A DIRECT ALGORITHM TO CONSTRUCT THE MINIMAL TELESCOPERS
FOR RATIONAL FUNCTIONS (Q-DIFFERENCE CASE)

H. Q. LE, S. A. ABRAMOV, AND K. O. GEDDES

ABSTRACT. In this paper we present a direct algorithm to construct the minimal telescopers for
rational functions for the g-difference case.

1. PRELIMINARIES

The well-known Zeilberger’s algorithm [4, 11] is a useful tool for finding closed forms of definite
hypergeometric sums, and for certifying the truth for large classes of identities that occur in combi-
natorics and in the theory of special functions. It is shown in [3, 5, 10] that Zeilberger’s algorithm
can be carried over to the ¢-difference case; and similar to the case of its difference counterpart, the
¢-analogue version of Zeilberger’s algorithm (we name it hereafter as ¢Z) also has a wide range of
applications [9].

Let ¢ be an indeterminate parameter. Denote by @, Qr the ¢-shift operators w.r.t. ¢" and
g, respectively, defined by Qn T(¢",¢*) = T(¢"*", ¢*), Qe T(¢",¢*) = T(¢g",¢**"). For a given ¢
hypergeometric term T'(g", ¢*) of ¢" and ¢*, i.e., the consecutive-term ratios T(¢"*?, ¢*)/T(¢", ¢*)
and T(q",¢*+1)/T(q", ¢*) are elements from C(q)(g", ¢*), ¢Z tries to construct for T(¢", ¢*) a ¢Z
pair (L, G) which consists of a linear ¢-difference operator L with coefficients which are polynomials

of ¢" over C(q)

(1) L=a,(¢")Qf + -+ +a1(q") Qs + ao(q")Qy, ai(q") € Cla)[g");
and a ¢hypergeometric term G(g", ¢*) such that
(2) LT(¢",q") = (@x — 1) G(¢", q").

It can be shown that if there exist ¢Zpairs for T(¢", ¢*), then ¢Z terminates with one of the gZ-pairs
and the telescoper L in the returned ¢Z-pair is of minimal possible order. Note that L is unique
up to a factor P(¢") € w[q”], and we name it the minimal telescoper. We also name the ¢Z-pair
(L, G) where L is the minimal telescoper the minimal qZ-pair.

qZ uses an item-by-item examination of the order p of L. It starts with the value of 0 for p and
increases p until it is successful in finding the minimal ¢Z-pair (L, G). For a given ¢-hypergeometric
term T'(g", ¢*), the question whether there exists a ¢Z-pair for T'(g", ¢*) is not conclusively answered
although a sufficient condition is known via the fundamental theorem (see [4, 8, 10]). If T(q", ¢*)
is a proper g-hypergeometric term [8, 10], then ¢Z is applicable to T\, and an upper bound for p
can be computed [8]. This upper bound, however, is much too large in practice. This is the main
reason for applying item-by-item examination strategy. As a consequence, when applying ¢Z to a
g-hypergeometric term, we waste resources either trying to compute a gZ-pair in the case when no
such gZ-pair exists or trying to compute without success a telescoper with ord L < p in the case
when the gZ-pairs exist and the order of the minimal telescoper is p.

Let T(¢", ¢") be a rational function of ¢" and ¢*. The problem of determining a necessary and
sufficient condition for the termination of ¢Z on T(¢",¢*) is solved and presented in [7]. First,
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it provides a decision procedure as to whether or not one should apply ¢Z to the input T(q", ¢*).
Secondly, in the case when the termination of ¢ 2 is guaranteed, it helps to speed up the construction
of the minimal ¢Z-pair by reducing the size of the problem to be solved. Note that an item-by-item
examination technique is still used in this case.

In this paper we present a direct algorithm to construct the minimal ¢Z-pair (L, G) for a given
rational function T'(g", ¢*). By direct algorithm, we mean an algorithm which computes the minimal
gZ-pair directly, without using an item-by-item examination. The algorithm is based on a special
form of representation of T'(¢", ¢*), on direct construction of the minimal telescoper for each member
of this representation. The minimal gZ-pair for T(g", ¢*) can then be obtained using Least Common
Left Multiple (LCLM) computation.

Note that the same problem for the difference case is solved and presented in [6]. In fact, even
though the details are different, we essentially use the same approach as the one that we used for
the difference case in solving the problem for the g¢difference case.

2. THE DECOMPOSITION PROBLEM AND THE EXISTENCE OF A ¢Z-PAIR

In this section, we recall some known results relating to the decomposition problem [2] and the
existence of a ¢Z-pair [7] for rational functions. They are needed in subsequent sections.

