = (A[ii1] == -1) ? -1 : ii1;
¥

/* copy pair */
Afit++] = A[j1++];
Afit++] = A[j1++];
} /* finished, just copy the last cell (-1 or ref to shared
tail ) */
Ali1] = A[j1];
if ( i1 > temp_last ) temp_last = i1;

} /* end of else repackage */

} /* end: no embedding */
} /* end of complex node merging */

} /* end of unification, pop another pair from stack */
return gi;
} /* end of unifyl function */
static final int FORWARD = 1;
static final int BACKWARD = -1;
static final int END = 0;
static int unify_copy(int graph) {
/* Copy with hidden structure sharing, using depth-first search
Overview:
END: finished, final address in i
FORWARD: go forward using address in ind and leave it in i,
BACKWARD: go backward, last address in i

Node statuses for nodes <= Alloc_last
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G < Generation not visited

G=Generation F>=0 forward

G=Generation F<=-1 visit finished or being visited
-F is address of original T

set i=graph go FORWARD
*/
int i = root[2*graph];

int state = FORWARD;
int size = 0;
int new_Alloc_last = Alloc_last;

while ( state '= END ) {
/*
* FORWARD:
*/
if ( state == FORWARD ) {

/* Dereference i with path compression */
if ( A[i] == Generation && A[i+1] >= 0 ) {
int j = A[i+1];
if ( A[j] == Generation && A[j+1] >= 0 ) {
A[--stack_top] = -1;
do {
A[--stack_top] = i + 1;
i=13;
j = A[j+1];
¥
while ( A[j] == Generation && A[j+1] >= 0);

while (A[stack_top] > -1)
A[A[stack_top++]] = j;

stack_top++;
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/* if the node is an atom, or it was visited, or being
visited, or it is a leaf, or it does not have children and
it is in charts area then go back */

if (Al <0) {

state = BACKWARD;
size ++;

} else if ( A[i] == Generation && A[i+1] <= -1 )

state = BACKWARD;

else if ( i <= Alloc_last &&

( ALi+2] == 0 || A[i+3] == -1 ) ) {
A[i] = Generation; A[i+1] = -1;
size += A[i+2] == 0 7 3 : 4;

/* otherwise, copy node to reserved area, with replacing F
with negative address of F, and attributes with addresses
of original attributes

*/

else {

/* make a copy and the reference to it
(size is accumulated in new_Alloc_last */
A[++new_Alloc_last] = Generation; /* new G */

A[i] = Generation; /* old G */

A[i+1] = new_Alloc_last; /* old F x/

A[++new_Alloc_last] = - (i+1); /* new F: negative address of F */

A[++new_Alloc_last] = A[i+2]; /* copy T */

/* we know that it is a complex node (leaf nodes are always
shared) */

for (int src=i+3; ; ) {

while ( A[lsrc]>=0 ) src = Alsrc]l;

if ( Alsrcl==-1) {
A[++new_Alloc_last] = -1;
break;

by

A[++new_Alloc_last] = src++; /* address of attribute */
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A[++new_Alloc_last] = Alsrc++];
}
i = A[i+1];

/* The copy is maid, start iteration over children (if there
are any). Iterate backwards.
push on stack: child ptr address
*/
if (A[i+3]==-1) { /* no children */
if ( - A[i+1] <= Alloc_last ) {
A[ - A[i+1] ] = -1; /* shared */
new_Alloc_last -= 4;
size += 4;

i=- A[i+1] - 1;
}
state = BACKWARD;
}
else {
A[--stack_top] = new_Alloc_last - 1; /* child ptr address */
i = Alnew_Alloc_last - 1]; /* child ptr */
/* continue with state=FORWARD */
t
}
} /* end of state FORWARD */
/*
* BACKWARD
*/

if ( state == BACKWARD ) {
/* if stack is empty, it is the end */
if (stack_top == temp_first) state = END;
else {
/* pop the ptr address */
int ptr_address = A[stack_top++];

