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Abstract

We describe the Maple module HypergeometricSum which provides various tools for finding closed
forms of indefinite and definite sums of hypergeometric type, and for certifying a large class of combina-
torial identities. The document is intended both as an elementary introduction to the subject and as a
reference manual for the module.

1 Introduction

This document is about some standard algorithms which provide an automatic process for finding closed
forms of indefinite and definite sums of hypergeometric type which occur in combinatorial mathematics.
Even though there exist various methods for finding closed forms of sums, such as those where the summands
involve binomial coeflicients (see Chapter 5,[17]), these methods are often more like tricks than techniques.
The algorithms to be discussed allow us to discover the answers in a systematic way. These algorithms also
provide tools for proving and certifying identities that are known or conjectured.

We also describe various recent results relating to these algorithms. The main part of the document,
however, is about describing the Maple module HypergeometricSum. Our focus is not only on the imple-
mentation of these algorithms, but also on their applications.

This document is organized in the following manner. In section 2, we give a brief overview on hyper-
geometric terms. In section 3, we describe various normal and canonical forms of rational functions and of
hypergeometric terms. These forms are widely used in many applications. In section 4, we give description of
algorithms for indefinite sums. They include Gosper’s algorithm to solve the problem of indefinite hyperge-
ometric summation, an algorithm to solve the decomposition problem of indefinite sums of hypergeometric
terms, and an algorithm to solve the accurate integration problem. Section 5 is devoted to Zeilberger’s
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algorithm which provides a useful tool for finding closed forms of definite hypergeometric sums, to the appli-
cability of the algorithm, and to a direct algorithm to construct Zeilberger’s recurrences for the case when the
input function is a rational function. Section 6 shows various applications of these algorithms. In Section 7,
we describe the module HypergeometricSum. The module is a Maple implementation of the algorithms and
applications that we describe in sections 3, 4, 5, and 6. It consists of three main components. The first one
includes the construction of the Polynomial Normal Forms (PNF), the Rational Canonical Forms (RNF) of
rational functions, of the multiplicative decompositions of hypergeometric terms. The second one includes
implementation of the algorithms as described in sections 4 and 5. The third component relates to appli-
cations. They include functions to compute closed forms of indefinite and definite sums of hypergeometric
type, and the WZ method for certifying combinatorial identities.

2 Hypergeometric Terms

Let K be a field of characteristic zero, ni,...,nq integer-valued variables, and E; the corresponding shift
operators, acting on functions of ni,...,ng by Eif(n1,...,n4...,n4) = f(n1,...,n; +1,...,n4). A K-
valued function T'(nq,...,nq) is a hypergeometric term if there exist rational functions R; € K(ny,...,nq)

such that E;T = R;T, for: = 1,...,d. The rational function R; is called the certificate of the hypergeometric
term T w.r.t. the variable n;.

The following gives the definition of proper hypergeometric terms in two variables. This concept is needed
in subsequent sections.

Definition 1 /27, 82] A function T'(n, k) is said to be a proper hypergeometric term if it can be written in
the form

Hi’:l(am-h@ik-F’Yi)!unvk
[Lii(ein + Bk + 4t 7
where P(n, k) € Cln, k], ai, Bi, !, Bl € Z, and I, m € N, v;, 4}, u,v € C.

T(n,k) = P(n, k)

3 Normal Forms

In this section we describe the polynomial normal forms, and rational normal forms of rational functions.
These normal forms are then used as the basis for various normal forms (multiplicative, additive) of hy-
pergeometric terms in one variable. They are also used in the construction of a canonical representation of
hypergeometric terms in two variables. The diagram in Figure 1 shows various normal and canonical forms
of rational functions and hypergeometric terms.

3.1 Normal Forms of Rational Functions

Multiplicative normal forms of rational functions which exhibit the shift structure of the factors are useful
in the design of algorithms for summation and solution of difference equations in closed form. The Poly-
nomial Normal Form, first introduced by R.W. Gosper, Jr. [16], is used in algorithms for hypergeometric
summation [16], finding hypergeometric solutions of difference equations [26], and rational summation [29].
The Rational Normal Forms, introduced by S.A. Abramov and M. Petkovsek [7], are used to construct the
minimal representations of hypergeometric terms in one variable, to construct a canonical representation
of hypergeometric terms in two variables [7], and to solve the decomposition problem of hypergeometric
terms [6].

Definition 2 (Polynomial Normal Form). Let R € K(z) be a nonzero rational function. If there exist
z € K and monic polynomials a,b,c € K|[z] such that
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Figure 1: Normal and canonical forms.

6 R=z-5-E,
(ii) ged(a, E¥b) =1 for all k € N,
(iii) ged(a,¢) =1 and ged(b, Ec) =1,
then (z,a, b, c) is the polynomial normal form (PNF) of R.

See [26, 27] for a description of how to construct the PNF. Note that the PNF of a rational function is
unique.

Definition 3 (Rational Normal Form). Let R € K(z) be a nonzero rational function. If there exist z € K
and monic polynomials v, s,u,v € K[z] such that

(i) R=2-%-EE where F = % and ged(u,v) = 1,

(ii) ged(r, E¥s) =1 for allk € 7,
then (z,7,s,u,v) is a rational normal form (RNF) of R. If, in addition,
(iii) ged(r,u- Ev) =1 and ged(s, Bu-v) =1,
then (z,7,s,u,v) is a strict RNF of R.

Although a rational function can have several different RNF’s, the degrees of the polynomials r and s are
uniquely defined (Theorem 1, [7]). Among all possible RNF’s for R, we can single out two canonical forms
(not necessarily different). They are named the first and the second rational canonical forms (RCF; and
RCF;). The RCF; for R guarantees the minimality of the degree of the polynomial v, and the maximality of

the degree of the polynomial u. When one considers the RCF5 for R, the situation is reversed. Furthermore,

if RCF1(R) =RCF3(R), then there exists one unique RNF for R.

3.2 Normal Forms of Hypergeometric Terms
3.2.1 Minimal multiplicative decomposition of hypergeometric terms

Definition 4 (Regular description of a hypergeometric term [8]). Let ng € N and V,U € K (n). The triple
(V,U, ng) regularly describes a hypergeometric term T'(n) if for all integer n > ng, U,V have neither a pole
nor a zero, and T'(n) = U(n) HZ;:LO V(k).



Let T'(n) be a hypergeometric term such that T'(n) is defined for all n > ng, and the certificate R(n) of
T has neither a pole nor a zero when n > ng. Then

T(n) = T(no) J] R(k), n > no, (1)

and (R, T (no), no) is a regular description of T'(n). Construct an RNF (z, 7, s, u,v) of R and write

B nt r(k) Fk+1)\ _ T(no) (k)
ﬂm‘“%ﬁn<”dm'ﬁ%))‘wwwaz”miadm @

k=ng

where F' = u/v. The following theorem guarantees the minimality of the degrees of the numerator and of
the denominator of the rational factor in the product in (2).

