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Abstract

A class of commonly asked queries in a spatial database is known as buffer queries. An example
of such a query is to “find house-power line pairs that are within 50 meters of each other.”
A buffer query involves two spatial data sets and a distance d. The answer to this query are
pairs of objects from the two input sets that are within distance d of each other. Evaluation
of buffer queries is a costly operation, even when the numbers of objects in the data sets
are relatively small. This paper addresses the problem of how to evaluate this class of queries
efficiently. Geometric objects points, lines and regions are used to denote the shape and location
of spatial objects. Two objects are within distance d of each other precisely when their minimum
distance (minDist) is. A fundamental problem with buffer query evaluation is to {ind an efficient
algorithm for solving the minDist problem. Such an algorithm is found and its desirability is
demonstrated. Finding a fast minDist algorithm is the first step to evaluate a buffer query
efficiently. It is observed that many, and even most, candidates can be determined to be in
the answer without resorting to the relatively expensive minDist operation. A candidate is
first evaluated with the least expensive technique - called 0-object filtering. If it fails, a more
costly operation, called 1-object filtering, is applied. Finally, if both filterings fail, the most
expensive minDist algorithm is invoked. To show the effectiveness of these techniques, they
are incorporated into the tree join algorithm and tested with real-life as well as synthetic data
sets. Extensive experiments show that the proposed algorithm outperforms existing techniques
by a wide margin in both the execution time as well as 10 accesses. More importantly, the
performance gain improves drastically with the increase of distance values.

1 Introduction

In a spatial database system, there are many different types of queries ranging from simple window
queries to more complex distance-related queries. An important class of distance-related queries is
known as buffer queries. Examples of such queries are to “find buildings that are within 50 meters
of a highway,” or to “find building-river pairs that are within 10 meters of each other.” A buffer

query involves two spatial data sets and a distance d. The answer to this query are pairs of objects

*An extended abstract of this paper is published in the Seventh International Symposium on Spatial and Temporal
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from the two input sets that are within distance d of each other. This paper addresses the problem
of how to evaluate this class of queries efficiently.

Geometric objects points, lines and regions are used to denote the shape and location of spatial
objects. A fundamental problem with buffer query evaluation is to find an effective algorithm for
solving the minDist problem for non-point objects. The brute-force minDist algorithm requires
considering all pairs of segments from two geometric objects. A more efficient minDist algorithm,
which only requires a sub-sequence of segments from each object to be examined, is derived. The
proposed minDist algorithm has the same worst-time complexity as the brute-force. However,
experiments with different types of real-life data sets show the proposed algorithm reduces the
computation time to a fraction of that when computed with the brute-force. The minDist algorithm
could also be used for other distance-related queries such as nearest neighbor [18] or closest pair
queries [7].

Finding an effective minDist algorithm is an important first step toward solving the evaluation
problem. Buffer queries can be evaluated by modifying existing spatial join algorithms. It is
observed that many, and even most, candidates can be determined to be in the answer set with less
expensive operations. To reduce the computation time and the number of spatial objects retrieved
from the disk, filtering techniques, which we call 0-object and 1-object filterings, are employed. In a
0-object filtering, pairs of objects are proven to be in the answer, by looking only at their minimum
bounding rectangles (mbrs). If it fails, a more expensive 1-object filtering is applied. In a 1-object
filtering, an object in a candidate is retrieved and a test is performed to determine if the candidate
is in the answer. Experiments are also conducted to investigate properties of these techniques.
Only when a candidate fails in both filterings, the most expensive minDist operation is invoked.
To show the effectiveness of the filtering techniques, they are incorporated into the well-known
tree join algorithm and tested with real-life as well as synthetic data sets. Extensive experiments
show that the proposed algorithm outperforms existing techniques by a wide margin in both the
execution time as well as 1O accesses. More importantly, the performance gain improves drastically
with the increase of distance value.

This paper is organized as follows. The next section surveys related work. Section 3 gives some
definitions and briefly outlines the experimental environment. In Section 4, a modified tree join
algorithm is derived for evaluating a buffer query. In Section 5, we introduce the 0- and 1-object
filtering techniques. Section 6 presents an efficient minDist algorithm for line and region objects
and shows its desirability. To evaluate the proposed filtering techniques, they are incorporated
into the modified tree join algorithm. Extensive experiments are performed with both real-life and
synthetic data sets. The experimental results are summarized in Section 7. Finally conclusion and

future research direction are given in Section 8.



2 Related Work

Most work on spatial join processing fall into the 3-step framework proposed in [4]. Let us call
these steps MBR-join, filtering and refinement. In the first step, commonly with the help of spatial
indexes, a set of candidates is produced. These candidates are generated based on their mbrs. In
the filtering step, candidates are examined with some geometric filters. The purpose is to identify
as many hits as well as false hits as possible. As a result, candidates are partitioned into three
sets: hits that fulfil the join predicate, false hits which are proven not to be in the answer set, and
remaining or filtered candidates which possibly satisfy the join predicate. The filtered candidates
are examined in the refinement step by invoking an efficient geometric algorithm to the objects
involved. The refinement step is likely the most costly operation as the geometric algorithm is
CPU-intensive and both objects are required to be retrieved from the disk.

There exists a variety of algorithms for performing the MBR-join [1, 3, 10, 15, 17]. Some work
have been done on the filtering step by employing progressive approximation [9, 4], by exploiting
symbolic intersection detection [13] and by raster approximation [19]. All the above-mentioned
work concentrate on the intersection operator. The exact geometric processing in the refinement
step is commonly implemented with efficient plane-sweep algorithms. See for instance [16, 11, 5, 2].
To facilitate the processing in the refinement step, objects are decomposed into smaller pieces [4],
by arranging or partitioning the data on disk so as to minimize the chance of a page fault [9], or
by reading in as many objects in one set so that duplicate retrieval can be minimized [17].

Other related work that deals only with point objects include work on nearest neighbor queries
[18] and closest pairs queries [7]. Algorithms are proposed in these work for finding closest pairs
from two point data sets. In addition, cache size and caching scheme are investigated in [7] to see
how they affect the performance. As will be shown in Section 5.1, some of the techniques employed
in these work are also applicable to buffer query evaluation. Recently, the distance join operator
is proposed in [14]. The distance join is a general approach for solving distance-related queries
by ordering the tuples output according to values produced by a distance function. Theoretically,
together with a minDist algorithm, it can be used to evaluate a buffer query. However, as generality
is their primary concern, they are not addressing the same problem as in this work. For instance, a
problem with that algorithm is the efficient implementation of the disk-based priority queue [14, 7].
Even if an efficient disk-based priority queue can be implemented, that approach to buffer query
evaluation is very inefficient. As will be seen later, the key to solving buffer query evaluation
problem is to minimize the number of invocation of minDist operations. Additional techniques,
like the ones proposed in this work, are required to speed up the evaluation process. To the author’s
best knowledge, there is no work done on buffer query evaluation.

The minDist problem between two convex polygons was studied in [6]. Their algorithm is



based on the concept of wisibility and is more complex than our proposed minDist algorithm. As

their work is of theoretical interest, no performance evaluation is performed on their algorithm.

