Process-Based Representation and Analysis of
Framework Instantiation

Paulo S. C. Alencar, Donald D. Cowan
Computer Science Department, University of Waterloo — Waterloo, Canada
Toacy C. Oliveira, Carlos J.P. Lucena
Department of Computer Science, PUC-Rio — Rio de Janeiro, Brazil

Abstract—Object-oriented frameworks are currently regarded
as a promising technology for reusing designs and
implementations. However, developers find there is still a steep
learning curve when extracting the design rationale and
understanding the framework documentation during
framework instantiation. Thus, instantiation is a costly process
in terms of time, people and other resources. These problems
raise a number of questions including: “How can frameworks
be instantiated more quickly and with greater ease? How can
the same high-level design abstractions that were used to
develop the framework be used during framework
instantiation instead of using source code as is done currently?
How can we capture the designers’ knowledge of the
framework in order to compensate for the loss of key
development personnel? How can we raise the level of
abstraction in which the framework evolution and
instantiation is expressed, reasoned about and implemented?”
In this paper we present a process-based approach to
framework instantiation that addresses these issues. Our main
goal is to represent the framework architectural design models
in an explicit and declarative way, and support changes to this
architecture based on explicit instantiation processes and
activities while maintaining system integrity, invariants, and
general constraints. In this way, the framework instantiation
and evolution can be performed in a valid and controlled way.
To accomplish our goal, we introduce a process-oriented
description of framework instantiation as well as a formal
specification of these processes that allows us to reason about
instantiation using model checking techniques. Discovering
instantiation errors and analyzing alternative architectures
and designs early in the development process could certainly
lower the cost and effort in fixing them. Various forms of
analysis can be performed using our approach to check
properties such as: structural evolution properties, pre- and
post-conditions of an instantiation, the validity of the processes
associated with extension points, the order of the instantiation
processes, the safety and liveness of these processes,
reachability, and deadlocks. We illustrate our approach with
DrawingTool, a framework to provide drawing features of a
case tool.

Index terms-- frameworks, instantiation, software process,
software architecture, design, specification, automated
verification, Prolog, model checking, design analysis.

I. INTRODUCTION

It is widely believed that reuse of software designs and
implementations leads to substantial gains in productivity.
Reuse proposes the re-application of structured knowledge
to achieve qualitative and quantitative improvements during
the software development process. In the reuse scenario,
object-oriented techniques such as frameworks [1,2] are
currently regarded as a promising technology for reusing
designs and implementations because of the amount of
knowledge encapsulated within a component or a software
application.

During the framework instantiation or reuse process, the re-
user [3] uses the framework specification as an initial/partial
design of the application being developed. The developer
reusing the framework adapts the design to incorporate
application-specific requirements.

Framework Instantiation Problems. However, developers
find there is still a steep learning curve when extracting the
design rationale and understanding the framework
documentation during framework instantiation. Thus,
instantiation is a costly process in terms of time, people and
other resources.

The framework specifications are usually unstructured and
use natural language to describe the artifacts. The lack of
clear, detailed and complete documentation leads to a time-
consuming instantiation process, which negates one of the
most valuable properties of reuse, that is, a significant
reduction in application development time. In fact achieving
high productivity with framework reuse can take months

[2].

Another problem relates to the consistency of the final
design. Some instantiation processes introduce unexpected
states that can violate some of the framework design
constraints. Therefore, it is important that the framework
documentation provides a set of properties that must be
preserved after the each instantiation process is performed.

Questions. These problems raise a number of questions
including: “How can frameworks be instantiated more
quickly and with greater ease? How can the same high-level
design abstractions that were used to develop the framework
be used during framework instantiation instead of using
source code as is done currently? How can we capture the
designer’s knowledge of the framework in order to
compensate for the loss of key development personnel?
How can we raise the level of abstraction in which the
framework evolution and instantiation is expressed,
reasoned about and implemented?”

Goal. In this paper, we introduce a process-based approach
that addresses these issues. We represent framework
instantiations through processes that indicate “how” the
instantiation should be accomplished, and “what”
instantiation processes need to be used to for a-certain
instantiation activity. This representation also supports
analysis. Our main goal is to support an explicit declarative
representation of the framework architectural design
models, and allow changes to this architecture based on
explicit instantiation processes and activities. Further, these
processes and activities will no compromise the system
integrity, invariants, and general constraints.

Approach. To accomplish our goal, we have defined a
generic structural UML-based specification formalism for
frameworks and their extensions and created techniques
through which the instantiation of such extensions can be
verified. Framework instantiations are based on the notion
of extension points, or explicit ‘places’ in the framework
design where the framework can be extended. We use the
UML notation extension mechanisms to represent those
extension points and other concepts relevant to the
framework instantiation such as the kind of instantiation.

The process-oriented descriptions of the framework
instantiation as well as formal specification of these
processes allow us to reason about these instantiations using
model checking techniques. In this way, we will be able to
analyze alternative architectures and designs that could be
applied in the instantiation process. Discovering
instantiation errors and analyzing alternative architectures
and designs early in the development process could
certainly lower the cost and effort in fixing them. Various
forms of analysis can be performed using our approach to
check properties such as: structural evolution properties, the
pre- and post-conditions of the instantiations, the validity of
the processes associated with the extension points, the order
of the instantiation processes, the safety and liveness of
these processes, reachability, and deadlocks. We illustrate
our approach with DrawingTool, a framework to provide
drawing features of a case tool.

Contributions. The main contributions of this paper can be
summarized as follows: (i) generic techniques to represent
and specify frameworks and their extension points. This
generic specification can be used to instantiate a concrete

framework instantiation using application domain
knowledge. The specification language is based on the
declarative programming language, Prolog; (ii) a process-
based approach to specifying the instantiation processes,
and the constraints that should hold when the framework is
instantiated using these processes; (iii) techniques to
supports the verification of the framework architecture and
the instantiation processes in order to analyze through
Prolog proofs and model checking whether instantiation
properties hold; (iv) a case study applying the systematic
approach to specify and verify the frame work extension of
DrawingTool, a framework that provides the drawing
features of a case tool.