2.1. The Decomposition Problem. Let T(¢*) be an element from C(q)(¢*). An algorithm to
solve the decomposition problem constructs a rational function $(¢*) and a proper rational function
F(g") such that

(3) T(¢") = (Qx — 1)S(¢*) + F(d*), S(d*), F(d*) € Cq) ("),

where the denominator g(¢*) of F(g*) has the lowest possible degree in g*.
If F(g*) = 0, then T(q*) is said to be rational summable.
Consider the partial fraction decomposition of T/(¢¥) w.r.t. the complete factorization of its de-

nominator over C(q):
t;
T =33 P o By € T
q - (qk_ai)jﬂ (3] (¥ Vq *
i=1j5=1

Define a; ~ aj iff oy = q’aj where ! is an integer. It is easy to check that ~ is an equivalence
relation on the set {a1,...,am}. If a; and «; are in the same equivalence class, then the two monic
irreducibles ¢* — a; and ¢* — a; are said to be g¢-shift equivalent. For each equivalence class, let o
be the largest element in the sense that for all elements o in the same class, o = ¢'o; where I is a
non-positive integer. It is shown in [2] that T(¢*) can be written as

] 1; 1
R

where M;; € C(q)[Qx],0 < s < m,l; > 0; a; is the representative, which is the largest element, for
the i-th g-shift equivalence class; and T'(g*) is rational summable iff

(4) Mij :LijO(Qk_]-)a L,’j E‘C(q)[Qk],i: 1,... ,S,j: 1,...,li.

Let us represent F(g*) in the reduced form F(¢¥) = f(q*)/g(¢%), where f(q*),g(q*) € C(q)[g*].
By [7], g(¢*) has the following property:

P1. If p1(g*), pa(g*) are factors of g(g*) irreducible over C(gq) then there does not exist a non-zero
integer h such that p;(g*t") = pa(q*).

On the other hand, suppose that T(g*) is rational summable. Let T(¢*) = a(g*)/b(¢*) where
a(g*), b(g*) are relatively prime elements of C(q)[¢*]. Then b(¢¥) has the following property [7]:

P2. If p;(¢*) is a factor of b(¢*) irreducible over C(q), then there exist a factor pa(g¥) irreducible

over C(q) of b(g*) and a non-zero integer h such that ¢=" p;(¢* ") = p2(g¥).
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2.2. The Existence of a gZ-pair. Let T(¢",¢*) € C(q)(¢", ¢*). Apply an algorithm to solve the
decomposition problem w.r.t. ¢* to represent T'(g", ¢*) in the form

(5) T(q",¢") = (Qx — 1)S(¢", ") + F(¢", ¢"), S(¢".d"), F(¢".d") € Cla)(¢", q"),

and the denominator g(g”, ¢*) of F(g", ¢*) is of minimal possible degree w.r.t. ¢*. It is shown in [7]
that a gZ-pair for T(¢", ¢%) exists iff g(¢", ¢¥) can be written in the form
6)  g(¢",¢") = g™ [[(a" —via"“"*"), ¢, ai, bi € Z, ged(ai, bi) = 1, bi > 0, 7i, @ € C(g).

(3

An algorithm for using the above criterion as well as the verification of the algorithm are presented

in [7].
3. ON THE MINIMAL TELESCOPER OF A SUM OF RATIONAL FUNCTIONS

We introduce in this section the concept of similarity among ¢-hypergeometric terms. It is the
¢-analogue of the same concept for hypergeometric terms as discussed in Section 5.6 [8]. The main
result of this section is Theorem 1 which provides a sufficient condition for the construction of the
minimal telescoper for a sum of rational functions based on the minimal telescopers for each rational
function of the sum. This theorem is the ¢-analogue of Theorem 2 in [6] for the difference case.

Definition 1. Two q-hypergeometric terms s(q™) and t(¢") are similar if their ratio is an element
from C(q)(q™).

It is easy to see that similarity is an equivalence relation on the set of all ¢-hypergeometric terms.
The following proposition is the g-analogue of Proposition 5.6.2 [8].

Proposition 1. Let s(q™) and t(¢") be two q-hypergeometric terms such that s(¢™) + t(¢") # 0.
Then s(q™) +t(¢™) is q-hypergeometric if and only if s(¢™) ~ t(q™). O

Lemma 1. Let (L,G) be the minimal qZ-pair for a q-hypergeometric term F(q",q*). If Ly is a
telescoper for F, then L1 is right divisible by L in C(q)(¢™)[Qn]-

Proof. We have

(7) LF = (Q - 1)G.

Since L; is a telescoper for F, there exists a g-hypergeometric term G1(q", ¢*) such that
(8) LiF = (Qr — 1)G1.

