
Evaluation of Bu®er Queries in Spatial Databases¤

Edward P.F. Chan

Department of Computer Science

University of Waterloo

Waterloo, Ontario, Canada N2L 3G1

http://emap.uwaterloo.ca

Abstract

A class of commonly asked queries in a spatial database is known as bu®er queries. An example
of such a query is to \¯nd house-power line pairs that are within 50 meters of each other."
A bu®er query involves two spatial data sets and a distance d. The answer to this query are
pairs of objects from the two input sets that are within distance d of each other. Evaluation
of bu®er queries is a costly operation, even when the numbers of objects in the data sets
are relatively small. This paper addresses the problem of how to evaluate this class of queries
e±ciently. Geometric objects points, lines and regions are used to denote the shape and location
of spatial objects. Two objects are within distance d of each other precisely when their minimum
distance (minDist) is. A fundamental problem with bu®er query evaluation is to ¯nd an e±cient
algorithm for solving the minDist problem. Such an algorithm is found and its desirability is
demonstrated. Finding a fast minDist algorithm is the ¯rst step to evaluate a bu®er query
e±ciently. It is observed that many, and even most, candidates can be determined to be in
the answer without resorting to the relatively expensive minDist operation. A candidate is
¯rst evaluated with the least expensive technique - called 0-object ¯ltering. If it fails, a more
costly operation, called 1-object ¯ltering, is applied. Finally, if both ¯lterings fail, the most
expensive minDist algorithm is invoked. To show the e®ectiveness of these techniques, they
are incorporated into the tree join algorithm and tested with real-life as well as synthetic data
sets. Extensive experiments show that the proposed algorithm outperforms existing techniques
by a wide margin in both the execution time as well as IO accesses. More importantly, the
performance gain improves drastically with the increase of distance values.

1 Introduction

In a spatial database system, there are many di®erent types of queries ranging from simple window

queries to more complex distance-related queries. An important class of distance-related queries is

known as bu®er queries. Examples of such queries are to \¯nd buildings that are within 50 meters

of a highway," or to \¯nd building-river pairs that are within 10 meters of each other." A bu®er

query involves two spatial data sets and a distance d. The answer to this query are pairs of objects

¤An extended abstract of this paper is published in the Seventh International Symposium on Spatial and Temporal
Databases (SSTD 2001), Los Angeles, July 2001.

1

from the two input sets that are within distance d of each other. This paper addresses the problem

of how to evaluate this class of queries e±ciently.

Geometric objects points, lines and regions are used to denote the shape and location of spatial

objects. A fundamental problem with bu®er query evaluation is to ¯nd an e®ective algorithm for

solving the minDist problem for non-point objects. The brute-force minDist algorithm requires

considering all pairs of segments from two geometric objects. A more e±cient minDist algorithm,

which only requires a sub-sequence of segments from each object to be examined, is derived. The

proposed minDist algorithm has the same worst-time complexity as the brute-force. However,

experiments with di®erent types of real-life data sets show the proposed algorithm reduces the

computation time to a fraction of that when computed with the brute-force. TheminDist algorithm

could also be used for other distance-related queries such as nearest neighbor [18] or closest pair

queries [7].

Finding an e®ective minDist algorithm is an important ¯rst step toward solving the evaluation

problem. Bu®er queries can be evaluated by modifying existing spatial join algorithms. It is

observed that many, and even most, candidates can be determined to be in the answer set with less

expensive operations. To reduce the computation time and the number of spatial objects retrieved

from the disk, ¯ltering techniques, which we call 0-object and 1-object ¯lterings, are employed. In a

0-object ¯ltering, pairs of objects are proven to be in the answer, by looking only at their minimum

bounding rectangles (mbrs). If it fails, a more expensive 1-object ¯ltering is applied. In a 1-object

¯ltering, an object in a candidate is retrieved and a test is performed to determine if the candidate

is in the answer. Experiments are also conducted to investigate properties of these techniques.

Only when a candidate fails in both ¯lterings, the most expensive minDist operation is invoked.

To show the e®ectiveness of the ¯ltering techniques, they are incorporated into the well-known

tree join algorithm and tested with real-life as well as synthetic data sets. Extensive experiments

show that the proposed algorithm outperforms existing techniques by a wide margin in both the

execution time as well as IO accesses. More importantly, the performance gain improves drastically

with the increase of distance value.

This paper is organized as follows. The next section surveys related work. Section 3 gives some

de¯nitions and brie°y outlines the experimental environment. In Section 4, a modi¯ed tree join

algorithm is derived for evaluating a bu®er query. In Section 5, we introduce the 0- and 1-object

¯ltering techniques. Section 6 presents an e±cient minDist algorithm for line and region objects

and shows its desirability. To evaluate the proposed ¯ltering techniques, they are incorporated

into the modi¯ed tree join algorithm. Extensive experiments are performed with both real-life and

synthetic data sets. The experimental results are summarized in Section 7. Finally conclusion and

future research direction are given in Section 8.

2

2 Related Work

Most work on spatial join processing fall into the 3-step framework proposed in [4]. Let us call

these steps MBR-join, ¯ltering and re¯nement. In the ¯rst step, commonly with the help of spatial

indexes, a set of candidates is produced. These candidates are generated based on their mbrs. In

the ¯ltering step, candidates are examined with some geometric ¯lters. The purpose is to identify

as many hits as well as false hits as possible. As a result, candidates are partitioned into three

sets: hits that ful¯l the join predicate, false hits which are proven not to be in the answer set, and

remaining or ¯ltered candidates which possibly satisfy the join predicate. The ¯ltered candidates

are examined in the re¯nement step by invoking an e±cient geometric algorithm to the objects

involved. The re¯nement step is likely the most costly operation as the geometric algorithm is

CPU-intensive and both objects are required to be retrieved from the disk.

There exists a variety of algorithms for performing the MBR-join [1, 3, 10, 15, 17]. Some work

have been done on the ¯ltering step by employing progressive approximation [9, 4], by exploiting

symbolic intersection detection [13] and by raster approximation [19]. All the above-mentioned

work concentrate on the intersection operator. The exact geometric processing in the re¯nement

step is commonly implemented with e±cient plane-sweep algorithms. See for instance [16, 11, 5, 2].

To facilitate the processing in the re¯nement step, objects are decomposed into smaller pieces [4],

by arranging or partitioning the data on disk so as to minimize the chance of a page fault [9], or

by reading in as many objects in one set so that duplicate retrieval can be minimized [17].

Other related work that deals only with point objects include work on nearest neighbor queries

[18] and closest pairs queries [7]. Algorithms are proposed in these work for ¯nding closest pairs

from two point data sets. In addition, cache size and caching scheme are investigated in [7] to see

how they a®ect the performance. As will be shown in Section 5.1, some of the techniques employed

in these work are also applicable to bu®er query evaluation. Recently, the distance join operator

is proposed in [14]. The distance join is a general approach for solving distance-related queries

by ordering the tuples output according to values produced by a distance function. Theoretically,

together with aminDist algorithm, it can be used to evaluate a bu®er query. However, as generality

is their primary concern, they are not addressing the same problem as in this work. For instance, a

problem with that algorithm is the e±cient implementation of the disk-based priority queue [14, 7].