Theorem 1 (Theorem 4, [8]). Let a hypergeometric term T(n) have a regular description (R, o, ng), o =
T(ng), and (z,7,s,u,v) be an RNF of R. Write F = u/v and G =r/s. Then

(0%

=G Flno)

F, no) (3)

is a regular description of T(n). If (A, B,n1) is another regular description of T(n), A=171'/s', r',s' € K[n],
then degr < degr’, deg s < degs’'. Additionally, if one uses the RCFy or the RCF> as (z,7,s,u,v) then the
denominator (resp., the numerator) of aF/F(ng) is of minimal possible degree.

A regular description (V, U, ng) of T(n) with the minimal possible degrees of the numerator and denom-
inator of V' is a minimal regular description of T'(n).

Suppose that a term T'(n) has a minimal regular description (V,U, no) and z = lc V' (the leading coefficient
of a rational function is the quotient of the leading coefficients of its numerator and denominator.) Write
V = zW. Then we have for all n > ng:

T(n) = "0 (m) [ Wk, (4)

k=ng

where W is a monic rational function with the numerator and denominator of minimal possible degrees. In
this case (4) is a minimal multiplicative decomposition of T'(n).

The two minimal multiplicative decompositions of a hypergeometric term T'(n), which are constructed
from the two rational canonical forms RCF; and RCF; of the certificate of T, are named the first and the
second minimal multiplicative decompositions of T, respectively.

3.3 Canonical representations of hypergeometric terms

Using the concept of RNF, one can construct a canonical representation of hypergeometric terms in two
variables. The following theorem summarizes the main result.

Theorem 2 [7]. Every hypergeometric term in two variables is the quotient of a proper hypergeometric
term by a polynomial.

It is worth noting that this opens the way to a proof of a conjecture of Wilf and Zeilberger [32, p. 585]
which states that a hypergeometric term is proper if and only if it is holonomic (see [9]).



4 Algorithms for Indefinite Sums

We describe in this section three algorithms for indefinite sums: Gosper’s algorithm, and two algorithms to
solve the decomposition problem for indefinite sums of hypergeometric terms, and the accurate integration
problem.

4.1 Gosper’s Algorithm

Gosper’s algorithm [16] (we name it hereafter as G) solves the problem of indefinite hypergeometric sum-
mation: given a hypergeometric term T'(n), G either constructs another hypergeometric term Tj(n) such
that

T(n) =Ti(n+ 1) — Ti(n), (5)

provided that such a term exists, or proves that (5) has no hypergeometric solution. If it does, and if T'(n)
and Ti(n) are defined for all n > ng, then we obtain from (5) the summation identity

n—1

D" T(k) = Tu(n) — Ta(no).

k=ng
A hypergeometric term T'(n) is summable if there exists a hypergeometric term Tj(n) such that rela-
tion (5) is satisfied.
4.2 The Decomposition Problem for Indefinite Sums of Hypergeometric Terms

Let R be a rational function which has no poles at nonnegative arguments. The well-known algorithms to
solve the decomposition problems for indefinite integrals [28, 20] and indefinite sums [1, 2, 29, 24] of rational
functions construct the representations

/z R(t)dt = F(z) + / Bt Y R(E) = S+ 3 T(),

where F, H and S, T are rational functions such that H,T have denominators of minimal possible degrees.
If no hypergeometric term Ti(n) satisfies (5), it is shown in [6] that one can construct two hypergeometric
terms Ty (n) and T3(n) such that

T(n) =Ti(n+1) — Ta(n) + To(n), (6)

and the certificate ET5/T> has an RNF
(2,7, 8,u,v) (7)

with » of minimal possible degree.

This formulation agrees with the decomposition problem for indefinite sums of rational functions [1, 2, 29]
because if T € K(n) then » = s = 1 and » is the denominator of T5. In other words, the minimal
additive decomposition of hypergeometric terms is a generalization of the additive decomposition of rational
functions. It can be shown that the algorithm also covers G, i.e., if T'(n) is summable, then the constructed
hypergeometric term T3(n) in (6) will vanish. It follows from (6) that

i T(k) = Ti(n) — Ti(no) + i: To(k). (8)



4.3 Accurate Integration

The following is a description of the accurate integration problem in the context of shift algebra. See [3] for
a discussion of the problem in the general Ore algebra setting.

For a given function f(n) where the minimal annihilating operator L € K (n)[E,] for f(n) is given. This
means n = ord L is minimal with the property that L(f) = 0. Decide whether there exists a primitive g of
f, i.e., (B, — 1) g = f such that the minimal annihilating operator L for g has order n. If so, then construct
all such g together with their minimal annihilating operators.

Note that the algorithm to solve the accurate integration problem generalizes Gosper’s algorithm in the
sense that it works for any order n instead of only n = 1 as in the case of Gosper’s algorithm.

5 Algorithms for Definite Sums

We describe in this section Zeilberger’s algorithm (which is named hereafter as Z). The algorithm has many
applications [32] one of which relates to finding closed forms of definite sums of hypergeometric type. We also
discuss the applicability of Z, and present some recent results for the case when the given hypergeometric
term is a rational function.

5.1 Zeilberger’s Algorithm

Given a hypergeometric term T'(n, k) of both n and k, i.e., the quotients T'(n + 1,k)/T(n, k) and T'(n, k +
1)/T(n, k) are rational functions of n and k, Zeilberger’s algorithm [33, 34] tries to construct for T'(n, k)
a Z-pair (L, G) which consists of a linear difference operator with coefficients which are polynomials in n
over C

L =ay(n)Ef + -+ a1(n) Ey + ao(n) By, (9)

and a hypergeometric term G(n, k) such that
LT (n, k) = (Ex — 1)G(n, k). (10)

The operator L, which we call a telescoper, is k-free. It is proven in [34] that if there exist Z-pairs for T'(n, k),
then Z terminates with one of the Z-pairs and the telescoper L in the returned Z-pair is of minimal possible
order. Note that L is unique up to a left-hand factor P(n) € C[n], and we name it the minimal telescoper.
We call a Z-pair (L, G) where L is the minimal telescoper the minimal Z-pair.

Z uses an item-by-item examination of the order p of the operator L in (10). It starts with the value of
0 for p and increases p until it is successful in finding a Z-pair (L, G) for T, provided that such a pair exists.

5.2 Applicability of Zeilberger’s Algorithm

The following fundamental theorem provides a sufficient condition for the termination of Z on a hypergeo-
metric term.

Theorem 3 (Fundamental Theorem [17, 27, 32]). If T(n, k) is a proper hypergeometric term, then a Z-pair
for T(n, k) exists.
Counsider the two hypergeometric terms

1
T nk+ 1

Ti(n, k) = (Ex — 1)%

T: k
k—i—l’ 2(n7 )

It is shown in [5] that T} is not a proper term but Z terminates on Ty and returns a Z-pair; while T is
not a proper term either, and Z never terminates. Therefore the set T' of hypergeometric terms on which



Z terminates is a proper subset of the set of all hypergeometric terms, but a super-set of the set of proper
terms. The complete explicit description of T', we reiterate, is unknown.