3 Notation, Test Data and Environment

Let us first define what are non-point objects in the 2D space. A chain of segments or simply a
chain, is a finite sequence of segments such that any two adjacent segments share an endpoint and
no endpoint belongs to more than two segments. A chain is said to be simple if there is no point
other than an endpoint that is shared by two or more segments. Informally, a chain is simple if
there is no pair of segments crossing over each other and no branching in the chain. A chain is said
to be closed if the two endpoints of the chain are the same. A line is a simple chain of segments
while a region is an area or the point set enclosed by a simple closed chain. Vertices in a region are
arranged in the clockwise direction.

An mbr is denoted by ((xmin, ymin), (xmaz, ymaz)). An mbr mis expanded by d units is the
mbr obtained from m by incrementing the zmazx, ymazx and decrementing the zmin, ymin by d units.
Given an mbr m, the NE corner quadrant of m is the space {(z,y) | 2>m.xmaz and y>m.ymazx}.
NW, SE and SW corner quadrants are defined in a similar manner. Given another disjoint mbr n,
n is said to be in X corner quadrant of m if n is completely contained in the X corner quadrant of
m. An mbr nis said to be in £ quadrant if n is not in a corner quadrant of m and m.zmaz<n.rmin.
An mbrnisin W, N, or K quadrant of m is defined in a similar fashion.

There are at least two definitions of minimum distance (minDist) between non-point objects.

Centroid: The minDist between two geometric objects is defined as the Euclidean distance
between the centroid of the objects. The centroid is the arithmetic mean of vertices of the objects
involved.

Point Set: The minDist between two geometric objects is defined as minimum of {dist( p1, p2)|
p1 is a point of 07 and pg is a point of 0s}, where dist is the Fuclidean distance function.

The centroid-based semantic is easy to compute but may not capture the minimum distance
correctly. Throughout the discussion, we shall assume the Point Set Definition.

There are four sets of real-life geometric data used in the experiments. They are provided by
the Faculty of Environmental Studies at the University of Waterloo. The area covered has the size
of 60000 * 57000 units. Information on these data sets are summarized in Figure 1. These data sets
include both lines and regions and have distinct characteristics. The building data set is relatively
small and simple and has the lowest average number of segments. The vegetable data set is the
largest, both in terms of its average mbr size as well as the average number of vertices per object.
An average drainage object has more vertices than that of road but has a smaller mbr. Figure 2

summarizes the environment under which the experiments are carried out.



Data Set Type | Nooof | Avano | Ave Ave. | TextFile
Objects of Mor | Mbr | Size(in
Segments | Width | Height | Ibytes)

Building | Region | 8860 7.3 4 41 232
Road Line | 13580 10.3 175 158 597
Drainage Line | 1559 26 139 131 146
Vegetation | Region | 4579 81 299 277 128

Figure 1: Test Data Sets Information

Property Value

Machine IBM ThinkPad 770Z, mobile PII 366 IiHz,
2560EB SDREAM, 14.15B.

0.5, Window 98 2md Edition

Java compiler and VI TEuilder 2.0 with TDE 1.2

Figure 2: Experiment Environment Details

4 Buffer Query Evaluation

In this section, a modified tree join algorithm is presented for evaluating a buffer query. The
correctness of this algorithm is based on the fact that two objects are within distance d of each

other exactly when their minDist is.

4.1 Framework

Throughout the discussion, variants of R-trees [12| are assumed to be built on the geometric at-
tributes. In our implementation, ordered Hilbert R-trees are used [8] and the main data files contain
the geometric objects. An R-tree is said to be ordered if the objects in the main data file have
the same relative order as their corresponding leaf entries. The spatial query processing framework
assumed is the 3-step spatial join processing proposed in [4], as was discussed in Section 2. In this
work, the filtering step produces no false hits while in the refinement step, a minDist algorithm

presented in Section 6 is applied to the objects involved.

4.2 A Buffer Query Evaluation Algorithm

If R-tree variants have been built on the geometric attributes, a spatial join algorithm can be used
to perform MBR-join [3]. Since existing spatial join algorithms are designed for the intersection
operator, modifications are required so that only pairs whose minDist is (likely) less than or equal
to the given d are in the candidate set.

The following is a modified tree join algorithm for evaluating a buffer query, given a distance



d, for two data sets that are represented by two R-tree variants. Node is a data type or class
denoting a node in an R-tree. Kach node contains a number of entries and each entry has an mbr
and has a child: for leaf nodes, the child points to a geometric object in the main data file while
for non-leaf nodes, it points to a node in the tree. Let us assume further that for each child, there
is a function retrieve() that retrieves the object or node pointed at by the child. The algorithm
findMBRCandidatePairs returns a subset of Cartesian product of entries from the two nodes 2 and
S such that their mbrs are likely within distance d. A more detailed discussion on this algorithm
is presented in Section 4.3. The function minDist accepts two geometric objects and returns the
minimum distance between them. An efficient way of evaluating this function is introduced in

Section 6.

Algorithm bufferQueryTJ(Node R, Node S, double d, File resultSet): Find elements in the
Cartesian product of pointers to objects in the two data sets that are within distance d of
each other. R and § are roots of two R-trees variants for two data sets A and B, respectively.
The pairs that are in the query answer are stored in a file resultSet.

Input: A file resultSet, a distance d, R and S are roots of two R-trees representing the two data
sets A and B, respectively.

Output: resultSet.
Method:

(1) candidates = findMBRCandidatePairs(R, S, d);

(2) for each pair <r, s> in candidates do:

(3) if (R is a leaf)

(4) if (S'is a leaf)

(5) if minDist(r.child.retrieve(), s.child.retrieve())<d
(6) append <7.child,s.child> to resultSet;

(7) else /*R is a leaf while S is not. */

(8) windowQuery(s, r.child, d, resultSet)

(9) else if (S'is a leaf) /*Sis a leaf but not R.*/

(10) windowQuery(r, s.child, d, resultSet)

(11)  else /* both are non-leaf.*/

(12) bufferQueryTJ(r.child.retrieve(), s.child.retrieve(), d, resultSet)
(13)

Algorithm windowQuery(Node Entry n, GeometricObject Ptr p, double d, File resultSet): Find
objects in the subtree n that are within distance d of the object pointed at by p. Store the
result in resultSet.

Input: A node entry n, a pointer p to a geometric object, a distance d, and a file resultSet storing
the result.

Output: resultSet.
Method:



let 0 and r be p.retrieved() and the mbr of o, respectively;

DO

if (nis a leaf entry)
if (r and n.mbr is a candidate)
if (minDist(n.child.retrieve(), 0)<d
if o€ A append <p,n.child> to resultSet,
else append <n.child,p> to resultSet;
else /*n is a nonleaf entry™/
for each entry k in n.child.retrieve() do

(S QTSN

0

if (k.mbr intersects 7)
) windowQuery(k, p, d, resultSet);
) end /*for*/

TN TN TN TN TN TN TN TN TN N N
=]
= O~ e N N e N e

4.3 MBR-join

In findMBRCandidatePairs as well as in statement (3) in windowQuery, one needs to determine
if a pair of mbrs is a candidate. There are at least two ways to test if a pair of mbrs are (likely)

within distance d of each other:

1. (Fzpansion). Select one mbr and expand it by d units. If the expanded mbr intersects with

the other, the pair is a candidate.