Even if an e±cient disk-based priority queue can be implemented, that approach to bu®er query

evaluation is very ine±cient. As will be seen later, the key to solving bu®er query evaluation

problem is to minimize the number of invocation of minDist operations. Additional techniques,

like the ones proposed in this work, are required to speed up the evaluation process. To the author's

best knowledge, there is no work done on bu®er query evaluation.

The minDist problem between two convex polygons was studied in [6]. Their algorithm is

3

based on the concept of visibility and is more complex than our proposed minDist algorithm. As

their work is of theoretical interest, no performance evaluation is performed on their algorithm.

3 Notation, Test Data and Environment

Let us ¯rst de¯ne what are non-point objects in the 2D space. A chain of segments or simply a

chain, is a ¯nite sequence of segments such that any two adjacent segments share an endpoint and

no endpoint belongs to more than two segments. A chain is said to be simple if there is no point

other than an endpoint that is shared by two or more segments. Informally, a chain is simple if

there is no pair of segments crossing over each other and no branching in the chain. A chain is said

to be closed if the two endpoints of the chain are the same. A line is a simple chain of segments

while a region is an area or the point set enclosed by a simple closed chain. Vertices in a region are

arranged in the clockwise direction.

An mbr is denoted by ((xmin, ymin), (xmax, ymax)). An mbr m is expanded by d units is the

mbr obtained from m by incrementing the xmax, ymax and decrementing the xmin, ymin by d units.

Given an mbr m, the NE corner quadrant of m is the space f(x,y) j x¸m.xmax and y¸m.ymaxg.

NW, SE and SW corner quadrants are de¯ned in a similar manner. Given another disjoint mbr n,

n is said to be in X corner quadrant of m if n is completely contained in the X corner quadrant of

m. An mbr n is said to be in E quadrant if n is not in a corner quadrant of m and m.xmax·n.xmin.

An mbr n is in W, N, or E quadrant of m is de¯ned in a similar fashion.

There are at least two de¯nitions of minimum distance (minDist) between non-point objects.

Centroid: The minDist between two geometric objects is de¯ned as the Euclidean distance

between the centroid of the objects. The centroid is the arithmetic mean of vertices of the objects

involved.

Point Set: The minDist between two geometric objects is de¯ned as minimum of fdist(p1, p2)j

p1 is a point of o1 and p2 is a point of o2g, where dist is the Euclidean distance function.

The centroid-based semantic is easy to compute but may not capture the minimum distance

correctly. Throughout the discussion, we shall assume the Point Set De¯nition.

There are four sets of real-life geometric data used in the experiments. They are provided by

the Faculty of Environmental Studies at the University of Waterloo. The area covered has the size

of 60000 * 57000 units. Information on these data sets are summarized in Figure 1. These data sets

include both lines and regions and have distinct characteristics. The building data set is relatively

small and simple and has the lowest average number of segments. The vegetable data set is the

largest, both in terms of its average mbr size as well as the average number of vertices per object.

An average drainage object has more vertices than that of road but has a smaller mbr. Figure 2

summarizes the environment under which the experiments are carried out.

4

Figure 1: Test Data Sets Information

Figure 2: Experiment Environment Details

4 Bu®er Query Evaluation

In this section, a modi¯ed tree join algorithm is presented for evaluating a bu®er query. The

correctness of this algorithm is based on the fact that two objects are within distance d of each

other exactly when their minDist is.

4.1 Framework

Throughout the discussion, variants of R-trees [12] are assumed to be built on the geometric at-

tributes. In our implementation, ordered Hilbert R-trees are used [8] and the main data ¯les contain

the geometric objects. An R-tree is said to be ordered if the objects in the main data ¯le have

the same relative order as their corresponding leaf entries. The spatial query processing framework

assumed is the 3-step spatial join processing proposed in [4], as was discussed in Section 2. In this

work, the ¯ltering step produces no false hits while in the re¯nement step, a minDist algorithm

presented in Section 6 is applied to the objects involved.

4.2 A Bu®er Query Evaluation Algorithm

If R-tree variants have been built on the geometric attributes, a spatial join algorithm can be used

to perform MBR-join [3]. Since existing spatial join algorithms are designed for the intersection

operator, modi¯cations are required so that only pairs whose minDist is (likely) less than or equal

to the given d are in the candidate set.

The following is a modi¯ed tree join algorithm for evaluating a bu®er query, given a distance

5

d, for two data sets that are represented by two R-tree variants. Node is a data type or class

denoting a node in an R-tree. Each node contains a number of entries and each entry has an mbr

and has a child: for leaf nodes, the child points to a geometric object in the main data ¯le while

for non-leaf nodes, it points to a node in the tree. Let us assume further that for each child, there

is a function retrieve() that retrieves the object or node pointed at by the child. The algorithm

¯ndMBRCandidatePairs returns a subset of Cartesian product of entries from the two nodes R and

S such that their mbrs are likely within distance d. A more detailed discussion on this algorithm

is presented in Section 4.3. The function minDist accepts two geometric objects and returns the

minimum distance between them. An e±cient way of evaluating this function is introduced in

Section 6.

Algorithm bu®erQueryTJ(Node R, Node S, double d, File resultSet): Find elements in the
Cartesian product of pointers to objects in the two data sets that are within distance d of
each other. R and S are roots of two R-trees variants for two data sets A and B, respectively.
The pairs that are in the query answer are stored in a ¯le resultSet.

Input: A ¯le resultSet, a distance d, R and S are roots of two R-trees representing the two data
sets A and B, respectively.

Output: resultSet.

Method:

(1) candidates = ¯ndMBRCandidatePairs(R, S, d);

(2) for each pair <r, s> in candidates do:
(3) if (R is a leaf)

(4) if (S is a leaf)
(5) if minDist(r.child.retrieve(), s.child.retrieve())·d

(6) append <r.child,s.child> to resultSet;
(7) else /*R is a leaf while S is not. */

(8) windowQuery(s, r.child, d, resultSet)
(9) else if (S is a leaf) /*S is a leaf but not R.*/
(10) windowQuery(r, s.child, d, resultSet)

(11) else /* both are non-leaf.*/
(12) bu®erQueryTJ(r.child.retrieve(), s.child.retrieve(), d, resultSet)

(13) end /*for*/

Algorithm windowQuery(NodeEntry n, GeometricObjectPtr p, double d, File resultSet): Find
objects in the subtree n that are within distance d of the object pointed at by p. Store the
result in resultSet.

Input: A node entry n, a pointer p to a geometric object, a distance d, and a ¯le resultSet storing
the result.

Output: resultSet.

Method:

6

(1) let o and r be p.retrieved() and the mbr of o, respectively;

(2) if (n is a leaf entry)
(3) if (r and n.mbr is a candidate)

(4) if (minDist(n.child.retrieve(), o)·d
(5) if o2A append <p,n.child> to resultSet,

(6) else append <n.child,p> to resultSet;
(7) else /*n is a nonleaf entry*/
(8) for each entry k in n.child.retrieve() do

(9) if (k.mbr intersects r)
(10) windowQuery(k, p, d, resultSet);

(11) end /*for*/

4.3 MBR-join

In ¯ndMBRCandidatePairs as well as in statement (3) in windowQuery, one needs to determine

if a pair of mbrs is a candidate. There are at least two ways to test if a pair of mbrs are (likely)

within distance d of each other:

1. (Expansion). Select one mbr and expand it by d units. If the expanded mbr intersects with

the other, the pair is a candidate.