For the case when the hypergeometric term T'(n, k) is also a rational function, then the problem of
establishing a necessary and sufficient condition for the termination of Z is solved and presented in [4, §].
The result can be summarized as follows.

Definition 5 (Integer-linear polynomial [7]). A polynomial p(n,k) € Cln, k] is integer-linear if it has the
form an + bk + ¢ where a,b € Z and c € C.

Theorem 4 (Criterion for the ezistence of a Z-pair for a rational function [4].) Let F(n,k) be a rational
function of n and k. Apply to F(n, k) an algorithm to solve the decomposition problem [2] w.r.t. k to construct
two rational functions S(n, k) and R(n, k) such that

F(n, k) = (Ex — 1)S(n, k) + R(n, k), (11)

and the denominator g(n, k) of R(n, k) has the minimal possible degree w.r.t. k. Then a Z-pair for F(n,k)
exists iff each factor of g(n, k) irreducible in C[n, k] is an integer-linear polynomial.

Note that the algorithm to determine the applicability of Z to a rational function does not require a
complete factorization of the denominator g(n, k) into integer-linear factors.

5.3 A Direct Algorithm to Construct Zeilberger’s Recurrences for Rational
Functions

Once a Z-pair for a rational function F'(n, k) is guaranteed to exist, one can use a direct algorithm to construct
the minimal Z-pair (L, G) for F(n, k) [22]. By direct algorithm, we mean an algorithm which computes the
minimal Z-pair directly, without using an item-by-item examination. The algorithm is based on a special
form of representation of R(n, k) in (11), on a direct construction of the minimal telescopers for each member
of this representation. The minimal Z-pair for R(n, k), and subsequently for F(n, k), can then be obtained
using Least Common Left Multiple (LCLM) computation. This direct algorithm is in general much more
efficient than the original Z (see Section 7, [22]).

5.4 Open Problems

Note that the results mentioned in the last two subsections only apply to rational functions (recall that the
class of rational functions is a proper subset of the class of hypergeometric terms). It is natural to try to
obtain similar results for the general case. We believe that with the recent work as presented in [6, 7], it
is possible to establish a necessary and sufficient condition for the termination of Zeilberger’s algorithm to
non-rational hypergeometric terms. Another open problem is whether it is possible to compute a good lower
bound for the order of the minimal telescoper L to avoid redundant computation trying to find a telescoper
of lower order (than the order of the minimal telescoper).

6 Applications

The applications we describe in this section include methods for finding closed forms of indefinite and definite
sums of hypergeometric type, and for certifying combinatorial identities.



6.1 Indefinite Hypergeometric Summation

As mentioned in subsection 4.1, G answers the following question: Given a hypergeometric term %,, does
there exist a hypergeometric term z, satisfying the relation z, 41 — z, = ¢,7 If the answer is positive, then

the indefinite sum .
ne

W=t (12

can be expressed as a hypergeometric term plus a constant, and the algorithm outputs such a term. On the
other hand, if G returns a negative answer, then that proves that (5) has no hypergeometric solutions.

Example 1 Consider the hypergeometric term

k4k
2k
(%)

ity =

Applying G results in the hypergeometric term

1 (2k—1) (63k* — 140 k3 + 60 k2 + 26 k — 6) 4

693 (%)

Zr =

Therefore,

Zk44k 1 (2n—1)(63n* —1407° +60n° +26n —6)4" 2
- 693 ™ 231°

Note that there exists an extended G [27] which answers the following question: Given a linear combi-
nation of hypergeometric terms > ;-" T;(n), does there exist a linear combination of hypergeometric terms
o2 Gi(n) satisfying the relation

(Ba =13 Gifn) =3 Tilm) ?

It follows from subsection (4.3) that the problem of indefinite summation can also be solved using accurate
integration. Not only does the algorithm handle summands of hypergeometric type, it also handles a wider
class of summands where the minimal annihilators for them can be constructed, e.g., d’Alembertian terms [12,
10]. Note that a hypergeometric term is also a d’Alembertian term, but not vice versa.

Example 2 (Ezample 3, [3]). Consider the function

1 1+v5\ [(1=v5\"
ro= 5 ((5) - (57) )

Applying the algorithm as described in [11] results in the minimal annihilator L for F(n)? where

L=E)—-2E?_2E, +1.
We now apply the algorithm to solve the accurate integration problem [8] to L. This results in the pair of
operators

. 1 11 1 3
Lry=|-ZE+E>4+E,— -, -E>—-_E,— ).



Therefore,

2n n
1 1 1-/5 1 3+v5
F(n)>=r(F(n)?) == (-1)" - —=(1 - —(1- .
S2 R =r(F ) = 5 (1) 10<+¢5>( : ) o ﬁ)( : )
Since F(n) is not a hypergeometric term, Gosper’s algorithm is not applicable. Also note that F(n) is a
formula to compute the n'® Fibonacci number.

6.2 Definite Hypergeometric Summation

The combination of Z and Petkovsek’s algorithm [26] (which we name hereafter as P) plays an important
role in the study of definite sums. For a given hypergeometric term T'(n, k), we are interested in knowing
if there exists a closed form for Y, T'(n, k). By closed form, we mean that the sum can be expressed as a
linear combination of a fixed number of hypergeometric terms. First, the application of Z to T'(n, k) yields
a linear recurrence operator L € C[n, E,] of the form (9) and a hypergeometric term G(n,k) such that
relation (10) holds. By summing both sides of (10) over k, we obtain in general an inhomogeneous linear
recurrence equation with polynomial coefficients of the form

P
ai(n)f(n +1i) = b(n), a;i(n) € C[n]. (13)
=0
As an example, let
un—+v
f(n) = Z T(n,k), r,8,u,v € Z.
k=rn+s
Then (13) becomes
P P rn+4s—1 un+vtui
a;(n)f(n+i) = G(n,un+v+1)—G(n,rn+3)+Zai(n) ( E T(n+1,k)+ Z T(n+ 1, k)) .
=0 i=0 k=rn+s+ri k=un+v+1

(14)
P now comes into play (also see [19] for an efficient algorithm designed by M.v. Hoeij). If the recurrence (13)
has a solution f(n) which is a linear combination of a fixed number of hypergeometric terms in n, then P
will find the solutions, otherwise it returns the message “No such solution exists.” It is not surprising that
closed forms of many sums with binomial coeflicients as summands in [18] can be obtained by using Z and

then P.

