Technical report CS-2001-08

Just-in-time subgrammar extraction for HPSG

Vlado Keselj

Department of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada,

vkeselj@cs.uwaterloo.ca, http://www.cs.uwaterloo.ca/"vkeselj

Abstract. We define the basic problem of subgrammar extraction for

head-driven phrase structure grammars (HPSG) in the following way:
Given a large HPSG grammar G and a set of words W, find a

small subgrammar of G that accepts the same set of sentences
from W* as (G, and for each of them produces the same parse
trees.

The set of words W is obtained from a piece of text. Additionally, we

assume that this operation is done “just-in-time,” i.e., just before parsing
the text. This application requires that this operation be done in an
automatic and efficient way. After defining the problem in the general
framework, we discuss the problem for context-free grammars (CFQ),
and give an efficient algorithm for it. We show that finding the smallest
subgrammar for HPSGs is an NP-hard problem, and give an efficient
algorithm that solves an easier, approximate version of the problem. We
also discuss how the algorithm can be efficiently implemented.

Key words: HPSG, sub-grammar extraction, filtering.

1 Introduction

Recently, there has been a lot of research activity in the area of grammar mod-
ularity. Some of the motivational factors for this work are the following:

1. managing complexity The natural language (NL) grammars used in nat-
ural language processing are large and complex. The difficult problems are
designing, creating, testing, and maintaining them. Using smaller modules
that are combined into larger grammars addresses the complexity problem.

2. parsing efficiency Parsing with a large, wide-coverage grammar is typically
not efficient. The running-time and space requirements can be reduced by
quickly extracting a small subgrammar module, and then using it to parse
the text.

3. context-based disambiguation By having a larger grammar we achieve a
better coverage, but in the same time it becomes susceptible to ambiguities.
Any natural language is very ambiguous, and it is well-known that humans
use world-knowledge and contextual knowledge to do disambiguation. Ex-
tracting a subgrammar based on the text to be processed can be viewed as
creating a context that can improve disambiguation.

2 University of Waterloo CS-2001-08

This paper is mostly concerned with problem 2 (parsing efficiency). Further
in this section, we introduce some additional problem assumptions, which dis-
tinguish this approach from the filtering techniques (e.g. [8]), which also address
parsing efficiency. Using modularity to handle problem 1 (managing complexzity)
is discussed in [6], where we define grammar modules and describe how they are
combined to form larger modules. Problem 3 (context-based disambiguation) is
addressed by a different version of subgrammar extraction, in which the subgram-
mar does not generate the same readings for a sentence as the large grammar,
but a subset of them.

Our approach is similar to the filtering techniques, which are a recognized
way to improve parser’s performance. However, our approach is different because
we insist that the filtered, i.e., extracted, knowledge is in the form of a grammar.
This approach is theoretically sound, and in practice it provides a clean interface
between subgrammar-extraction part and the parser. More arguments for this
separation of the subgrammar extraction and parsing will be given in the next
section, where we describe the relevant work.

2 Relevant work

An important part of the HPSG subgrammar extraction is the extraction of
the corresponding type sub-hierarchy out of the original hierarchy. Efficient type
operations and representation of the types, which are previously discussed in Ait-
Kaci et al. [1], are used in our approximate algorithm for subgrammar extraction
for HPSGs.

HPSG is currently one of the most important formalisms used in computa-
tional linguistics. This unification-based formalism is successfully used in theo-
retical linguistics to explain many natural-language phenomena, and it is also
used in practical applications. A very readable introduction into the area of
unification-based grammars is given in Shieber [16]. The HPSG formalism is de-
scribed in Carpenter [2], Pollard and Sag [14], and Sag and Wasow [15]. A formal
definition suitable for our current experiments in question-answering is given in
Keselj [5].