2. (MBRminDist). Compute their minDist. The minDist between mbrs can be computed

with the minDist algorithm in Section 6 or more e±ciently, by determining their relative

quadrants and compute the distance of the closest pair of points. An outline of the more

e±cient algorithm minDist is given below.

Algorithm minDist(mbr r, mbr s): Compute the minDist between two mbrs.

Input: Two mbrs.

Output: The minDist between the two mbrs.

Method:

/* quadrant is one of NE, NW, SE, SW, N,E,S and W. */

(1) if the two mbrs intersect, return 0;
(2) ¯nd quadrant in which s is in relative to r.

(3) switch (quadrant)
(4) case NE: /* s is in NE corner quadrant of r. */

(5) return dist(r.getNE(), s.getSW());
: :
(12) case S: /* s is in the South quadrant of r.*/

(13) return r.ymin- s.ymax;
: :

(20) end /*switch*/

7

As pairs produced by the MBRminDist method are pairs of the Expansion method, but not

vice-versa, theMBRminDistmethod has a smaller candidate set. However, the Expansionmethod

has the advantage of fast computation.

To evaluate these strategies, two algorithms are implemented by incorporating Expansion and

MBRminDist into the bu®erQueryTJ algorithm:

1. (Expansion with restricted search space). This algorithm is outlined below as ¯ndMBRCandi-

datePairsExpansion. The algorithm intersectionTest is the SpatialJoin2 algorithm in [3] with

the following modi¯cation: if a pair of mbrs intersect, a tuple of node entries corresponding

to the two mbrs is added to candidatePairs. Plane-sweep is not included in intersectionTest

since our experiments show that it is bene¯cial only for relatively small d.

2. (MBRminDist). Same as ¯ndMBRCandidatePairsExpansion except that whenever a candi-

date is produced in intersectionTest, the mbrs are tested to see if their minDist is less than

or equal to d as well. They are a candidate if they pass the test.

The ¯ndMBRCandidatePairs in bu®erQueryTJ is replaced by the algorithms above. The state-
ment (3) of windowQuery is also modi¯ed accordingly.

Algorithm ¯ndMBRCandidatePairsExpansion(Node R, Node S, double d): Find elements
in the Cartesian product of entries in two nodes that are potentially within distance d of each
other. Two entries are potentially within distance d if their mbrs are. The satisfying pairs
are stored in candidatePairs and returned to the calling program.

Input: Two R-tree nodes.

Output: candidatePairs.

Method:

(1) let m and n be lists of mbrs from nodes R and S, respectively;

(2) without loss of generality, let m have fewer entries than n;
(3) for each r in m, expand its mbr by d units;

(4) intersectionTest(m,n, candiatePairs);
(5) return candidatePairs;

The algorithms are evaluated, with various distance values and di®erent combinations of data

sets, on the computation time as well as the size of candidate set output. The computation time

is the time to compute the MBR-join candidate set (i.e., without ¯ltering nor re¯nement). The

experimental result on candidate set size is summarized in Figure 3. The values in the graph are

the ratios of the size of candidate set produced by Expansion to that generated by MBRminDist.

The computation time ranges from 18 to 88 seconds. The di®erences in computation time between

8

Figure 3: MBR-join Techniques Evaluation

the two algorithms is negligible and thus is not included here. The experiment shows that the

MBRminDist algorithm is preferred between the two, independent of distance values and data

types. The extra computation is negligible and well-justi¯ed with the reduction of the candidates

produced. As showed in Section 7, MBR-join accounts for a small fraction of the total query eval-

uation time and thus it is vital to minimize the size of candidate set to improve the performance of

query evaluation. For the rest of the discussion, the ¯ndMBRCandidatePairs is the MBRminDist

algorithm above.

5 Filtering Techniques

A problem with bu®erQueryTJ is that it is very ine±cient and that the time to compute the result

is long, even for relatively small data sets. The main source of ine±ciency is that in step (5) of

bu®erQueryTJ and in step (4) of windowQuery, minDist is invoked on candidates even if they can

easily be determined as hits. To overcome this de¯ciency, geometric ¯lterings are incorporated in

bu®er query evaluation. In this section, ¯ltering techniques with di®erent costs are presented to

reduce the computation as well as IO time.

5.1 0-object Filtering

Like bu®er queries, nearest-neighbor queries [18] and closest-pair queries [7] are distance-related

queries. E±cient techniques have been developed for evaluating these classes of queries. Although

the above-mentioned work are dealing with points only, some techniques are applicable to non-point

data sets. A metric that is useful to bu®er query evaluation is the MinMaxDist metric [7].

Suppose r and s are two mbrs in an R-tree. Let fr1, r2, r3, r4g and fs1, s2, s3, s4g be the sets

of edges for r and s, respectively. The metric MinMaxDist is de¯ned as follows:

9

MinMaxDist(r,s)= min
i=4;j=4
i=1;j=1 fmaxDist(ri, sj)g.

maxDist(ri, sj

Lemma 5.1 Given two node entries r and s and a distance d, if d ·MinMaxDistMBR(r.mbr,s.mbr),

then there is an object o in the subtree r such that for every object p in s, minDist(o,p)·d.

[Proof]: As there is at least a point of an object o is on an edge ri, it follows that every object p

in subtree s are within distance maxDist(ri, s) of o. 2

Unlike the metric MinMaxDist(r,s), MinMaxDistMBR(r,s) is asymmetric. The metric

MinMaxDistMBR(r,s) is useful when r is a leaf entry and s is a non-leaf entry, and when

d·MinMaxDistMBR(r.mbr,s.mbr). In this case, all objects in the subtree of s are within distance

d of the object pointed at by entry r. This could be used in the algorithm windowQuery.

Again let r and s be two mbrs. The metric maxDist(r,s) is de¯ned to be the maximum distance

of any two points contained in r and s [7]. It is useful when both are mbrs of non-leaf nodes. In

this case, if maxDist(r,s)·d, then all pairs of entries in the two subtrees are within distance d of

each other.

The metrics MinMaxDistMBR and maxDist, when applied in MBR-join, are redundant in

the sense that MinMaxDist alone produces the same candidate set. Nevertheless, these two

metrics could reduce computation time, especially when the bu®er distance is large.

The above metrics provide su±cient conditions to determine if objects in a candidate are within

distance d without retrieving the actual objects. Let us call a su±cient condition or technique for a

candidate to satisfy a bu®er distance condition in which exactly x objects are retrieved or accessed

an x-object ¯ltering. The above 0-object ¯ltering techniques can easily be incorporated into a spatial

join algorithm without much cost. As will be shown later, they are very e®ective, especially when

the distance is relatively large.

5.2 1-object Filtering

Given a candidate, one could just retrieve both objects and test for the condition. Alternatively,

an object from the pair is retrieved and the vertices are tested against the other mbr to see if they

satisfy the join predicate. Since exactly one object in a candidate is accessed, this is a 1-object

¯ltering technique. The following is an algorithm for implementing this 1-object ¯ltering. The

minimum of the maximum distance (MinMaxDist) between a vertex and an mbr is computed

with a formula in [18].

