Abstract

In this paper we introduce bag relational algebra with aggregation over a particular
representation of incomplete information called c-tables ([Grah84]). The c-table
representation is an extension of the Codd relational model ([Codd75]) with richer
semantics for null values. The reason c-tables were chosen for our exploration is that they
are the least expressive relational representation of incomplete information over which
relational algebra is closed and can be "well defined" (see [ImLi84]). We justify the need
for duplicate preserving relational algebra over this representation of incomplete
information by introducing aggregation over c-tables with duplicates.

1. Introduction

Many times when information is entered into databases, the values of some of the fields
are left empty for various reasons. In some cases partial information about the blank
fields is available, but existing relational databases don't allow such information to be
processed. Imielinski and Lipski in [ImLi84] were one of the first to propose richer
semantics of null values which allows information about null values to be entered into a
relational database. However their model didn't support duplicate semantics. Later on
some research was done in the area (see [LiWo094]), but no justification for exploring
duplicate semantics for incomplete information was given.

It is our believe that incomplete databases have an important role in the area of
information systems. However, in order to become popular, tools for efficient storage
and retrieval of such information need to be developed. Although the problem of
efficient storage is somewhat solved, it turns out that the problem of querying incomplete
information is intrinsically computationally expensive. This is probably the reason Iittle
work was done in the area of querying incomplete information (see [Grah91], [Reit86],
[YuCh88] and [Lips95]) and no work was done in the area of aggregating over
incomplete information.

In this paper we explore the problem of querying and aggregating incomplete
information. Even though, the time and space complexity of most of the presented
methods is higher then polynomial, we believe the proposed algorithms are feasible in
practice. The reason for our optimism is that in most real world problems the size of the
uncertain information is a small percentage of the total size of the database. Since the
major complexity of the proposed algorithms comes from the size of the uncertain
information, if this information is small, there is hope that the proposed algorithms can be
applied in practice and will run in reasonable space and time.

The major contributions of this paper include:

extending c-tables to have linear conditions

defining duplicate semantics for c-tables

proposing an algorithm for normalizing c-tables

proposing algorithms for calculating bag relational algebra operations over c-
tables

e proposing algorithms for performing aggregation over c-tables

In what follows in section 2 we define a representation of incomplete information
as c-tables with linear conditions, explore the fundamental properties of linear conditions
and of c-tables over them and present algorithms for their manipulation. In particular, in
section 2 an original algorithm for normalizing c-tables is proposed. In section 3 we
define bag relational algebra operators over c-tables and give algorithms for their
implementation. In section 4 the problem of aggregating over c-tables is explored and
finally in section 5 a summary or the presented material and areas for future research are
presented.

2. C-tables with linear conditions

The problem of representing incomplete information in the relational model is almost as
old as the relational model itself (see [Bisk81],[Codd75],[Codd79],[Gran77] and
[ImLi81]). For example null values appear in relational tables and their meaning can be
no information available, only partial information available, value not applicable and s.o.
Most work on null values has concentrated on the first two meanings of a null value.
Known representation of relational tables adapting those meanings of nulls include:

Codd tables
Naive tables
Horn tables

C-tables

Codd tables are relational tables, where the value of some the fields can be null. Naive
tables are an extension of Codd tables, where nulls are marked, i.e. each null is given a
label and nulls having the same label are mapped to the same constant. C-tables are naive
tables with Iocal conditions associated which each tuple and a single global condition
associated with each table (a more detailed overview follows in section 2.1). Horn tables
are a special kind of c-tables, where the conditions that can appear are restricted to horn
clauses.

Imielinski and Lipski ([ImLi84]) have proven that from the above four
representations, relational algebra can be "well defined" only over c-tables. The c-tables

defined in [ImLi84] have local conditions over (R,>,=) (i.e. Boolean expressions with

variables and constants defined over the ordered set R extended with > and =) and no
global conditions. However, to achieve closure over aggregation we will extend the local

conditions to be over (R,> ,=+)U(S,=,#), where R is the set of real numbers and S is
the set of strings over some finite alphabet. As well, we extend the [ImLi84] definition of
a c-table by adding global conditions (first introduced in [Grah84]). Note that, we don't

explore (Z,>,=,+), where Z is the set of integers because the general problem of deciding
whether a condition over this system is satisfiable is not decidable (see [Mati70]). Also
note that, extending the definition of a c-table with global conditions doesn't add any
expressive power, but allows for a more compact representation.

A good survey of the existing approaches to representing and querying
incomplete information can be found in [Grah91].

2.1. Definitions

Formally, we introduce a c-table T¢ as a finite, unordered set of c-tuples plus a
global condition 7. A c-tuple in an extension of a relational tuple with a local condition.
More precisely, if T is a Codd table with attributes A;, A», ..., A,, a relational tuple is a
sequence of n mapping from A; to D(A;), for i=1..n, where D is used to represent the
domain of an attribute. On the other hand a c-tuple is a sequence of mappings from A; to

D(A,)UV; plus a local condition over L¢, where V; is used to represent a possibly infinite,
countable set of variables over D(A;). As mentioned earlier, local and global conditions

can range over (R,>,=,+) U(S,=,#).
Before formally introducing the semantics of a c-table, let's look at the example in
table 2.1.

name school condition
John y x=1
Mark |y x#1

q zZ TRUE

g.c. (g#"Mark) A(g+John) A(z#y) A ((y="Western") or (y="Eastern"))
Table 2.1. An example c-table

The different parts of a c-table will be referred as the main part, where the actual data is
shown, the local condition part and the global condition part. In the above example x.y,z
and ¢ are used to represent variables ranging over the corresponding domains. Since our
model is limited only to the domains of real numbers and strings, the domain type of a
variable that doesn't appear in the main part of a c-table can be inferred by the context in
which it appears. In the above example, x ranges over the set of real numbers, the reason
being the existence of the local condition x=1.

The example c-tables expresses that either there are no students or that there is a
student, whose name is not John or Make. As well, either there are no other students or
exactly one of John or Mark are students. Moreover the one that is in school, studies in
either "Western" or "Eastern", but not in the same school as the first student. Note that in
this example (and trough out the paper) we are using the Closed World Assumption
([Reit78]). This assumption states that a database representation contains only the things
that are known to be true, i.e. it doesn't contain things for which we don't have enough
information to determine whether they are true or not.