Example 3 Find a closed form of

n n (_1)k n\ 2k
s(n)=>_ T(n k)= 725';) ),
k=0 k=0
Applying Z to the hypergeometric term T(n, k) results in a Z-pair (L, G) such that
p (@ +2@n -2 -2 (1Y) () (D" #
' 22k (n+k+2kn+1) '

(L,G) = ((2n+2)En —(2n+1)

Summing both sides of (10) for k from 0 to n results in the homogeneous recurrence equation

2(n+1)f(n+1)— (2n+1)f(n) =0, (15)



A closed form of f(n) can now be obtained by applying P to (15) with the initial condition s(0) =1 :

=3 (D" G _ 1 Tnt1/2)
Py 22k v T'(n+1)
Note that we can enlarge the domain of closed forms by including d’Alembertian terms (a d’Alembertian

term can be described as nested indefinite sums of hypergeometric terms, or equivalently, as a term which
is annihilated by a product of first-order difference operators (see [12, 10])).

Example 4 Find a closed form of

3
|
-
3

“l(_1\k9(2n-2k)(2n—k+1
sy = o7y = Y CIE T

Applying Z to the hypergeometric term T'(n, k) results in the minimal Z-pair (L, G) where
L=(2n+5E,—(2n+3), and

(—1)k(2")2I‘(2n—k) (6n+9—4k)2n—k)(2n—k+1)(2n+2—k)

(25)°’T(2n—2k)(2n—2k+1)(n—k)(2n+3—2k)(n—k+1)T (k) k

Applying formula (14) results in the inhomogeneous linear recurrence equation

(2n+5)f(n+1)—(2n+3) f(n) =4(-1)"n—622"n - 522" 4 8 (—1)". (16)
Since the right-hand side is a d’Alembertian term, i.e., it is annihilated by the completely factored operator

B 180 n? + 1200 % + 2363 n + 1240 6n+11
n © n )
(6n+11) (30n2+ 1157+ 103) 6n+5

we first apply the algorithm as described in [12] to get a particular d’Alembertian solution of (16) which is

—2n4" +2 (=)' n 4 4n 4 3 (—1)'"
2n+3 '

Note that the general solution of the homogeneous recurrence equation (2n+5) f(n+1)—(2n+3) f(n) =0
is

3 F(0)T(n +3/2)

2 T(n+5/2)
Given the initial condition f(0) = —1/3, a closed form of f(n) is

204" +2 (—1)"n+3 (-1)" —4" 4+ 1

fin) = 2n+ 3

6.2.1 Verification of Combinatorial Identities

We describe two methods that use G and Z to verify combinatorial identities.

1. Canonical Form
In order to find out whether two objects A and B are equal to each other. One way is to find their
canonical forms and check if the two canonical forms are the same. Suppose we would like to know
if two sums represent the same function, one way is to show that they satisfy the same recurrence
equation and the same initial values. This can be attained by using Z.

10



Example 5 Let
k (n
D Gh) o 1
((ak—l];l)/a) ak +1
We will now prove formula (1.44) in [18] which states that

fn:Zlesz- (17)
k=0 k=0

Applying Z to Ty and T3 results in the same inhomogeneous recurrence equation

1
f(“+1)—f(“):m-

The two sums also satisfy the initial value f(0) = 1. Hence, the validity of relation (17) follows.

T =

. WZ Method

WZ method [31] provides a very short way for certifying the truth of combinatorial identities. Suppose
we want to prove an identity of the form ), F(n,k) = r(n). If 7(n) is non-zero, divide through by
that right-hand side, and obtain

In general, we can assume that the identity to be certified is of the form
f(n) = Z F(n, k) = const. (18)
k

It suffices to show that f(n + 1) — f(n) = 0 for all n. Suppose there exists a function G(n, k) such that
Fn+1,k)— F(n, k) =G(n, k+ 1) — G(n, k). (19)

If G(n,k) has finite, compact support, i.e., limg 1 G (n,k) = 0, then by summing (19) over all
integers k, the right-hand side of (19) telescopes to 0, while the left-hand side becomes f(n + 1) —
f(n). To construct the function G(n, k) using WZ method, we simply need to call G w.r.t. k on the
hypergeometric term F(n+1, k)—F(n, k). If such a G exists, then the method succeeds in verifying (18);
otherwise, it fails. Note that since G(n, k) and F(n, k) are similar (Proposition 5.6.1, [27]),

G(n, k)

B(n k)= Faty

is a rational function of n and k. R is called the WZ certificate of the identity (18).

Example 6 To prove Saalschitz’s 3F> identity in the form >, F(n,k) = 1 where

(a+k-D'bd+Ek-DInl(n+c—a—-b-—k—-1)! (n+c—1)!

F(n, k)= K-kl (k+c—1)!(ntc—a—1)(ntc—b—1"1

we first construct

Fln+ 1K) = F(n, k) = o e et
(a+k—(1)! (b+k)—(1)! n! (n)+(c—a—b—)k(—1)! (n-})-c—l)! (20)

k' (n—k)! (k+c—1)! (n+c—a—1)! (n+c—b—1)!
The application of G w.r.t. k to (20) yields the WZ certificate
k(k—n+a+b—c)k+c—-1)

R(n’k):_(k—n—l)(n—a—kc)(n—b—l—c)'

11



Note that WZ Method also allows one to discover new identities such as companion and dual identities
whenever it succeeds in finding a proof certificate for a known identity (see Chapter 7, [27]).

7 Implementation

We have developed various tools for finding closed forms of indefinite and definite sums of hypergeometric
type, and for certifying the truth of combinatorial identities in the computer algebra system Maple [23].
They are grouped together in the module HypergeometricSum.

> eval (HypergeometricSum) ;

module HypergeometricSum ()

export IsHypergeometricTerm, AreSimilar, PolynomialNormalForm, RationalCanonicalForm,
MultiplicativeDecomposition, SumDecomposition, Gosper, ExtendedGosper,
Accuratelntegration, WZMethod, Zeilberger, IsZApplicable, ZpairDirect,
ZeilbergerRecurrence, IndefinitSum, DefiniteSum;

option package;

description “Tools for finding closed forms of indefinite and definite sums of hypergeometric type”;

end module

The exported local variables indicate the functions that are available. They are

o IsHypergeometricTerm: check if a given expression is a hypergeometric term of one particular variable;
e AreSimilar: check if two given hypergeometric terms are similar;
e PolynomialNormalForm: construct the polynomial normal form of a given rational function;

e RationalCanonicalForm: construct the first and the second rational canonical forms of a rational
function;

e MultiplicativeDecomposition: construct the first and the second minimal multiplicative decompo-
sitions of a hypergeometric term;

e SumDecomposition: solve the sum decomposition problem for hypergeometric terms;

e Gosper: implement Gosper’s algorithm;

e ExtendedGosper: implement the extended Gosper’s algorithm;

e AccurateIntegration: implement the algorithm to solve the accurate integration problem;

e WZMethod: implement the WZ method;

e Zeilberger: implement Zeilberger’s algorithm;

e IsZApplicable: determine the applicability of Zeilberger’s algorithm to rational functions;

e ZpairDirect: implement a direct algorithm to construct the minimal Z-pairs for rational functions;

e ZeilbergerRecurrence: construct the Zeilberger’s recurrences for definite sums of hypergeometric
terms;

e IndefiniteSum: find closed forms of indefinite sums of hypergeometric terms and d’Alembertian
terms;

12



e DefiniteSum: find closed forms of definite sums of hypergeometric terms.