Algorithm MinMaxDist1¡obj(GeometricObject o, Mbr r, double d): Given a distance d,
a geometric object o and an mbr r, determines an upper bound on distance between the two
objects. If the upper bound is less than or equal to d return true else false. The upper bound
is obtained by ¯nding the minimum of maximum distances between vertices of o and r.

Input: An object o, an mbr r, and a distance d.

Output: True if o and r are guaranteed within distance d of each other and false otherwise.

11

Method:

(1) curMin=+1;
(2) for each vertex v of o, do the following:

(3) curMin = min f MinMaxDist(v, r), curMing;
(4) if (curMin·d) return true;

(5) end /* for */
(6) return false;

The 1-object ¯ltering has the potential of avoiding the retrieval of an object as well as elimination

of the relatively expensive minDist computation. The cost is the extra computation time which

is proportional to the number of vertices of the retrieved object. A fundamental question with

this technique is which object in a pair should be retrieved to test against the mbr of the other

object. Let us call the object in a pair that is accessed or retrieved back the retrieved object. In

the ¯ltering test, the minimum of fMinMaxDist(pi,r) j pi is a vertex of the retrieved object and r

is the mbr of the other objectg is used as an upper bound on the distance between the two objects.

Let MinMaxDist1¡obj(o1,r2) be the minimum fMinMaxDist(pi, r2) j pi is a vertex of o1g.

Consider now two objects o1 and o2 with their mbrs r1 and r2, respectively. Assume further

that r1 is much smaller than r2. Then MinMaxDist1¡obj(o1, r2) is likely (but not always) to be

greater thanMinMaxDist1¡obj(o2, r1), as is illustrated in Figure 4. In this example, it is assumed

that the closest vertex is in the middle of a boundary edge of an mbr. The MinMaxDist1¡obj(o1,

r2) and MinMaxDist1¡obj(o2, r1) are denoted by the solid and dashed lines, respectively.

To investigate how the size of anmbr in°uences the performance of this ¯ltering technique, three

strategies are implemented. In the ¯rst strategy, both objects are retrieved and two ¯ltering tests

are performed; one for each object against the other's mbr. The test on a candidate is successful if

Figure 4: A Small and A Large Mbrs

at least one of the ¯ltering tests produces a value that is less than or equal to the distance value.

Let us call this the perfect selection. For each distance value, the number of successful tests is

collected. Imagine that someone knows which object in a pair should be retrieved all the times.

Then the number of successful tests in evaluating the bu®er query is the same as the number of

successful tests of the perfect selection. Thus, the perfect selection represents the strategy that

12

always selects the right object in the pair as the retrieved object. In the second strategy, the larger

mbr (in term of area) is selected as the retrieved object while the third strategy selects the smaller

one. Again a test is successful if the ¯ltering test produces a value that is less than or equal to the

distance value. The number of successful tests is collected for each strategy in each test. Let us call

the second and third strategies the large and small selection, respectively. The number of successful

tests is used to measure the e®ectiveness of the strategy employed. Clearly the larger the number

of successful tests, the better the strategy. The successful ratio of a selection (relative to perfect

selection) is the ratio of number of successful tests to that of perfect selection. By de¯nition, the

successful ratio is less than or equal to 1.

Figure 5: 1-Object Filtering Evaluation Result for Real-Life Data Sets

Four pairs of real-life data sets are examined: road-drainage, road-building, veg-drainage,

building-veg. The data sets are selected to re°ect di®erent possible combinations of data types. Four

pair of synthetic data sets are tested: road random(.25x4y)-drainage random(.25x4y),

road random(.25x4y)-building random(.25x4y), veg random(.25x4y)-drainage random(.25x4y),

building random(.25x4y)-veg random(.25x4y). A x random(.25x4y) data set is generated from the

corresponding x data set by randomly distributed the objects over the covered area. The resulting

data set is a uniform distribution of objects over the map area. Moreover, for each object, the

width (x-dimension) is scaled to .25 of the original size while the height (y-dimension) is elongated

13

Figure 6: 1-Object Filtering Evaluation Result for Synthetic Data Sets

4 times its original size. The resulting objects have the mbr the same size (area) as the original

objects but with a di®erent shape. The synthetic data sets are used to test if di®erent distribution

and shape of objects have any in°uence on the three strategies.

For each pair and for each strategy, tests are performed with distance values 10, 100, 600, 1000

and 1500. The results are summarized in Figure 5 and Figure 6. From the experiment, the large

selection clearly outperforms the small selection, over all data sets and bu®er distances. In fact, in

many cases, the large selection is close to the perfect selection. Among various combinations, the

large strategy is the most e®ective for building-veg combination. Most objects in vegetation data

set have a much larger area than the building objects and thus vegetation data objects are likely be

selected as the retrieved objects. Moreover, vegetation data objects are region and most vertices

in a vegetation object form a ring that is close to the boundary of mbr than with a line. This also

helps explain why the veg-drainage has the second best performance in the large selection. The

di®erences between these two combinations are likely due to the larger size and line type of drainage

data set. In sum, for both real-life and synthetic data sets tested, and for all bu®er distances, the

1-object ¯ltering strategy based on larger mbr is very e®ective. From now on, the large selection is

used in the 1-object ¯ltering.

14

Figure 7: Distance Between Segments

6 Minimum Distance Algorithms

In this section, we investigate the problem of computing the minDist between two non-point

geometric objects. Clearly if two objects intersect, the minDist is zero. From now on, objects are

assumed to be disjoint when minDist is considered. A plane-sweep algorithm could be invoked to

determine if two non-point objects are disjoint [5].

6.1 Minimum Distance Between Points and Segments

Suppose x is a point and s a segment. Let pp(x, s) be the perpendicular line to s that passes through

x. To determine the minDist of a point w to a segment s= fu,vg, where u and v are its endpoints,

generate a line pp(w,s). If pp(w, s) intersects s at a point q, then the minDist between w and s is

the distance from w to q. Otherwise the min(dist(w,u), dist(w,v)) is the minDist of w from s.

Now consider two segments s= fs1,s2g and t= ft1,t2g. Two endpoints si and tj , one from

each segment, is said to be the closest if their distance is shortest among all such pairs. Let u be

an endpoint of q. Either pp(u,z) intersects z at p, where z6=q and z and q are the two segments

involved, or it does not. In the former case, let us call the segment between s1 and p an endpoint

perpendicular segment. In Figure 7, segments n and m are endpoint perpendicular segments and

are the only endpoint perpendicular segments between s and t.

Lemma 6.1 Let s and t be two segments. The minDist(s, t) is the minimum of the distance of

closest enpoints and the length of the shortest endpoint perpendicular segment.