/* can we tail share this address? */
if ( Alptr_address+1] >= -1 && 1 <= Alloc_last && i ==
Alptr_address] &% Al[ptr_address-1] <= Alloc_last ) {
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new_Alloc_last -= 2;
size += 2;
ptr_address -= 2;
} else {
Alptr_address--] = i;
Alptr_address] = A[A[ptr_address]]; /* set attribute */
ptr_address--;

if ( Alptr_address-1] >= 0 ) { /* next child to visit */
A[--stack_top] = ptr_address;
i = Alptr_address];
state = FORWARD;
} else { /* node finished */
/* can we share the whole node */
if ( Alptr_address+1] >= 0 &&
-A[ptr_address-1] <= Alloc_last ) {
new_Alloc_last -= 4;
size += 4;
i = - A[ ptr_address - 1 ] - 1;
Ali+1] = -1;
t
else 1 = ptr_address - 2;
t
} /* BACKWARD and not END */
} /* state BACKWARD */
} /* while state != END */

size += new_Alloc_last - Alloc_last;
Alloc_last = new_Alloc_last;
temp_first = temp_last = -1;

root [++root_last] = i;

root [++root_last] = size;
++Generation;

return root_last - 1;

static void print_a() {
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/*

*/
st

/*
st

}
st

for (int i=0; i < A.length; ++i) {
if (i>Alloc_last && i > temp_last) break;
System.out.print ("a["+spacePadded(i,3)+"]="+spacePadded(A[i],-4));
if (i % 10 == 9) System.out.println();

X
System.out.println();
*
Auxiliary function -- space padding on left or right to an integer.
@param i an integer to be represented as astring
@param pad the min length, if negative pad on right, otherwise
pad on left
Q@return string representation
atic String spacePadded(int i, int pad) {
String r = "" + 1i;
int apad = (pad < 0 ? -pad : pad);
while (r.length() < apad)
r = (pad<0 7 r+" " : " "+r);
return r;
kind_of_cell: 0 - not used, 1 - GFT, 2 - attribute */
atic void mark_gft(int i, int[] mark) {
if (mark[i] '= 0) return;
mark[i] = 1;

if (A[i] == Generation && A[i+1] >= 0) mark_gft(A[i+1], mark);
else if (A[i] >=0 && A[i+2]'=0) mark_att(i+3, mark);

atic void mark_att(int i, int[] mark) {
if (mark[i] '= 0) return;
mark[i] = 2;

if ( A[i] >= 0 ) mark_att( A[i], mark );
else if (A[i] < -1) {

mark_gft (A[i+1], mark);

mark_att(i+2, mark);

by
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[ **
Print contents of the array in LaTeX form.
*/

static void print_latex(String comment, String command) {

int[] kind_of_cell = new int[ (temp_last > Alloc_last 7
temp_last : Alloc_last) + 1 1;

/*
* Print out up to Alloc_last and mark first GFT’s
*/

System.out.println("} " + comment + "\n");

System.out.println("\\newcommand{\\" + command + "}{" +
"\\setcounter{cell}{0}\\raggedright");

for (int i=0; i <= Alloc_last; ) {
mark_gft(i, kind_of_cell);
i = print_latex_gft( i );

}

System.out.println("\\\\$\\mbox{\\it Alloc\\_last}="+Alloc_last+"$");
if (temp_first > Alloc_last && temp_last > Alloc_last) {

System.out.println("\\quad\\setcounter{cell}{"+temp_first+
"}$\\mbox{\\it temp\\_first}="+temp_first+"$\\\\");

/* Print out the temporary area */
for (int i = temp_first; i <= temp_last; ) {
switch ( kind_of_cell[i] ) {
case 1: i = print_latex_gft( i ); break;
case 2: 1 = print_latex_att( i ); break;
case O:
System.out.println("\\cells{"+A[i]+"}{}} " + i);
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System.out.println("}\n");
} /* end of function print_latex */

/** Print continous part of the node and return next i */
static int print_latex_gft( int i ) {

if ( A[i] < 0 ) /* atom *x/
System.out.println("\\celle{"+ atom_name[-A[i++]] + "} % " +
(i-1));
else if (A[i] == Generation && i > Alloc_last) /* forward */

System.out.println("\\cell{" + A[i++] + "}{G}\\cell{" + A[i++] +
"HEY A"+ (1-2) );

else { /* gft ... */
int bg = 1i;
System.out.print ("\\cellgft{"+A[i++]+"}{"+A[i++]+"}{"+A[i++]+"}");
if ( A[i-1] == 0) /* leaf */
System.out.println(" % " + bg);
else {

i = print_latex_att( i );
System.out.println(" % " + bg);
}
}

return i;

3

/** Print continous edge sequence, return next i */
static int print_latex_att( int i ) {
while ( A[i]l < -1 ) {
System.out.print ("\\cellp{" + att_name[ -A[i++] ] + "}{" +
ALi++] + "3

a8



by
System.out.print ("\\celle{" + A[i++] + "}");
return i;