2. (M BRminDist). Compute their minDist. The minDist between mbrs can be computed
with the minDist algorithm in Section 6 or more efficiently, by determining their relative
quadrants and compute the distance of the closest pair of points. An outline of the more

efficient algorithm minDist is given below.

Algorithm minDist(mbr r, mbr s): Compute the minDist between two mbrs.
Input: Two mbrs.

Output: The minDist between the two mbrs.

Method:

/* quadrant is one of NE;, NW, SE, SW, N E'S and W. */
) if the two mbrs intersect, return 0;
) find quadrant in which s is in relative to r.

3) switch (quadrant)
) case NE: /* sis in NE corner quadrant of r. */
) return dist(r.getNE(), s.getSW());

(12)  case S: /* sis in the South quadrant of r.*/
(13) return r.ymin- s.ymax;

(20) end /*switch*/



As pairs produced by the M BRminDist method are pairs of the Fxpansion method, but not
vice-versa, the M B RminDist method has a smaller candidate set. However, the Expansion method
has the advantage of fast computation.

To evaluate these strategies, two algorithms are implemented by incorporating Fapansion and

M BRminDist into the bufferQueryT.J algorithm:

1. (Fzpansion with restricted search space). This algorithm is outlined below as find MBRCandi-
datePairs Expansion. The algorithm intersectionTest is the SpatialJoin2 algorithm in [3] with
the following modification: if a pair of mbrs intersect, a tuple of node entries corresponding
to the two mbrs is added to candidatePairs. Plane-sweep is not included in intersectionTest

since our experiments show that it is beneficial only for relatively small d.

2. (MBRminDist). Same as findMBRCandidatePairsExpansion except that whenever a candi-
date is produced in intersectionTest, the mbrs are tested to see if their minDist is less than

or equal to d as well. They are a candidate if they pass the test.

The findMBRCandidatePairs in bufferQueryTJ is replaced by the algorithms above. The state-
ment (3) of windowQuery is also modified accordingly.

Algorithm findMBRCandidatePairsExpansion(Node R, Node S, double d): Find elements
in the Cartesian product of entries in two nodes that are potentially within distance d of each
other. Two entries are potentially within distance d if their mbrs are. The satisfying pairs
are stored in candidatePairs and returned to the calling program.

Input: Two R-tree nodes.
Output: candidatePairs.
Method:

let m and n be lists of mbrs from nodes R and S, respectively;
without loss of generality, let m have fewer entries than n;

for each rin m, expand its mbr by d units;
intersectionTest(m,n, candiatePairs);

return candidatePairs;

DO

TN TN TN TN N
e 0
e e e e e

The algorithms are evaluated, with various distance values and different combinations of data
sets, on the computation time as well as the size of candidate set output. The computation time
is the time to compute the MBR-join candidate set (i.e., without filtering nor refinement). The
experimental result on candidate set size is summarized in Figure 3. The values in the graph are
the ratios of the size of candidate set produced by Fzpansion to that generated by M BRminDist.

The computation time ranges from 18 to 88 seconds. The differences in computation time between
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Figure 3: MBR-join Techniques Fvaluation

the two algorithms is negligible and thus is not included here. The experiment shows that the
M BRminDist algorithm is preferred between the two, independent of distance values and data
types. The extra computation is negligible and well-justified with the reduction of the candidates
produced. As showed in Section 7, MBR-join accounts for a small fraction of the total query eval-
uation time and thus it is vital to minimize the size of candidate set to improve the performance of
query evaluation. For the rest of the discussion, the findMBRCandidatePairs is the M BRminDist

algorithm above.

5 Filtering Techniques

A problem with bufferQueryT.J is that it is very inefficient and that the time to compute the result
is long, even for relatively small data sets. The main source of inefficiency is that in step (5) of
bufferQueryTJ and in step (4) of windowQuery, minDist is invoked on candidates even if they can
easily be determined as hits. To overcome this deficiency, geometric filterings are incorporated in
buffer query evaluation. In this section, filtering techniques with different costs are presented to

reduce the computation as well as 1O time.

5.1 O0-object Filtering

Like buffer queries, nearest-neighbor queries [18] and closest-pair queries [7] are distance-related
queries. Efficient techniques have been developed for evaluating these classes of queries. Although
the above-mentioned work are dealing with points only, some techniques are applicable to non-point
data sets. A metric that is useful to buffer query evaluation is the MinMax Dist metric [7].
Suppose 7 and s are two mbrs in an R-tree. Let {ry, ro, 73, r4} and {s1, so, s3, s4} be the sets

of edges for r and s, respectively. The metric MinMaxDist is defined as follows:



MinMazDist(r,s)= mmii‘;z} {maxzDist(r;, s;)}.

maxDist(r;, s;



Lemma 5.1 Given two node entries r and s and a distance d, if d <MinMaxDist M BR(r.mbr,s.mbr),

then there is an object o in the subtree r such that for every object p in s, minDist(o,p)<d.

[Proof]: As there is at least a point of an object o is on an edge r;, it follows that every object p
in subtree s are within distance max Dist(r;, s) of o. O

Unlike the metric MinMaxDist(r,s), MinMazDistM BR(r,s) is asymmetric. The metric
MinMaxDistM BR(r,s) is useful when r is a leaf entry and s is a non-leaf entry, and when
d<MinMaxDist M BR(r.mbr,s.mbr). In this case, all objects in the subtree of s are within distance
d of the object pointed at by entry r. This could be used in the algorithm windowQuery.

Again let rand s be two mbrs. The metric max Dist(r,s) is defined to be the maximum distance
of any two points contained in r and s [7]. It is useful when both are mbrs of non-leaf nodes. In
this case, if maxzDist(r,s)<d, then all pairs of entries in the two subtrees are within distance d of
each other.

The metrics MinMaxzDist M BR and maxDist, when applied in MBR-join, are redundant in
the sense that MinMaxDist alone produces the same candidate set. Nevertheless, these two
metrics could reduce computation time, especially when the buffer distance is large.

The above metrics provide sufficient conditions to determine if objects in a candidate are within
distance d without retrieving the actual objects. Let us call a sufficient condition or technique for a
candidate to satisfy a buffer distance condition in which exactly = objects are retrieved or accessed
an z-object filtering. The above 0-object filtering techniques can easily be incorporated into a spatial
join algorithm without much cost. As will be shown later, they are very effective, especially when

the distance is relatively large.

5.2 1-object Filtering

Given a candidate, one could just retrieve both objects and test for the condition. Alternatively,
an object from the pair is retrieved and the vertices are tested against the other mbr to see if they
satisfy the join predicate. Since exactly one object in a candidate is accessed, this is a 1-object
filtering technique. The following is an algorithm for implementing this 1-object filtering. The
minimum of the maximum distance (MinMaxzDist) between a vertex and an mbr is computed

with a formula in [18].