[Proof]: If s and t are parallel, the Lemma follows. Suppose s and t are not parallel. Then the

extended lines intersect at some point i with an angle µ. Without loss of generality, all points of s

15

are on the same side on the extended line with respect to the point i. Similarly for t. If µ is greater

than or equal to 90±, then it can be shown easily that the mimimum distance is between the closest

endpoints and the Lemma follows. Now asssume µ is less than 90±. Image sweeping a perpendicular

line segment m to t from the intersecting point i toward the two line segments s and t until (i)

endpoints of m are on the segments s and t, respectively, and (ii) the endpoint on s is an endpoint

of s, as is illustrated in Figure 7. If such m exists, the distance is the shortest distance between

any pair of points on s and t. First observe that the distance is the shortest between the endpoint

of s and any point on t. For any point q of s that is not the endpoint of m, it should be clear

that it cannot be an endpoint of the shortest segment. If such m does not exist, repeat the same

argument by sweeping a perpendicular line segment n to s. If both m and n do not exist, then the

shortest distance is between the closest endpoints (si, tj) of s and t. To prove this claim, consider

a perpendicular line v to s with an endpoint anchored at the closest endpoint tj of t, as shown in

Figure 7. Consider now the endpoint of v on the extended line of s moves toward s, the length of the

line increases. Thus the shortest distance between tj and any point of s is the closest endpoint in s.

By a similar argument, the shortest distance between si and any point of t is the closest endpoint

in t. Suppose there is a segment w with a distance shorter than the closest enpoints. Observe that

endpoints of w may be moved so that the segment is shortened. If w cannot be shortened further,

at least one of its endpoints is one of si or tj , or w is perpendicular to one of s or t. The former

case is not possible since we have already shown that the shortest segment involving si or tj is the

segment (si, tj). Let us assume w is perpendicular to s. Moves this segment toward si and the

segment length decreases. A contradiction. It follows that, the condition computes correctly the

minDist between two segments. 2

6.2 Minimum Distance between Objects

If both objects are lines, the minDist is the minimum of minDist between all pairs of segments

from the two objects. If one of them is a region, then the shortest distance between the region object

and the non-point object is the minDist between the boundary of the region object and the non-

point object. Thus the problem of determining the minDist between non-point objects is reduced

to the problem of determining the minDist between two line objects. The above observation gives

rise to an algorithm that determines the minDist between two non-point objects.

Algorithm GenMinDist: Given two disjoint sets of segments, compute the minDist between
them.

Input: Two disjoint set of segments.

Output: The minimum of minDist between segments from the two sets.

Method:

16

(1) Let globalMin be set to +1.

(2) For each segment s of one set, perform steps 3 and 4:

(3) For each segment t of the other set, determine the minDist d between s and t.

(4) globalMin = min(d, globalMin).

(5) return globalMin.

The time complexity is O(n£m), where n and m are the number of segments in each object,

respectively. In what follows, a more e±cient way of computing the minDist between two simple

chains is presented.

6.3 A minDist Algorithm for Simple Chains

The algorithm GenMinDist applies to sets of segments that are pairwise disjoint. However, the

segments in a set need not be a chain nor is simple. In this subsection, an algorithm is presented

for ¯nding minDist between two simple chains.

Consider two disjoint simple chains, the main idea of the algorithm is to identify sub-sequences of

chains, which are called frontiers, for computing minDist between the two objects. The important

property of a frontier of a simple chain is that computing minDist with the frontier is the same as

computing minDist with the whole chain.

To simplify the presentation, it is assumed throughout in this subsection that the mbrs of two

disjoint simple chains are themselves disjoint. The algorithm can be extended to the case where

their mbrs are overlapping.

Let C1 and C2 be two disjoint simple chains. The chain C1 is said to be in X quadrant (corner

quadrant) of C2 if C1's mbr is in X quadrant (corner quadrant, respectively) of the mbr of C2. A

vertex in a chain c is said to be a touching vertex if it is a point on a boundary of the mbr of c.

The frontier for a simple chain is bounded by two touching vertices. To illustrate how a frontier is

found, we ¯rst consider C1 and C2 are simple closed chains.

6.3.1 minDist For Simple Closed Chains

In this subsection, we show how to compute minDist for simple closed chains. We then extend the

idea to simple chains in the following subsection.

The X frontier of a simple closed chain C1 is de¯ned by two touching vertices which are located

as follows, where X is one of the four corners of an mbr: At the corner X of the mbr, there are

two incident edges. The edges can be ordered with respect to the center of the mbr in clockwise

direction: assign increasing numbers to edges with the restriction that the numbers of two incident

edges at the corner are consecutive. The smaller is the begin while the larger is the end edge.

Starting at the corner X, search along the begin edge to locate the ¯rst touching vertex. The

17

Figure 8: An Example

vertex found is the begin vertex of the frontier. Likewise the end vertex is found by searching

along the end edge, starting at corner X, for the ¯rst touching vertex. The two touching vertices

guarantee to exist as each edge must have at least one point from C1. The sub-chain from begin

to end vertices is the X frontier of C1. Note that the sub-chain from the end vertex to the begin

vertex is di®erent from the X frontier of C1. The portion of begin (end) edge that is between the

corner X and begin (end) vertex is said to be covered by the frontier. In Figure 8, C1 is in NW

corner quadrant of C2. Or equivalently, C2 is in the SE corner quadrant of C1. The SE frontier

of C1 is the sub-chain from vertex 1 to vertex 2 while the NW frontier of C2 is the sub-chain from

vertex 2 to vertex 5. It can be shown that the minDist between these frontiers is the minDist

between the two objects. Observe that the point p on C1 is not on the SE frontier of C1 and its

distance from any point q in C2 is longer than that from the begin vertex 1 to q. This leads to the

following.

Lemma 6.2 Suppose C2 is at the X corner quadrant of C1. Let q be a point of C2 and p a point

on the begin (end) edge of X corner of C1 that is not covered by the X frontier of C1. Then dist(q,

p)>dist(q, u), where u is the begin (end, resp.) vertex of the X frontier of C1.

[Proof]: Since the begin (end) vertex and p are on the same edge of an mbr, one of x- or y-value

are the same. Without loss of generality, let their x-values be the same. By the assmuption that p

is not in the covered portion and due to the relative position of C1 and C2, the di®erence of y-value

between q and p must be greater than the y-value di®erence between that of q and u. Thus the

Lemma follows. 2

Corollary 6.3 Suppose C1 is in X corner quadrant of C2 and C2 is in Y corner quadrant of C1.

18

Then the minDist between the Y frontier of C1 and X frontier of C2 is the minDist between C1

and C2.

[Proof]: Suppose at least one of two closest points from C1 and C2 is not on the corresponding

frontier. By assumption on the relative position of C1 and C2, if the straight line joining the closest

points intersects a boundary edge of an mbr, it must be a begin or an end edge. By assumption

on the closest points, the straight line joining them passes through a point on the boundary that

is not covered by the corresponding frontier. By Lemma 6.2, this pair cannot be the closest. A

contradiction. 2

Figure 9: An Example

Suppose C1 is in the W quadrant of C2, as shown in Figure 9. Or equivalently, C2 is at the

E quadrant of C1. De¯ne upperY as min(C1.ymax, C2.ymax) and lowerY as to max(C1.ymin,

C2.ymin). The upperY and lowerY denote the overlapping range along the Y -axis for the two mbrs.

The E frontier of C1 and the W of C2 are determined as follows.

The E (W) frontier for a simple closed chain C is identi¯ed as follows:

Search the E (W) edge of C for the touching vertex with y-value just greater than or equal to

upperY. If there is no such touching vertex on E (W) edge, search N edge westward (eastward),

starting from the NE (NW) corner, for the ¯rst touching vertex. The touching vertex found is the

begin (end) vertex for the E (W) frontier. Search the E (W) edge of C for the touching vertex with

y-value just less than or equal to lowerY. If there is no such touching vertex on E (W) edge, search

S edge westward (eastward), starting from the SE (SW) corner, for the ¯rst touching vertex. The

touching vertex found is the end (begin) vertex for the E (W) frontier. In Figure 9, the E frontier

of C1 and W frontier of C2 are vertices 1 to 4 and vertices 4 to 1, respectively.