Applying the right Euclidean division of L; by L yields

(9) Li=SoL+R, S,RecC(q)(¢")[Qr], R=0o0r ord R < ord L.

From (9), one obtains

(10) L,F =S(LF)+ RF.

The substitution of (7) and (8) into (10) yields

(11) RF = (Qr — 1)(G1 — SG).

Since T(¢", ¢%) is a ¢-hypergeometric term, T(g" 1, ¢**+1)/T(¢", ¢*) is a rational function of ¢" and
g*. One can show by induction that for any pair of integers sy, sa, T(g"1*, ¢*+*2)/T(¢", ¢%) is also
a rational function of ¢" and ¢*. In general,

MT qn’ qk n n n

ML) — R o) € Cla)la" o) for any operator M € C(0)a") Qs Qi

It follows from (7), (8), (11) and (12) that F ~ G ~ G1, and SG ~ G. Since ~ is an equivalence

relation, G ~ SG, and G1 — SG is a ¢-hypergeometric term (Proposition 1). Since ord R < ord L
and L is the minimal telescoper for F, it follows from (11) that R = 0. |

(12)
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Theorem 1. Let Fy,...,Fs be rational functions such that if L™ is a telescoper for F = F; +
---+ Fs then L* is a telescoper for every F;,i = 1,...,s. Let L1,...,Ls be the minimal telescopers
for Fu,..., Fs, respectively (assuming that they all exist). Then lclm(Lq, ..., L) is the minimal
telescoper for Fy + ---+ F.

Proof. First we show that lclm(Lq, ..., L) is a telescoper for F. Since L; is the minimal telescoper
for F;, there exists G; € C(q)(¢", ¢*) such that

(13) LiF; = (Qx — 1)Gi, 1< i < s.
Set L = lclm(Ly,..., Ly). This implies there exist L,..., L, € C(q)(q"™)[Qx] such that
L =lcm(Ly,...,Ly)=LioLy =---=L, o L,.
Then
LF=LF +---+LF, = L{(L1F1) + ---+ L (L F,) = (Qr — 1)(L1G1 + - - - + L'Gy).

Since LGy +---+ L'G, € C(q)(q", ¢"), (L,L1G1+ -+ ['G,) is a ¢Zpair for F.

Now let L* be any telescoper for F. From the hypothesis, L* is also a telescoper for each F;, 1 <
1 < s. Since L; is the minimal telescoper for F; and since every rational function is a ¢-hypergeometric
term, one can apply Lemma 1 and deduces that L* is right divisible by L;, 1 <1 < s. Consequently,
L* is right divisible by lclm(Lq,. .., Ly). O

4. THE Basic CASE

We show in this section how to compute directly the minimal ¢Z-pair (L,G) for VF where

V € Cq)(¢")[Qn], and

(14)  F(¢" ¢ = ! Tl

> @, bEZ, ged(a,b) =1, b> 0, y€ Clq), m € N\ {0}.
(qk — q(a/b)n)
Lemma 2. Let F(q",q%) be of the form (14). Then L = ¢*™ Qb — 1 is the minimal telescoper for
F(q",¢").
Proof. Set L=¢"" Q% — 1, M = Q;* — 1= (Qx — 1) o U, where

U= Zz’_:ao_lQA a<0
Yo, —Qp' otherwise .

It is easy to check that
LF = MF = (Qx — 1)(UF), UF € C(q,q")(¢").

Therefore, (L, UF) is a ¢Z-pair for F(q", ¢¥). Now suppose there exists a gZ-pair (L1, G1) such that
ord Ly < ord L = b. Without loss of generality we can assume that the coefficient of Q2 in L; is a
non-zero element of C(q)[¢"]. Otherwise, choose a new ¢Z-pair for F

(@, 0 L1,G1(¢" ™, "))
where ) is the minimal positive integer such that the coefficient of Q) in L; is not zero. Set
s(a", ")
t(a", q")
Since H is rational summable w.r.t. ¢*, ¢(¢", ¢*) has property P2, i.e., for the irreducible factor
qF — vy qla/t)n of t(g", ¢*), there exists a non-zero integer h such that

g " (qk+h _ ,Yq(a/b)n) — gk — yqlarting=h

H=1I,F= , s(q",q%), t(a", ¢*) € Tlq, q")[¢"].
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is also an irreducible factor of ¢(¢", g*). Since all the irreducible factors of ¢(¢", ¢¥) have the form
q" — v ql@/0) 7+ for i =0,1,...,0rd Ly, this means

(15) ’Yq(a/b)" (q(a/b)i — q_h) = 0 for some 1.
Case 1. v # 0 and a # 0. If follows from (15) that
h=— %i.