3

} /* end of class */

B C code

/*

*  $Source: /home/vkeselj/cvsroot/unifmachine/unifmachine.c,v $
* $Revision: 1.3 §

* $Date: 2002/01/23 11:08:04 $

* Authors: (c) 2001-2002 Vlado Keselj and Nick Cercone

*/

#include <stdio.h>

void mark_att(int i, int *mark);
void print_latex(char* comment, char* command) ;

##define A_len 10000
int A[A_len]; /* the array */

int Alloc_last = -1; /* last allocated cell */

/* Attributes (features) */
##define att_a -7
#tdefine att_b -6
##define att_d -5
##define att_e -4
#define att_g -3
##define att_h -2

/* Atoms */
##define ATOM_A -1
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char* att_name[] = { NULL, NULL, "h", "g", "e", "d", "b",
uau };

char* atom_name[] = { NULL, "A" };

/* Global generation counter */
int Generation = 1;

/* Root nodes bookkeeping (2 entries per root):
* 1. entry: root address

* 2. entry: graph size */

int root[10];

int root_last = -1;

[ **

Set initial configuration.
*/
void init() {

Alloc_last = -1;

/* First graph */
root [++root_last] = Alloc_last + 1; /* address 1 */
{
int a[l = { 0, 0, 1, att_a, 8, att_d, 15, -1,
0, 0, 1, att_b, 14, -1,
ATOM_A,
0, 0, 1, att_e, 21, -1,
0, 0, 0 }; /* 24 elements */
int 1i;
for (i=0; 1 < 24; ++i)
A[Alloc_last+1+i] = ali];
Alloc_last += 24;
root [++root_last] = 24; /* size 1 %/

/* Second graph */
root [++root_last] = Alloc_last + 1; /* address 2 */
{
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int a[l] = { 0, 0, 1, att_a, 34, att_d, 34, att_g, 43, -1,
0, 0, 1, att_b, 40, -1,

0, 0, 0,
0, 0, 1
0, 0, 0

, att_h, 49, -1,
}; /*x 28 x/

int 1i;
for (i=0; 1 < 28; ++i)
A[Alloc_last+1+i] = ali];
Alloc_last += 28;
root [++root_last] = 28; /* size 2 */

The main function

int main(int argc, char *argv([]) {

int result;

init();
print_latex(”Initial configuration", ”initialconfiguration”);

printf ("%% argl=}hd sizel=ld arg2=)d size2=}d\n", root[0], root[1],
root[2], root[3]);

result = unify1(0, 1);
print_latex("After first phase", "firstphasenorepackaging") ;

if (result > -1)
result = unify_copy(result);

print_latex("Final",'"secondphase");
printf ("%% Result adr=Y%d size=J)d\n", root[root_last-1],

root [root_last]);
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return 0;

} /* end of main */

/* Non-static variables */

int stack_top = -1;

int temp_first = -1; /* first temp allocated cell */
int temp_last = -1; /* last temp allocated cell */
int repack_limit = -1;

[ **
Unify two graphs: first phase.
Q@param gl index of the first graph (2*gl in root array)
Q@param g2 index of the second graph (2*g2 in root array)
Q@return -1 if unification fails,
index of the resulting graph otherwise

*/

int unifyi(int g1, int g2) {

/* max_size = max(2, sizel + size2 - 3) */
int max_size = root[2*gl+1l]+root[2*g2+1]-3;
if (max_size < 2) max_size = 2;

temp_first = 2*(root[2xgl+i]+root[2xg2+1])/3 + 1;
if (temp_first < 2) temp_first = 2;

temp_first += Alloc_last + 1 + max_size;
temp_last = temp_first - 1;

stack_top = temp_first;

repack_limit = A_len - 5 * max_size / 2;

/* Check the size of the array. */

if (temp_last >= repack_limit) {
fprintf(stderr, "Insufficient memory");
exit(1);
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A[--stack_top] = root[2*gl];
A[--stack_top] root [2*g2] ;

while (stack_top < temp_first) {
int 12 = A[stack_top++];
int i1 = A[stack_top++];

if (i1==1i2) continue;