Lemma 6.4 Suppose C1 is on the W quadrant of C2. Or equivalently, C2 is on the E quadrant of

C1. Then the minDist of E frontier of C1 and the W frontier of C2 is the minDist between C1

and C2.

19

[Proof]: We want to show that for any pair of points from C1 and C2, they are points on their

corresponding frontiers, if their distance is the shortest. We prove this by considering all possible

cases of upperY and lowerY. It is su±cient to consider cases in which at least one of the points is

on an edge of the mbr that is not covered by a frontier.

Case 1: C1.ymax = upperY and C1.ymin =lowerY. The begin and end vertices of C1's E frontier

are on N and S edges, respectively. Without loss of generality, let p be a point on C1's N edge that

is not covered by the E frontier. The argument for p on the S edge not covered by E frontier is

similar. We do not need to consider the case that p is on the W edge. Let q be a point in C2 and let

u be the C1's begin vertex of E frontier on the N edge. By de¯nition of begin vertex of E frontier,

p and u have the same y-value but the x-value of u is greater than that of p. By assumption, the

x-value of q is greater than that of u and thus the di®erence in x-value between p and q is greater

than that of between u and q. This implies dist(p, q)>dist(u, q). Thus if p is involved in the closest

pair, it must be on the frontier. By a similar argument, it can be easily shown that q must be on

the corresponding frontier if it is in the closest pair.

Case 2: C1.ymax = upperY and C1.ymin6=lowerY. The begin vertex of E frontier is on the N

edge while the end vertex is either on the E or S edge. Let p be a point on C1's N edge that is

not covered by the E frontier. By a similar argument in Case 1, p cannot be involved in the pair

the distance of which is the shortest. Suppose p is a point on the E or S that is not covered by

the frontier. Let q be a point in C2. By assumption on lowerY, the y-value of q is greater than or

equal to lowerY. Let u be the end vertex of the E frontier of C1. By de¯nition of end vertex of E

frontier, one of x- or y-values of u is greater than while the other equal to that of p. Since the x-

and y-values of u are less than or equal to that of q, dist(p, q)>dist(u, q). Thus if p is in the closest

pair, it must be on the corresponding frontiers. By a similar argument, it can be easily shown that

q must be on the corresponding frontier if it is in the closest pair.

As all other cases are analogous to a case above, we have shown that the frontiers are su±cient

to determine minDist between C1 and C2. 2

Suppose now two simples closed chains are in north-south position. De¯ne upperX asmin(C1.xmax,

C2.xmax) and lowerX as to max(C1.xmin, C2.xmin). The N (S) frontier for a simple closed chain

C is identi¯ed as follows:

Search the N (S) edge of C for the touching vertex with x-value just greater than or equal to

upperX. If there is no such touching vertex on N (S) edge, search E edge southward (northward),

starting from the NE (SE) corner, for the ¯rst touching vertex. The touching vertex found is the

end (begin) vertex for the N (S) frontier. Search the N (S) edge of C for the touching vertex with

x-value just less than or equal to lowerX. If there is no such touching vertex on N (S) edge, search

W edge southward (northward), starting from the NW (SW) corner, for the ¯rst touching vertex.

The touching vertex found is the begin (end) vertex for the N (S) frontier.

20

The proof that the frontiers identi¯ed are su±cient to determineminDist is similar to Lemma 6.4.

6.3.2 minDist For Simple Chains

In the above discussion, the objects involved are simple closed chains. If the objects are simple

non-closed chains, then some modi¯cations are required. For simple non-closed chains, it is assumed

that vertices are number consecutively. However, they are not required to be arranged in clockwise

direction. Consider the line object l in Figure 10.

Figure 10: A Line

Suppose another object o is in the N quadrant of l with o.xmin<l.xmin and o.xmax>l.xmax.

With the algorithm in Section 6.3.1, the begin and end vertices identi¯ed are vertices 2 and 5,

respectively. Consider the continuous sub-line between the begin and end vertices. Let us call this

the initial N frontier of l. For simple non-closed chains, it is not important the vertices identi¯ed

are in clockwise direction since there is only one continuous sub-line between the begin and end

vertices. The sub-line from vertex 1 to vertex 2 and the sub-line from vertex 5 to vertex 12 are

called dangling lines. In this case, one more task needs to be performed in identifying the frontier.

For each dangling sub-line, test to see if it is in-between the initial frontier identi¯ed and the other

object. It is included as part of the frontier exactly when it is in-between the other object and

the sub-line vertex 2 to vertex 5. By assumption that the chain is simple, either all points of a

dangling line is in-between the frontier and the other object or no point is. In the example above,

both dangling lines are included in the frontier and thus the whole line is the N frontier for the

line object l. The correctness follows from the proof in the previous subsection and the fact that

a chain is simple. On the other hand, if the other object o is in the S quadrant of the above line

object l with o.xmin<l.xmin and o.xmax>l.xmax. The S frontier for l is the sub-line from vertices

2 to 5.

So far we consider objects whose mbrs do not overlap. However, the algorithm can be extended

in a straight-forward manner to disjoints objects whose mbrs overlap. This has been incorporated

21

into our implementation. From now on, we call this the MinDist algorithm.

6.4 Performance Evaluation of GenMinDist and MinDist algorithms

To evaluate their e®ectiveness, both MinDist and GenMinDist algorithms are implemented and

performance evaluation is performed on them with the data sets presented in Section 3. In both

approaches, the most important operation in computing the minDist between two objects is de-

termining the minDist between a pair of line segments. Let us call such an operation a segment

calculation. Thus in evaluating the performance of the two algorithms, we compare the number of

segment calculations as well as the total computation time required.

Table 1: GenMinDist and MinDist Comparison

A test involves two distinct data sets. A set of randomly selected pairs of objects from the

two data sets of size sampleSize is generated ¯rst and used as input to the algorithms. All these

objects are main memory resident. The computation time measures only the time required for

minDist computation on these main memory objects. To avoid any unforeseeable anomaly, this

process repeats noOfSamples times. The average is used in the result of a test. In the performance

evaluation, noOfSamples and sampleSize are set to 10 and 10000, respectively. Table 1 shows the

result of segment calculation and total computation time comparison. There are three sub-tables:

one for GenMinDist, one for MinDist algorithm, and the last is the comparison of GenMinDist to

that ofMinDist. Time and Segment Calculation are the computation time (in sec.) and the number

of segment calculations in the average of each test. The values in the last sub-table represent the

ratio of the values for GenMinDist to that of MinDist.

Independent of the combinations, the MinDist algorithm has a far better performance than the

GenMinDist. The MinDist requires about 1/4 of time in the worst case and about 1/10 in the best

case when compared to GenMinDist. MinDist performs best when both data sets are regions while

it performs less impressive when both are lines.