To formally define the semantics of a c-table, Imielinski and Lipski in [ImLi84]
introduce a function Rep, which maps a c-table T¢ to a possibly infinite set of Codd
tables. In [ImLi84] this function is defined relative to the open world assumption. We
define it relative to the close world assumption as:

Rep(T)={T |3 v, s.t. v(T,)=T}

In the definition v is a mapping that maps the variables in 7. to constants in the
corresponding domains, it is generalized to a c-tuples t¢ of T¢ as

W(te)= v(main(t,)) if v(lc(t.)) =TRUE Av(ge(T,.)) =TRUE
< € otherwize

In the formula the functions main and /c are used to denote the main part and the local
condition part of a c-tuple and gc - the global condition of a c-table. The symbol € is
used to represent the empty set. The value of the tuple v(main(tc)) is calculated by
substituting the variables in t¢ with the corresponding constants to which v maps them.
The mapping v is further extended to a c-table T¢ as the bag of tuples {lv(¢¢)l}, where t¢
are the c-tuples of T¢. The presented definition of v applied to a c-table is unique and
differs from the definitions presented in [ImLi84] and [Grah91]. The reason being, that
unlike related research, we define semantics for c-tables with duplicates.

Intuitively, the meaning of the Rep function is that, given a c-table T¢ the function
returns all possible representations of T¢, i.e. all Codd tables that T¢ could represent
under different valuations' v. We define the semantics of a c-tables Tc as the set of Codd
tables it represents - i.e. as Rep(T¢). Possible representations of the c-table defined in
table 2.1 are:

name school name school
John Western Mark Eastern
Paul Eastern Mike Northern

Table 2.2. Possible representations of the c-table defined in table 2.1.

Note that, these are only two of the possible representations and in particular, there may
be infinitely many representations of a c-table. As well, the order of the tuples in the
presented example is preserved. This is done to show that order preservation is possible,
however, as stated earlier, throughout this paper we will analyze c-tables as unordered
bag of c-tuples in order to simplify the reasoning.

2.2. Satisfaction decidability of linear conditions trough variable elimination

Before proceeding further with analyzing c-tables, a procedure for satisfaction checking
of linear conditions is presented. This procedure will be helpful later when an algorithm
for normalizing a c-table is presented.

The first to propose such an algorithm for linear conditions was Tarski in

[Tars51]. He proposed a satisfaction decidability algorithm for (R, +,*,>,=), for R the
set of real numbers. A more efficient algorithm for the less expressive system (R,+,>,=)

we are interested in is developed by Ferrante and Rackoff in [FeRa75], where R is an
ordered group (under addition) that is divisible and torsion-free (the set of real numbers

! From now on, we will use the term valuation to denote the mapping of the set of variables in a c-table to
constants in the corresponding domains

and the set of rational numbers are such groups). In this section we will present Ferrante
and Rackoff's algorithm.

Theorem 2.2.1 (From [FeRa75]) Let ¢ (x;x2,...x,) be a quantifier free Boolean

expression over (R, +,>,=), where R is an ordered, devisable and torsion-free group and
X1,.., X, are all the variables in ¢ . Then there exist a quantifier free Boolean expression
©' (x2,X3,..,X,), such that the expressions (dx;)@ (x;x2,...x;,) and @' (x2,X3,..,x,) are
equivalent.

Proof (following the proof from [FeRa75]):
First, we will rewrite ¢ as a conjunction of disjunction of atomic formulas of the

form x;<t;, t;<x; or x;=t;, where i=1 to n and »n is the number of atomic formulas. This can
be done by converting ¢ in conjunctive normal form and then solving for x; in each

atomic formula. We will denote by U the set of all #; (note that #; doesn't contain x).
Next, we will present a constructive proof, i.e. we will construct @' (x2,x3,..,x,) as
(t+v)
7
close to -co and ¢, is defined as the value of ¢ when x; is closed to co. More precisely

PV, V vV o(Xy,....X,), where ¢__ is defined as the value of ¢ when x; is

¢__, 1is calculated by substituting the atomic formulas in ¢ of the form x,<¢#; with TRUE
and of the form x,=¢; and #;<x; with FALSE. Similarly ¢_ is calculated by substituting
the atomic formulas in ¢ of the form x;<t; and x;=t; with FALSE and of the form #<x,
with TRUE.

(=>) Let for some numbers r;...,r,, , (3x;) @ (x1,72,..,1,) be true. Then we have that either:

(1) x;<min(¢,(r,,..,1,))

(ii) x;=t,(ry,..,r,) for some i E[1..n]

(iii) #,(r2,..,1n)<X1<t|(12,..,1), Where 1IkE[1..n], s.t. ti(r2,...00)< (2,00, 1) <U(F25..0Fn)
(iv) x;>max(¢,(r,,..,7,))

If (3) is the case then @_ is true, if (ii) is the case then i.e. p()

(t,+1,)

(iii) is the case then (D(T,rz,..., r,) is true and if (iv) is the case then ¢_ is true, i.e.

J1y,.0 1) 1S true, if

Q'(1,,...,1,) 1s true, which is what we had to prove.
(<=) Let for some real numbers r;..,r,, @'(r,....,r,) be true. Then one of the disjunctions

in @'(r,,...,r,) is true, i.e. xy, s.t. @ (xy,r2,..,1,), Which is what we had to prove. O

Corollary: The problem of satisfaction decidability over (R, +,>,=), where R is
ordered, devisable and torsion-free group is decidable in DSPACE(2?"), where n is the
size of the formula and ¢ a constant.

Proof: Given en expression ¢ (x;,x2,..,x,) over (R, +,>,=), to decide if there exists a
valuation which satisfies it, one has to eliminate all variables. If after eliminating all
variables an expression evaluating to TRUE is computed, then the original expression is
satisfiable, otherwise it is not. For a proof of the time and space bounds see [FeRa75]. []

Note that in our c-table definition we allow conditions over (R,> ,=,+)U(S,=,#+). One
way we can apply the algorithm of [FeRa75] to our case is to modify it to allow for string

variables. In particular the formula 3x; ¢ (x;,x2,..,.x,) wWhere x; is a string variable is
equivalent to @ (c7,x2,--.Xn)V @ (€2,X2,...X0) V...V @ (CroX2,...X0) V @ (d X2,..,X,), Where c¢;,..ck
are the string constants in ¢ and d is a new string constant different from the constants in
¢ . Note that the above reasoning cannot be applied if we allow lexicographical order

comparison of strings in formulas, because there isn't a string between any two strings
(e.g. there is no string between "aa" and "aaa").

2.3 Linear condition simplification

In the c-table normalization procedure, a way for simplifying linear conditions by
removing redundant information will be needed. Note that a linear condition is a
Boolean expression and as such it can be expressed as a disjunction of conjunctions.
An intuitive representation of a conjunction of conditions is a multi-dimensional
polyhedra defining a semi-linear set. Therefore a linear condition can be thought as a set
of disjoint polyhedras. Note however, that a given linear condition can be expressed as a
set of polyhedras in more than one way. This is the reason it is impossible to define a
canonical form for linear conditions, which has the property that two conditions are
identical if and only if they have the same canonical form.