The work on subgrammar extraction is currently focused on extracting a sub-
grammar according to a given domain corpus. Neumann [10,12,11,13,9] uses a
machine learning approach to automatically extract a corpus-oriented subgram-
mar. If a corpus is from a specific domain, then the extracted subgrammar will
be tuned towards this domain. The HPSG formalism is used, as well as the
stochastic lexicalized tree grammars. A machine learning technique is not ap-
plicable in our situation, since we do a just-in-time extraction for a given piece
of text. Hence, we need a more efficient method, and it cannot use a large cor-
pus, but accepts as input a much smaller amount of text. Besides efficiency, the
goal of subgrammar extraction is also reduction in the number of readings, i.e.,
reduction in ambiguities. In the work of Neumann, the same set of readings is
obtained. We have the same approach.

Vlado Keselj: Just-in-time subgrammar extraction for HPSG 3

Another technique relevant to our approach is filtering, which we mentioned
in the previous section. This technique is described in Kiefer et al. [8]. Filtering
is a technique used in parsing to speed up the search for rules and lexical entries,
and so to improve the parsing speed. It is a different approach from ours because
we require a clear separation between the extraction part and the parser, and
a clear interface in which the extraction part extracts a well-defined grammar
that is used by the parser.

One rationale for this subgrammar requirement is consistence with the mod-
ularity approach. For example, Zajac and Jan [17] present a practical approach
to modularity of unification-based grammars, in which the modules are separate
executable units, connected within the system in the style of the Unix pipe com-
mand. The filtering technique is not compatible with this approach, while our
subgrammar-extraction method is compatible. Within the Zajac and Jan frame-
work, we could define a subgrammar-extraction module and a parser module,
and they can be connected in a serial pipe.

Subgrammar extraction and parsing are two different problems, which can
be solved using different techniques. Subgrammar extraction can benefit from
information retrieval and database techniques. On the other side, parsing is an
inferencing process, which is amenable to theorem-proving techniques.

In our practical application to question answering [7], subgrammar extraction
is done by a Perl program, while the actual parsing is done in Java. Since the
output of the subgrammar extraction module is a well-formed HPSG grammar,
we can easily replace the Java parser with Lisp, Prolog, or some other HPSG
parser, which makes the system very flexible.

Another application where just-in-time subgrammar extraction plays an im-
portant role is described in [4]. Tt is an Internet application, where the parser is
a Java applet running on the client side. A “real-world” grammar is too large
to be transfered over the network. Instead, the server contains the subgrammar
extraction module, which sends subgrammars to the parser at the client side.

3 Discussion

Our practical motivation for just-in-time subgrammar extraction, which is de-
scribed in previous sections, leads to the following problem: Given a text segment
T and a large grammar, find a smaller grammar that is guaranteed to return
the same parsing results on T' as the large grammar. We assume that subgram-
mar extraction is a fast procedure applied before parsing, so we want to avoid
expensive “parsing” operations. For this reason, we ignore the word order by
assuming that instead of having text segment T, only a set of words W is given.
This set can be the set of words appearing in T, or it may be a superset of
words appearing in T; e.g., we may include morphologic or semantic variants
of the words. Additionally, it is desirable that the obtained subgrammar is the
smallest possible. We start with a definition of subgrammar relation.

Let X be a finite set of words. A general grammar G is a decision procedure
that given a sentence s € X* either does not accept the sentence s, or gives a

4 University of Waterloo CS-2001-08

set of parses {(s,p1),--.,(S,pn,)}, where p1, ..., p,, are parse trees. We denote
such set as G(s). If s is not accepted by G, we define G(s) = §). We define the

notion of subgrammar in the following way:

Definition 1 (Subgrammar). Let G be a class of grammars over a set of
words X. A partial order (G, <) is called a subgrammar relation if for any two
grammars G1,Ga € G, such that G1 < G, the following condition holds:

(Vs € X7) Gu(s) € Ga(s)

If G1 < G, where <’is a subgrammar relation, we say that G1 is a subgrammar

OfGQ.