22

7 Performance Evaluation of Bu®er Query With Filtering

In the previous sections, ¯ltering techniques are proposed and a more e±cient minDist algorithm

is presented. In Section 7.1, the ¯ltering techniques are incorporated into bu®erQueryTJ. It is then

evaluated in Section 7.2. For the rest of this paper, the more e±cient MinDist algorithm is used

whenever minDist is invoked.

7.1 A Modi¯ed Bu®er Query Evaluation Algorithm

The 0- and 1-object ¯lterings can be incorporated into the bu®erQueryTJ easily. Let us call
the modi¯ed algorithm bu®erQueryPrune. The modi¯ed algorithm is obtained from bu®er-
QueryTJ by replacing statements (5) and (6) with the following statements.

(5) if MinMaxDist(r.mbr, s.mbr)·d /* 0-obj ¯ltering*/

(6) append <r.child,s.child> to resultSet;
(7) else /*perform 1-obj ¯ltering */

(8) if (r.mbr.area()¸s.mbr.area())
(9) largeObj = r.child.retrieve(); small =s;

(10) else largeObj =s.child.retrieve(); small =r;
(11) if (MinMaxDist1¡obj(largeObj,small.mbr, d))

(12) append <r.child, s.child> to resultSet;
(13) else /* re¯nement: need to retrieve the small object.*/

(14) smallObj=small.child.retrieve();
(15) if minDist(largeObj, smallObj)·d

(16) append <r.child,s.child> to resultSet;

A similar change is also made to statements (4) to (6) in algorithm windowQuery. In addition,

0-object ¯ltering techniques MinMaxDistMBR and maxDist in Section 5.1 are applied to non-

leaf entries as well. If these tests are successful, all leaf entries are retrieved and included in the

resultSet.

7.2 Performance Evaluation

7.2.1 Environment

To evaluate the performance of the proposed algorithm, a caching scheme is implemented for

swapping in and out geometric objects from a main data ¯le. As the data ¯les and geometric

objects are of various sizes, the size of a cache is speci¯ed as a percentage of the ¯le size and

objects are swapped in and out of the main memory. The replacement scheme used is the well-

known LRU replacement scheme. In each session, statistics such as execution time and the number

of objects swapped in are generated to evaluate the performance of the algorithm.

23

There are four pairs of real-life data sets: road-building, road-drainage, building-veg, veg-

drainage. And there are four pairs of synthetic data sets: road random-building random, road random-

drainage random, building random-veg random, veg random-drainage random. A x random data

set is generated from the corresponding x data set by randomly distributed the objects over the

covered area. The resulting data set is a uniform distribution of objects over the map area. The

bu®er distances are set at 10, 100, 600 and 1500 and they represent very small to very large bu®er

distances relative to the data sets. The cache sizes are 1%, 20% and 100% of a ¯le size. The 100%

cache size is used since we want to determine how many times, on average, an object in other cache

sizes are retrieved.

7.2.2 Evaluation of Filtering Techniques

In Bu®erQueryPrune, a candidate is ¯rst evaluated with the least expensive technique - 0-object

¯ltering. If it fails, a more costly operation, 1-object ¯ltering, is applied. Finally, if both ¯lterings

fail, the most expensive minDist is invoked. To investigate the performance of ¯ltering techniques,

three algorithms are implemented and tested. The ¯rst is the Bu®erQueryTJ which is without 0-

and 1-object ¯lterings. The second is the Bu®erQueryTJ but incorporating the 0-object ¯ltering.

The third is Bu®erQueryPrune which incorporates both 0- and 1-object ¯ltering techniques.

Figure 11 summarizes and compares the execution time of these algorithms. The execution

time is the average execution time for the three di®erent cache sizes. The real-life and synthetic

data sets are denoted by dashed and solid lines, respectively. Although there are di®erences among

various combinations, the following are some important general observations. Firstly, except in

some combinations with bu®er distance equal to 10, Bu®erQueryPrune outperforms the other

two algorithms; and in fact, in many cases, by a wide margin. This implies the overhead of the

¯ltering techniques in Bu®erQueryPrune is not costly and is well-justi¯ed. Secondly, compared to

Bu®erQueryTJ, the performance of Bu®erQueryPrune improves signi¯cantly with the increase in

bu®er distance. Thirdly, the 0- and 1-object ¯ltering techniques have incremental contribution to

the bu®er query evaluation. Fourthly, relative to Bu®erQueryTJ, Bu®erQueryPrune has a slower

rate of increase in execution time as distance increases. This is primarily due to the decrease in

both execution time and the data need to be read from the disk. Lastly, the majority of bu®er query

evaluation time is on ¯ltering and evaluation. Only small fraction of the time is on MBR-join. For

the real-life data sets, the total execution time for a bu®er query with algorithm bu®erQueryPrune

ranges from about 150 seconds to 3500 seconds. Recall that in Section 4.3, the time for computing

the candidate set in a query evaluation in a test ranges from 18 to 88 seconds.

In a bu®er query evaluation, an object may be read or swapped-in more than once. Let us call

this duplicate swap-in. Next let us look at how the ¯ltering techniques a®ect duplicate swap-in as

cache size changes. First observe that by setting the cache size to 100%, there is no duplicate swap-

24

Figure 11: Execution Time

in during the evaluation. Let us de¯ne duplicate swap-in ratio as the ratio of number of objects

swapped-in during a query evaluation to that when no duplicate swap-in; that is, when the cache

size is set to 100%. Informally, when the duplicate swap-in ratio is x, it means that, on average,

every object involves in the query evaluation is swapped-in x times. Clearly for cache size of 100%,

the duplicate swap-in ratio is 1. The smaller the ratio, the better the performance. Tables 2 and

3 summarize important data on logical data accesses. In the columns of 1% and 20%, the values

are the duplicate swap-in ratios when the cache size is set to the corresponding fraction. For the

columns of 100%, they record the number of objects swapped-in during the evaluation process.

centrate on Table 2. From Table 2, duplicate swap-in increases as bu®er distance increases. This is

expected as distance d increases, more and more objects from the same data set are within distance

d of an object in the other data set. This results in duplicate swap-in in the evaluation process.

Bu®er query evaluation is costly, especially when the distance is large. Likewise, the duplicate

swap-in decreases with larger cache sizes. From Table 2, Bu®erQueryPrune has the lowest du-

plicate swap-in across all data sets, cache sizes and bu®er distances. Relative to Bu®erQueryTJ,

the rate of increase in duplicate swap-in is relatively °at for Bu®erQueryPrune. This shows the

e®ectiveness of the ¯ltering techniques. From columns 100%, it also requires the fewest number

of objects in query evaluation. This implies that Bu®erQueryPrune requires the least number of

data accesses. Relative to Bu®erQueryTJ, the improvement becomes signi¯cant when the distance

is greater than 100.

Table 2: Duplicate Swap-in Summary for Real-Life Data Sets

In sum, the performance of bu®erQueryPrune is superior when compared to bu®erQueryTJ.

Our experiments show that it is preferred independent of the data sets, bu®er distances and cache

sizes. The improvement in performance by bu®erQueryPrune is signi¯cant, especially with large

bu®er distances. The ¯ltering strategies employed determine if a candidate pair is in the answer

or not with a minimum cost. It invokes the expensive operation minDist only if it is absolutely

necessary. As a result, it minimizes both the CPU as well as IO. In the next section, we will analyse

26

Table 3: Duplicate Swap-in Summary for Synthetic Data Sets

the contribution of 0- and 1-object ¯ltering techniques.