We will first examine an algorithm proposed in [LaMc92] for normalizing a
conjunction of linear equalities and inequalities. More precisely a conjunction of atomic

linear conditions can be represented by the system Ax<b, Ex=d, 1(c;x=f), where A and E
are matrices, b, d, ¢; and f are vectors and x is a variable vector. This system represents a
polyhedra, and can be canonized by simplifying conditions and removing the redundant
ones. The fundamental theorem from [LaMc92] is:

Theorem 2.3.1 If two sets of atomic conditions over (R,+,>,=) define the same point set,

where R is the set of real numbers, their canonical forms will have identical set of
equality conditions, the same inequality conditions up to multiplication by a positive
scalar and the same set of negative conditions.

The above theorem can be used to check the equality of two conjunctions of atomic
conditions. The proposed algorithm in [LaMc92] runs in polynomial time, can be
implemented to run on parallel machines and relies on calls to a module that solves linear
programs. As well the algorithm recognizes sets of unsatisfiable atomic conditions and
reports them as such. Part of the algorithm deals with elimination of redundant
conditions, which is an extension of the research done in [LHM®9].

The algorithm we present for simplifying a linear condition C is:

1. Convert C in disjunctive normal form (i.e. as a disjunction of conjunctions) to get

C=c;VcaV..V.cp.

2. Normalize each conjunction c¢; using the algorithm in [LaMe92]

3. Scan the conjunctions ¢; from left to right, adding and modifying conjunctions as
needed. More precisely, the first iteration is to mark the first conjunction ¢; as processed.
At the k™ iteration, find the intersection of ¢, with each of the processed conjunctions.
More precisely, if gi,...g, are the processed conjunctions so far, calculate the normal

forms of g;Ack, giNler, 1gincy for i=1 to m, to compute the new set of processed
conjunctions. Note that [LaMe92]'s procedure can return that some of the conditions are
unsatisfiable and we can eliminate those.

4. The simplified value of C will be g;Vg,V..Vg, , where gi,2>.....¢» are the processed
conjunctions at the end of the algorithm in step 3. If there are no marked processed
conjunctions, then C=FALSE.

Note that the above algorithm is exponential time, because [LaMe92] algorithm runs in

polynomial time and n+n3" is an upper bound on the number of calls we make to it,
where 7 is the initial number of conjunctions. This is because in step 2 of the algorithm
we make n calls to the normalization procedure. In step 3, at the K™ iteration (k>1) we
may have as much as 3k processed conjunctions and therefore as much as 351 calls to

the normalization procedure. So the whole step 3 can use at most Z?)k" <n3" calls to
&=2
the normalized procedure. Note that, since the problem of satisfaction decidability in
general is DSPACE(2™), where n is the size of the formula (see [Fera75]) and the above
algorithm can be used for satisfaction checking we can not hope to improve the proposed
procedure to run in polynomial time.
Unlike the case in section 2.2., the algorithm presented in this section can be

applied to conditions over (R,> ,=,+)U(S,=,#) without any modification. The reason is

that equality and inequality conditions are treated in the algorithm separately from the >
conditions.

2.4 C-table normalization:

Note that there may be different c-tables representing the same set of relational tables, i.e.
it may be the case that T¢'#T¢" but Rep(T¢')=Rep(T¢"). In this situation, we will say that
T¢ and T¢" are equivalent and we will write T¢' = T¢". It is possible to derive a
methodology for determining whether two c-tables are equivalent or not. The fact that
this can be done in exponential time was proven in [Grah91]. We will present an
alternative method for doing so by comparing the normalized forms of two c-tables.
Theorem 2.4.2, which will be stated later in this section, tells how to determine if two
normalized c-tables are equivalent or not. We propose the following algorithm for
normalizing a c-table T¢:

1. If for some c-tuple z¢, the expression lc(t¢) Agce(te) is not satisfiable, then remove #¢
from T¢ (theorem 2.2.1. and its corollary show how linear expression satisfiability can be
tested).

2. If for some c-tuples t¢', tc"ET¢, tc' and t¢" are unifiable, then remove ¢ and #¢" from
T¢ and add a new tuple with main part X = {x;,%2,....x,}, Where n is the arity of T¢ and x;

are newly introduced variables, and with local condition (X =main(tc')Alc(te))V

(X =main(tc")Alc(tc")). We define two c-tuples t¢' and #¢" to be unifiable iff the
expression main(tc")=main(tc'"") is satisfiable (note that here = is generalized to denote

vector equality) and lc(tc")A le(tc"") ATg is not satisfiable.
3. After step 2 cannot be applied any more, look for triplets, quadruplets, and s.o. that are
unifiable and combine them in a similar fashion.

4. Move T§ to all local conditions, i.e. for every (€ T¢ set the local condition of 7¢ equal

to lc(tc)ATg. Then normalize all local conditions using the algorithm presented in
section 2.3. Put TRUE as the global condition of the resulting c-table.

5. For every c-tuple tc€T¢ , if main(tc) contains a variable x for attribute A; of T¢, and
lc(te)=>(x=c) is a valid expression, where ¢ is a constant, then replace x with ¢ in
main(tc).

A |B C | condition

P12 U [x=1ay=3

z |2 |V |x=2Ag=3

p W x=t

14 2# 1 AVEUAWED

A |B |C condition

2 WU (=) AW A=) A=) A(Y=3)) V
(Z'=2)A(W'=2)A(u'=v)A(Xx=2)A(q=3)) V
(Z'=p)A(W'=2) A(u'=1) A(x=t))

L4 11 ZF1IAVFUAWFED

g.citFIAt£2

Table 2.4.1: A c-table and the result of applying steps 1, 2 and 3 of the normalization
process to it.

The example in table 2.4.1 shows how the first three steps work over an example c-table.
Step 4 will move the global condition and combine it with the local conditions and then
normalize the local conditions. Step 5 will not be applied for this example.

Theorem 2.4.1 The so presented normalization algorithm is correct, i.e.
Rep(Norm(T¢))=Rep(T¢) for any c-table T¢, where the function Norm is used to denote
the normalization process. As well it runs in DSPACE(2™") where 7 is the size of T¢.

Proof (Sketch): To prove the first part of the theorem we need to use induction and show
that each of the above 5 rules are equivalence preserving - i.e. if T¢ is a c-table and O; is
used to denote the application of the ih rule, we need to show that O;(T¢)=T¢, for i=1 to 5.
It is quite easy to verify that this is the case for i=1, 4 , 5. For i=2 note that the algorithm
examines pair of c-tuples that are mutually exclusive, i.e. can not both appear in the same
representation. This is because the pre-condition of applying this step is that for every

valuation v, v[lc(tc)A lc(tc')Age(Te)]=FALSE. Since there is a valuation v, that makes
the main parts of the c-tuples equal, we can combine them and "join" their conditions. In
this way at most one of the two original c-tuples together with its condition will appear in
each representation, i.e. the set of representations of the c-table is not changed. The
analyzes for ;=3 are similar.