Algorithm MinMaxDist; .,;(GeometricObject o, Mbr r, double d): Given a distance d,
a geometric object o and an mbr r, determines an upper bound on distance between the two
objects. If the upper bound is less than or equal to d return true else false. The upper bound
is obtained by finding the minimum of maximum distances between vertices of o and r.

Input: An object o, an mbr r, and a distance d.

Output: True if o and r are guaranteed within distance d of each other and false otherwise.

11



Method:

(1) curMin=+oc;

(2) for each vertex v of o, do the following:

(3) curMin = min { MinMazDist(v, r), carMin};
(4) if (curMin<d) return true;
(5) end /* for */
(6) return false;

The 1-object filtering has the potential of avoiding the retrieval of an object as well as elimination
of the relatively expensive minDist computation. The cost is the extra computation time which
is proportional to the number of vertices of the retrieved object. A fundamental question with
this technique is which object in a pair should be retrieved to test against the mbr of the other
object. Let us call the object in a pair that is accessed or retrieved back the retrieved object. In
the filtering test, the minimum of {MinAMaxDist(p;,r) | p; is a vertex of the retrieved object and r
is the mbr of the other object} is used as an upper bound on the distance between the two objects.
Let MinMaxDist)_gj(01,r2) be the minimum {MinMaxDist(p;, r2) | p; is a vertex of o1 }.

Consider now two objects 01 and o2 with their mbrs r; and ro, respectively. Assume further
that 1 is much smaller than ro. Then MinMaxDisty g5(01, m2) is likely (but not always) to be
greater than MinMaxDisty_;(02, r1), as is illustrated in Figure 4. In this example, it is assumed
that the closest vertex is in the middle of a boundary edge of an mbr. The MinMaxDist;_ (01,
ro) and MinMaxDisty_g;(02, 71) are denoted by the solid and dashed lines, respectively.

To investigate how the size of an mbr influences the performance of this filtering technique, three
strategies are implemented. In the first strategy, both objects are retrieved and two filtering tests

are performed; one for each object against the other’s mbr. The test on a candidate is successful if

Figure 4: A Small and A Large Mbrs

at least one of the filtering tests produces a value that is less than or equal to the distance value.
Let us call this the perfect selection. For each distance value, the number of successful tests is
collected. Imagine that someone knows which object in a pair should be retrieved all the times.
Then the number of successful tests in evaluating the buffer query is the same as the number of

successful tests of the perfect selection. Thus, the perfect selection represents the strategy that

12



always selects the right object in the pair as the retrieved object. In the second strategy, the larger
mbr (in term of area) is selected as the retrieved object while the third strategy selects the smaller
one. Again a test is successful if the filtering test produces a value that is less than or equal to the
distance value. The number of successful tests is collected for each strategy in each test. Let us call
the second and third strategies the large and small selection, respectively. The number of successful
tests is used to measure the effectiveness of the strategy employed. Clearly the larger the number
of successful tests, the better the strategy. The successful ratio of a selection (relative to perfect
selection) is the ratio of number of successful tests to that of perfect selection. By definition, the

successful ratio is less than or equal to 1.
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Figure 5: 1-Object Filtering Evaluation Result for Real-Life Data Sets

Four pairs of real-life data sets are examined: road-drainage, road-building, veg-drainage,
building-veg. The data sets are selected to reflect different possible combinations of data types. Four
pair of synthetic data sets are tested: road_random(.25x4y)-drainage random(.25x4y),
road_random(.25x4y)-building_random(.25x4y), veg_random(.25x4y)-drainage_random(.25x4y),
building_random(.25x4y)-veg_random(.25x4y). A zrandom(.25x4y) data set is generated from the
corresponding = data set by randomly distributed the objects over the covered area. The resulting
data set is a uniform distribution of objects over the map area. Moreover, for each object, the

width (2-dimension) is scaled to .25 of the original size while the height (y-dimension) is elongated
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Figure 6: 1-Object Filtering Evaluation Result for Synthetic Data Sets

4 times its original size. The resulting objects have the mbr the same size (area) as the original
objects but with a different shape. The synthetic data sets are used to test if different distribution
and shape of objects have any influence on the three strategies.

For each pair and for each strategy, tests are performed with distance values 10, 100, 600, 1000
and 1500. The results are summarized in Figure 5 and Figure 6. From the experiment, the large
selection clearly outperforms the small selection, over all data sets and buffer distances. In fact, in
many cases, the large selection is close to the perfect selection. Among various combinations, the
large strategy is the most effective for building-veg combination. Most objects in vegetation data
set have a much larger area than the building objects and thus vegetation data objects are likely be
selected as the retrieved objects. Moreover, vegetation data objects are region and most vertices
in a vegetation object form a ring that is close to the boundary of mbr than with a line. This also
helps explain why the veg-drainage has the second best performance in the large selection. The
differences between these two combinations are likely due to the larger size and line type of drainage
data set. In sum, for both real-life and synthetic data sets tested, and for all buffer distances, the
1-object filtering strategy based on larger mbr is very effective. From now on, the large selection is

used in the 1-object filtering.
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Figure 7: Distance Between Segments

6 Minimum Distance Algorithms

In this section, we investigate the problem of computing the minDist between two non-point
geometric objects. Clearly if two objects intersect, the minDist is zero. From now on, objects are
assumed to be disjoint when minDist is considered. A plane-sweep algorithm could be invoked to

determine if two non-point objects are disjoint [5].

6.1 Minimum Distance Between Points and Segments

Suppose zis a point and s a segment. Let pp(z, s) be the perpendicular line to s that passes through
z. To determine the minDist of a point w to a segment s= {u,v}, where v and v are its endpoints,
generate a line pp(w,s). If pp(w, s) intersects s at a point ¢, then the minDist between w and s is
the distance from w to q. Otherwise the min(dist(w,u), dist(w,v)) is the minDist of w from s.
Now consider two segments s= {s1,s2} and {= {{;,to}. Two endpoints s; and t;, one from
each segment, is said to be the closest if their distance is shortest among all such pairs. Let u be
an endpoint of ¢. Either pp(w,z) intersects z at p, where z£¢q and z and ¢ are the two segments
involved, or it does not. In the former case, let us call the segment between s and p an endpoint
perpendicular segment. In Figure 7, segments n and m are endpoint perpendicular segments and

are the only endpoint perpendicular segments between s and t.

Lemma 6.1 Let s and t be two segments. The minDist (s, t) is the minimum of the distance of

closest enpoints and the length of the shortest endpoint perpendicular segment.