An obvious consequence of the previous definition is that G; < G5 implies
that the language accepted by G is a subset of the language accepted by Gs.
Now, we can give the formulation of the problem of subgrammar extraction:

Let G be a class of grammars over a set of words X, and let < be a sub-
grammar relation. Given a grammar G from G and a finite set of words
W C XY find a minimal grammar Gy with respect to the relation ‘<’ such
that for any sentence s € W* the condition G(s) = G1(s) holds.

We use the term “a minimal grammar” since there can be more than one min-
imal grammar. It is also possible that there are no minimal grammars satisfying
the above condition.

3.1 Context-free grammars

We follow the definition of context-free grammars (CFG) as given in Hopcroft
and Ullman [3]. For two CFGs Gy = (V1,Th, P1,51) and G2 = (Va,Th, Py, Sa)
over the set of words X' (T1,T; C X)), we say that Gy is a subgrammar of Ga,
and write G < G, if the following conditions hold: Vi C V5, Ty C Ty, Py C Py,
and S7 = S3. This subgrammar relation is well-defined according to definition 1
in the class of CFGs.

We can easily see that the subgrammar extraction problem for CFGs always
has one unique solution. Namely, given a CFG G = (V,T, P, 5) and a set of
words W, we have two cases:

1. No sentences from W* are accepted by G, in which case our minimal gram-
mar is (0,9, 0, 5).

2. Or, there is a non-empty set of parse trees

{p:(3s € W7) (s,p) € G(s)}.

Then, the minimal grammar is determined by the sets of all variables, ter-
minals and rules that appear in those parse trees.

Vlado Keselj: Just-in-time subgrammar extraction for HPSG 5

Of course, the “procedure” above is not a valid solution since the set W* is
infinite in general, and so can be the set of parse trees in case 2. Even if we limit
the length of a sentence and assume that the set of parse trees for each sentence
is finite, the above algorithm would be exponential, which is too expensive.

We present an efficient algorithm that relies on the algorithm for removing
the useless symbols in Hopcroft and Ullman [3], pages 88—89. We replace the set
of terminals T of the grammar G with T'N W, and then apply the algorithm
for removing useless variables on the grammar (V,T N W, P, S). The resulting
grammar is the minimal solution to our problem. The proof follows from the
proof of the corresponding algorithm in [3]. The algorithm follows:

Algorithm: subgrammar extraction for CFGs
Input: G=(V,T,P,S) alarge CFG
w a set of words
Output: Gy = (V1,T1, P1,S) the solution of the subgrammar extraction
problem

Vo0, T —TNW, Py 0

Repeat

ezit_flag true

For each (v > a) € P

If o € (T, U V,)* then

PZ — PZ U {U — a}
P+ P\{v—>a}
Vo= VouU {U}

9. exit_flag + false

10. Until exit_flag = true

11.If S ¢ V2 then Return (0,0,0, 5)

12V « {S}, Ty < 0, Py < 0

13. Repeat

GO =1 O O i W N —

14. ezit_flag + true

15. For each (v — a) € P,

16. If v € V7 then

17. P16P1U{0—>a}

18. P2 %Pz\{’v —)Oz}

19. Vi « Vi U {variables appearing in a}
20. Ty + T1 U {terminals appearing in «}
21. ezit_flag + false

22. Until exit_flag = true
23. Return (V1, Ty, Py, S)

It can be easily seen that the algorithm has a O(n?®) running-time complexity,
where n is the input size. Let us find a more precise upper bound, and discuss
how the algorithm can be efficiently implemented. The set of variables V> and
the set of terminals T3 are represented as bit-vectors; we assume that the input
sets T and W are given as alphabetically sorted lists; and the set of rules Py is
represented as a linked list. Hence, step 1 is executed in O(|V|+|T|+ |W]) time.