To prove the time bound note that in the proposed normalization procedure steps

1, 2 and 3 combined may require as much as 0(n+[rll]+ [Z}_[H} = (0(2") iterations,
n

where n is the number of tuples (this is because we first explore single c-tuples, then pairs
of c-tuples, then triplets and s.0.). As well each iteration checks whether a condition is
satisfiable, which as proven in section 2.2.1. can be done in DSPACE(2") time where n
is the size of the formula and ¢ a constant. Step 4 does the normalization of the local
conditions and can be performed in exponential time (see section 2.3). Step 5 can be
performed in polynomial time and therefore the whole algorithm can be performed in
DSPACE(2") where n is the size of the c-table 0

Note that event though the complexity of the above algorithm is high, things are
not as bad as they look. Assuming that the number of variable occurrences in the
normalized table is relatively small, and the local and global conditions are few and short
the procedure will run relatively fast and its practical use will be feasible. The reason
being, that the computational complexity of the algorithm comes from the symbolic
manipulations of the conditions.

The procedure for equivalence checking between two c-tables T¢" and T¢"" is:

1. Normalize T¢'and T¢"
2. If the number of c-tuples in the two normalized tables is equal try to match them. Two

c-tuple t¢' and t¢" match iff main(tc")=main(tc")Nlc(tc)Alc(tc") is satisfiable. An
effective way to check this satisfiability is to first check that main(tc")=main(tc'"") is
satisfiable which can be done in O(n) time where n is the arity of the c-tuples.

3. If all the c-tuples are matched, i.e. if each c-tuple from both c-tables participates in
exactly one match, then 7T¢' and T¢" are equivalent, otherwise they are not.

Theorem 2.4.2 The proposed algorithm for determining whether T¢~T¢" is correct and

works in DSPACE(2®") where n is the sum of the size of the two c-tables and ¢ is a
constant.

10

Proof (sketch): First note, that if two c-tables are equivalent, their normalized forms will
have the same number of c-tuples. This is because the normalization procedure unifies
all c-tuples that can appear as one in a representation. Therefore since the two c-tables
have the same set of representations, it must be the case that they have the same number
of c-tuples in their normalized form. Second note that that if the c-tuples are equivalent
their must exist a matching function which matches the c-tuples of their normal forms.

To prove the time bound note that step 1 takes DSPACE(2®") time, finding pair of
tuples for which main(tc")=main(tc'’) can be done in polynomial time, however deciding

the satisfiability of Ic(tc")Alc(t¢”) has bound DSPACE(2™), where n is the length of the
formula. Therefore the total running time of the algorithm is bounded by DSPACE(2")
where n is the sum of the size of the two c-tables. O

Corollary: The problem of c-table equivalence can be decided in DSPACE(2™") where n
is the sum of the size of the c-tables and c is a constant.

This concludes our presentation of the normalization algorithm. In the next section we
will explore the application of bag relational algebra to c-tables.

3. Bag relational algebra for c-tables

Now that we have defined the syntax and semantics of c-tables and have shown
how they can be normalized we will show how relational algebra can be extended to
handle c-tables (our choice of relational algebra is arbitrary, i.e. any language with the
expressive power of relational algebra, e.g. relational calculus, can be extended to work
with c-tables). In particular we will Took for a sound and complete extension of relational
algebra over Codd tables which preserves closure. By closure preserving we mean that
for an arbitrary relational algebra query ¢, and for an arbitrary c-table T¢ we will define
the semantics of ¢, so that g(7T,) is a c-table. By sound we mean that we will define the
semantics of ¢, so that only correct answers will appear in the result g(7¢), or formally

that Rep(q(Tc))Sq(Rep(T¢)). Finally, by complete we mean that all correct answers will

be in the result or that g(Rep(T¢)) S Rep(q(T¢)).

To define how relational algebra can be extended to handle c-tuples we will
define the semantics of projection, selection, inner join, monus and duplicate elimination
over c-tables with duplicate semantics. The presented definitions and proves are an
extension of the ones presented in [ImLi84]. More specifically we deal with c-tables
([ImLi84] deals with v-tables that don't have global conditions), closed world assumption
([ImLi84] works with the open world assumption), duplicate tuple semantics ([ImLi84]
doesn't explore duplicate semantics) and we allow + in the condition expressions
([ImLi84] doesn't). A summary of the presented relational algebra operations for the
closed world assumption for c-tables, but for sets of c-tuples and conditions over

(R.,>,=), where R is an ordered set can be found in [Grah91].
3.1 Projection

11

If T¢ is a c-table with attributes A =A,, ..A, we denote the projection over this c-table of
the attributes A' S A as . (T.). The c-table 7.(T,.) is constructed from the tables T¢

by removing all columns in A - A', and leaving the same local and global conditions. To
prove that the projection is well define we have to prove that

Rep(7~(T.))=n-.(Rep(T¢)) or that the sets S;={T | 3 v, s.t. W7, (T,))=T} and
S=n({T'| 3 v, s.t. W(T¢)=T}) are equivalent. Let T€S,={T | A v, s.t. W7 (T,))=T},
then T is a representation of 7, (7,) for some evaluation v, i.e. for some v, v(7,.(T;.)) =

T. Let T' be a table constructed from 7 by adding the columns for the attributes A -A'
and filling them with arbitrary values. Then by the definition of projection over
relational tables we have that 7. (7)=T= w(7m(T,)). As well note that 7" is a
representation of T¢ for a valuation v’ extending the valuation v to the attributes A - A",
Le. T'=v'(T¢), which means 7. (v'(T¢))=T= v(7+.(T,.)), i.e. there exists a valuation v's.t.
7+.(v(T¢))=T, and therefore TES,, which is what we wanted to prove. Proving the

reverse direction is similar.
Trough out this section we will work with the pair of tables shown in Table 3.1.1.

Ri= Ry=

A B condition B C condition
2 X X#£3 4 1 TRUE

2 4 y>3 2 Z y>3

gc. 2 g.c.z>3

Table 3.1.1 Example c-tables on which the application of the different bag relational
operators will be defined

By applying the above definition of bag projection to calculate 773(R;) we get:

B condition
4 TRUE

2 y>3

g.c. >3

Table 3.1.2 The value of TTs(R>)

3.2 Selection

We denote a selection over a c-table T¢ as o, (1) where ¥ is a predicate formula over
(R,> ,=+)U(S,=,#) and variables A,,..A, having the same names as the attributes of T¢.
We construct o, (T;.) from T¢ by keeping the same global condition and adding (by
conjunction) the local condition 7,,, to each tuple 7c from T¢ where O(tc) is a

substitution that substitutes ¢c[A;] (the value for the attribute A; in #¢) for each occurrence
of A;. To prove that we have defined selection correctly we have to prove that the result
of applying standard relational selection over the possible representations of a c-table is

12

the same as taking the representations of the so defined selections over the same c-table
or that Rep(o.(T,.))=0,.(Rep(T¢)) for any c-table T¢ and condition C over (R,> ,=+

)U(S,=,#). But this is equivalent to proving that there exist valuations v and v’ (see the
definition of Rep), s.t. v(o.(T,.))=0.(v'(T¢)). However it can be easily proven that we
have defined selection over c-tables in such a way that v(o.(T,))=0,.(v(T¢)) for any

valuation v, which proves that we have defined selection correctly.
The result table bellow demonstrates how selection works over the c-table R»,
defined in Table 3.1.1.