IsHypergeometricTerm(T, n) checks if the input T is a hypergeometric term of n. AreSimilar(Ty, T3, n)
check if the two hypergeometric terms of n Ty and T5 are similar (two hypergeometric terms are similar if their
ratio is a rational function of n. Theorem 5.6.2 [27] shows how to decide the rationality of a hypergeometric
term given its consecutive-term ratio). We now describe, for the remainder of this section, the general use
of the module and the specifications of the main functions.

7.1 Introduction to the HypergeometricSum module

Calling Sequence
function(args)
HypergeometricSum[function](args)

Description

e The HypergeometricSum module provides various tools for finding closed forms of indefinite and definite
sums of hypergeometric type. It can also be used for proving and certifying combinatorial identities.
The module consists of three main components:

1. normal forms of rational functions and of hypergeometric terms,
2. algorithms for indefinite and definite sums of hypergeometric type,
3. applications.

e To use a HypergeometricSum function, either use one of the long forms HypergeometricSum[function]

and HypergeometricSum:-function or define a short form for that function using the command

with(HypergeometricSum, function), or define a short form for all the functions using the command
with(HypergeometricSum).

Examples

v

with(HypergeometricSum) :
. Find a closed form of >°;_, (; Z)z (this example is provided by R.W. Gosper, Jr.).

> T := binomial(2*n,2%k)"2;
2
2n
T:.=
2k

4n (ﬁr(2n+ 1/2) + (=1)"T (n + 1/2)2)
VaT(n+1/2)T (n+1)

—_

> s := DefiniteSum(T,n,k,0..n);

s =

N | —

[\S]

. Construct the Apéry’s recurrence:

T := binomial(n,k)"2 * binomial(n+k,k)"2;
T n\> n+k 2
T \k k

13
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> lre := ZeilbergerRecurrence(T,n,k,a,0..n);
lre := (n® +6n? +12n+8)a(n+2) — (34n> + 153n> + 231n+ 117)a(n+ 1) + (n* +3n* +3n+1) =0

Replace n by n — 1 in lre :
> collect(subs(n=n-1,1lre),[a(n+1),a(n),a(n-1)],’factor?’);

(n+ 1)3a(n—|— 1)—(2n+ 1)(17n2—|— 17n+ 5) a(n) —|—n3a(n— 1)=0

Notice that the above recurrence equation is required in the proof of the irrationality of {(3) [13].
See Also LREtools, rsolve

7.2 HypergeometricSum|[PolynomialNormalForm] — construct the polynomial
normal form of a rational function

Calling Sequence
PolynomialNormalForm(F, n)

Parameters
F - a rational function of n
n - a variable

Description

e Let F be a rational function of n over a field K of characteristic 0. PolynomialNormalForm(F,n)
constructs the polynomial normal form for F.

e The output is a sequence of 4 elements (z, a, b, ¢) where z € K, and «, b, ¢ are monic polynomials over
K such that

_a(n) c(n+1)
RNCECC

and all three properties (%), (¢), and (444) in Definition 2 hold.
Reference

e R. W. Gosper, Jr., Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad.

Sci. USA 75, 1977, 40-42.

e M. Petkovsek, Hypergeometric solutions of linear recurrences with polynomial coeflicients, J. Symb.
Comput. 14, 1992, 243-264.

Examples

> with(HypergeometricSum) :

> F := 3/2*n*x(n+2)*(3*n+2) *(3*n+4)/((n-1)*(2*n+9) *(n+4) ~2) ;
3n(n+2)(3n+2)(3n +4)
2 (n—1)(2n+9)(n +4)2

> (z,a,b,c) := PolynomialNormalForm(F,n);
27 2 4 9
z,a,b,c:= R (n+ g)(n—l— g)(n+2), (n+ 5)(n—|—4)2,n— 1

See Also Gosper, RationalCanonicalForm
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7.3 HypergeometricSum|[RationalCanonicalForm| — construct the first and the
second rational canonical forms of a rational function

Calling Sequence
RationalCanonicalForm[1](F, n)
RationalCanonicalForm[2](F, n)

Parameters
F - a rational function of n
n - a variable

Description

e Let F be a rational function of n over a field K of characteristic 0. RationalCanonicalForm[1](F, n),
RationalCanonicalForm[2](F, n) construct the first and the second rational canonical forms for F,
respectively.

e The output is a sequence of 5 elements (z,r, s, u,v) where z € K, and r, s, u, v are monic polynomials

over K such that (n) En(u(n)/v(n))
Fin) =2 20y ~um) o)

and all three properties (%), (¢), and (444) in Definition 3 hold.

Reference

e S.A. Abramov, M. Petkovsek, Canonical representations of hypergeometric terms. Proc. FPSAC’2001,
2001, 1-10.

Examples

> with(HypergeometricSum) :
> F := 3/2*n*x(n+2)*(3*n+2) *(3*n+4)/((n-1)*(2*n+9) *(n+4) " 2) ;

_3n(n+2)3n+2)3n+4)

F .=
2 (n—1)(2n+9)(n+ 4)2
> (z1,r1,s1,ul,vl) := RationalCanonicalForm[1](F,n);
27 2 4 9
z1,71,s1,ul, vl := R (n+ g)(n + 5), (n+4)(n+ 5),?1, —1,(n+2)(n+3)
> (z2,r2,s2,u2,v2) := RationalCanonicalForm[2] (F,n);
27 2 4 9 5 2
22,72,82,u2,v2 := R (n+ 5)(71 + g), (n—1)(n+ ;), Ln(n+1)(n+2)*(n+3)

See Also PolynomialNormalForm, SumDecomposition, MultiplicativeDecomposition
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7.4 HypergeometricSum|[MultiplicativeDecomposition] — construct the first
and the second minimal multiplicative decompositions of a hypergeometric
term

Calling Sequence
MultiplicativeDecomposition[1](H, n, k)
MultiplicativeDecomposition[2](H, n, k)

Parameters
H - a hypergeometric term of n
n - a variable
k - a name

Description

e Let H be a hypergeometric term of n. MultiplicativeDecomposition[1](H, n, k),
MultiplicativeDecomposition[2](H, n, k) construct the first and the second minimal multiplicative de-
compositions for H, respectively. See subsection 3.2.1 for a description of how to construct the minimal
multiplicative decompositions.

Reference

e S.A. Abramov, M. Petkoviek, Canonical representations of hypergeometric terms. Proc. FPSAC’2001,
2001, 1-10.

Examples
> with(HypergeometricSum) :
> F := (n"2+5)*(n-3)!/(n-4)!/(n+7)!/(n+6)!;

(n* +5)(n — 3)!