Paper Outline. The remainder of this paper is organized as
follows. Section 2 describes the gist of our analysis
techriques including an. - .approach to framework
instantiation analysis based on abstract design specifications
and model checking. Section 3 gives details of a case-study
illustrating the framework instantiation analysis approach.
We analyze extensions to a framework called DrawingTool.
The last sections focus on related work and conclusions.

II. A PROCESS-BASED APPROACH

In this section, we introduce our process-based approach to
framework instantiation including techniques for the
representation, instantiation, and analysis (property
checking) of frameworks and their extensions. We also
describe the model checking technique used to analyze
framework instantiations to ensure that framework evolution
is valid. ;

A. Overview

An overview of our process-based approach is shown in
Figure 1 using the re-user’s point of view. We try to hide
formal representations in order to provide a common level
of abstraction between the design and the instantiation
processes. In this view we have the concept of a reusable
artifact that is composed of three parts.

The first part is a set of decorated class diagrams, which are
represented in UML [4] graphical notation and are used to
specify the framework design. Note that we use an extended
version of UML in order to represent the frameworks
extension points [5].

The second part is a Cookbook, in the same sense of [6].
This cookbook will guide the instantiation process and it is
expressed in a specially defined language.

The last part of the artifact is a set of properties that need to
be checked in order to validate the instantiation process.

This reusable artifact is then introduced into the tool to
begin the instantiation process. During this process, the re-
user is asked to provide class names and choice conditions.

Once the process is finished the re-user has the final
application design.

Framework Insiantiation Process >
Reuse o2 e el .

Anifact i
- o "User Quasiioning? " _ 171
]
- N
;’/‘\:; -~ 'ns‘a:r:?:(s the The Reuse Tool The Final Design E
5 __
S Ciass , N Final Design
Rouser Oiagram s vvYyovy N
ik AN A A S
i v g Reusa Execution Z
e g Machi
Setof o
Properties '/ L
_ . XM
A
Structural Lavel
4 "Prolog XM(Metamodel XL Reuse Scrp!
Ropresentation Representation
Knowledge Leval
.
Figure 1

It is also important to note that internally the tool is divided
into two layers (Figure 1). The first layer is the structural
layer and is responsible for the structural modification in the
design, which means, responsible for generating a user
friendly output for the instantiation process. This can be
accomplished with the use of the XMI OMG standard.

The other layer is responsible for capturing the knowledge
behind the process. To achieve this the structural of each
framework element is translated into Prolog representations.
The instantiation processes are represented in a process-
based instantiation language and later translated into
process algebra representations. We also analyze whether
the instantiation processes obey evolution properties
described in temporal logic that are checked against the
framework model. Since graphical notations are more
intuitive and generally easier to understand, we use such a
notation as the method for designers and developers to build
their designs. In this way, they are not directly exposed to
the intricacies of the underlying formalisms. On the other
hand, the informal graphical models, which lack precision
and may be ambiguous, cannot be the base for a formal
analysis. A formal model allows us to reason about the
properties of the design compositions and verifies our
designs.

B. Formal Specification and Verification Techniques

Besides presenting language constructs for the
representation of the instantiation process, formal
specification and (automated) verification techniques
constitute essential tools in our representation and analysis
of framework instantiations. For the analysis, the framework
structural UML-based models and properties are specified
in first-order logic and checked using Prolog [7]. The
framework instantiation processes expressed in our
instantiation language are translated to XL (a process
language) and the properties related to the framework

instantiation process are specified in p-calculus and verified
through model checking techniques [8,9,10,11].

Model checking entails comparing two formal objects (Z, ¢)
T the software design components and their compositions
modeled in logic, and ¢ the properties of these components
represented as logic formulas. One assumes that if a formula
¢ is true in the model Z, then the corresponding property
holds in the model of the design. We use a model checker as
a black box to check X against the property specification, ¢.
The model checker outputs either true, if £ satisfies ¢, or a
counterexample, if it does not. When a property violation is
found, we can go back to check and update the design
composition. One reason why this verification technique is
so promising is that model checking can be automated for
many temporal logics.

To automate the analysis of the framework instantiations,
we use XMC [8,12], a model checker for verifying temporal
properties of a software system. XMC is written in the XSB
table Prolog programming system [7]. Temporal properties
are expressed in the alternation-free fragment of the p-
calculus [8,13], a very expressive temporal logic; the system
to be verified is described in the model specification
language for XMC (called XL) which is a highly expressive
extension of value-passing CCS [14]. Prolog terms and
predicates are used to represent values and computations.
Thus specifications can make use of recursive data
structures and computations. XMC has been successfully
used to verify various systems as documented in [12].

In the next subsections we describe each phase of our
design analysis approach. In particular, we show how the
structure is specified in XSB Prolog by rules and facts and
the instantiation processes are represented in a framework
instantiation language and described in XL, the model
specification language for XMC. In this way, we will be
able to verify structural properties using the XSB Prolog
deductive facilities and verify process-based framework
instantiations properties expressed in the p-calculus
temporal logic using the XMC model checker.

C. Representation

In the initial phase, the framework designs are represented
in Prolog and stored in an XSB Prolog database. There are
several advantages of using XSB Prolog as a repository of
design knowledge. First, the representations of these
components can be reused by instantiating the
corresponding generic Prolog descriptions of each design
element when it is applied to produce a concrete domain-
specific representations. Second, the properties and
constraints of each design element can be described and
proved in Prolog. Third, the addition and removal of
structural facts about design elements can be carried out
using the Prolog assert and retract clauses. Finally, design

elements can be recovered through Prolog deductive
facilities.