B C condition
4 1 1>2

2 < y>3Az7>2
g.c.z>3

Table 3.2.1 Result of Ocs2(R>)

3.3. Inner Join

We denote the inner join between two c-tables T¢"and T¢" as T¢'<T¢”. We would like to
define inner join in such a way that Rep(T¢'«T¢"")= Rep(T¢")Rep(T¢"). The algorithm

we propose for calculating the inner join T¢'wT¢" is:

1. Rename all variables of T¢", so that Var(T¢")NVar(T¢'"") is empty, i.e. make sure that
the variables of the two c-tables are distinct.

2. Do the join, i.e. for each c-tuple of T¢', find all c-tuples of T¢", s.t. there exists a
valuation that makes the join attributes equal and insert a c-tuple in the result containing
the main body of the join of the two c-tuples, and a condition a conjunction of the local
condition of the two c-tuples that are joined plus the corresponding equality condition
which makes the join attributes equal.

3. Add a global condition to the result table comprised of a conjunction of the global
conditions of T¢'and T

To illustrate how the algorithm works consider a join of the c-tables R; and R, defined in
Table 3.1.1. The resulting c-table is shown in Table 3.3.1:

A B C | condition

2 |x U 3 ax=4

2 |x Z | x£3Ax=2Ay>3
2 |4 I | y>3ATRUE
g.Cc. X2 N >3

Table 3.3.1 The result of R;I<IR»

13

3.4. Monus

Monus is the difference operators for bags. In bag relational algebra over Codd tables it

is defined as: T'-T"={t;y | t€T" and k=max(count(t,T")-count(t,T""),0), where ty, is used to
denote the tuple ¢, repeated k times and count is a function which returns the number of
occurrences of the tuple specified as the first parameter in the table specified as the

second parameter. Now, to extend this definition to V=T¢'=T¢" (i.e. to c-tables) we
propose the following algorithm:

1. Rename all variables of T¢", so that Var(T¢")NVar(T¢'"") is empty, i.e. make sure that
the variables of the two c-tables are distinct.
2. Copy T¢'in the result c-table V.

3. Construct a matrix X[ij], where 1<i<n=IT¢'l, 1<j<m=IT¢"l, where .| is the operator
that calculates the number of c-tuples in a c-table. Set X[i][j] = [main(t;)=main(z;")] A

le(t)) A (TN ety A ge(Te")
4. Add to V the global condition:

m n

AVYIL j1=.=Y[i-1, j1=Y[i+1, jl=..=Y[n, jl=0AY[i, jl=D] A

j=1"i=l

n m

ALY (YTid] = = YIi, j=11=Y[i, j+11= .. = Y[i,n] = O A YTi, j1= D],

i=l j=
where Y is a newly introduced matrix of variables, having the same dimensions as X.

5. Add with conjunction to the ™ c-tuple of V the local condition

LV (XL 1A (G 1= D))

What the algorithm does, is to first rename to variables of 7¢"”, so that they become
distinct from those of 7¢'. Then it calculates the matrix X and sets a restriction of the
possible values for the matrix Y. The value of X[i,j] contains the condition which must
hold for the c-tuple #; to be deleted from 7¢" and the tuple that deletes it to be #". The
matrix Y[i][j] has the restriction that for each j, there exists exactly one i, s.t. Y[i][j]=1,
and that for each i, there exists exactly one j, s.t. Y[i][j/]=1. As well, the elements of the
matrix Y can only take the values 0 and 1. The matrix Y is used to enforce the condition
that every c-tuple #" in T¢"” can be responsible for the deletion of at most one c-tuple of
T¢' and that every c-tuple ' in T¢' can be deleted at most once. Finally the local condition
we add to the result table specify that if for some valuation, X[i][j] and Y[Z][;j] holds, i.e. if
the tuple #;" in T¢' matches with the tuple #" in T¢" and the valuation is such that #; can not
be deleted by any tuple other then #;, and #; can not delete other tuple then #;, then #; should

be deleted from the result, i.e. X[i][jJA(Y[{][j]=1) will be true. This guarantees that each
tuple in 7¢' may disappear from a representation only if for the corresponding valuation
there exists a matching tuple in 7¢" which evaluates to TRUE and this matching tuple #-"

will delete exactly one tuple from 7¢/, i.e. the algorithm is correct and Rep(T¢'=~T¢") =

[Rep(Tc)~Rep(Tc")]U{QD}. Here {D} is used to represent the empty table which will
be constructed from a valuation for which the global condition is FALSE. We don't have

14

perfect equality in the above formula because from the way we construct the global
condition of T¢'~T¢" we allow for {(J} to be a possible representation. This is because

there are valuations, for which the global condition of T¢'=T¢" our algorithm constructed
will not hold. It is our believe this is an inherent problem and there is no way for it to be
solved under the definition of c-tables we have adapted..

To give an example, if we have our example tables R; and R, from table 3.1.1 we

can calculate R;~R; as follows:

x=4N7>3AXx*3 X=2AY>3NZ>3AX#3

FALSE

2>3ANYy>3AX#2

A B | condition

2 |F | e3A WYV XI[R2IAY[T[2])

214 | ys3A WXR2ATAYI2ID)V(XI21[2] A Y[2][2])

g.c. XF2)A(YLII=Y121[2]=1 AY[1]12]=Y12][1]=0) v

(YIL2]=YI2][1]=1 A YT1][1]=Y12][2]=0))

Table 3.4.1 Shows the values of the matrix X used in calculating R; =R, and the value of
the resulting c-table R; —R;

3.5 Duplicate Elimination

The last relational algebra operator which we will explore is duplicate elimination and we
will denote it as &(T¢). Note that duplicate elimination can be defined as a grouping by
all the attributes in the relational case. In the case of c-tables we define ¢(T¢)=
groupai..an(Tc), where Aj,..,A, are the attributes of T¢. Then &Rep(T¢))=
groupai.. an(Rep(Tc))=Rep(groupai.. a(Tc))=Rep(e(T¢)), which proves that duplication
elimination is well defined. The fact that groupai a.,(Rep(T¢))=Rep(groupai.. an(Tc))
follows from the fact that group is well defined over c-tables. We define the semantics of
grouping over c-tables and the operator group is section 4.2.