E = i+ 6)in 1+ 7)1

> MultiplicativeDecomposition[1](F,n,k);

) -
144850083840000( (n* +5) 1:[ k+ 7 (k+ 8)

> MultiplicativeDecomposition[2](F,n,k);

n—1

1 (n?+5) H 1
39916800 (n + 6)(n + 5)(n + 4)(n + 3)(n + 2)(n+ L)n(n — 1)(n — 2) = (k +8)(k —3)

See Also RationalCanonicalForm, SumDecomposition

7.5 HypergeometricSum[SumDecomposition] — construct the minimal additive
decomposition of a hypergeometric term

Calling Sequence
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SumDecomposition(T, n, k, newT')

Parameters

T - a hypergeometric term of n
n - a variable

k - a name

newT - (optional) a name

Description

e For a given hypergeometric term 7' of n, SumDecomposition constructs two hypergeometric terms T3
and T such that T'(n) = Ti(n + 1) — Ti(n) + T2(n) and the certificate E T5/T% has a rational normal
form (z,r, s, u,v) with v of minimal degree.

e The output from SumDecomposition is a list of two elements [T}, T5]. Both are written in the form (2).
If the fourth optional argument newT" which is an unassigned name is given, newT" will be assigned to
an equivalence of T' also written in the form (2).

Reference

e S.A. Abramov, M. Petkovsek, Minimal Decomposition of Indefinite Hypergeometric Sums, Proc. IS-
SAC’2001, 2001, 7-14.

e S.A. Abramov, Indefinite sums of rational functions, Proc. ISSAC’95, 303-308.

Examples

> T := (n"2-2*n-1)*2"n/((n+1)*n"2*(n+3)!);

n?—2n—1 27

(n+1)n?2 (n+3)!

> SumDecomposition(T,n,k,’ ’newT?);

1n+1"H1 2 1 n2+4n+2 "1:[1 2
12 n2 k44" 103n24+6n+3 L k+5
> newT;
1 n2—2n—1"5 2
12 (n+1)n? k:1k+4
> T := n"3%27n;
T :=n32"

> SumDecomposition(T,n,k);
1 3 2 n
5 (2n®—12n% +36n — 52) 27,0

The above result shows that the input hypergeometric term 7' is summable.

See Also Gosper, RationalCanonicalForm, MultiplicativeDecomposition
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7.6 HypergeometricSum|[Gosper] — indefinite hypergeometric summation

Calling Sequence
Gosper (T, n)

Parameters
T - a hypergeometric term of n
n - a variable

Description

e The function Gosper(T, n) solves the problem of indefinite hypergeometric summation, i.e., for the input
hypergeometric term T, it constructs another hypergeometric term G such that T'(n) = G(n+1)—G(n),
provided that such a term exists. Otherwise, the function returns the error message “no solution found”.

Reference

e R.W. Gosper, Jr., Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci.

USA, 75, 1977, 40-42.

Examples

> with(HypergeometricSum) :
> T := 4°n*n"4/binomial (2*n,n);

> Gosper(T,n);
1 (2n—1)(63n* — 14003 + 60n> + 26 n — 6) 4™
693 2™

n

See Also ExtendedGosper, PolynomialNormalForm, Accuratelntegration, Zeilberger,
SumDecomposition

7.7 HypergeometricSum|[ExtendedGosper]| — extended Gosper’s algorithm

Calling Sequence
ExtendedGosper (T, n)

Parameters
T - a list/set of hypergeometric terms of n
n - a variable

Description

e For the given list/set

18



where the #;(n)’s are hypergeometric terms of n, the function ExtendedGosper (T, n) returns a list/set

S ={s1(n),...,s4(n)}

of hypergeometric terms s;(n) such that

P

(Bn —1)) si(n) =) ti(n)

i=1 n=1

if each of the hypergeometric term s;(n) exists; otherwise, ExtendedGosper returns the error message
“no solution found”.

Reference
o M. Petkoviek, H. Wilf, D. Zeilberger, A =B, Wellesley, Massachusetts: A. K. Peters Ltd., 1996.

Examples

> with(HypergeometricSum):
> T := [n~2*%4"n/(n+1)/(n+2), 2°(2*n-1)/n/(2*n+1)/binomial (2*n,n),
> -n"2*4°n/(n+1)/(n+2)+(n+1) "2*4" (n+1) /(n+2) / (n+3)];

n24n 22n—1 n24n (n + 1)2 4n+1

M+ D) (n+2) n@Eat ) (") +D)m+2)  (n+2)(n+3)

> ExtendedGosper(T,n);

(2n+1)227-1 1 (n—1)4n+!
_n(2n+1)(2n")’§ n+2

See Also Gosper

7.8 HypergeometricSum[AccurateIntegration] — indefinite summation using ac-
curate integration

Calling Sequence
Accuratelntegration(T, n)

Parameters
T - a function of n
n - a variable

Description

e The function Accuratelntegration(7,n) solves the problem of indefinite summation using accurate
integration as described in subsection 4.3.

e The output from Accuratelntegration is a function G such that T'(n) = G(n+1)—G(n) if the algorithm
succeeds in constructing one; otherwise, it returns the error message “no solution found”.

Reference
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e S.A. Abramov, M.v. Hoeij, Integration of solutions of linear functional equations. Integral Transfor-
mations and Special Functions, 1999, Vol.8, No. 1-2, 1999, 3-12.

Examples
> with(HypergeometricSum):
> T := GAMMA(n+1)-GAMMA(n)-Psi(n);
T:=T(n+1)—T(n)— ¥(n)
> AccurateIntegration(T,n);

nt—n>—6n2—6n->5 n®—nt—10n3—9n2 -2

s (T(n+1) — T(n) — ¥(n)) - T

(C(n+2)-T(n+1)¥(n+1))

nt—4n3—n?24+2n—-2
B n(n?+n+3)
Try the Maple sum command:
> sum(T,n);

(T(n+3)—T(n+2)—¥(n+2))

> _(C(n+1) = T(n) - ¥(n))

See Also Gosper, IndefiniteSum

7.9 HypergeometricSum|Zeilberger] — Zeilberger’s algorithm

HypergeometricSum|[ZeilbergerRecurrence| — construct the Zeilberger’s re-
currence

Calling Sequence
Zeilberger (T, n, k, Ey)
ZeilbergerRecurrence (T, n, k, f,1.. u)

Parameters
T - a hypergeometric term of n and k
n - a variable
k - a variable
E, - a name denoting the shift operator w.r.t. n
f - the name of the recurrence function
l..u - the range for k

Description

e For a given hypergeometric term T'(n, k) of n and k, the function Zeilberger(T, n, k, Ey) tries to con-
struct for T'(n, k) a Z-pair (L, G) which consists of a linear difference operator with coefficients which
are polynomials in n over the complex number field C