6 University of Waterloo CS-2001-08

Loop 2-10 iterates at most |P|+ 1 times, since in each iteration, except the
last one, at least one rule is moved from the set P to P,. The set P changes during
the algorithm execution (as well as other sets), so it is important to note that
the numbers |P|, |V, |T|, and |W| denote the initial sizes of the corresponding
sets. Loop 4-9 iterates at most |P| times. Step 5 is executed in O(|a]) time,
while the other lines in loop 2-10 take constant time. Hence, loop 2-10 has the
running time complexity O(|P|? - m), where m is the maximal lenght of «, i.e.,
of the right hand side of all rules in the grammar. The number m is usually very
small.

Similarly, loop 13-21 has the running-time complexity O(|P|* - m). Step 11
has constant time complexity, and steps 12 and 23 have O(|V|+|T|) complexity.
Finally, the running time complexity of the algorithm is

O(IV|+IT| + W[+ |P|* - m),

where m = max{|a|: (v = a) € P}.

3.2 HPSG
We follow the definition of HPSG as given in Keselj [5]. For two HPSGs

G1 = (Atomy, Featy, Var, Type,, Init1, Rule;) and
G2 = (Atomsy, Featy, Var, Type,, Inity, Rules)

over the set of words ¥ — where Type; = (T1,C1), Type, = (T2,C2), and Ly
and Ll are respective unification operations — we say that (G is a subgrammar
of G2, and write G1 < Gy, if the following conditions hold:

— Atom; C Atoms,

— Featy C Featy,

- T - T, and (\V/tl,tg € Tz) ti1Uaty € T and tq Ly tg =1 Uy 1o
— Init; C Inity, and

— Rule; C Rules.

We assume that the set of variables Var is fixed.

This subgrammar relation is well-defined according to definition 1 in the class
of HPSGs.

To know whether the subgrammar extraction problem for HPSGs has a
unique solution it is important to know what exactly is a parse tree. We as-
sume that an HPSG parse tree is labeled with its initial AVM, and that each
its node is labeled with the applied rule. Assuming this, we can see that the
subgrammar extraction problem for HPSGs has always one unique solution. Let
G be an HPSG grammar and W be a set of words. If no sentences from W* are
accepted by G, our solution is the empty HPSG:

(0,0, Var, (0,0),0,0)

Vlado Keselj: Just-in-time subgrammar extraction for HPSG 7

Otherwise, there is a non-empty set of parse trees

{p:(3s € W) (s,p) € G(s)}.

The minimal grammar is determined by the set of atoms, features, types, initial
AVMs, and rules that appear in those parse trees. The type hierarchy has to be
closed with respect to the unification operation, so the resulting type hierarchy is
obtained as a set of all types appearing in the above parse trees, and by making
a closure of this set with respect to the unification operation.

Similar to CFGs, the above procedure is not constructive. However, unlike
CFGs it is not easy to find an efficient algorithm for the problem since the
subgrammar extraction problem for HPSGs is NP-hard.

Let us prove this statement by reducing a known NP-complete problem, 3-
SAT, to the problem of subgrammar extraction for HPSG. If py, pa, ..., p, are
Boolean variables, and

(q11Vg21 Vaa1) A(q12V g2V g32) Ao (¢1m V g2m V G3m) (0

is a Boolean expression, where each ¢;; (¢ € {1,2,3}, j € {1,...,m}) is either
pr or —py for some variable p; (k € {1,...,n}), then the decision problem of
determining whether expression (1) is satisfiable for some assignment of true or
false values to the variables pi,...,p, is an instance of the 3-SAT problem. In
order to show that the subgrammar extraction problem for HPSGs is NP-hard,
we define an HPSG in the following way: First, for each conjunct (g1;V¢2; V ¢3;)
(1 € j < m) we define three HPSG rules. If ¢1; is py for some k € {1,...,n},
then the first rule is:

t;

— -\ g9: V q3;
ASGN: [P_k: true}] (915 V 425 V 437)

Otherwise, if ¢1; is —py for some k € {1,...,n}, then the first rule is:

tj
ASGN: { P_k: false

}] = (915 V q25 V q3;)

Similarly, if go; is px+ for some k' € {1,...,n}, we define the second rule to be:

tj
ASGN: {P_k’: true}

] — (q15 V q2; V q35)

Otherwise, if ¢9; is —pgs for some k' € {1,...,n}, we define the second rule to
be:

tj

ASGN: | P_k': false

}] = (q15 V q25 V q3;)

The third rule is defined in the same way.