If = 0, then h = 0. This contradicts the assumption on h. Otherwise, since ged(a, b) = 1, b|s. This
is impossible since 0 < 7 < b.

Case 2. v = 0 or a = 0. It is easy to see that (L,G) = (Qn, — 1,0) is a gZ-pair for F. Suppose
that the minimal telescoper for F is of order 0, i.e., L = 1. Then LF = F = {1/¢*™ 1/(¢* —y)™}.
In both cases, F is not rational summable w.r.t. ¢* (Property P2). [l

Lemma 3. Let F be of the form (14), (Lr,Gr) be the minimal qZ-pair for F, V € C(q) (¢")[Qn]
and

(16) lelm (V,Lp) = LoV = Ly o Lp, L1, Ly € Clq)(¢")[Qn]-
Then (L1, L2GF) is the minimal qZ-pair for V F.

Proof. Tt follows from Lemma 2 that the existence of the minimal ¢Z-pair (Lg, Gp) for F is guar-
anteed. Since

Li(VF)=Ly(LpF) = L2o(Qr — 1)Gr = (Qr — 1)(L2GF),
(L1, L;GF) is a ¢Z-pair for V F.

Let L* be any telescoper for V'F, i.e., there exists G* € C(q, " )(¢*) such that L*(VF) = (Qx —
1)G*. Therefore, (L* oV, G*) is a qZ-pair for F. Since Lp is the minimal telescoper for F, one deduces
from Lemma 1 that L* o V is right divisible by Lg. Additionally, L* o V is right divisible by ¥V and
L1 0V =1cm(V, Lp). Therefore, L* o V is right divisible by L; o V. Consequently, Ly is the minimal
telescoper for V F. |

Theorem 2. One can directly compute the minimal qZ-pair (L, G) for a rational function VF €

C(q,q")(q*), where F is of the form (14) and V € C(q) (¢")[Qx]-

Proof. The proof follows from Lemmas 2 and 3. |
Example 1 Consider the rational function
1
VF where V= (¢> - 1) Q3> + (¢ + 1), F = - —
9" —q

Applying Lemma 2 results in the minimal ¢Z-pair (Lp, GF) for F :

1 1 1
I
(Lr,GF) = (q Qn — 1, gh+2 —g-on + g+ —g-on + & — q—3n> .

Computing the lclm(V, Lr) results in the operators Ly, L that satisfy (16):

1 1
L= " — ;
SR T [ o) R PR TPy
qg—1 3 1
Ly = .
2 qlo_q9+1Qn+q10_q9+1

It follows from Lemma 3 that the minimal ¢Z-pair (L, G) for VF is
(L,G) = (L1, Lz Gp) where

3 1 1 1 1
G = q10 _ q9 + 1 qk+2 _ q—Sn + qk+1 _ q—Sn + qk _ q—3n +
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g—1 1 1
+q10 — O+ 1 \gkt2z — gm0 + gkl — g—3n-9 + ¢ —q3m9)"
We conclude this section with a description of the algorithm ¢ZpairV F' to construct the minimal
gZ-pair for VF where V € C(q) (¢")[@r], and F' is of the form (14).

algorithm qZpairV F;
input: V€ C()(¢")[Qa).

F = 1/(¢* —vq“/®™)", a,b € Z, ged(a,b) = 1, b > 0, v € Clg), m € N\ {0};
output: the minimal ¢Z-pair for V F;

ifa < 0 then
(L, Gr) = (¢ @4~ 1, (S5 @4) F) s

else
(Lr,Gr) = (" Q4 — 1. (1L, — Q;) F);

fi;

apply lclm computation to construct Ly, Lz € C(q) (¢™)[Q@n] such that
LioV =LyoLp =lclm(V, Lp);

return (L, LyGF).

5. THE GENERIC CASE
Lemma 4. Let F(q",¢") € C(q)(¢", ¢*), and
(17)

Tij n N/ .n reany
F = E E q ’y]q b ) T,’j(q ) S C(q) (q ), Y; € ‘L,(q), a;, b, € Z, b; > 0, gcd(ai,bi) = 1.
i=1j=1 -

Then F(q",q*) can be represented in the form

(18) ViFi+---+ V, Fy,

where V; € w(q“)[Qn] and F; =1/ (qk — % q(“i/bi)“)mi is such that

(19) ai, bi € Z,b; > 0, € Cq), ged(aq, bi) =1, m; € N\ {0},
and for all i # j, at least one of the following four relations is not valid:

(20) m; =mj, a; = aj, b = b;, v = ¢y, b e 7\ {0}).