/* Dereference il with path compression */
if ( A[il1] == Generation ) {
int j = A[i1+1];
if ( A[j] == Generation ) {
A[--stack_top] = -1;

do {
A[--stack_top] = i1 + 1;
i1 = j;
j = A[j+1];

t

while ( A[j] == Generation );

while (A[stack_top] > -1)
ATA[stack_top++]] = j;

stack_top++;

i1 = j;
t

/* Dereference 12 with path compression */
if ( A[i2] == Generation ) {
int j = A[i2+1];
if ( A[j] == Generation ) {
A[--stack_top] = -1;
do {
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A[--stack_top] = i1 + 1;
i2 = j;
j = A[j+1];
t
while ( A[j] == Generation );

while (A[stack_top] > -1)
AlA[stack_top++]] = j;

stack_top++;

i2

]
.
-

if (i1==1i2) continue;

/* Unify x/
/* at least one node is a leaf node */
if ( A[11]>=0 && A[i1+2]==0 ) {

A[i1] = Generation;

Afi1+1] = i2;
} else if ( A[i2]>=0 && A[i2+2]==0) {

A[i2] = Generation;

Afi2+1] = i1;
}
/* at least one node is an atom */
else if (A[i1] < 0 || A[i2] < 0) {

/* they have to match */

if ( A[i1] '= A[i2] ) {

Generation++;
return -1; /* unification fails: atoms mismatch
*/

}
}
/* otherwise, we have two complex nodes: we will merge them */
else {

int embedl = 0, embed2 = 0; /* can result be embedded in one
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of the graphs (0), otherwise,

index of the attribute from

which the tail can be shared */
int srcl = il, src2 = i12; /* shared source */

int j1=i1+43, j2=1i2+3, j3=temp_last+4; /* jl1 and j2 are merged
to create j3 */

/* types should be merged here for typed feature structures */
Alj3-1] = 1;

/* Merge lists */
while ( A[j1] '= -1 && A[j2] '= -1 ) {

/* dereference */
while (A[j1] >= 0) j1
while (A[j2] >= 0) j2

Alj1];
Alj2];

/* merge step */

if ( A[j1] < A[j2] ) {
A[j3++] = A[j1++];
A[j3++] = A[j1++];
embed2 = j3; src2 = j2;

b

else if ( A[j2] < A[j1]1 ) {
A[j3++] = A[j2++];
A[j3++] = A[j2++];
embedl = j3; srcl = ji;

¥

else {
A[j3++] = A[j1++];
/* If values do not match? */
if ( ALj1] '= A[++j2]1 ) {

/* push refs on stack */

A[--stack_top] = A[j1];

A[--stack_top] = A[j2];
}
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A[j3++] = A[j1++];

j2++;
b
b
/* Final check for complete embedding */
if (A[j1] '= -1) embed2 = -1;
else if (A[j2] !'= -1) embedl = -1;

/* let’s see what to do with the result */

/* Is embedding possible? For typed feature structures,
the resulting type should be copied. */
/* embedding into i1 */
if ( embedl1==0 && (embed2!=0 || i1l <= i2 ) ) {
A[i2++] = Generation;
Afi2] = i1,
by
/* embedding into i2 */
else if ( embed2 == 0) {
A[i1++] = Generation;
Afi1] = i2;
by
else { /* no embedding */
/* let us first decide about tail sharing */
if ( embedl > -1 &&
(embed?2 == -1 ||
( j1 <= Alloc_last && j2 > Alloc_last ) ||
embedl <= embed2 ) ) {
A[ j3 = embedl ] = srci;

embed2 = -1;

} else {
A[ j3 = embed2 ] = src2;
embedl = -1;

/* Can we leave it as it is? */
if (j3 < repack_limit ||
( i1 < temp_first && 12 < temp_first )) {
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A[++temp_last] = 0;

A[i1++] = A[i2++] = Generation;
Ali1] = A[i2] = temp_last;
temp_last = j3;

b
/* Else repackage */
else {

if ( i1 < temp_first ||
( embedl > -1 && i2 >= temp_first ) )
{ int tmp=il;i1=i2;i2=tmp; }

A[i2++] = Generation;

A[i2++] = i1; i2++; /* let i2 be on the first edge */
Ali1++] = 0;

++i1;

j1 = temp_last + 3; /* use jl as the source index */
Alit++] = A[j1++]; /* copy T */
while (A[j1] < -1) {

if (i1 < temp_last && A[i1] >= -1) { /* we have to find
new destination */
int iil1 = ii;
while (A[ii1] >= 0) ii1 = A[ii1];

if ( iil < temp_first ) { /* have to break the chain */
if (i2 >= temp_first) { /* we can switch to i2 */
iil = i2; i2 = -1;
}

else iil = temp_last + 1; /* we continue after temp_last */

by

Ali1] = iit1; i1 = ii1;
b
if ( i1 == A[j3] ) { /* we hit the shared tail! */
int iil1 = ii;
while (A[ii1] < -1) {
A[j3++] = A[iil++]; A[j3++] = A[iil++];