[Proof]: If s and ¢ are parallel, the Lemma follows. Suppose s and ¢ are not parallel. Then the

extended lines intersect at some point ¢ with an angle 8. Without loss of generality, all points of s
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are on the same side on the extended line with respect to the point ¢. Similarly for ¢. If 0 is greater
than or equal to 90°, then it can be shown easily that the mimimum distance is between the closest
endpoints and the Lemma follows. Now asssume @ is less than 90°. Image sweeping a perpendicular
line segment m to t from the intersecting point i toward the two line segments s and ¢ until (i)
endpoints of m are on the segments s and ¢, respectively, and (ii) the endpoint on s is an endpoint
of s, as is illustrated in Figure 7. If such m exists, the distance is the shortest distance between
any pair of points on s and . First observe that the distance is the shortest between the endpoint
of s and any point on ¢. For any point ¢ of s that is not the endpoint of m, it should be clear
that it cannot be an endpoint of the shortest segment. If such m does not exist, repeat the same
argument by sweeping a perpendicular line segment n to s. If both m and n do not exist, then the
shortest distance is between the closest endpoints (s;, ;) of s and £. To prove this claim, consider
a perpendicular line v to s with an endpoint anchored at the closest endpoint ¢; of 7, as shown in
Figure 7. Consider now the endpoint of v on the extended line of s moves toward s, the length of the
line increases. Thus the shortest distance between ¢; and any point of s is the closest endpoint in s.
By a similar argument, the shortest distance between s; and any point of ¢ is the closest endpoint
in £. Suppose there is a segment w with a distance shorter than the closest enpoints. Observe that
endpoints of w may be moved so that the segment is shortened. If w cannot be shortened further,
at least one of its endpoints is one of s; or {;, or w is perpendicular to one of s or . The former
case is not possible since we have already shown that the shortest segment involving s; or ¢; is the
segment (s;, t;). Let us assume w is perpendicular to s. Moves this segment toward s; and the
segment length decreases. A contradiction. It follows that, the condition computes correctly the

minDist between two segments. O

6.2 Minimum Distance between Objects

If both objects are lines, the minDist is the minimum of minDist between all pairs of segments
from the two objects. If one of them is a region, then the shortest distance between the region object
and the non-point object is the minDist between the boundary of the region object and the non-
point object. Thus the problem of determining the minDist between non-point objects is reduced
to the problem of determining the minDist between two line objects. The above observation gives

rise to an algorithm that determines the minDist between two non-point objects.

Algorithm GenMinDist: Given two disjoint sets of segments, compute the minDist between
them.

Input: Two disjoint set of segments.

Output: The minimum of minDist between segments from the two sets.

Method:
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1) Let global Min be set to 4oc.

2) For each segment s of one set, perform steps 3 and 4:
4) global Min = min(d, globalMin).
5

(1)
(2)
(3) For each segment t of the other set, determine the minDist d between s and t.
(4)
(5) return global Min.

The time complexity is O(nxm), where n and m are the number of segments in each object,
respectively. In what follows, a more efficient way of computing the minDist between two simple

chains is presented.

6.3 A minDist Algorithm for Simple Chains

The algorithm GenMinDist applies to sets of segments that are pairwise disjoint. However, the
segments in a set need not be a chain nor is simple. In this subsection, an algorithm is presented
for finding minDist between two simple chains.

Consider two disjoint simple chains, the main idea of the algorithm is to identify sub-sequences of
chains, which are called frontiers, for computing minDist between the two objects. The important
property of a frontier of a simple chain is that computing minDist with the frontier is the same as
computing minDist with the whole chain.

To simplify the presentation, it is assumed throughout in this subsection that the mbrs of two
disjoint simple chains are themselves disjoint. The algorithm can be extended to the case where
their mbrs are overlapping.

Let C} and C5 be two disjoint simple chains. The chain € is said to be in X quadrant (corner
quadrant) of Cy if Cy’s mbr is in X quadrant (corner quadrant, respectively) of the mbr of Co. A
vertex in a chain c is said to be a touching vertex if it is a point on a boundary of the mbr of c.
The frontier for a simple chain is bounded by two touching vertices. To illustrate how a frontier is

found, we first consider €7 and C5 are simple closed chains.

6.3.1 minDist For Simple Closed Chains

In this subsection, we show how to compute minDist for simple closed chains. We then extend the
idea to simple chains in the following subsection.

The X frontier of a simple closed chain € is defined by two touching vertices which are located
as follows, where X is one of the four corners of an mbr: At the corner X of the mbr, there are
two incident edges. The edges can be ordered with respect to the center of the mbr in clockwise
direction: assign increasing numbers to edges with the restriction that the numbers of two incident
edges at the corner are consecutive. The smaller is the begin while the larger is the end edge.

Starting at the corner X, search along the begin edge to locate the first touching vertex. The
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Figure 8: An Example

vertex found is the begin vertex of the frontier. Likewise the end vertex is found by searching
along the end edge, starting at corner X, for the first touching vertex. The two touching vertices
guarantee to exist as each edge must have at least one point from C47. The sub-chain from begin
to end vertices is the X frontier of C. Note that the sub-chain from the end vertex to the begin
vertex is different from the X frontier of Cy. The portion of begin (end) edge that is between the
corner X and begin (end) vertex is said to be covered by the frontier. In Figure 8, € is in NW
corner quadrant of Cs. Or equivalently, C is in the SF corner quadrant of 7. The SE frontier
of 'y is the sub-chain from vertex 1 to vertex 2 while the NW frontier of Cy is the sub-chain from
vertex 2 to vertex 5. It can be shown that the minDist between these frontiers is the minDist
between the two objects. Observe that the point p on C4 is not on the SE frontier of C7 and its
distance from any point ¢ in C5 is longer than that from the begin vertex 1 to g. This leads to the

following.

Lemma 6.2 Suppose Cs is at the X corner quadrant of Cy. Let q be a point of Cy and p a point
on the begin (end) edge of X corner of Cy that is not covered by the X frontier of Cy. Then dist(q,
p)>dist(q, w), where w is the begin (end, resp.) vertex of the X frontier of Cy.

[Proof]: Since the begin (end) vertex and p are on the same edge of an mbr, one of - or y-value
are the same. Without loss of generality, let their z-values be the same. By the assmuption that p
is not in the covered portion and due to the relative position of C and C5, the difference of y-value
between ¢ and p must be greater than the y-value difference between that of ¢ and . Thus the

Lemma follows. O

Corollary 6.3 Suppose C is in X corner quadrant of Co and Cs is in Y corner quadrant of C1.
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Then the minDist between the Y frontier of C1 and X frontier of Cy is the minDist between C}
and Cs.

[Proof]: Suppose at least one of two closest points from €7 and C9 is not on the corresponding
frontier. By assumption on the relative position of C and Cj, if the straight line joining the closest
points intersects a boundary edge of an mbr, it must be a begin or an end edge. By assumption
on the closest points, the straight line joining them passes through a point on the boundary that
is not covered by the corresponding frontier. By Lemma 6.2, this pair cannot be the closest. A

contradiction. O

4 Xe
Co
lowerY A

Figure 9: An Example

Suppose C7 is in the W quadrant of C5, as shown in Figure 9. Or equivalently, C5 is at the
F quadrant of C). Define upperY as min(Ci.ymaz, Co.ymaz) and lowerY as to max(Cy.ymin,
Cy.ymin). The upperY and lowerY denote the overlapping range along the Y-axis for the two mbrs.
The F frontier of C7 and the W of C5 are determined as follows.