Proof. Let Ry, R2 be two simple fractions in (17). Define Ry ~ R iff all four relations in (20) hold.
It is easy to check that ~ is an equivalence relation on the set of simple fractions in (17).

For any pair of simple fractions R; and R; in the same equivalence class, i.e., R; and Ry can be
written as

_ r1(q") _ r2(q") _ gla/b)h
(21) Rl = (qk P q(a/b)n)m’ RZ — (qk P q(a/b)n)m’ Y1 =49 Y25 h e Z\ {0}

If A > 0, then

Bt By =V oy where V = (1alg") +(6") @) € T 0") (@l

Otherwise, A < 0 and

Ri+R,=V (¢* — wlz(a/b)n)m where V = (r1(¢") +72(¢") Q") € Clg) (¢")[@n]-
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By using induction on the number of elements in each equivalence class, the sum of the elements in
each class can be represented as

Vit gy € Q)

Lemma 5. Let F(q",q*) be written in the form (18) where V; € C(q)[Qn],
1
(aF — i glas/bam)™

is such that (19) takes place and if i # j then at least one of the four relations in (20) is not valid.
Let L be a telescoper for F(q",q%). Then L is a telescoper for each V; F;, 1 < i < s.

F;, =

Proof. Let L € | ( )[¢", Qn] be any telescoper for F(g", ¢*). Consider

1
ViFi =V (g% — i gl@i/b)m)™ 1<i<s

Let Ri(q",q") = ri(¢")/(¢" — i q(“i/bi)(”‘*‘hl))mi be any simple fraction of V; F;, hy € IN. Then for
any non-negative integer ha, R;(¢"1"z,¢%) = ri(q”‘*‘hZ)/(qk — y; qlail/bi)he q(“i/bi)(”‘*‘hl))mi. Conse-
quently, it is easy to see that the application of L € C(q)[¢", @] to a simple fraction of V; F; yields
a sum of simple fractions such that each of them is in the same equivalence class (w.r.t. the relation
~ as defined in the proof of Lemma 4) as that of F;.

Let Ri, Rs be any two simple fractions of LF(g", ¢*). Define R; ~' R» iff in addition to the four
relations in (20), i.e., Ry and Ry can be written as

r1(q") Ry — r2(q")
(¢F — y1qla/Om)™’ (g% — 72 qla/t)n)

the relation b|h also holds. It is easy to check that ~' is an equivalence relation, and if Ry ~' R;
then R; ~ R;. Consequently, it is impossible that L o V; F; and L o V; F;j both have simple fractions
from the same class w.r.t. ~' for ¢ # j.

Considering any L o V; F;, we distribute the corresponding simple fractions to the classes w.r.t.
~' . For every pair of simple fractions R1, R2 as defined in (22), since b|h, there exists s € 7\ {0}
such that h = sb. Set hy = —as, p1(¢™,¢*) = ¢* —v1 ¢ ¥/, py(q™, ¢*) = ¢* — 72 ¢\*/®)™. Then

(a/b)(n+h)

(22) Rl == my Y1 = q(a/b)h Y2, h e Z\ {0}7

a7 " pa(g",d"M) = ¢" — 2 g = pi(q™, ¢%).

This means the monic irreducible factors of the denominator of the sum of simple fractions in each
class are g-shift-equivalent. Since LF(g", ¢%) is rational summable w.r.t. ¢, from the necessary and
sufficient condition as defined in (4), Subsection 2.1, the sum of all fractions from such a class is
rational summable w.r.t. ¢*. This implies that L o V; F; is rational summable w.r.t. g*. |

Theorem 3. For any rational function F(q",q") which can be written in the form

(23)

TZ n T~y n T~y
F = ZZ = 71( gy ) €T 2 €T e by € 2, b > 0, e ) = 1
i=1j=1 - h

one can directly compute the minimal qZ-pair (L, G) for F(q", q%).

Proof. Lemma 4 allows one to rewrite F(g", ¢*) in the form (18). Theorem 2 allows one to compute
the minimal ¢Z-pair (L;, G;) for each term V;F;, 1 < ¢ < s. One then uses Theorem 1 to compute a
qZ-pair (L, G) for F(q",¢") where L = lclm(Ly, ..., L,). Lemma 5 and Theorem 1 guarantee that
L is indeed the minimal telescoper for F(q", ¢%). O
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The following is a description of the algorithm qZpair F which constructs the minimal gZ-pair for

F of the form (17).