}
while ( A[ii1] > 0 ) ii1 = A[ii1];
A[j3] = (Alii1] == -1) ? -1 : iit;
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/* copy pair */
Afit++] = A[j1++];
Afit++] = A[j1++];
} /* finished, just copy the last cell (-1 or ref to shared
tail ) */
Ali1] = A[j1];
if ( i1 > temp_last ) temp_last = i1;

} /* end of else repackage */

} /* end: no embedding */
} /* end of complex node merging */

} /* end of unification, pop another pair from stack */
return gi;

} /* end of unifyl function */

#tdefine FORWARD 1
#tdefine BACKWARD -1
#tdefine END 0

int unify_copy(int graph) {

/* Copy with hidden structure sharing, using depth-first search
Overview:
END: finished, final address in i
FORWARD: go forward using address in ind and leave it in i,
BACKWARD: go backward, last address in i

Node statuses for nodes <= Alloc_last

G < Generation not visited

G=Generation F>=0 forward

G=Generation F<=-1 visit finished or being visited
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-F is address of original T

set i=graph go FORWARD
*/
int i = root[2*graph];

int state = FORWARD;
int size = 0;
int new_Alloc_last = Alloc_last;

while ( state '= END ) {
/*
* FORWARD:
*/
if ( state == FORWARD ) {

/* Dereference i with path compression */
if ( A[i] == Generation && A[i+1] >= 0 ) {
int j = A[i+1];
if ( A[j] == Generation && A[j+1] >= 0 ) {
A[--stack_top] = -1;

do {
A[--stack_top] = 1 + 1;
i=17;
j = A[j+1];

}

while ( A[j] == Generation && A[j+1] >= 0);

while (A[stack_top] > -1)
A[A[stack_top++]] = j;

stack_top++;

/* if the node is an atom, or it was visited, or being
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visited, or it is a leaf, or it does not have children and
it is in charts area then go back */
if C( Al <0) A
state = BACKWARD;
size ++;
} else if ( A[i] == Generation && A[i+1] <= -1 )
state = BACKWARD;
else if ( i <= Alloc_last &&
( ALi+2] == 0 || A[i+3] == -1 ) ) {
A[i] = Generation; A[i+1] = -1;
size += A[i+2] == 0 7 3 : 4;
}

/* otherwise, copy node to reserved area, with replacing F
with negative address of F, and attributes with addresses
of original attributes

*/

else {

int src;

/* make a copy and the reference to it
(size is accumulated in new_Alloc_last */
A[++new_Alloc_last] = Generation; /* new G */

A[i] = Generation; /* old G */

A[i+1] = new_Alloc_last; /* old F x/

A[++new_Alloc_last] = - (i+1); /* new F: negative address of F */

A[++new_Alloc_last] = A[i+2]; /* copy T */

/* we know that it is a complex node (leaf nodes are always
shared) */

for (src=i+3; ; ) {

while ( A[lsrc]>=0 ) src = Alsrc]l;

if ( Alsrcl==-1) {
A[++new_Alloc_last] = -1;
break;

}

A[++new_Alloc_last]

A[++new_Alloc_last]

src++; /* address of attribute */
Alsrc++];
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i = A[i+1];

/* The copy is maid, start iteration over children (if there
are any). Iterate backwards.
push on stack: child ptr address
*/
if (A[i+3]==-1) { /* no children */
if ( - A[i+1] <= Alloc_last ) {
A[ - A[i+1] ] = -1; /* shared */
new_Alloc_last -= 4;
size += 4;

i=- A[i+1] - 1;
}
state = BACKWARD;
}
else {
A[--stack_top] = new_Alloc_last - 1; /* child ptr address */
i = A[new_Alloc_last - 1]; /* child ptr */
/* continue with state=FORWARD */
t
}
} /* end of state FORWARD */
/*
* BACKWARD
*/

if ( state == BACKWARD ) {
/* if stack is empty, it is the end */
if (stack_top == temp_first) state = END;
else {
/* pop the ptr address */
int ptr_address = Al[stack_top++];