8 University of Waterloo CS-2001-08

In this way, we have defined 3m rules. We define one more rule:

5]
ASGN:

start ty tm

ASGN: - ASGN: [T | " | ASGN:

These are the rules of an HPSG G. The set of atoms consists of all atoms
appearing in the above rules, the set of features consists of all features appearing
in the rules, the type lattice is a flat hierarchy consisting of the types L, start,
t1, ta, ..., tm, and the set of starting AVMs is {[start]}.

If the expression (1) is satisfiable then it is the only string that the grammar G
accepts. Otherwise, the grammar GG does not accept any sentences. If we have an
algorithm for the subgrammar extraction problem for HPSGs, then we define W
to be the set of all symbols appearing in (1) and find the minimal subgrammar
which produces the same parsing results on each expression from W* as G. Then,
if the minimal subgrammar is empty, expression (1) is unsatisfiable. Otherwise,
it is satisfiable. We have proven that the subgrammar extraction problem for

HPSGs is NP-hard.

Since the exact problem is too hard, we give an algorithm for an approximate
solution to the problem. The algorithm is similar to the algorithm for CFGs. For
the first phase of the algorithm we ignore the structure of HPSG rules, but from
each rule we replace the mother AVM and each daughter AVM with the AVMs
in which only root types are kept. For illustration, a rule

t IY
[ype] .

is replaced by rule:

typeY1 typeY?2 typeYn

[typeX] — [typeY1] [typeY2]...[typeYn].

In the same way, all AVMs in Init are replaced with simple AVMs that contain
only the root type of the original AVM. For this kind of HPSG—HPSG with
no features—the subgrammar extraction problem is easy. If an HPSG with no
features G = (Atom, {}, Var, Type, Init, Rule) and a set of words W are given, then
the following algorithm solves the subgrammar extraction problem:

Algorithm: subgrammar extraction for HPSGs with no features
Input: G = (Atom, 0, Var, Type, Init,Rule) ~ an HPSG with no features
W a set of words
Output: Gy = (Atomy, @}, Var, Typey, Inity, Rule;) the solution of the sub-
grammar extraction problem