algorithm qZpairF;
input: F(q",¢*) € C(q)(¢",¢*) and is of the form (17);
output: the minimal ¢Z-pair (Lgp,GF) for F;

let Ry,..., R be the equivalence classes of the set of simple fractions
of F' as defined by the relation ~;
fori=1,2,...,sdo
let {F;,,..., F;,} be the members of the equivalence class R;;
let Fy; = 7i;(q")/(q" —i; ¢\ “/00m)mi 1< j < d;
Fi:=Fi,(q",¢"); Vi = ri, (0"); v =i
for j =2,3,...,ddo
let h € Z\ {0} be such that ; = g(®i/%:)h ,
if h > 0 then
Vii=ri;(a") + Vi Qh;

Yi = Vi
else
Vii=Vi+ri;(e") Q"
fi;
od;

Fi:=1/(¢" —yiglei/P0myms;
(Lv,F;, Gv,Fr;) := qZpairV F (V;, F;);
od;
apply lclm computation to construct Lj,..., L, € w(q“)[Qn] such that
LF = lclm(Lvlpl, e 7L‘«’SF3) = Lll [¢) LV1F1 == L; [¢) LV’SFS;
return (LF, Lllelpl + -4+ L;GVSFS)-

6. A DIRECT ALGORITHM TO CONSTRUCT THE MINIMAL ¢Z-PAIRS FOR RATIONAL FUNCTIONS

For a given rational function T(g", ¢*), a direct algorithm to construct the minimal gZpair for
T(q™,q*) can be decomposed into two steps. In the first step, check for the existence of a gZpair
and if its existence is guaranteed, rewrite F(g",q*) in (5) such that the denominator of F(g",¢*)
is of the form (6). In the second step, apply the results shown in Sections 3, 4 and 5 to obtain
the minimal ¢Z-pair (L1, G1) for F(n, k). Then the minimal ¢Z-pair (L, G) for the given rational
function T(g", ¢*) is (L1, L1S(q"™, ¢*) + G1(q", ¢*)) where S(¢",q") is defined in (5).

An algorithm to perform the first step is presented in [7], and we will make a very minor addition
to this algorithm to complete the step.

Denote by A, the transformation

" = "t F g ce .
Let to(g", ¢*) = gcd(A.w, w). Define the sequence of computation
(24) ti(q",q%) = ged(Acti_1,ti1), 1=1,2,...
where the termination condition in (24) takes place when deg« t:(¢", ) = deg ti—1(q", q%), i.e.,

the degree w.r.t. ¢* stops decreasing. (Note that the number of ged computation in (24) is guaranteed
to be finite.) Set w.(q",¢*) = ti_1(q"™, ¢%).
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Lemma 6. (Lemma 7, [7]). Let w(q",q*) € C(q)[q", ¢*]. Let to(q"™,q¢*) = gcd(A.w, w). Then the
mazimal factor of to(q", q*) which can be written in the form

s

(25) [I(* —ve™), veClog

i=1
is we(q", ¢%).

The following simple algorithm wc is used to compute w.(q", ¢*) for a given w(q", ¢*) € C(q)[¢", ¢*],
and ¢ € Q.

algorithm wc;
input:  w(q",q") € Clg)lg". ¢"],
ce@;

output: w.(q",q*);

to(a", ") = ged(w(g"*', ¢"*°), w(q", ¢*));
1:=1;
do
ti (qna qk) = ng(ti—l(qn+1a qk+c)’ ti—l(qna qk))7
if deg . ti(q", q*) = deg e ti—1(q", ¢*) then
return t;_1(q", ¢*);
fi;
=1+ 1;
od;

Before describing the direct algorithm to construct the minimal ¢Z-pairs for rational functions, we
need to develop the following auxiliary function. Let G(z) € Clg][z], the algorithm ratsol computes
the set of non-zero rational numbers ¢ such that G(¢¢) = 0 [T7].

algorithm ratsol;
input: F(q,z) € Clg][z] which can be written as F(q,z) = am(q)z™ + - - - + ao(q) where

ai(‘l) = ciquj +ori iy, 0 < <my
output: the set of non-zero values ¢ € Q such that F(q,¢%) = 0;

cands := {};
m = deg, F(g,a); j = deg, lc (F(q, ), )
ford=0,1,..., m—1do
for 1 =0,1,...,deg, ai(q) do
if (¢q, = 0) or (I = j) then next; fi;
cands := cands U {(l — j)/(m — d) };
od;
od;
sol :={};
let {zo,z1,...,2,} be the members of cands;
fori=0,1,...,pdo
if F(q,¢") = 0 then
sol := sol U {z;};
fi;
od;

return sol.
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Now for a given T(q", ¢*) € C(q)(¢", ¢*), rewrite T in the form (5) where
fla",d")
g9(q", q")
is in reduced form. Extract from g(g", ¢*) the maximal factor v;(¢") € C(q)[¢"], v2(¢*) € C(q)[g*]-
We know that v;(g*) can be written as the product of factors of the form
¢" —v,7 € Clq).