Design Representation Primitives. The structural UML-
based representation of the framework elements is specified
in XSB Prolog in terms of object-oriented design primitives
in a predicate-like format. Each design primitive consists of
two parts: name and argument. The name part contains the
name of an entity or a relation in object-oriented design,
such as class, or inheritance. The argument part contains
generic information about an entity or a relation such as the
information on the participants in an inheritance relation. In
the following, we present the syntax and the meaning of the
design primitives used in this paper':

e class(C): Cisaclass.

e abstractclass(C): C is an abstract class.

® inherit(4, B): B isasubclass of A.

o -variable(C, A, V, T) : V is the name of an attribute in
class C withtype T. T isoptional. A describes the
access right of this attribute, e.g. public, private, or
protected.

e method(C, A, F,R, P, ,T;, P,,T;,..): F is a method of
d class C. A describes the access right of this method,
e.g. public, private, or protected. R describes the return
type. If no return value is required R can be the value
*‘void". The method’s parameters and their types are
P,, T,, P;, T, ..., respectively, and are optional. The
return type R is also optional if the method has no
parameters.

* invoke(C, C; ,0, O, P): A method O, which belongs
to the object O is invoked in the method C; of the class
C, where P is the parameter of the method O,. P can
contain zero or more parameters depending on the
number of parameters the method Oy has.

o element(E,;,S;, E;,S; ,..): E, is an element of set
S,. E;is an element of set S, , and so on.

Example. As an example, suppose a framework has a
Decorator pattern [17] as one of its design elements. The
main goal of the Decorator pattern is to add responsibilities
to individual objects dynamically and transparently without
affecting other objects. As shown in [17,15,16], the
decorator forwards requests to the component and may
perform additional actions before or after forwarding. The
ConcreteComponent defines an object to which additional
responsibilities can be attached, while the
ConcreteDecoratorA and ConcreteDecoratorB add
responsibilities to the component. The XSB Prolog
representation of the design information encoded by the
Decorator pattern is shown next:
decorator(Component, ConcreteComponent, Decorator,

ConcreteDecoratorSet, Operation,

AddBehavior, Components) :-
assert(abstractclass(Component)),
assert(method(Component, public, Operation)),

' A more comprehensive set of design primitives is

described in [15,16].

assert(inherit(Component, ConcreteComponent)),
assert(class(ConcreteComponent)),
assert(method(ConcreteComponent, public, Operation)),
assert(inherit(Component, Decorator)),
assert(abstractclass(Decorator)),
assert(variable(Decorator, private, Components,
Component)),
assert(method(Decorator, public, Operation)),
assert(invoke(Decorator, Operation, Components,
Operation)),
forall(member(ConcreteDecorator,
ConcreteDecoratorSet),
assert(inherit(Decorator, ConcreteDecorator))),
Jforall(member(ConcreteDecorator,
ConcreteDecoratorSet),
assert(class(ConcreteDecorator))),
Jforall(member(CoricreteDecorator,
ConcreteDecoratorSet),
assert(method(ConcreteDecorator, public, Operation))),.
Sforall(member(ConcreteDecorator,
ConcreteDecoratorSet),
assert(method(ConcreteDecorator,public, ddBehavior))),
Sorall(member(ConcreteDecorator,
ConcreteDecoratorSet),
assert(invoke(ConcreteDecorator, Operation, Decorator,
Operation))).
Jforall(member(ConcreteDecorator,
ConcreteDecoratorSet),
assert(invoke(ConcreteDecorator, Operation,
ConcreteDecorator, AddBehavior))).
The Prolog rule, decorator, represents the structural aspect
of the Decorator pattern. The arguments of decorator
denote the generic elements such as classes, attributes, or
methods. For example, Component and Decorator are
abstract classes; Operation and AddBehavior are methods;
Components represents an object reference. The Prolog
operators, assert and retract, are used to insert or remove
certain facts into or from the Prolog database, respectively.
The forall predicate represents the universal quantification
operator. When it is used with the member predicate, it can
quantify over a set of class names and apply a Prolog rule
on selected members.

D. Framework Instantiation Processes

Our process-based instantiation assumes that the framework
design contains a set of explicit extension points. An
instantiation point is a ‘place’ in the framework design
where the framework can be instantiated. Each extension
point has an associated cookbook ‘recipe’ and can be
represented by a tuple (RN, FE, CS, PD), where RN is the
recipe name associated with the extension point, FE is the
framework element such as class or method to which the
extension is attached, CS is the set of constraints associated
with the instantiation, and PD is a process description of the
tasks and activities that should be performed when
instantiation occurs. The set of the extension point

specifications defines the design space of declared
framework instantiations.

Framework Instantiation Processes. We have defined a
set of language constructs that can be used for the
representation of framework instantiation processes.

COOKBOOK ::= cookbook NAME IP_RECIPE+
IP_RECIPE ::= IP_REC_LINE+
IP_REC_LINE ::= [// STRING_EXP] [ELEMENT =]
IP_CMD;
IP_CMD IP_EXP | loop IP_RECIPE
end_loop
IP_EXP ::= IP|IP#IP|IPoIP|IP//IP
IP ::= IP_BASIC [REQUIRES_EXP*] |
’ IP_EXP [REQUIRES_EXP*]
IP_BASIC ::= IP_CLASS | IP_METHOD |
IP_ATTRIBUTE |
IP_ELEMENT
IP_CLASS ::= class_extension (CLASS_EXP) |
selection_class_extension
(CLASS_EXP) |
pattern_class_extension
(CLASS_EXP
, NAME,LIST)
IP_METHOD ::= method_extension

(CLASS_EXP, CLASS_EXP,
METHOD_EXP) |
pattern_method_extension
(CLASS_EXP, CLASS_EXP,
METHOD_EXP, NAME, LIST)
IP_ATTRIBUTE ::= value_selection (CLASS_EXP,
ATTRIB_EXP, LIST) |
value_assignment (CLASS_EXP,
ATTRIB_EXP)

IP_ELEMENT:= element_choice (ELEMENT)