1. Ty < 0, Atomy < Atom N W, Ruley + 0
2. For each lexical rule ([t] = a) € Rule
3. | If a € Atom}; then

Vlado Keselj: Just-in-time subgrammar extraction for HPSG 9

4. T2 — T2 @] {t}

5. Rule; + Rulex U {[t] = «}

6. Repeat

7. ezit_flag < true

8. For each phrasal rule ([t] = «) € Rule

9. If (V[tl] in Oz)(atz c Tz) t1 Uts ;é T then
10. Rulez + Rulex U {[t] = «}

11. Rule < Rule\ {[t] = a}

13. ezit_flag + false

14. Until ezit_flag = true

15. Inity < @, T, « 0

16. For each [t] € Init do

17. If (Elt1 c Tz) t LUt ;é T then

18. |nit1 — |nit1 @] {[t]}

19. T1 «— Ty U {t}

20.If Init; = @ then Return (8, 0, Var, (0,0), 0, §)
21.Rule; « 0

22. Repeat

23. ezit_flag < true

24. For each phrasal rule ([t] = @) € Rule,
25. If (Htl c T1) tuUiy ;é T then

26. Rule; + Rule; U {[t] = «}

27. Rulez + Rulez \ {[{] = a}

28. Ty + T1U{t: [t] appears in a}
29. ezit_flag + false

30. Until ezit_flag = true

31. Atom; « 0

32. Repeat

33. ezit_flag < true

34. For each lexical rule ([t] & a) € Ruley
35. If (Htl c Tl) tUiq ;é T then

36. Rule; + Rule; U {[t] = «}

37. Rulez + Ruley \ {[{] = a}

38. Atom; + Atom; U {words appearing in «}
39. ezit_flag + false

40. Until exit_flag = true
41. create Type; by restricting Type to T,
42. Return (Atom;, {, Var, Typey, Inity, Rule;)

Before going through the algorithm and discussing its running time, let us
first discuss data structures used in it. We assume that the input set of atoms
and the set of words W are represented as sorted lists. The sets Atom; and Atoms
are represented as bit-vectors. Conversion from one representation to another in
steps 1 and 42 takes O(|Atom| + |W]) time.

The set of rules Rule, Rule;, and Rules are represented as linked lists.

10 University of Waterloo CS-2001-08

For type representation we use simple bit-vector transitive closure encoding,
as discussed in [1]. This encoding assigns a bit position to each type except for
T, which denotes a contradiction and it is not used in AVMs. The encoding is
also used to represent sets of types T; and T,. Additionally, for both sets of
types we also keep a “type signature,” i.e., the bit vector representing the set:

{t: (3t €Ty) t1 Ct},

where 7 = 1 or ¢ = 2. This signature enables efficient evaluation of the conditions
in steps 9, 17, 25, and 35. For example, the condition (Ft2 € T2) t1 Uity # T is
evaluated in O(|T|) time by a bitwise AND operation between the signature of
the set Ty and the representation of the type ¢;. Each step 17, 25, and 35 takes
O(|T|) time, and step 9 takes O(m - |T|) time, where m = max{|a|: [t] = « €
Rule}.

If the input type lattice Type is not provided in this form, we can generate
this type representation in O(|T|*7) time (see [1]). We assume that the type
lattice is already provided in this form.

Now we discuss the running-time complexity of the above algorithm step by
step:

The running time complexity of step 1 is O(|Atom| + |[W|+ |T|).

Loop 2-5 iterates not more than |Rule| times. The condition in step 3 is
verified in O(|e|) time. Step 4 takes O(|T|) time, and steps 3 and 5 take constant
time. Hence, loop 2-5 takes O(|Rule| - m + |Rule| - |T'|) time.

Loop 6-14 iterates not more than |Rule|+ 1 times, and loop 8—13 iterates not
more than |Rule| times. Step 9 takes O(m - |T|) time, and step 12 takes O(|T|)
time. Other steps take constant time. Therefore, loop 6-14 takes O(|Rule|-|T|-m)
time.

Set Inity is represented as a linked list. Hence, step 15 is executed in O(|T|)
time.

Loop 16-19 iterates |Init| times. Steps 17-19 take O(|T|) time, so the total
running time for loop 16-19 is O(|Init| - [T]), since Init and Init; are represented
as linked lists.

Lines 20 and 21 take constant time.

Similar to loop 6-14, loop 22-30 takes O(|Rule|? - [T| - m) time.

The complexity of step 31 is O(|Atom]|). The complexity of loop 32-40 is
O(|Rule|? - (|T| 4+ m)). Step 41 takes O(|T|?) time.

Finally, we conclude that the running time of the whole algorithm is O(|Atom|+
|W/|+ |Rule|? - |T| - m + |T|?), where m = max{|ea|: [t] = a € Rule}.