The result of ¢(R;), where R, is the table defined in table 3.1.1 is:

A B condition
2 |x FIA(EAVy<3)
2 |4 y>3A (x4 Vx=3)

g.Cc. x#2
Table 3.5.1 The value of e(R;)

3.6. Summary

In this section we have presented algorithms for implementing bag relational
algebra operations over c-tables with duplicates. The presented operators are the

15

primitive operators (see [LiWo094]), i.e. all bag relational algebra operators can be
expressed as a function of the presented operators. In the next section we will justify the
duplicate semantics for c-tables we have introduced by presented algorithms for
aggregating over c-tables with duplicates.

4. Applying aggregation to c-tables

In present literature we weren't able to find any reference to applying aggregation
to c-tables, or to incomplete databases for that matter. There is some research done in the
area of applying aggregation to fuzzy numbers ([KCY97]) and to random variables
([Sprin79]), but the query results in those methods are approximations. On the other
hand, the research done in constraint databases ([KLP98]) has explored the problem of
aggregating over constraint databases. Unfortunately, the operation of aggregation in
most constraint database systems is not closure preserving (e.g. first order formulas with
linear or polynomial constraints - [Kupe93]).

4.1. Introductory examples

In this section we present algorithms for extending grouping and aggregation
from bag relational algebra over Codd tables to bag relational algebra over c-tables. Let's

look at an example: suppose we want to calculate V=4F,, 8 R;, where R, is the c-table
defined in table 3.3.1. The result is:

A sum(B) condition

2 < x+F3Ay>3 Az=x+4
2 x x#+3 Ny<=3

2 4 y>3Ax=3

g.c. Xx#2

Example 4.1.1 Shows the value of V=47 sum () Ri

From this example, several important observations can be made. The most striking is that
we can generalizing the above example to show that c-tables are indeed closed under the

standard aggregation functions, as long as the allowed conditions are over (R,> ,=+

)U(S,=,#) and aggregation is allowed only over attributes defined over the R, except for
the aggregate count which is allowed over string attributes as well. Note however that c-

tables are not closed over aggregation if the conditions are defined over (R,>,=), which is
the case in existing literature on c-tables (see [ImLi94],[Grah91]).

4.2. Basics of Grouping

In general we would like to be able to evaluate a relational query of the form
At D age (A, age (Ao agg (A Tc where A;_A, are the attributes of 7¢ and agg is one of
the operators min, max, sum, count and avg. In the relational case the above expression is

16

evaluated by grouping tuples having the same values for A,..,A; into one tuple, which has
this common value for its first k attributes, and the rest of the fields are calculates by
applying the corresponding aggregations over each group of tuples. To extend this
definition to c-tables we will need to be able to group c-tuples and perform aggregation
on c-tuples. In this sub-section we will explore how the grouping can be done and in the
next sub-sections how aggregation can be applied to c-tuples.

Let's denote the result of grouping by the first k attributes of 7¢ as
group , . . Tc. The result of this operation will be a complex c-table, i.e. the value of a

field may be a beg of values (see [Maki77]). More precisely, in the result of the group
operation the values for the attributes Aj,A;...,Ar will be single values and for the
attributes Ay, ,..,A, - bag of values. For example we would expect groupgR,, where R; is
defined in table 3.1.1. to be the following complex c-table:

A B condition

2 |x 3N CFAVy<=3)
2 |4 y>3A(£4V x=3)
3 4 X#3 Ay>3 Ax=4
g.C. Xx#2

Table 4.2.1 The result of groupgR;, where R; is defined in 3.1.1

The algorithm for computing V=groups Tc, where AUB are the attributes of T¢ and
A={A,,..., A}, B={A,.,,...,A, }follows:

1. Copy T¢ into V.

2. Cluster the c-tuples of V¢ into biggest bags of semi-unifiable tuples relative to A - we
will call this e-bags. Two c-tuples #¢' and t¢" are semi-unifiable relative to the set of
attributes A iff main(za(tc))=main(za(tc")) is a satisfiable formula. If a c-tuple belongs to
more than one e-bag, then make copies of the c-tuple and put a copy in each e-bag. To

do so add the local condition x=i to the i™ copy of the c-tuple for i<k and the local
k-1
condition A x#i to the kK™ copy, where x is a newly introduced variable and k is the

i=1
number of times the c-tuple is copied.
3. Normalize the set of c-tuples formed in each e-bag (see section 2.4).
4. Partition each e-bag further into r-bags. To do so extract from the canonical form of

the linear condition \/l le(t,) (see section 2.3) the set of different conjunctions C={c;} =1 m,

where {#;}i=1 1 » are the c-tuples in the e-bag. From C form the array D, such that the
elements of D are distinct and each element of D is a disjunction of one or more
conjunctions from C. More precisely, a disjunction of ¢;s belongs to D iff all the ¢;s are
from the same set of c-tuples' local conditions, are from only those c-tuples' local
conditions and if a new ¢; is added to the set, one of the mentioned properties will no
longer hold. Reconstruct V¢, by substituting each e-bag with a number of r-bags, so that
the /™ r-bag corresponds to D[j]. In that r-bag all the c-tuples will have the same local

17

condition D[j] and the main parts will correspond to the c-tuples, from which D[j] was
formed.

5. From each r-bag form a set of nodes, each node corresponding to a distinct c-tuple in
the r-bag (i.e. for duplicate c-tuples we will have a single node). Find all spanning
undirected graphs for those nodes that are transitive and have the property that if there is

an edge between the nodes n; and n; and there exists a third node n, such that n; <4 n,
and n, <, n; then there must be edges between n; and n, and between n, and n;. By

definition n" <4 n" holds, where n’ and n" are nodes corresponding to the distinct c-tuples
tc¢" and 1¢"” and A a set of attributes, iff m4(¢¢") can be constructed from m4(z¢") by giving

values to some of the variables in 7¢' (note that <4 is a partial order). For example (1 2 x

5) <upc (123 4), where A,B,C are the first three attributes of the c-tuples and x is a
variable.

6. Partition each r-bag r in V¢ further into f-bags, where the set of f-bags corresponds to
the set of graphs associated with r constructed in step 5. More precisely, given a r-bag r,
and a possible graph G associated with it, a f-bag consists of a bag of complex c-tuples,
each complex c-tuple corresponding to a complete sub-graph of G (since G is transitive it
is a disjoint set of complete sub-graphs). If the nodes in a complete sub-graph belong to
the c-tuples ?;,0,....t, , the corresponding complex c-tuple will have the single value
(x7,x2,...,x,) for the attributes Aj,...,A, by which the grouping is done, the bag of values

{Iz A (main(t;))l} =1, for the attributes A,,1,..A,, and the local condition L,A

it Ays s A

wmain(t;)) = (x;,x,,..,x,)] where L, is the local condition of the r-bag r.