ELEMENT::= CLASS_EXP | METHOD_EXP |
ATTRIB_EXP

CLASS_EXP = CLASS

CLASS::= STRING_EXP

METHOD_EXP ::= METHOD

METHOD::= STRING_EXP

ATTRIB_EXP ::= ATTRIB

ATTRIB::= STRING_EXP

LIST::= (LIST_EXP)

LIST_EXP::= STRING_EXP, LIST_EXP |
STRING_EXP

NAME::= STRING_EXP

REQUIRES_EXP::= requires ORDER_EXP |
requires ELEMENT

ORDER_EXP::= before IP | after IP | sync IP |
exclusive I[P
STRING_EXP::= String

Basic Instantiation Processes. The previous process
definitions were based on a number of basic instantiation
processes such as class_extension and method_extension.
These processes, which are related to class, methods,
attributes, and elements, respectively, are defined next in
terms of their functionality:

e Class elements — to modify application classes
¢ class_extension(C) — to create a subclass of the
associated class
¢ select_class_extension(C) — to select a subclass of
the associated class
¢ pattern_class_extension(N, List) — to create a
subclass through pattern application ‘
e Method Element — to modify application methods
¢ method_extension(M) — to create a method
¢ pattern_method_extension(M, C, List) — to
instantiate a method using a pattern
e Attribute Element — to modify attributes
¢+ value_selection(V, A) —to select a value
¢ value_assignment(V,A) — to assign a value
e Element — to modify elements
¢ element_choice(E) — selects an element

E. Framework Instantiation Analysis

Formal Process Specification. The framework process-
based instantiations based on the constructs described in the
previous sub-section are translated to XL, the model
specification language for XMC. XL is a highly expressive
extension of value-passing CCS. The syntax of the XL
specification is given next:

Pdef -> (Pname ::=Pexp .)*
Pname -> Term
Pexp -> Pexp o Pexp Prefix
| Pexp # Pexp Choice
| Pexp '|' Pexp Parallel Composition
| Pexp @ PortMap Relabelling
| Pexp \ PortList ~ Restriction
| Pname Recursion
| in(Port,Term) Communication (input)
| out(Port,Term) Communication (output)
| action(Term) Communication (non-sync)
| Comp Computation (Prolog expression)
| iffComp, Pexp, Pexp) Conditional Expression
| zero Empty process (0 in CCS)
| nil Empty computation
PortMap -> [Port / Port (, Port / Port)*]
PortList -> { Port (, Port)* }
Term -> PrologTerm
Comp -> PrologPredicate

Port -> PrologAtom

Pname is a parameterized process name, represented as a
Prolog term; Comp is a computation, e.g., X is Y+I.
Process in(Port,Term) inputs a value over port Port and
unifies it with term Term; out(Port, Term) outputs term Term
over port Port; Process action(Term) specifies an action that
is represented by Term and used for non-synchronous
communication. Process if (Comp, Pexp, Pexp) behaves like
the first Pexp if computation Comp succeeds and otherwise
like the second Pexp. Operation ‘0’ is sequential
composition; ¢ | ’ is parallel composition; # is
nondeterministic choice; ‘@’ is re-labeling where PortMap
is a list of substitutions; and ° \backslash ’ is a restriction
where PortList is a list of port names. Recursion is
provided by a set of process definitions, Pdef, of the form
Pname ::= Pexp.

As an example, consider the specification of the Alternating
Bit Protocol \cite{T96} in XL. We assume that any text
after the % character is a comment.

medium(Get, Put) ::=
in(Get, Data);
{ out(Put, Data)
action(drop)
15

medium(Get, Put).

sender(AckIn, DataOut, Seq) ::=
% Seq is the sequence number of
% the next frame to be sent
out(DataOut, Seq);
{
in(AcklIn, AckSeq);
if AckSeq == Seq
%% successful ack, next message
then {
NSeq is 1-Seq;
sendnew(Ackln, DataOut, NSeq)
}
%% unexpected ack, resend message
else sender(AcklIn, DataOut, Seq)
#
%% upon timeout, resend message
sender(Ackln, DataOut, Seq)

.

sendnew(AcklIn, DataOut, Seq) ::=
action(sendnew);
sender(Ackln, DataOut, Seq).

receiver(Dataln, AckOut, Seq) ::=
%% Seq is the expected next sequence number
in(Dataln, RecSeq);

if RecSeq == Seq

then {
NSeq is 1-Seq;
action(recv);
out(AckOut, RecSeq);
receiver(Dataln, AckOut, NSeq)

H

else {
%% unexpected seq, resend ack
out(AckOut, RecSeq);
receiver(Dataln, AckOut, Seq)

3.

abp ==
sendnew(R2S_out, S2R_in, 0)
| medium(S2R_in, S2R_out) % sender -> receiver
| medium(R2S_in, R2S_out) % receiver -> sender
| receiver(S2R_out, R2S_in, 0).

The process medium represents a noisy channel. The sender
process sends a packet to the channel and waits for an
acknowledgement. Upon timeout, it resends the packet. The
receiver process receives a packet from the channel and
sends an acknowledgement back. The abp process is the
parallel composition of the previously described processes.

Notice that using this notation, we can define the

instantiation processes for the following types:

e Basic processes — the processes were already defined in
the previous sub-section; _

e Recursive processes — this processes have the form
IPname ::= ... IPname ..., where “IP” denotes an
instantiation process;

e Sequential processes — these processes use the prefix
operator “0” to define the sequence of two instantiation
processes IP1 and IP2: “IP1 o IP2”;

e Choice instantiation process — the choice between
instantiation processes IP1 and IP2 is denoted by “IP1
#1P2”;

e Parallel Composition instantiation process — this
processes use the parallel composition operator “|’;
when there is a choice between executing an
instantiation task P1 and doing nothing, this process is
denoted by “P1 | zero”

e Combined instantiation processes use two or more of
the processes described above.

Analysis. As we have previously mentioned, we will verify
structural framework properties using the XSB Prolog
deductive facilities and verify the process-based
instantiations properties expressed in the p-calculus
temporal logic using the XMC model checker.