L=qa,(n)Ef +---+ai1(n)E, + ao(n),
and a hypergeometric term G(n, k) such that
LT(n, k) =G(n, k+1) — G(n, k). (21)
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o The algorithm uses an item-by-item examination of the order p of L. It starts with the value of 0
for p and increases p until it is successful in finding a Z-pair (L, G). Since a terminating condition
that allows a hypergeometric term to have a Z-pair is unknown, a maximum value of the order of the
difference operator L in the Z-pair (L, G) needs to be specified. This is done by assigning a value to
the global variable MAXORDER (the default value of MAXORDER is 6). Additionally, by assigning values
to the global variables MINORDER and _MAXORDER, the algorithm will restrict to finding a Z-pair (L, G)
for T'(n, k) where the guessed order of L is from MINORDER to MAXORDER.

e The output from Zeilberger is a list of two elements [L, G] representing the computed Z-pair (L, G).

o ZeilbergerRecurrence (T, n, k, £, l..u) is used to construct the Zeilberger’s recurrence for the definite sum
f(n) =3 _; T(n, k). The function first computes the Z-pair (L, G) for T' and sums both sides of (21)
over k in the specified range !..u. This yields in general an inhomogeneous recurrence equation of the

form (13).

e The possible ranges of /.. include rn + s..un + v, rn + s..00, —oo..un + v, and — 0o .. co where
T, 8, U,V € N.

Reference
e D. Zeilberger, The method of creative telescoping, J. Symb. Comput., 11, 1991, 195-204.
e M. Petkovsek, H. Wilf, D. Zeilberger, A=B, Wellesley, Massachusetts: A. K. Peters Ltd., 1996.

Examples

\'2

with(HypergeometricSum) :
T := (-1)"k*binomial (2*n-2*k,n-k)*binomial (2*k,k);

2n—2k\ [2k
T := (-1)*
(20
Zpair := Zeilberger(T,n,k,En):
L := Zpair[1];

\'2

v Vv

L:=(n+2)En®— (16 + 16)

> G := Zpair[2];

n—k n—k n+2—-k n+2-k
4k2 —4nk—4k—-—n—2

. k(2n—2k+1) (zkk) <—16 (2n—2k)n _16 (Zn—Zk) + (2n+4—2k)n+ 2 (2n+4—2k))

G:=(-1)

> T := (2*%n+3)/(n"2-1) *(n+8*k+1)!;

2n+3)(n+8k+1)!

n2—1

T::(

> Zeilberger(T,n,k,En);
Error, (in Zeilberger) No recurrence of order 6 was found

There does not exist a Z-pair (L, G) where ord L < 6. Now try Z with order of L being from 7 to 9. Also
use infolevel to print out some diagnostics:

> _MINORDER := 7: _MAXORDER := 9:
> infolevel [HypergeometricSum] := 3:
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> Zpair := Zeilberger(T,n,k,En):

Zeilberger: "applying Zeilberger’s algorithm for order 7"
Zeilberger: "applying Zeilberger’s algorithm for order 8"
> L := Zpair[1i];

L:=(2n°+35n" + 174n+ 189) En® — (2n° + 19n° — 2n — 19)

Construct the Zeilberger’s recurrence in Example 4.
> T := (-1) "k*binomial(n+1,k+1)/binomial ((a*xk+1)/a,k);

(-1)* 1)
((ak-l];l)/a)

> ZeilbergerRecurrence(T,n,k,f,0..n);

1
f(n—i-l)—f(n):m

See Also Gosper, IsZApplicable, ZpairDirect, LREtools[hypergeomsols],
LinearOperators[dAlembertianSolver], DefiniteSum

7.10 HypergeometricSum[{WZMethod] — Wilf-Zeilberger’s algorithm

Calling Sequence

WZMethod(f,r, n, k, cert)

Parameters
f - a function of n and &
r - a function of n
n - a variable
k - a variable
cert - (optional) a name

Description

e The function WZMethod(f, r, n, k, cert) is used to certify identities of the form Y, f(n,k) = r(n).

e Let F(n, k) = f(n,k)/r(n) if r(n) # 0 and F(n,k) = f(n, k), otherwise. If the method succeeds in
certifying the given identity, the output is a list of two elements [F, G] representing the WZ-pair (F, G)
such that F(n+ 1,k) — F(n, k) = G(n,k+ 1) — G(n, k). Otherwise, it returns the error message “WZ
method fails”.

e If the method is successful and if the fifth optional argument cert, which can be any name, is given,

cert will be assigned to the WZ certificate R(n, k) = G(n, k)/F(n, k).
e It is assumed that for each integer n > 0, we have limy_, 14 G (n, k) = 0.
Reference
e H. Wilf, D. Zeilberger, Rational functions certify combinatorial identities, J. Amer. Math. Soc. 3,
1990, 147-158.
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Examples

> with(HypergeometricSum) :

Proof of Gauss’s 2 Fy identity [27]:

> £ = (n+k) '*(b+k) '*(c—n-1) '*(c-b-1)!/(c+k) ! /(n-1)!'/(c-n-b-1) 'V /(k+1) ! /(b= 1)!;
(n+kNB+E) (c—n—1'(ec=b-1)!

(c+k)l (n—N(c—n-b-11{k+1! (-1

fi=

>r :=1:
> WZpair := WZMethod(f,r,n,k,’cert’):
> F := WZpair[1];

(n+ kN B+E) (c—n—1!(c=b-1)!
e+ (n—D(c—n—-b-1!(k+ 1! (-1

> G := WZpair[2];

G () (c—n-D! ()t 14+ k) (et k) (b+k+Dlble—n—b)(c—b)
= !

Er) (c—n—1)(n+ 1) (n+t1+k)(ct k) (b+Ek+1)bl (c—n—Db) (c—b)

The WZ certificate:
> cert;

(k+1)(c+k)
n(n—c+1)
See Also Gosper

7.11 HypergeometricSum[IsZApplicable] — Applicability of Zeilberger’s algo-
rithm to rational functions

Calling Sequence
IsZApplicable(F, n, k, By, Zpair)

Parameters
F - a rational function of n and %
n - a variable
k - a variable
E, - (optional) a name denoting the shift operator w.r.t. n
Zpair - (optional) a name

Description

e Let F be arational function of n and k. The function IsZApplicable(F, n, k) determines the applicability
of Zeilberger’s algorithm to F. It returns false if Z is not applicable to F'; and true if it is. In this
case, if the fourth and the fifth optional arguments (each of which can be any name) are given, the
fifth argument Zpair will be assigned to the computed Z-pair (L, G) for F.

e If the input F' is not a rational function of n and k, then IsZApplicable returns FAIL. In this case, if
the optional arguments are given, then the function Zeilberger will be called, and the computed Z-pair
is assigned to Zpair if the function succeeds in finding one.
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Reference

e S.A. Abramov, H.Q. Le, Applicability of Zeilberger’s algorithm to rational functions, Proc. FP-
SAC’2000, Springer—Verlag LNCS, 2000, 91-102.