/* can we tail share this address? */
if ( Alptr_address+1] >= -1 && 1 <= Alloc_last && i ==
Alptr_address] &% Al[ptr_address-1] <= Alloc_last ) {
new_Alloc_last -= 2;
size += 2;
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ptr_address -= 2;
} else {
Alptr_address--] = i;
Alptr_address] = A[A[ptr_address]]; /* set attribute */
ptr_address--;

3

if ( Alptr_address-1] >= 0 ) { /* next child to visit */
A[--stack_top] = ptr_address;
i = Alptr_address];
state = FORWARD;
} else { /* node finished */
/* can we share the whole node */
if ( Alptr_address+1] >= 0 &&
-A[ptr_address-1] <= Alloc_last ) {
new_Alloc_last -= 4;
size += 4;

i = - A[ ptr_address - 1 ] - 1;
Ali+1] = -1;

}

else 1 = ptr_address - 2;

}
} /* BACKWARD and not END */
} /* state BACKWARD */
} /* while state != END %/

size += new_Alloc_last - Alloc_last;
Alloc_last = new_Alloc_last;
temp_first = temp_last = -1;

root [++root_last] = i;

root [++root_last] = size;
++Generation;

return root_last - 1;

void print_a() {
int 1i;
for (i=0; i < A_len; ++i) {
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if (i>Alloc_last && i > temp_last) break;
printf("al[%3d]=%-4d ", i, A[i]);
if (1 % 10 == 9) putchar(’\n’);
t
putchar(’\n’);
}

/* kind_of_cell: 0 - not used, 1 - GFT, 2 - attribute */
void mark_gft(int i, int *mark) {
if (mark[i] '= 0) return;
mark[i] = 1;
if (A[i] == Generation && A[i+1] >= 0) mark_gft(A[i+1], mark);
else if (A[i] >=0 && A[i+2]'=0) mark_att(i+3, mark);

void mark_att(int i, int *mark) {
if (mark[i] '= 0) return;
mark[i] = 2;
if ( A[i] >= 0 ) mark_att( A[i], mark );
else if (A[i] < -1) {
mark_gft (A[i+1], mark);
mark_att(i+2, mark);

VEL]
Print contents of the array in LaTeX form.
*/
int kind_of_cell[A_len];
void print_latex(char* comment, char* command) {
int 1i;
for (i=0; i<A_len; ++i)
kind_of_cell[i] = 0;

/*
* Print out up to Alloc_last and mark first GFT’s
*/
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printf ("%% %s\n\n", comment);
printf ("\\newcommand{\\%s}{\\setcounter{cell}{0}\\raggedright\n", command) ;

for (i=0; i <= Alloc_last; ) {
mark_gft(i, kind_of_cell);
i = print_latex_gft( i );

}

printf ("\\\\$\\mbox{\\it Alloc\\_last}=%d$\n", Alloc_last);
if (temp_first > Alloc_last && temp_last > Alloc_last) {

printf ("\\quad\\setcounter{cell}{)d}$\\mbox{\\it temp\\_first}=4d$\\\\\n",
temp_first, temp_first);

/* Print out the temporary area */
for (i = temp_first; i <= temp_last; ) {
switch ( kind_of_cell[i] ) {

case 1: i = print_latex_gft( i ); break;
case 2: 1 = print_latex_att( i ); break;
case O:
printf("\\cells{%d}{}% %d\n", A[i], 1);
++1;
t

by

printf("%s" s "}\n\n") ;
} /* end of function print_latex */

/** Print continous part of the node and return next i */
int print_latex_gft( int 1 ) {

if ( A[i] < 0 ) { /* atom *x/
printf ("\\celle{¥%s} %% %d\n", atom_name[-A[i]l], 1i);
++1;
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}
else if (A[i] == Generation && i > Alloc_last) { /* forward */
printf ("\\cell{%d}{G}", A[i++]);
printf ("\\cell{%d}{F} %% %d\n", A[i++], i-2);
t
else { /* gft ... */
int bg = 1;
printf ("\\cellgft{%d}", A[i++]);
printf("{%d}", Ali++]);
printf("{%d}", Ali++]);
if ( A[i-1] == 0 ) /* leaf */
printf (" %% %d\n", bg);
else {
i = print_latex_att( 1 );
printf (" %% %d\n", bg);
}
}

return i;

b

/** Print continous edge sequence, return next i */
int print_latex_att( int 1 ) {
while ( A[i] < -1 ) {
printf ("\\cellp{¥%s}", att_name[ -A[i++] ]);
printf ("{%d}", A[i++]);
b
printf ("\\celle{%d}", A[i++] );
return i;
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