The p-calculus temporal logic is a modal calculus whose
semantics are usually described over sets of states of labeled
transition systems. The p-calculus is encoded in XMC in an
equation form as follows:

D -> Z +=F (least fixed point)
| Z -= F (greatest fixed point)
F->Z\|\u|ffIFVF|FANF|<A>F|[A] F

Z is a set of formula variables encoded as Prolog atoms; 4 is
a set of actions; #f and ff are propositional constants; A and
v are standard logical connectives; <4> F denotes that
possibly after the action 4 the formula F holds; /4] F
denotes that necessarily after the action 4 the formula F
holds.

Temporal properties, such as deadlock and drop package,
can be described in p-calculus and can be checked against
the model of the Alternating Bit Protocol by XMC. The
description of these two properties is as follows:

%% The system can deadlock.
deadlock += [-] ffV <-> deadlock.

%% A packet can be lost without being received
drop_packet += <sendnew>lost \V <->drop_packet.
lost += <sendnew>tt \/ <-recv>lost.

This temporal logic also allows us to give the semantics for
the “requires” in terms of constraints on the order or
exclusion of process instantiations. For example, if in a
process IP1 there is a “requires” clause stating “before
IP2”, we need to introduce an instantiation constraint.
Furthermore, if there is a “requires” clause stating
“exclusive” IP2, we also need to introduce an instantiation
constraint.

III. CASE STUDY

In this section, we first describe the DrawingTool
framework and then follow the phases of our process-based
instantiation approach to represent, instantiate and analyze
this system. The analysis is performed by checking
properties about the framework instantiation process.

A. The DrawingTool Framework

To illustrate the approach, we will present a set of examples
based on a framework called DrawingTool, a whitebox
framework developed as part of the ARTS project , an on
going project at PUC-Rio, in order to provide the drawing
characteristics of the 2GOOD case tool much like HotDraw

[18]. These drawing characteristics are illustrated in Figure

2. In summary, this framework has the following features:

e Figure Drawing — Provides architecture to draw, move
and erase figures in a drawing. The new figures are
introduced through subclassing. This is a mandatory
feature in the DrawingTool design.

e Drawing Persistency — Provides persistency of the
drawing. This is an optional feature in the DrawingTool
design.

e Drawing Exportation — Supports the export of a
drawing. This is an optional feature in the DrawingTool
design.

2GOOD - Case Tool

File Diagrams Generate Code Help

Figure 2

B. Representation

In order to use our approach we need to decorate the UML
class diagrams that represent the whole structure of the
DrawingTool framework, which is the reusable artifact.
These decorations provide the representation of the
framework extension points and are represented using UML
extension mechanisms such as stereotype and tagged-value.
The extension points are the subject of the instantiation
process described in section II.

Sramr—r Oraw - Canvas Mandatory Figures Drawing Aspect
ko—— ko>——| ——— e e
[<CLAS_EXTENSION>
— - FigureData
00 0 -
[<CLASS EXTENTION>|
Figure
<CLASS_EXTENSION]
>FigureAction
<ELEMENT_CHOICE> :
[<CLASS_EXTENSION>|
Persi Toot
— S
<ELEMENT_CHOICE> [[1
XMiText PlainText RelationaiDB

Optional Figures Persistency Aspect

E [<CLASS_EXTENSION>|
ExportTool
P k>

ExponPDF ExponGit

OpticnalFigures Exporting Aspect

Figure 3

In Figure 3 we show the decorated class diagram for the
DrawingTool framework. Note that some classes are
decorated with the stereotype CLASS_EXTENSION. This
form of decoration allows us to specify the specific type of
instantiation process associated with a class.

The framework extended UML diagram presented in Figure
3 is translated in a straightforward way to XSB Prolog using
the design representation primitives in Section II-C.

As stated in [2] “the process of framework instantiation is
achieved with the introduction of application specific
increments (ASI for short) to the framework extension
points”. In the DrawingTool framework these ASIs are
represented by the introduction new figures types and the
choice of persistence and export aspects.

In order to achieve these ASIs, during the instantiation
process the re-user will be required to provide the
application specific elements. For example, in the
DrawingTool framework the re-user needs to provide the
kind of figures the application will have, so that they can be
subclasses of the Figure Class.

C. DrawingTool Instantiation Process

In this Section we present the process descriptions that are
associated with each of the three DrawingTool extension
points. The resulting process descriptions indicate how
DrawingTool can be instantiated and what tasks should be
performed to accomplish a specific instantiation. There are
choices related to which processes can be used in the
instantiation process.

Note that in Figure 3 there is one mandatory aspect (Figures
Drawing) and two optional aspects (Figures Persistency and
Figures Exporting). The DrawingTool instantiation ‘recipe’
is called the DrawingTool Cookbook and is defined in what
follows as an instantiation process using the language
constructs that we have defined in Section II to represent
instantiation tasks:

cookbook DrawingTool
// Recipe Instantiate Figures Aspect
/I Choose the Persistency Aspect
element_choice (DrawingWindow.thePersistencyMan);
/I Choose the exporting aspect
element_choice (DrawingWindow.theExportMan);
/I Recipe for adapting the drawing features, such as
specifying the figure types.
// Figure Creation Loop
loop
// Creates a new figure class in the design space
figClass = class_extension (Figure);

/I Creates the Data representation for the created
figure

figDataClass = class_extension (FigureData);

// Creates the actions representation for the created
figure

figAction = class_extension (FigureAction);

/I Adapts the figure data creation using the Factory

Pattern. The sequence corresponds to
(TheConcreteCreatorClass, TheFactoryMethod,
TheConcreteProduct)
pattern_method_extension (Figure, figClass,
createData , Factory, (figClass, createData,
figDataClass);