Examples

\'2

with(HypergeometricSum) :
F := 1/(n"2+3*n*k-2*n-10*%k~2+11*k-3) ;

\'2

1
T n243nk—2n—10k2+11k—3

> IsZApplicable(F,n,k,En,’Zpair?’);

true
> L := Zpair[1];

L:=(Tn+41)En®+ (Tn+34) En® — (Tn+6) En— (Tn— 1)
> F := 1/(n*k+1); )
F =
nk+1

> IsZApplicable(F,n,k);

false

See Also Zeilberger, ZpairDirect

7.12 HypergeometricSum|[ZpairDirect] — A direct algorithm to construct Zeil-
berger’s recurrences for rational functions

Calling Sequence
ZpairDirect(F, n, k, E,)

Parameters
F - a rational function of n and &
n - a variable
k - a variable
E, - a name denoting the shift operator w.r.t. n

Description

e Let F be arational function of n and k. The function ZpairDirect(F, n, k, E,) computes a Z-pair (L, G)
such that
LF(n,k) = G(n,k+1) — G(n, k).

e The output from ZpairDirect is a list of two elements [L, G] representing the computed Z-pair (L, G)
provided that such a pair exists.
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e The main distinction between ZpairDirect and Zeilberger is that Zeilberger uses an item-by-item ez-
amination technigue for the order of the computed difference operator L. The function ZpairDirect, on
the other hand, uses a direct algorithm to construct a Z-pair (L, G) for F. It first determines if there
exists a Z-pair for F' or not. If the answer is positive, then it computes a Z-pair directly; otherwise, it
gives the conclusive error message “there does not exist a Z-pair for F” where F is the input rational
function. ZpairDirect in general is much more efficient than Zeilberger .

e Note that ZpairDirect only works when the input F' is a rational function.
Reference

e H.Q. Le, A Direct Algorithm to Construct Zeilberger’s Recurrences for Rational Functions, Proc. FP-
SAC’2001, 2001, 303-312.

Examples

> with(HypergeometricSum):
> F := 1/(3*n+20*k+2) " 3;

1
- (3n+20k+2)?
> ZpairDirect(F,n,k,En);
1 1 1
E*° -1, 5+ 3+ 3
(B3n+20k+2) (3n+ 20k + 22) (3n+20k+ 42)

> F := 1/(k"5+k"3*n+3*k~3-5+n*k~2-2*xk~2-5*n"2-17*n-6);
F .= L
k> 4+ k3n +3k3 —5nk? —2k2—-5n2—-17Tn—6
> ZpairDirect(F,n,k,En);

Error, (in ZpairDirect) there does not exist a Z-pair for
1/(k"5+k~3*n+3*k"3-5*k"2*n-2*k "~ 2-5*¥n"2-17*n-6)

The function Zeilberger, on the other hand, wastes time trying to compute a Z-pair for F, and returns
an inconclusive answer.
> Zeilberger(F,n,k,En);

Error, (in Zeilberger) No recurrence of order 6 was found

See Also Zeilberger, IsZApplicable

7.13 HypergeometricSum[IndefiniteSum] — indefinite sum

Calling Sequence
IndefiniteSum(T, n)

Parameters
T - a function of n
n - a variable

Description
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e For a given function T, IndefiniteSum (7, n) computes a function G such that T'(n) = (E, — 1) G(n), if
it exists.

e The classes of functions T' supported are rational functions, hypergeometric terms, and those for which
the minimal annihilator in K (n)[E,] for T can be computed.

Reference
e S.A. Abramov, Indefinite sums of rational functions, Proc. ISSAC’95, 1995, 303-308.

e R.W. Gosper, Jr., Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad.

Seci. USA 75, 1977, 40-42.

e S.A. Abramov, M.v. Hoeij, Integration of solutions of linear functional equations. Integral Transfor-
mations and Special Functions, 1999, Vol.8, No. 1-2, 1999, 3-12.

Examples
> with(HypergeometricSum) :
> T := 1/(n"2+sqrt(5)*n-1);
1
Cn24vBn—1

> Sum(T,n) = IndefiniteSum(T,n);

1 _ 7—3v5—6n+65n+ 6n’
2mivin 1 P i vE) 14 vE) (n 35 V)

> T := n"3%27n;

n

T :=n32"
> Sum(T,n) = IndefiniteSum(T,n);

Y nP2" = (n® — 60+ 18n — 26) 2"

See Also Gosper, Accuratelntegration, DefiniteSum, sum

7.14 HypergeometricSum[DefiniteSum] — definite sum of hypergeometric terms

Calling Sequence
DefiniteSum(T, n, k, .. u)

Parameters
T - a hypergeometric term of n and &
n - a variable
k - a variable
l..u - the range for k

Description

e For a given hypergeometric term T of n and k. DefiniteSum(T, n, k, l..u) computes a closed form for
the definite sum f(n) = Y_;_, T, if it exists.
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o Let r, s,u,v € N. DefiniteSum tries to compute closed forms for four types of definite sums. They are

un+v [e’s) un+v [e’s)
Y T(nk), > T(nk), Y T(nk), > T(nk).
k=rn+s k=rn+s k=—o k=—o

e A closed form is defined as one which can be represented either as a sum of hypergeometric terms or
as a d’Alembertian term.

Reference
e D. Zeilberger, The method of creative telescoping, J. Symb. Comput. 11, 1991, 195-204.

e M. Petkoviek, Hypergeometric solutions of linear recurrences with polynomial coefficients, J. Symb.
Comput. 14, 1992, 243-264.

e M. van Hoeij, Finite Singularities and Hypergeometric Solutions of Linear Recurrence Equations. .J.

Pure Appl. Algebra, 139, 1999, 109-131.

e S.A. Abramov, E.V. Zima, D’Alembertian Solutions of Inhomogeneous Linear Equations (differential,

difference, and some other). Proc. ISSAC’96, 1996, 232-240.

Examples

A\

with(HypergeometricSum) :
T := (-1) "k*binomial (2#*n,k)*binomial (2*n-k,n) "2*(2*n+1)/(2*n+1+k) ;

A\

(2n+ 1)) C7Y)’
2n+k+1

T :=(-1)*

A\

Sum(T,k=0..n) = DefiniteSum(T,n,k,0..n);

n L 2n )Y R _ 64 72977 1024"T(2n+ 3/2)0(n + 3/2)°

kz:%(_l) Inthtl (2n + 1)2T(n+ 1)T(n + 2/3)2T(n + 4/3)2

v

T := (-1)"k/(k+1)/binomial (2#*n,k);

(—1)*
(k+1)(3)

> Sum(T,k=0..2%n-1) = DefiniteSum(T,n,k,0..2*n-1);

zilﬁ: <gn+%> ¥(Ln+1) - (%n+%>qf (1,n+%>

k=0

See Also Zeilberger, LREtools[hypergeomsols], LinearOperators[dAlembertianSolver], IndefiniteSum,
sum
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