Before giving an explanation of why the above algorithm is correct, i.e. why group, ,
-y

(Rep(Tc)) = Rep(group A (T¢)) holds, let's give an example of how the above

algorithm can be applied to a concrete example. If we want to calculate groups p(R),
where R is given in table 4.2.2 we will first set V=R and then cluster the c-tuples into e-
bags relative to the attributes A, B to get the e-bags shown in table 4.2.3. In the example ¢
is a newly introduced variable that is used to make two copies of the first tuple of R.

A | B| C]| condition

Xy (x+y=3)V(x>4)V (x<0)
x 1312 [x+y=3 Ax<2]Vx<0

2 |33 |x>5

2 |3 |4 | TRUE

3 |4|5|TRUE

Table 4.2.2. C-table R

18

A | B| C| condition

x |y [(ety=3) v(x>4)V (x<0) | A1=1 A | B| C| condition

x |32 [x+y=3 Ax<2]Vx<0 x|y |1 [Cety=3

e y=3)V(x>4)V (x<0)]At+1
2 |3 |4 | TRUE Fl o HIRLE

Table 4.2.3 Shows the e-bags relative to A,B for the c-table R in table 4.2.1

Applying step 4 to the first e-bag, we will get C as the array shown bellow: (the first row
show C[0-5], the second C[6-10])

x<0A=1 | 0<x<2Ax+y=3At=1 2=<x<4Ax+y=3At=1 4<x<5A¢=1 x>5A=1 x+y#E3AN0=<x=<4

x<OAt#1 | 0<x<2AXx+y=3At#]1 | 2=<x<4Ax+y=3At#E]D | 4<x<SAr#]L | x>5AL#1

and D as the array bellow: (the second row shows the values of D and the first for which
c-tuples are the corresponding disjunctions achieved)

{1,2,4} {1,4} {1,3.4} | {2,4} {34} | {4}

cropveri] | cryversy | €4 cre1verry | CHOL | crs1versyv el

Similarly applying rule 4 to the second e-bag we get C[0]=(x<OAt#1),
C[1]1=(0=x<4 Ax+y=3At+1),C[2]=(x=4At#1),C[3]= (x+y#+3A0=x=<4Ar*1), C[5]=

(r=1) and D[0]=C[0]VC[1]V(C[2], D[1]=C[3]VC[5]. The corresponding r-tables are
shown in example 4.3.3.

condition

(x<OAE=1)V (0=x<2Ax+y=3A1=1)

[Q=x=HAx+y=3)At=1]V [4=x=5)A(t=1)]

x>S5At=1

(x<OAt#=1)V(0=x<2Ax+y=3At+]1)

X>5At#1

NNNNRNNRNRNRR}
wwwwwwwww%ww%w
INIFNY [FN TS FNY IOV S N TS Y Y S P

(x+y#E3IN0=<x<4)V(2=x=Z4NAx+y=3At#1)V
(d<x<5At#1)

19

condition

(x+y=3At+=1)V(x>4At+1)V(x<OAr+1)

A
X
3
3

BN
UlUl»—tO

x+y+3A 0<x=<4

Table 4.3.3 The partitioning of the e-bags from table 4.2.3 into r-bags

For the possible graphs of the first r-bag in the first e-bag we may have three possible
graphs with edges {(1,2)}, {(2,1)} or {(1,2),(2,3),(1,3)} (here (a,b) is used to denote an
edge between the nodes corresponding to the a™ and p" c-tuple of the r-bag). The
corresponding complex c-tuples for this r-bag are shown in table 4.3.4

A | B | C| condition

2 w ; [(x<OAI=1)V (0=x<2Ax+y=3 At=1)]A(z=x Aw=y=3)

w

S i [(x<OAE=1)V (0<x<2AX+y=3 At=1)]A(z=x=2 Aw=3)

S é [(x<OAL=1)V (0<x<2AX+Yy=3 At=1)]A(z=x=2 Aw=y=3)
3

Table 4.3.4 Shows the complex c-tuples for the first r-bag in table 4.3.3

The rest of the computations for groupa g(R) are done similarly and are not shown.

To substantiate why the proposed algorithm for calculating groups(T¢) works
where A is a sub-set of the attributes of T¢, let's look at its steps. Step lstarts the
algorithm by copying 7¢ in the result c-table. Step 2 clusters the c-tuples into e-bags.
relative to the attributes A. Note that a set of c-tuples will appear in the same complex c-
tuple after the grouping is done, iff the c-tuples are part of the same e-bag. Step 3
normalizes the e-bags, where part of the normalization is the removing of the global
condition of the c-table.

Step 4, partitions each e-bag further into r-bags. What is done in this step is that
the space over which the local conditions of the c-tuples in the e-bag is defined is
partitioned into non-overlapping polyhedras. Each r-bag corresponds to single polyhera,
or to a disjunction set of polyhedras, so that this is the biggest linear space over which all
the local conditions of the included c-tuples are true, and non of the local conditions of
the other c-tuples in the r-bag are true. Note that a set of c-tuples will appear in the same
complex c-tuple after the grouping is done, iff the c-tuples are part of the same r-bag. As
well the r-bags partition the possible valuations, i.e. under every valuation the condition
of at most one r-bag of every e-bag will be true.

Next, what step 5 and 6 do is to examine the c-tuples in each r-bag and see under
different valuations which c-tuples will much. Each of the constructed graphs
corresponds to a valuations. In a graph there is an edge between two nodes if under the
corresponding valuation it is true that z4(main(z¢'))=ma(main(¢")), where to' and t"" are
the corresponding c-tuples. It can be proven that a graph is valid, i.e. a corresponding
valuation exists iff (1) the graph is transitive (2) if there is an edge between the nodes n;

and n; and there exists a third node n; such that n; <4 n, and n; <4 n; then there are edges

20

between n; and n, and between n, and n;. This is why all graphs having those two
properties are constructed and those graphs show which c-tuples in the r-bag will be
grouped relative to the attributes A, relative to the different valuations.

In this sub-section we examined how grouping can be done for c-tables. In the
next sub-section we will extend this knowledge to show how once the grouping has been
done aggregation can be performed.