7.2.3 The Contribution of 0- and 1-object Filterings

In this section, we shall concentrate on bu®erQueryPrune. Let us ¯rst look at, for each ¯ltering

technique, how it contributes to the answer set. Figures 12 and 13 show the fraction of the

candidate set that a technique contributes to the answer for various combinations of data sets

with di®erent distance values. As the two ¯gures have very similar pattern, let us concentrate on

Figure 12. When the bu®er distance is very small (i.e., distance = 10), 0-object ¯ltering is ine®ective

while 1-object ¯ltering has some contribution. From Figure 11, the di®erence in execution time,

however, is negligible. This is due to the low cost of the 0-object ¯ltering and the small number

of candidates. However, as bu®er distance increases, the e®ectiveness of 0- and 1-object ¯lterings

become more and more predominant, and thus as the percentage of the size of candidate size,

fewer need to be evaluated with minDist. This also contributes to reduction in the number of

duplicate swap-in which in term implies fewer IO operations. For instance, for large bu®er distance

(i.e., distance = 1500), less than 10% of candidates need to be evaluated with minDist functions.

This demonstrates the e®ectiveness of the ¯ltering techniques proposed as distance increases. For

relatively large distances (i.e., distance = 600, 1500), the combined techniques work equally well

27

Figure 12: Contributing Ratios of Various Techniques for Real-Life Data Sets

for all data sets tested. This can be explained by the fact that distance value is much larger than

the average size of the object's mbrs. For smaller distance values (i.e., distance =100), the 0-object

¯ltering performs better for road-building since the average object's mbrs are smaller while 1-object

¯ltering work better for veg-building and veg-drainage combinations because of the much larger

size of vegetation objects.

8 Conclusion

We investigated the problem of how to evaluate bu®er queries e±ciently. A bu®er query involves two

data sets and a bu®er distance. A fundamental problem in bu®er query evaluation is to determine

if two geometric objects are within a given distance d of each other. We derived an e±cient

algorithm MinDist for solving this problem. We showed that, with real-life data, the proposed

MinDist algorithm outperforms the brute-force approach by a wide margin. The performance of

this algorithm is particular impressive for large region data sets.

Together with aMinDist algorithm, existing spatial query evaluation algorithms can be modi¯ed

easily to evaluate a bu®er query. However, the cost of evaluating a bu®er query increases drastically

when the distance is relatively large. We observed that many or even most candidates produced in

MBR-join need not be evaluated with the relatively expensive MinDist. We proposed an algorithm

28

Figure 13: Contributing Ratios of Various Techniques for Synthetic Data Sets

that employs 0- and 1-object ¯lterings to reduce the computation as well as IO accesses. In this

algorithm, a candidate is ¯rst evaluated with the least expensive technique - 0-object ¯ltering. If

it fails, a more costly operation, 1-object ¯ltering, is applied. Finally, if both ¯lterings fail, the

most expensive MinDist is invoked. We showed with real-life as well as synthetic data sets that

the proposed algorithm is very e®ective: both the execution time and IO accesses are reduced

signi¯cantly as bu®er distance increases. It works well across all cache sizes, bu®er distances and

data sets.

Duplicate swap-in is unavoidable if bu®er distances are not restricted to a small range. An issue

for future investigation is to develop techniques that reduce duplicate swap-in further in a bu®er

query evaluation.

Acknowledgement

The author wishes to thank Faculty of Environmental Studies at the University of Waterloo for pro-

viding the test data sets. Financial assistance from the Natural Sciences and Engineering Research

Council of Canada and from Bell University Laboratories is gratefully acknowledged.

29

References

[1] Arge, L., Procopiuc, S., Ramaswamy, S., Suel, T. and Vitter, J. \Scalable Sweeping-based
Spatial Join," Proceedings of the 24th International Symposium on Very Large Databases, pp.
570-581, Morgan Kaufmann, 1998.

[2] Becker, L., Giesen, A., Hinrichs, K. and Vahrenhold, J. \Algorithms for Performing Polygonal
Map Overlay and Spatial Join on Massive Data Sets," Proceedings of the Sixth International
Symposium on Advances in Spatial Databases, pp. 270-285, Hong Kong, China, 1999.

[3] Brinkho®, T., Kriegel, H-P and Seeger B., \E±cient Processing of Spatial Joins Using R-
Trees," Proceedings of ACM SIGMOD, Washington, D.C., 1993, pp.237-246.

[4] Brinkho®, T., Kriegel, H-P, Schneider, R. and Seeger B., \Multi-Step Processing of Spatial
Joins," Proceedings of ACM SIGMOD, Washington, D.C., 1994, pp.197-208.

[5] Chan, E.P.F. and Ng. J.N.H., \AGeneral and E±cient Implementation of Geometric Operators
and Predicates," Proceedings of the Fifth International Symposium on Advances in Spatial
Databases, pp. 69-93, Berlin, Germany, 1997.

[6] Chin, F. andWang. C.A., \Optimal Algorithms for the Intersection and the Minimum Distance
Problems Between Planar Polygons," IEEE Transactions on Computer, pp. 1203-1207, 1983.

[7] Corral, A., Manolopoulos, Y., Theodoridis, Y. and Vassilakopoulos, M. \Closest Pair Queries
in Spatial Databases," Proceedings of ACM SIGMOD, Dollars, TX, 2000, pp.189-200.

[8] Kamel, I. and Faloutsos, C., \Hilbert R-Tree: An Improved R-Tree Using Fractals," Proceed-
ings of 20th VLDB, 1994, pp. 500-509.

[9] Kriegel, H., Brinkho®, T. and Schneider, R., \An E±cient Map Overlay Algorithm Based
on Spatial Access Methods and Computational Geometry" Proceedings of the International
Workshop on DBMS's for Geographic Applications, Capri, May 12-17, 1991, pp. 194-211.

[10] Guting, R.H. and Schilling, W., \A Practical Divide-and-Conquer Algorithm for the Rectangle
Intersection Problem," Information Sciences 42, 1987, pp.95-112.

[11] Guting, R.H., Ridder, T. and Schneider, M., \Implementation of ROSE Algebra: E±cient Al-
gorithms for Realm-Based Spatial Data Types," Proceedings of Advances in Spatial Databases
- Fourth International Symposium, SSD '95, pp. 216-239, Portland, Maine, August 1995. Lec-
ture Notes in Computer Science 951. Springer-Verlag.

[12] Guttman, A., \R-trees: A Dynamic Index Structure for Spatial Searching," Proceedings of
ACM SIGMOD International Conference on Management of Data, 1984, pp. 47-57.

[13] Huang, Y-W, Jones, M. and Rundensteiner, E., \Improving Spatial Intersect Using Symbolic
Intersect Detection," Proceedings of the Fifth International Symposium on Advances in Spatial
Databases

[18] Roussopoulos, N., Kelley, S. and Vincent, F., \Nearest Neighbor Queries," Proceedings of ACM
SIGMOD, San Jose, CA, 1995, pp.71-79.

[19] Zimbrao, G and de Souza, J.M., \A Raster Approximation for the Processing of Spatial Joins,"
Proceedings of 24th VLDB, 1998, pp. 558-569.

31