// Adapts the figure actions creation using the
Factory Pattern. The sequence corresponds to
(TheConcreteCreatorClass, TheFactoryMethod,
TheConcreteProduct)
pattern_method_extension (Figure, figClass,
createAction , Factory, (figClass, createAction,
figActionClass);
/' Adapts the saving structure of the new figure.
Requires the persistency aspect.
Method_extension (Figure,
requires (PersistencyManager);
// End Figure Creation Loop
end_loop;

// End Figure Aspect

figClass,save)

// Recipe Instantiate Persistency Aspect
// Adapts the persistency algorithm. It depends on
the type of database used. If the DB type is note
provided, creates a new one by subclassing
PersistencyTool.
select_class_extension (PersistencyTool) #
class_extension (PersistencyTool) ;
// Adapts the automatic persistency rate.
value_selection(DrawingTool,
autoPersistencyRate,(0,5,10,30))
requires (PersistencyManager);

/I End Persistency Aspect

// Recipe Instantiate Export Aspect

// Performs a loop in order to adapt several methods of

exportation

LOOP
// Adapts the exportation algorithm.
Select_class_extension(ExportTool)#
class_extension (ExportTool) ;

/I END_Loop;

// End Export Aspect

D. Instantiation Analysis

Instantiation errors can be difficult to detect by visual
inspection. The goal of the framework instantiation analysis
is to assure that the framework evolution is valid. In this
way, we are able to changes the architecture based on

explicit instantiation processes and activities without
compromising the system integrity, invariants, and general
constraints.

In order to analyze the framework we first need to translate
the DrawingTool Framework Cookbook presented in the
previous Section to XL. This translation is straightforward.
For example, the instantiation process related to Recipe
Instantiate Export Aspect is given by:

RecipelnstantiateExport(ExportTool) ::=
((select_class_extension(ExportTool) #
class_extension(ExportTool)) # zero) o
RecipelnstantiateExport(ExportTool)

Note that the loop was translated into a recursive XL
process. Also, note that there is a choice between the
processes select_class_extension and class_extension.

After translating the instantiation processes to XL, the
resulting formal specifications allow us to reason about the
framework instantiations. We can also use the model
checking techniques supported by XMC to check, for
example, if a certain instantiation task obeys its related
constraints. In this way, we are able to find if the
instantiations we are performing are valid. Our analysis is
based both on the framework extensions and the processes
used to integrate these extensions. In the following we
illustrate the kinds of analysis our approach allows
developers to perform about the instantiation process.

Basic type checking and structural properties. In the
following we illustrate the kinds of properties that can be
verified using our approach. We first describe some of the
properties that can be checked using XSB Prolog. The
analysis of basic properties includes type checking in order
to verify whether extended elements have interfaces that
match the associated elements, which they are extending.
As an example of structural properties that can be checked,
we can verify whether the classes that were created in the
instantiation process are all correctly connected to the
framework core.

Safety and Liveness Properties. We also analyze the
framework instantiation processes using XMC. Behavioral
properties about these properties include safety (always)
and liveness (eventually) properties. A simple liveness
property <IP> zero can be used to verify that an
instantiation process /P eventually reaches the zero process
or stops. The following property about the process
RecipelnstantiateExport(ExportTool) can be easily verified:
<RecipelnstantiateExport(ExportTool)> zero.

Another form of liveness property can check if the
instantiation process contains a certain sequence of tasks.
For example, in order to show that if the process
select_class_extension(ExportTool) happens eventually,
then the process RecipelnstantiateExport(ExportTool) will

also happen eventually. In order to assess this property we
prove that the following property holds :
< select_class_extension(ExportTool)>
<RecipelnstantiateExport(ExportTool)> tt

More complex sequences of processes related to different
‘recipes’ can also be represented and checked using similar
expressions.

Invariants. Invariants that must hold during the
instantiation process independent of the tasks that are
performed can be represented by the following property:

[__] invariant_expression,

where, if the property is based on the states reached during
the process, we may write <_> variable = constant.

Deadlocks. We can also confirm the fact that the -
instantiation process is free of deadlocks by proving the
following property:

deadlock += [-] ffV <-> deadlock.

Process Pre- and Post-Conditions. Pre-and post-
conditions for an instantiation process can also be
represented using our formalism.

Other Properties. Our approach can also be used to
perform many other kinds of analyses on the DrawingTool
framework extension. Examples include extension point
constraint checking “can an instantiation related to an
extension point be performed only if a pre-condition
holds?”, extension process execution “does a process state
satisfy a certain constraint, a post-condition, after the
process has executed?”, instantiation process order
anomalies “does a process IP1 always happens after the
instantiation process IP2 is performed?” reachability “is
process IP2 eventually executed if an instantiation process
IP1 is executed?”, and mutual exclusion “an instantiation
process IP1 is never executed at the same time that an
execution process IP2 is executed.”.

The analysis is limited by the kinds of properties that can be
expressed using p-calculus and the kinds of processes that
can be represented by XL, a variant of the Milner’s CCS
process algebra. However, both formalisms are highly
expressive. As a temporal logic, the p-calculus is more
expressive than linear temporal logic (LTL) and branching
time logics such as CTL and CTL".

IV. RELATED WORK

Framework and Pattern Documentation and Analysis.

Some effort to achieve framework documentation and
systematic instantiation has been described in [18,19,5,20].
The Cookbook [6] and Hook [19] approaches describe the
instantiation process using a natural-language form of

description, structured in a special way. The problem with
these approaches is the lack of a formal representation for
both the design and reuse scripts. There is also no way to
verify the correctness of the final design according the
original framework premises.

[6] proposes an extension to the UML notation in order to
provide more accurate framework design. Although its
extension points are well represented and it uses a Prolog
knowledge base to reflect its design adaptations, it is still
difficult to obtain automatic instantiation because of the
lack of an understandable output.

Various design pattern recovery methods and tools
[21,22,23] are related to our work in the sense that all
recovered patterns can be modeled and checked for
anomalies in their compositions. The correction of these
anomalies could be used to complete the reengineering
tasks.