As for v1(g"), if it cannot be written in the form ¢*,a € 7, then it follows from (6) that ¢Z is not
applicable to F(g",¢*), and hence to T(g", ¢*). Otherwise, set

F(q",q") =

9(q™, ¢%)
v1(g")v2(q*)

It remains to investigate whether w(g™, ¢*) can be decomposed into factors of the form

w(g",q*) =

k+vq™", c€Q\{0}, v €Clg).
Let % be an element from C(q)[¢%, ¢", ¢*] obtained from w by substituting k by k+ = and n by n+ 1.
Let
S(q¢”,q") = Resultant« (w, ), S(¢”, ¢") € Clq)[q"][q"].

Find all rational values of z such that S = 0, i.e., w and w have a non-trivial common factor. To
attain this goal, consider S as a polynomial in ¢” with coefficients which are polynomials in ¢*. Let
G(q") be the ged of all these coefficients. Now we need to find all values of z € Q \ {0} such that
G(¢") = 0. This is accomplished by applying the algorithm ratsol to G(X). Let zo,...,zm be the
set of all non-zero rational numbers such that G(¢®#) = 0,0 < i < m. We now apply algorithm we to
find co, ..., cq from the set {zo,...,zn} such that deggcw,(¢", q*) # 0. Set §; = deg,r we,(q", q*).
To check whether there exists a gZ-pair for F(g",q"), it is sufficient to check if the relation

50 44 5d = dequ w(qn’qk)

is satisfied. If it is not, we conclude that ¢Z is not applicable to F(g",¢*), and subsequently, to
T(q™,q*). Otherwise, it follows from Lemma 6 that

(26) we,(¢",¢") = (6" — 7, ¢°™) - (" — i, ¢™), 0<i<d

We can then equate the coefficients of like powers of ¢* in (26) and solve the corresponding system

of equations to obtain the values of v;,,...,v;, (note that the v;;, € C(q), 1 < j <s5,0 <37 <d are
guaranteed to exist).

At this point, we complete step 1. As for the second step, we apply the partial fraction decompo-
sition to F(g",¢*). Note that the denominator of F(q", ¢*) is already in the desired factored form,
and no factorization needs to be done. This gives a representation of F(g", ¢*) in the form (17). We
then apply algorithm gZpairF to construct the minimal ¢Z-pair (L;, G1) for F(q", ¢*).

We now describe the algorithm qZpair Direct which constructs the minimal ¢Z-pair for T'(¢", ¢*) €
C(q)(¢", ¢*) provided that it exists.

algorithm qZpairDirect;
input: a rational function T(q", ¢*) € C(q)(q™, ¢%);
output: the minimal ¢Z-pair (L, G) for T, if it exists;
the message “There does not exist a gZ-pair”, otherwise;

apply an algorithm to solve the rational sum decomposition
problem w.r.t. ¢* to obtain S(¢", ¢*), F(q",¢*) in (5);
if F(¢",¢") = 0 then
return (1,S(¢", ¢%));
fi;



f(q”,qk) = numerator(F(q“,qk)); g(q",qk) = denominator(F(q”,qk));

v1(q") := content «(g(q", ¢*));
ifv1(q") # ¢*", a € Z then

return “There does not exist a ¢Z-pair”;
fi;

n kY ._ n k n
w(g",q") == g(q",q")/v1(q");
vz(qk) := contenty» (w(g™, ¢ k)),

w(q",q") = w(q",¢")/va2(¢");

ifw(q”,qk) =1 then
rewrite vz(q ) as vg(qk) (q E_ Y1) (qk — s );
9(q", ¢*) = v1(q") v2(d");

T n

w(g”, 0", ¢") = (g™, ¢,

S(q,q") := resultanty. (w(g", ¢*), B(¢”, 4", ¢%));
G(g") := contentgn (S(Q’”,q”))‘

cands := ratsol(G(X));

if cands = {} then

return “There does not exist a gZ-pair”;

fi;
let zg,...,Zm be the members of cands;
c:={}; s:=1;

for j=0,1,...,m do
cand := we(w(q™, q%), z;);
ds 1= degyx cand;
if §, > 0 then

c:=cU{z;}
W, (g™, q") := cand;
s:=s+1;
fi;
od;

if degx w(q", q*) # (01 + -+ 65_1) then
return “There does not exist a ¢Z-pair”;

fi;

rewrite v2(g*) as v2(g%) = (¢* —y1) -+ (¢* — s );

d(q™,q%) == vi(q™) v2(q¥);

let ¢g,...,cq be the members of ¢;