The E (W) frontier for a simple closed chain C' is identified as follows:

Search the F (W) edge of C' for the touching vertex with y-value just greater than or equal to
upperY. If there is no such touching vertex on F (W) edge, search N edge westward (eastward),
starting from the NE (NW) corner, for the first touching vertex. The touching vertex found is the
begin (end) vertex for the £ (W) frontier. Search the F (W) edge of C for the touching vertex with
y-value just less than or equal to lowerY. If there is no such touching vertex on E ( W) edge, search
S edge westward (eastward), starting from the SE (SW) corner, for the first touching vertex. The
touching vertex found is the end (begin) vertex for the F (W) frontier. In Figure 9, the E frontier

of C1 and W frontier of C are vertices 1 to 4 and vertices 4 to 1, respectively.

Lemma 6.4 Suppose C is on the W quadrant of Cs. Or equivalently, Co is on the E quadrant of
C4. Then the munDist of E frontier of C1 and the W frontier of Co is the minDist between C
and Cs.
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[Proof]: We want to show that for any pair of points from 1 and Cy, they are points on their
corresponding frontiers, if their distance is the shortest. We prove this by considering all possible
cases of upperY and lowerY. It is sufficient to consider cases in which at least one of the points is
on an edge of the mbr that is not covered by a frontier.

Case 1: Ci.ymaz = upperY and C.ymin =lowerY. The begin and end vertices of C’s E frontier
are on NV and S edges, respectively. Without loss of generality, let p be a point on C7’s N edge that
is not covered by the K frontier. The argument for p on the S edge not covered by F frontier is
similar. We do not need to consider the case that p is on the Wedge. Let g be a point in C5 and let
u be the C1’s begin vertex of F frontier on the N edge. By definition of begin vertex of F frontier,
p and w have the same g-value but the z-value of u is greater than that of p. By assumption, the
z-value of ¢ is greater than that of » and thus the difference in a-value between p and ¢ is greater
than that of between w and ¢. This implies dist(p, ¢)>dist(u, ¢). Thus if p is involved in the closest
pair, it must be on the frontier. By a similar argument, it can be easily shown that ¢ must be on
the corresponding frontier if it is in the closest pair.

Case 2: Cy.ymaz = upperY and Ci.ymin #lowerY. The begin vertex of E frontier is on the N
edge while the end vertex is either on the F or § edge. Let p be a point on C7’s N edge that is
not covered by the K frontier. By a similar argument in Case 1, p cannot be involved in the pair
the distance of which is the shortest. Suppose p is a point on the £ or S that is not covered by
the frontier. Let ¢ be a point in (5. By assumption on lowerY, the y-value of ¢ is greater than or
equal to lowerY. Let u be the end vertex of the K frontier of €. By definition of end vertex of ¥
frontier, one of z- or y-values of « is greater than while the other equal to that of p. Since the -
and y-values of u are less than or equal to that of ¢, dist(p, q)>dist(u, ¢). Thus if p is in the closest
pair, it must be on the corresponding frontiers. By a similar argument, it can be easily shown that
g must be on the corresponding frontier if it is in the closest pair.

As all other cases are analogous to a case above, we have shown that the frontiers are sufficient
to determine minDist between ¢ and Cy. O

Suppose now two simples closed chains are in north-south position. Define upperX as min(Cy.zmaz,
Cy.zmazx) and lowerX as to max(Cy.xzmin, Co.xmin). The N (S) frontier for a simple closed chain
(' is identified as follows:

Search the N (S) edge of C' for the touching vertex with z-value just greater than or equal to
upperX. If there is no such touching vertex on N (S) edge, search F edge southward (northward),
starting from the NE (SF) corner, for the first touching vertex. The touching vertex found is the
end (begin) vertex for the N (9) frontier. Search the N (S) edge of C for the touching vertex with
z-value just less than or equal to lowerX. If there is no such touching vertex on N (5) edge, search
W edge southward (northward), starting from the NW (SW) corner, for the first touching vertex.
The touching vertex found is the begin (end) vertex for the N (S) frontier.
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The proof that the frontiers identified are sufficient to determine minDist is similar to Lemma 6.4.

6.3.2 minDist For Simple Chains

In the above discussion, the objects involved are simple closed chains. If the objects are simple
non-closed chains, then some modifications are required. For simple non-closed chains, it is assumed
that vertices are number consecutively. However, they are not required to be arranged in clockwise

direction. Consider the line object [ in Figure 10.

Figure 10: A Line

Suppose another object o is in the N quadrant of [ with o.zmin<l.zmin and o.zmaz>[ rmaz.
With the algorithm in Section 6.3.1, the begin and end vertices identified are vertices 2 and 5,
respectively. Consider the continuous sub-line between the begin and end vertices. Let us call this
the initial N frontier of I. For simple non-closed chains, it is not important the vertices identified
are in clockwise direction since there is only one continuous sub-line between the begin and end
vertices. The sub-line from vertex 1 to vertex 2 and the sub-line from vertex 5 to vertex 12 are
called dangling lines. In this case, one more task needs to be performed in identifying the frontier.
For each dangling sub-line, test to see if it is in-between the initial frontier identified and the other
object. It is included as part of the frontier exactly when it is in-between the other object and
the sub-line vertex 2 to vertex 5. By assumption that the chain is simple, either all points of a
dangling line is in-between the frontier and the other object or no point is. In the example above,
both dangling lines are included in the frontier and thus the whole line is the N frontier for the
line object I. The correctness follows from the proof in the previous subsection and the fact that
a chain is simple. On the other hand, if the other object o is in the S quadrant of the above line
object [ with o.xmin<l.azmin and o.xmaz>l.axmaz. The § frontier for [is the sub-line from vertices
2 to 3.

So far we consider objects whose mbrs do not overlap. However, the algorithm can be extended

in a straight-forward manner to disjoints objects whose mbrs overlap. This has been incorporated

21



into our implementation. From now on, we call this the MinDist algorithm.

6.4 Performance Evaluation of GenMinDist and MinDist algorithms

To evaluate their effectiveness, both MinDist and GenMinDist algorithms are implemented and
performance evaluation is performed on them with the data sets presented in Section 3. In both
approaches, the most important operation in computing the menDist between two objects is de-
termining the minDist between a pair of line segments. Let us call such an operation a segment
calculation. Thus in evaluating the performance of the two algorithms, we compare the number of

segment calculations as well as the total computation time required.