4.3. Performing the aggregation

Now, that we have define how grouping over c-tables can be done, aggregation is

raight-forward. Let's h he expression V=
straight-forward et's have the expression V: pts S age A age (Ao agg(An)(TC)’

where the aggs are linear expressions and the sets A={Aj,...A;} and B={A;,,,...,A,} are
disjoint and their union yields all the attributes in T¢. Then we can calculate the result by
first computing the complex c-table groupsT¢, and then aggregating over the B attributes
by introducing new variables in the main part of the result and moving the aggregations
to the local condition. This can be done because we allow linear conditions in the local
conditions of the c-tables. More precisely, suppose we have the following complex c-
tuple in groupaTc¢

A B condition
a b 1 C
by

Example 4.3.1. A general complex c-tuple

Then this complex c-tuple will appear in V=4 7,4, 8) T as:

A B condition

a X

cAcon(x,agg,bi,....by)

Table 4.3.2. The result of applying aggregation of the form 7,4,) Tc to the complex c-
tuple from table 4.3.1

The table bellow shows how the condition con is formed for the different values of agg:

cop con(agg,bi,...,.bi)
min i’i\l (x<b)
max i’i\l (x>b)
count | n
sum - Z:lb,-
i=1
e X+x+...+x=(Zjb,.) (where x is added n times)
i=l

Table 4.3.3. Show how the function con is computed

21

For an example of applying aggregation to c-tables see the example in table 4.1.1. The
reasoning of why the aggregation as defined above indeed produces the correct c-table,

ie. why Rep(,

2oy 088 (Apir)s agg (Apyo)senn agg(A,) Tc) = A Ag e Ay ((Fayg(Am), agg (A2)senns agg (A,)
Rep(T¢) is straight forward and follows from the correctness of the grouping algorithm
and the correctness of the con operator as defined in table 4.3.3. The complexity of the
proposed algorithm is exponential, the reason being it contains calls to the
computationally expensive procedures from sections 2.3 and 2.4.

4.4. Summary

In this section we have presented an algorithm for aggregating over c-tables. Though the
presented algorithm is computationally hard, its complexity is dependant on the size of
the uncertain information, which means that if it is small we could expect the algorithm
to run in reasonable time. This concludes our overview of querying c-tables. It remains
to summarize the presented material and mention areas worthy of further investigation.

5. Conclusion and future research

In this paper we have presented algorithms for querying c-tables extended with linear
conditions. We have chose this representation because it is the leas expressive
representation of incomplete information for which bag relational algebra with
aggregation has closure and is well defined. As expected, the running time of most of the
presented algorithms is non-polynomial, the reason being that manipulating linear
expressions is inherently computationally expensive.
We outline the following topics, which we believe are a natural extension of the
presented work:
e improving the efficiency of the presented algorithms; possible tradeoff for
doing so can be:
® Joosing some of the semantics for the uncertain information
e approximating the result
e exploring integrity constraints for incomplete information and how they can
be used for semantics query optimization
e extending research done in relational databases to incomplete databases, i.e.
view maintenance, view update, transaction control, integrity constraint
validation, etc.
e exploring semantics for c-tables with order

22

References:

[Bisk81] Biskup, J. A Formal approach to null values in database relations. In Advances in Database
Theory, H. Gallaire, J.Minker, and J.M.Nicolas, Eds. Plenum Press, New York, pp. 299-341, 1981

[Codd75] Codd, E.F. Understanding relations (Installment #7). FDT Bull. of ACM-SIGMOD 7, 3-4 (Dec.
1975), pp. 23-28, 1975

[Codd79] Codd E.F. Extending the database relational model to capture more meaning. ACM Trans.
Database Syst. 4, 4 (Dec. 1979), pp. 397-434, 1979

[FeRa75] Jerrante F., Rackoff C., A Decision Procedure for the First Order Theory of Real Addition with
Order, SIAM J. Comp, 4:1:69-76, 1975

[Grah84] G. Grahne. Dependency satisfaction in databases with incomplete information. In Proc. of Intl.
Conf. on Very Large Data Bases, pages 37-45, 1984

[Gran77] Grant. J. Null values in relational data base. Inf. Process. Lett. 6,5 (Oct. 1977), pp. 156-157,
1977

[Grah91] Grahne G. "The problem of Incomplete Information in Relational Databases". Springer-Verlag,
Berlin, 1991

[ImLi81] Imielinski, T., Lipski W On representing incomplete information in a relational data base. In
Proceedings of the 7th International Conference on Very Large Data DBases (Cannes, France, Sept. 9-11)
ACM, New York, 1981, pp. 388-397, 1981

[ImLi84] Imielinski, T., Lipski W., Incomplete information in relational databases, J. Assoc. Comput.
March. 31 4, Oct. 1984, pp. 761-791, 1984

[KCY97] Klir G., Clar U., Yuan B., Fuzzy set Theory. Foundations and Applications, Prentice Hall, 1997
[KKR90] Kanellakis, P.C., Kuper G.M., and Revesz P. Z.. Constraint query languages. In Proceedings of
the 8t M ST T-SIGMOD-SIGART Symposium on Principles of Database Systems (POD), PP-
299-313. ACM Press, 1990

anellakis, P.C., Kuper G.M., and Revesz P. Z.. Constraint query languages. Journal o
Computer and System Sciences, 51(1), pp26-52, 1995

[KLP98] Kuper G., Libkin L., Paredaens J. (editors), Constraint Databases, Springer, 1998
[Kupe93] Kuper, G.M. Aggregation in constraint databases. In Vijay Saraswat and Pascal Van
Hentenryck, editors, proceedings of the Ist International Workshop on Principles and Practice of

Constraint Programming (PPCP '93), pp. 161-172, MIT Press, 1993

[LaMc92] Lassez J.L.., McAloon K., Applications of a Canonical Form of Generalized Linear Constraints.
in Journal of Symbolic Computation (1992) 13, pp.1-24, 1992

[LHMS89] Lassez, J.L.., Huynh T., McAloon K. Simplification and elimination of redundant arithmetic
constraints. Proceedings of NACLP 89, MIT Press, 1989

[LiWo094] Libkin L., Wong L., Some properties of query languages for bags. In Proc. Database
Programming Languages, Springer Verlag, pp. 97-114, 1994

23

[Lips95] Libkin L., Query language primitives for programming with incomplete databases, In
Proceedings of DBPL'95, 1995.

[Maki77] Makinouchi A., A consideration of normal form of non-necessarily-normalized relations in the
relational data model. In Proc. of Intl. Conf. on Very Large Data Bases, pp. 447-453, 1977

[Mati70] Matiyasevich Y., Enumerable Sets are Dispantine. Dokladu Akademii Nauk SSSR. vol. 191, pp.
128-138, 1970

[Reit78] Reiter, R. On closed world databases, Logic and databases, Plenum Press, 1978

[Reit86] Reiter, R. A Sound and Sometimes Complete Query Evaluation Algorithm for Relational
Databases with Null Values. JACM 33(2): pp. 349-370, 1986

[Reve93] Revesz, P.Z. A closed-form evaluation for Datalog queries with integer (gap)-order constraints.
Theoretical Computer Science (TCS), 116(1/2), pp. 117-149, 1993

[Sprin79] Melvin Dale Springer, The algebra of random variables, Wiley series in probability and
mathematical statistics, 1979

[Tars51] Tarski, A. A Decision Method for Elementary Algebra and Geometry, University of California
Press, Berkeley, CA, 1951

[YuCh88] Yuan, Li Yan and Chiang, Dian-An, A sound and Complete Query Evaluation Algorithm for
Relational Databases with Null Values, ACM 1988

24