Framework and Pattern Specification and Verification.
Formalizing design patterns and architecture patterns has
been proposed in [24,25]. Although Mikkonen [25] has
discussed the composition of two design patterns based on a
formal method, his approach relies on a specific
specification language (DisCo). Correctness depends on the
refinement correctness of this language since the
composition is achieved in terms of refinement. Our
approach empbhasizes specifying design components and
their compositions, and checking the properties by a model
checker. Moreover, Mikkonen’s approach focuses on
formalizing design patterns, whereas our work deals with a
more general approach based on design components [11,30]
and their composition.

Pal [26] investigated rule and constraint approaches for
realizing design patterns. However, in his work the property
checking is performed at implementation level. He did not
discuss the interactions among different design patterns
when they were integrated together.

Other work on tool support for object-oriented patterns [27]
also discussed constraints on patterns. Nevertheless, they
worked on single pattern constraints at implementation
level. Our work emphasizes the interactions among different
patterns when they are integrated.

Automated Verification through Model Checking. There
is an increasing interest in modeling and analyzing software
by various formalisms, and checking properties or finding
errors through model checking [8,12,28]. Numerous
examples can be found in various domains such as
requirement analysis [29], distributed cache coherence
analysis [31], word processor design analysis [32], mobile
IP protocol analysis [33], CAD algorithm analysis [34],
real-time operating system kernel analysis [35], and Java
meta-locking algorithm analysis [36].

10

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach for process-
based representation and analysis of framework
instantiation. The approach is based on explicit instantiation
and reuse processes and automated verification techniques.
We illustrate these representation and analysis techniques
through a case study related to the instantiation of the
DrawingTool framework.

Discovering composition errors during the instantiation
process using architectural and design level abstractions is
certainly much easier than relying on code, because a small
piece of design may be mapped to thousands of lines of
implementation code. Instantiation errors may be hidden in
complex implementation structures and are very costly to
analyze or detect. Furthermore, at the implementation stage
design errors are very costly to modify.

Our approach has several advantages. First, it allows us to
find errors in the instantiation process using a level of
abstraction where errors are cheaper to correct. Second, it
provides mechanisms to achieve automated verification of
framework instantiation properties. Third, it promotes reuse,
since the generic representations of framework design
elements can be stored in a repository and retrieved for
instantiation and integration in a specific application.
Fourth, as the instantiation processes can be aggregated
forming complex and significant additions to the initial
framework, the analysis can scale up incrementally to deal
with large frameworks. For this reason, the state-explosion
problem in model checking can be addressed by
incrementally modeling the instantiation processes and
checking the process combinations. Fifth, changes of the
framework design elements and the instantiation processes
can be achieved by simply modifying some arguments of
their parameters.

Our analysis approach is limited to the kinds of properties
that can be proved using Prolog and the highly expressive
p-calculus temporal logic. Based on the results of the
experiments we have done so far, these underlying
deductive facilities seem to be adequate. Besides verifying
structural and process-based instantiations, we are currently
defining other classes of properties that we can use in our
analysis of framework instantiations. These classes may
include properties about (real-)time, event ordering and
access control.

A more comprehensive infrastructure needs to be defined
for our approach, including process management dealing
with process state such as context and preferences, pro-
active process execution and guidance where the system
may offer suggestions to help the user accomplish goals,
process coordination, facilities to deal with pending
processes and corrective hints, and support for instantiation
process definition such as some form of system
visualization or snapshot and finally, processes that have

well defined interfaces and metadata specification such as
the support of automatic process composition and
configuration and where legacy elements can be wrapped to
support these interfaces.

We are also working on techniques to map the XL counter-
examples back onto the original structural and process
descriptions. We are assessing how much of this feature can
be automated and how much effort is required to be able to
show which parts of the structural and instantiation process
descriptions need to be revised under the light of the
counter-examples.

This paper also indicates that it could be highly beneficial to
pursue further research on how the structural framework
design changes may affect the behavior of the framework,
and how these changes can affect various properties of the
instantiation process. These analyses can provide guidance
about important framework instantiation activities as well as
be documented to provide information on the rationale
behind these activities.

VI. ACKNOWLEDGMENTS

This work is being supported in part by the NSERC
Strategic project grant funded by the National Sciences and
Research Council of Canada and the National Research
Council of Brazil (CNPq).

VII. REFERENCES

[1] Pree, W., Design Patterns for Object-Oriented Software
Development, Addison-Wesley Publishing Company, 1995.
[2] Fayad, M.E., Schmidt, D.C., Johnson, R.E., Domain-
Specific Application Frameworks, Wiley Computer
Publishing, 1999.

[3] Frakes, W.B., Biggerstaff, T.J., Prieto Dias, R.,
Matsumura, K., Schafer, W., Software Reuse: is it
delivering? ICSE, pp. 52-59, 1991.

[4] Booch, G., Rumbaugh, J., Jacobson, I., The Unified
Modeling Language User Guide, Addison-Wesley, 1999.
[5] Marcus Felipe Montenegro Carvalho Da Fontoura. A
Systematic Approach to Framework Development. Ph.D.
Thesis, Computer Science Department, Pontifical Catholic
University of Rio de Janeiro (PUC-Rio), 1999.

[6] Krasner, G.E., Pope, S.T., A Cookbook for Using the
Model-View-Controller User Interface Paradigm in
Smalltalk-80, Journal of Object-Oriented Programming
1(3), 1998.

[7]1 XSB, The XSB Logic Programming System, Version
2.1. Available from http://www.cs.sunysb.edu/ \sim
sbprolog, 1999.

[8] Ramakrishna, Y.S., Ramakrishnan, C.R., Ramakrishnan,
1.V., Smolka, S.A., Swift, T., Warren, D.S., Efficient Model
Checking Using Tabled Resolution, Proceedings of the 9th
International Conference on Computer Aided Verification

11

(CAV), Haifa Israel, LNCS1243, Springer-Verlag, July
1997.