GenMinDist MinDist Comparison
Time (sec) | Jegment Caleulation Time (sec) degment Caewlation| (AW | (BIAIN
(&) ® © ©)
Road Building 83 f49353 14 24443 301 8A% | TAE0EW
Road Drainage 240 2661756 &3 fB01ES 3B095% | 397.76%
Building Vegetation 493 3073169 43 341532 1027 0B% | 1455 42%
Vegetation Drainaze 1507 20432654 211 2573033 T1433% | T9411%
Road Vegetation 25 2151409 102 1141382 Al275% | TI6.6T%
Building Drainage 204 1626991 3l 206270 A58 06% | TEETT%

Table 1: GenMinDist and MinDist Comparison

A test involves two distinct data sets. A set of randomly selected pairs of objects from the
two data sets of size sampleSize is generated first and used as input to the algorithms. All these
objects are main memory resident. The computation time measures only the time required for
manDist computation on these main memory objects. To avoid any unforeseeable anomaly, this
process repeats noOfSamples times. The average is used in the result of a test. In the performance
evaluation, noOfSamples and sampleSize are set to 10 and 10000, respectively. Table 1 shows the
result of segment calculation and total computation time comparison. There are three sub-tables:
one for GenMinDist, one for MinDist algorithm, and the last is the comparison of GenMinDist to
that of MinDist. Time and Segment Calculation are the computation time (in sec.) and the number
of segment calculations in the average of each test. The values in the last sub-table represent the
ratio of the values for GenMinDist to that of MinDist.

Independent of the combinations, the MinDist algorithm has a far better performance than the
GenMinDist. The MinDist requires about 1/4 of time in the worst case and about 1/10 in the best
case when compared to GenMinDist. MinDist performs best when both data sets are regions while

it performs less impressive when both are lines.
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7 Performance Evaluation of Buffer Query With Filtering

In the previous sections, filtering techniques are proposed and a more efficient minDist algorithm
is presented. In Section 7.1, the filtering techniques are incorporated into bufferQueryT.J. It is then
evaluated in Section 7.2. For the rest of this paper, the more efficient MinDist algorithm is used

whenever minDist is invoked.

7.1 A Modified Buffer Query Evaluation Algorithm

The 0- and 1-object filterings can be incorporated into the bufferQueryTJ easily. Let us call
the modified algorithm bufferQueryPrune. The modified algorithm is obtained from buffer-
QueryTJ by replacing statements (5) and (6) with the following statements.

[

if MinMaxDist(r.mbr, s.mbr)<d /* 0-obj filtering™®/
append <r.child,s.child> to resultSet;
else /*perform 1-obj filtering */
if (r.mbr.area()>s.mbr.area())
largeObj = r.child.retrieve(); small =s;

SN TN STN TN TN TN TN TN TN TN TN N
O 0~ D
N — O — o e N N

10) else largeObj =s.child.retrieve(); small =r;

11) if (MinMaxDisty_g;(largeObj,small.mbr, d))

12) append <r.child, s.child> to resultSet;

13) else /* refinement: need to retrieve the small object.*/
14) smallObj=small.child.retrieve();

15) if minDist(largeObj, smallObj)<d

16) append <r.child,s.child> to resultSet;

A similar change is also made to statements (4) to (6) in algorithm windowQuery. In addition,
0-object filtering techniques MinMaxDistM BR and maxDist in Section 5.1 are applied to non-
leaf entries as well. If these tests are successful, all leaf entries are retrieved and included in the

resultSet.

7.2 Performance Evaluation

7.2.1 Environment

To evaluate the performance of the proposed algorithm, a caching scheme is implemented for
swapping in and out geometric objects from a main data file. As the data files and geometric
objects are of various sizes, the size of a cache is specified as a percentage of the file size and
objects are swapped in and out of the main memory. The replacement scheme used is the well-
known LRU replacement scheme. In each session, statistics such as execution time and the number

of objects swapped in are generated to evaluate the performance of the algorithm.
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There are four pairs of real-life data sets: road-building, road-drainage, building-veg, veg-
drainage. And there are four pairs of synthetic data sets: road_random-building_random, road_random-
drainage_random, building_random-veg_random, veg_random-drainage random. A z_random data
set is generated from the corresponding z data set by randomly distributed the objects over the
covered area. The resulting data set is a uniform distribution of objects over the map area. The
buffer distances are set at 10, 100, 600 and 1500 and they represent very small to very large buffer
distances relative to the data sets. The cache sizes are 1%, 20% and 100% of a file size. The 100%
cache size is used since we want to determine how many times, on average, an object in other cache

sizes are retrieved.

7.2.2 Evaluation of Filtering Techniques

In BufferQueryPrune, a candidate is first evaluated with the least expensive technique - 0-object
filtering. If it fails, a more costly operation, 1-object filtering, is applied. Finally, if both filterings
fail, the most expensive minDist is invoked. To investigate the performance of filtering techniques,
three algorithms are implemented and tested. The first is the BufferQueryT.J which is without 0-
and 1-object filterings. The second is the BufferQueryTJ but incorporating the 0-object filtering.
The third is BufferQueryPrune which incorporates both 0- and 1-object filtering techniques.

Figure 11 summarizes and compares the execution time of these algorithms. The execution
time is the average execution time for the three different cache sizes. The real-life and synthetic
data sets are denoted by dashed and solid lines, respectively. Although there are differences among
various combinations, the following are some important general observations. Firstly, except in
some combinations with buffer distance equal to 10, BufferQueryPrune outperforms the other
two algorithms; and in fact, in many cases, by a wide margin. This implies the overhead of the
filtering techniques in BufferQueryPrune is not costly and is well-justified. Secondly, compared to
BufferQueryTJ, the performance of BufferQueryPrune improves significantly with the increase in
buffer distance. Thirdly, the 0- and 1-object filtering techniques have incremental contribution to
the buffer query evaluation. Fourthly, relative to BufferQueryTJ, BufferQueryPrune has a slower
rate of increase in execution time as distance increases. This is primarily due to the decrease in
both execution time and the data need to be read from the disk. Lastly, the majority of buffer query
evaluation time is on filtering and evaluation. Only small fraction of the time is on MBR-join. For
the real-life data sets, the total execution time for a buffer query with algorithm bufferQueryPrune
ranges from about 150 seconds to 3500 seconds. Recall that in Section 4.3, the time for computing
the candidate set in a query evaluation in a test ranges from 18 to 88 seconds.

In a buffer query evaluation, an object may be read or swapped-in more than once. Let us call
this duplicate swap-in. Next let us look at how the filtering techniques affect duplicate swap-in as

cache size changes. I'irst observe that by setting the cache size to 100%, there is no duplicate swap-
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Buffer Distance

in during the evaluation. Let us define duplicate swap-in ratio as the ratio of number of objects

swapped-in during a query evaluation to that when no duplicate swap-in; that is, when the cache

size is set to 100%. Informally, when the duplicate swap-in ratio is z, it means that, on average,

every object involves in the query evaluation is swapped-in z times. Clearly for cache size of 100%,

the duplicate swap-in ratio is 1. The smaller the ratio, the better the performance. Tables 2 and

3 summarize important data on logical data accesses. In the columns of 1% and 20%, the values

are the duplicate swap-in ratios when the cache size is set to the corresponding fraction. For the

columns of 100%, they record the number of objects swapped-in during the evaluation process.



centrate on Table 2. From Table 2, duplicate swap-in increases as buffer distance increases. This is
expected as distance d increases, more and more objects from the same data set are within distance
d of an object in the other data set. This results in duplicate swap-in in the evaluation process.
Buffer query evaluation is costly, especially when the distance is large. Likewise, the duplicate
swap-in decreases with larger cache sizes. From Table 2, BufferQueryPrune has the lowest du-
plicate swap-in across all data sets, cache sizes and buffer distances. Relative to BufferQueryTJ,
the rate of increase in duplicate swap-in is relatively flat for BufferQueryPrune. This shows the
effectiveness of the filtering techniques. From columns 100%, it also requires the fewest number
of objects in query evaluation. This implies that BufferQueryPrune requires the least number of
data accesses. Relative to BufferQueryT.J, the improvement becomes significant when the distance

is greater than 100.