fort=1,2,...,d do

use the method of undetermined coefficients to rewrite w,,(g", ¢*) as

We, (qn’ qk) = (qk - Vta qc”‘) A (qk — e, qan);
gla" ") = g(a", %) we, (¢, ¢¥);

od;
fi;
F(q",d") = fla ,q)/ﬁ( a*);
as31gn to F(q",q") the partlal fraction decomposition w.r.t. ¢* of F(¢", ¢*);
(Lp,GF) := qZpasz(F( L q5));
return (Lp, LrS(q",q*) + Gr);
Example 2 Consider the rational function
T(qn qk) — qk+1 — qn _ qk B qn + 1
’ qk+1_|_qn_|_]_ qk+qn+1 q2k+(1+qn_q2n)qk_q3n_q2n

11
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Applying Zpair Direct yields
k n
n a —4q n k 1
S 9 k N S — F 9 - 9
(¢",d") F+q" +1 (¢",d") &+ (1+q" — @) — @ — g
vl(q") — vz(qk) — 1’ w(qn’qk) — qzk 4 (1 _|_qn _q2n)qk _ q3n _ an’
and G(¢%) = —¢ +4¢*. Applying ratsol to G(X) results in ¢ = {2}, and the corresponding w»(g", ¢*)
obtained from applying we to w(g",¢*) and 2 is ws(q",¢*) = ¢* — ¢*". Hence, J; = 1. Since
deg w(g",q*) = 2 > 1 = &1, ¢Z is not applicable to T(¢", ¢*). (Note that the denominator of
F(g",q"*) can be written as (¢* — ¢®*)(¢* +¢" +1).)
Example 3 Consider the rational function
1 g+1 n -1
—q¢* " —q  ¢F —q7%

(27) T(q",q") = 7

Applying Zpair Direct yields

—3n "

S(¢",d*) =0, F(¢",d") = T(¢". ¢"),
vi(q") = v2(¢*) = 1, w(q",¢*) = (¢ — ¢ d®) (" — a7>")(¢" — ¢ %¢7%"),

G(a®) = @45 — (¥ + ¢ + 2625 + ¢¥)g* + (¢ + 2% + 2670 + 2% + g2 + 2416)¢3
(2% + ¢ + 207 + 2% + 245 + ¢2)g% + (3 + 2¢%% + ¢° + ¢1%)" — ¢?L.
Applying ratsol to G(X) results in ¢ = {—12,—3,2,6}, and the corresponding w.(q", ¢*) obtained
from wc are

—3n—-9 6n—9

+473) " +¢7" 0, wy = ¢* — q¢*", we = 1.

Hence, d; = 2, §2 = 1. Since deg,. w(q", q*) = 3 = &1 + 82, ¢Z is applicable to T(¢", ¢¥). Note that
wa (g™, ¢F) is already in the desired form. As for w_3(g", ¢*), we have
(28) q2k _ (q—Sn—Q + q—Sn)qk + q—6n—9 — (qk -7 q—Sn)(qk — 2 q—Sn)‘

Equating the coefficients of like powers in (28) yields the system of equations

w_1p=1, w_3 = q2k - (q

Mmt+r=0"+L, nr=¢"°
whose solution is {y; = 1, 42 = ¢~°}. Therefore,

w_s(qn’qk) — (qk _ q—Sn)(qk _ q—9q—3n)’

and the denominator g(¢”, ¢¥) of F(g",q"*) can be written as
g(qn’qk) — (qk _ qq2n)(qk _ q—3n)(qk _ q—9q—3n)‘

Applying the partial fraction decomposition w.r.t. ¢* to F(g",¢*) yields (27). We now start step 2
of Zpair Direct. The algorithm qZpairF allows us to decompose F' into

1 1
F:VlFl—‘rVng, Vl :1, F1: W’ V'Z: (qz_l)Qg_;r_(q_{_]_), F2: m
Applying ¢ZpairV F to V1 F; yields the minimal ¢Z-pair (L1, G1) for V1 F; = F; where
1 1
L, G :<q2Qn—1,— — )
( 1 1) k-1 —qq? gk-—2 —qg2n

The minimal ¢Z-pair (L2, G2) for V2 F; is computed in Example 1. Therefore, the minimal ¢Z-pair
(L, G) for F(q™,¢*), and also for T(q", ¢*) is

(L, G) = (lclm(Ly, La), L1G1 + LyG2) where
¢t o ¢ (1+d) ¢

q5_1Qn_ q5_1 Qn+q5_17

L= 1C1H1(L1, Lz) =
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L,_q7(fJ+1)(q10—q9+1)Q e+ (¢ -+ 1) wd = T 0. — ¢
v ¢ —1 " -1 ’ TP -17" P
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