[9] McMillan, K. L., The SMV system DRAFT, Carnegie-
Mellon University, pp. 1-24, February 1992.

[10] Clarke, E.M., Emerson, E.A., Sistla, A.P., Automatic
Verification of Finite-State Concurrent Systems Using
Temporal Logic Specifications, ACM Transactions on
Programming Languages and Systems,8(2), pp. 244-263,
April 1986.

[11] Dong, J., Model Checking the Composition of
Hypermedia Design Components, Proceedings of the 10th
CASCON, Toronto Canada, pp. , November 2000.

[12] Ramakrishnan, C.R., Ramakrishnan, I.V.,Smolka, S.A.,
XMC: A Logic-Programming-Based Verification Toolset,
Proceedings of the International Conference on Computer
Aided Verification (CAV), LNCS1855, Springer-Verlag,
July 2000.

[13] D. Kozen, Results on the Propositional mu-calculus,
Theoretical Computer Science 27, pp. 333-354, 1983.

(14] Milner, R., Comunication and Concurrency,
International Series in Computer Science. Prentice Hall,
1989.

[15] Alencar, P.S.C.,, Cowan, D.D., Dong, J., Lucena,
C.J.P., A Pattern-Based Approach to Structural Design
Composition, Proceedings of the IEEE 23rd Annual
International Computer Software & Applications
Conference (COMPSAC), Phoenix USA, pp. 160-165,
October 1999.

[16] Dong, J., A Transformational Process-Based Approach
to Object-Oriented Design, Master’s Thesis, Computer
Science Department, University of Waterloo, 1997.

[17] Gamma, E., Helm, R., Johnson, R., Vlissides, J.,
Design Patterns, Elements of Reusable Object-Oriented
Software, Addison-Wesley Publishing Company, 1995.

[18] Johnson, R., Documenting Frameworks Using Patterns,
Proceedings of OOPSLA’92, ACM/SIGPLAN, New York,
1992.

[19] Froehlich, G., Hoover, H.J., Liu L. and Sorenson, P.G.
Hooking into Object-Oriented Application Frameworks,
Proc. 19th Intl Conf. on Software Engineering, Boston,
May 1997, 491-501.

[20] Ortigosa, A., Campo, M., Smartbooks: A Step Beyond
Active-Cookbooks to Aid in Framework Instantiation,
Technology of Object-Oriented Languages and Systems 25,
IEEE Press, June 1999.

[21] Rudolf K. Keller, Reinhard Schauer,S\'{e}bastien
Robitalille, Patrick Page, Pattern-Based Reverse-
Engineering of Design Components, Proceedings of the 21st
International Conference on Software Engineering, Los
Angeles, USA, pp. 226-235, May 1999.

[22] Daniel Jackson, Allison Waingold, Lightweight
Extraction of Object Models from Bytecode, Proceedings of
the 21st International Conference on Software Engineering,
Los Angeles, USA, pp. 194-202, May 1999.

[23] Christian Kramer, Lutz Prechelt, Design Recovery by
Automated Search for Structural Design Patterns in Object-
Oriented Software, Proceedings of the Working Conference

on Reverse Engineering, IEEE CS press, Monterey,
November 1996.

[24] Alencar, P.S.C., Cowan, D.D., Lucena, C.J.P., A
Formal Approach to Architectural Design Patterns,
Proceedings of the Third International Symposium of
Formal Methods Europe, pp. 576-594, 1996.

[25] Tommi Mikkonen, Formalizing Design Pattern,
Proceedings of the 20th International Conference on
Software Engineering, pp. 115-124, 1998.

[26] Pal, P., Law-Governed Support for Realizing Design
Patterns, Technology of Object-Oriented Languages and
Systems (TOOLS), USA, pp. 25-34, July 1995.

[27] Florijn, G., Meijers, M., Winsen, P., Tool Support for
Object-Oriented Patterns, Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP),
pp. 472-495, June 1997.

[28] E. M. Clarke, J. M. Wing, Formal Methods: State of
the Art and Future Directions, ACM Computer Surveys
28(4), December 1996.

[29] Joanne M. Atlee, John Gannon, State-Based Model
Checking of Event-Driven System Requirements, IEEE
Transactions on Software Engineering, 19(1), pp. 24-40,
January 1993.

[30] Rudolf K. Keller, Reinhard Schauer, Design
Components: Towards Software Composition at the Design
Level, Proceedings of the 20th International Conference on
Software Engineering, pp. 302-311, 1998.

[31] Jeannette M. Wing, Mandana Vaziri-Farahani, A Case
Study in Model Checking Software Systems, Science of
Computer Programming, 28, pp. 273--299, 1996.

[32] Daniel Jackson, Craig A. Damon, Elements of Style:
Analyzing a Software Design Feature with a
Counterexample Detector, IEEE Transactions on Software
Engineering, 22(7), pp. 484--495, July 1996.

[33] Zhe Dang and Richard A. Kemmerer, Using the
ASTRAL Model Checker to Analyze Mobile IP},
Proceedings of the 21st International Conference on
Software Engineering, Los Angeles, USA, pp. 132-141,
May 1999.

[34] David S. Keyes and Laura K. Dillon and Moon Jung
Chung, Analysis of a Scheduler for a CAD Framework,
Proceedings of the 21st International Conference on
Software Engineering, Los Angeles, USA, pp. 152-161,
May 1999.

[35] John Penix, Willem Visser, Eric Engstom, Aaron
Larson, Nicholas Weininger, Verification of Time
Partitioning in the DEOS Scheduler Kernel, Proceedings of
the 22nd International Conference on Software Engineering,
Limerick, Ireland, pp. 488-497, June 2000.

[36] Samik Basu, Scott A. Smolka, Orson R. Ward, Model
Checking the Java Meta-Locking Algorithm, Proceedings of
the 7th Annual IEEE International Conference and
Workshop on Engineering of Computer Based Systems
(ECBS), pp. 342-350, April 2000.

12