Prune Withaut 1-Object T]
1% 0% 100% 1% 0% 100% 1% % 100%
Foad Building 10 131 126 10554 131 126 10585 131 128 10585

Foad Drainage 10 203 121 13641 204 121 14154 204 121 14154
Veg Building 10 149 100 27 149 100 27 149 100 22073

Veg Drainage 10 219 121 12526 222 132 12852 222 1322 17852
Foad Building 100 179 158 12880 218 189 14508 274 235 156dé

Foad Drainage 100 140 139 14516 166 146 17962 176 155 15134
Veg Building 100 117 101 s 131 113 4431 136 118 4731

Veg Drainage 100 143 145 10197 178 141 15421 154 166 15682
Foad Building €00 346 272 18332 438 339 18753 nir 1509 22064

Foad Drainage 600 248 a0z 19087 292 238 25311 730 5.8 27629
Veg Building 600 152 138 838 207 187 9536 432 383 17438

Weg Drainage 600 205 178 13064 275 237 18326 b8 436 19858
Foad Building 1500 hEL 413 19245 744 BE4 anma 2201 &7.01 22440

Foad Drainage 1300 375 204 24255 149 273 28080 242 2418 2151
Veg Building 1500 217 194 W72 322 282 11958 15327 1584 13438

Veg Drainage 1500 295 248 16556 426 2.53 19432 2108 1685 20175

Table 2: Duplicate Swap-in Summary for Real-Life Data Sets

In sum, the performance of bufferQueryPrune is superior when compared to bufferQueryT.J.
Our experiments show that it is preferred independent of the data sets, buffer distances and cache
sizes. The improvement in performance by bufferQueryPrune is significant, especially with large
buffer distances. The filtering strategies employed determine if a candidate pair is in the answer
or not with a minimum cost. It invokes the expensive operation minDist only if it is absolutely

necessary. As a result, it minimizes both the CPU as well as [O. In the next section, we will analyse
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Prire Without 1-0bject ]
1% 0% 100% 1% 0% 100% 1% 0% 100%
Road Building 10 180 10 F1g9 180 108 Bz 180 108 Fa01

Foad Drainage 10 143 113 12822 162 112 12386 142 1132 12887
Veg Building 10 142 102 3722 142 102 3729 142 102 3729

Veg Drainage 10 158 105 FA0 158 105 7849 158 105 7849
Foad Building 100 120 107 BEE3 126 113 7935 127 116 o781

Foad Drainage 100 144 123 15047 144 124 18026 145 126 19678
Veg Building 100 109 102 31 116 107 F514 117 108 24

Weg Drainage 100 125 110 2098 128 112 10804 116 1132 11108
Foad Building €00 138 123 1222 178 153 13680 363 4.40 22240

Foad Drainage 600 152 157 2782 225 181 25551 495 261 29158
Veg Building 600 127 113 6263 156 138 2564 256 217 13021

Weg Drainage 600 159 130 1% 185 152 16148 2032 236 19678
Foad Building 1500 187 180 15614 245 208 17401 1563 12.29 22440

Foad Drainage 1200 285 21 25483 253 268 28179 2130 1452 2917
Veg Building 1500 187 139 HEEE 222 186 11628 Q.66 774 13439

Veg Drainage 1500 223 173 14840 277 214 18304 1133 801 20075

Table 3: Duplicate Swap-in Summary for Synthetic Data Sets

the contribution of 0- and 1-object filtering techniques.

7.2.3 The Contribution of 0- and 1-object Filterings

In this section, we shall concentrate on bufferQueryPrune. Let us first look at, for each filtering
technique, how it contributes to the answer set. Figures 12 and 13 show the fraction of the
candidate set that a technique contributes to the answer for various combinations of data sets
with different distance values. As the two figures have very similar pattern, let us concentrate on
Figure 12. When the buffer distance is very small (i.e., distance = 10), 0-object filtering is ineffective
while 1-object filtering has some contribution. From Figure 11, the difference in execution time,
however, is negligible. This is due to the low cost of the 0-object filtering and the small number
of candidates. However, as buffer distance increases, the effectiveness of 0- and 1-object filterings
become more and more predominant, and thus as the percentage of the size of candidate size,
fewer need to be evaluated with minDist. This also contributes to reduction in the number of
duplicate swap-in which in term implies fewer 1O operations. For instance, for large buffer distance
(i.e., distance = 1500), less than 10% of candidates need to be evaluated with minDist functions.
This demonstrates the effectiveness of the filtering techniques proposed as distance increases. For

relatively large distances (i.e., distance = 600, 1500), the combined techniques work equally well
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Figure 12: Contributing Ratios of Various Techniques for Real-Life Data Sets

for all data sets tested. This can be explained by the fact that distance value is much larger than
the average size of the object’s mbrs. For smaller distance values (i.e., distance =100), the 0-object
filtering performs better for road-building since the average object’s mbrs are smaller while 1-object
filtering work better for veg-building and veg-drainage combinations because of the much larger

size of vegetation objects.

8 Conclusion

We investigated the problem of how to evaluate buflfer queries efficiently. A buffer query involves two
data sets and a buffer distance. A fundamental problem in buffer query evaluation is to determine
if two geometric objects are within a given distance d of each other. We derived an efficient
algorithm MinDist for solving this problem. We showed that, with real-life data, the proposed
MinDist algorithm outperforms the brute-force approach by a wide margin. The performance of
this algorithm is particular impressive for large region data sets.

Together with a MinDist algorithm, existing spatial query evaluation algorithms can be modified
easily to evaluate a buffer query. However, the cost of evaluating a buffer query increases drastically
when the distance is relatively large. We observed that many or even most candidates produced in

MBR-join need not be evaluated with the relatively expensive MinDist. We proposed an algorithm
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Figure 13: Contributing Ratios of Various Techniques for Synthetic Data Sets

that employs 0- and 1-object filterings to reduce the computation as well as 10 accesses. In this
algorithm, a candidate is first evaluated with the least expensive technique - 0-object filtering. If
it fails, a more costly operation, 1-object filtering, is applied. Finally, if both filterings fail, the
most expensive MinDist is invoked. We showed with real-life as well as synthetic data sets that
the proposed algorithm is very effective: both the execution time and IO accesses are reduced
significantly as buffer distance increases. It works well across all cache sizes, buffer distances and
data sets.

Duplicate swap-in is unavoidable if buffer distances are not restricted to a small range. An issue
for future investigation is to develop techniques that reduce duplicate swap-in further in a buffer

query evaluation.
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