Now, when we know how to do subgrammar extraction efficiently on this sim-
plified HPSG, we can describe an approximate algorithm for the general HPSG
subgrammar-extraction problem. Given an HPSG G and a set of words W, we
first construct a simplified HPSG G; by removing all features, and, consequently,
by simplifying all rules and initial AVMs. Then, we apply the above algorithm
for HPSGs with no features on G; and W, and obtain an HPSG G5. In the

Vlado Keselj: Just-in-time subgrammar extraction for HPSG 11

third step, we recover features from G back to G3 and obtain the final HPSG
('3, which is a subgrammar of G, and produces the same parsing results on W*.
However, it is not guaranteed that the resulting grammar will be the minimal
one.

Algorithm: approximate algorithm for subgrammar extraction
for HPSGs
Input: G an HPSG
W a set of words
Output: G3 an approximate solution to the subgrammar ex-
traction problem, such that Gz < G and G35 gives
the same parsing results on W*

1. remove all features from G and obtain G4

2. apply subgrammar extraction algorithm for HPSGs with no features to G
and obtain G5

3. recover features removed in 1 to the rules in G2 and obtain G3

Step 1 takes O(size(()) time, where size(G) is the size of the grammar G,
which is

size(G) = O(|Atom| + |Feat| + |T|* + size(Init) + size(Rule)).

The value size(Init) is the count of all features, atoms and reentrancies appearing
in all AVMs of the set (duplicates counted), plus the count of all types appearing
in all AVMs of the set times |T|. The size of the rule set Rule is found in the
same way. According to the definition of m, size(Rule) = O(|Rule| - (m + |T]))
holds.

According the the analysis of the previous algorithm, step 2 takes O(|Atom|+
|W |+ |Rule|? - |T| - m + |T|?) time. After taking into account the definition of
size((), and by separately counting lexical and phrasal rules, we see that the
algorithm complexity can be also expressed as O(size(G) - |Rule|).

Step 3 has complexity O(size(G)), so the total running time of the algorithm
is O(size(G) - |Rule|).

4 Conclusion and Future Work

In this paper, we have discussed the problem of just-in-time subgrammar ez-
traction for HPSGs. Why the problem is important and how it is related to
other relevant methods is presented. We formally define the general problem of
subgrammar extraction. The problem is then defined for CFGs, and an efficient
algorithm for CFGs is presented. We define the problem for HPSGs, show that
it is an NP-hard problem, and give an efficient approximation algorithm for its
solution.

The future work includes the evaluation of the method in the context of
question answering problem, and in the context of distributed NLP [7].

12 University of Waterloo CS-2001-08

Acknowledgments

I wish to thank Dr. Nick Cercone for valuable discussions and comments regard-
ing this work. I also thank Ann Copestake, Stephen Nightingale, and Karel Oliva
for some useful references and ideas.

The author is a member of the Institute for Robotics and Intelligent Sys-
tems (TRIS) and wish to acknowledge the support of the Networks of Centers
of Excellence Program of the Government of Canada, the Natural Sciences and
Engineering Research Council, and the participation of PRECARN Associates
Inc.

The work is also supported by OGS.

References

1. Hassan Ait-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. Efficient imple-
mentation of lattice operations. ACM Transactions on Programming Languages
and Systemns, 11(1):115-146, Jan. 1989.

2. Bob Carpenter. The Logic of Typed Feature Structures with Applications to
Unification-based Grammars, Logic Programming and Constraint Resolution, vol-
ume 32 of Cambridge Tracts in Theoretical Computer Science. Cambridge Univer-
sity Press, New York, 1992.

3. John E. Hopcroft and Jeffrey D. Ullman. Iniroduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

4. Vlado Keselj. Java parser for HPSGs: Why and how. In Nick Cercone, Kiyoshi
Kogure, and Kanlaya Naruedomkul, editors, Proceedings of the Conference Pacific
Association for Computational Linguistics, PACLING’99, pages 288-294, Water-
loo, Ontario, Canada, August 1999.

5. Vlado Keselj. Stefy: Java parser for HPSGs, version 0.1. Technical Report CS-99-
26, Department of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 2000. ftp://cs-archive.uwaterloo.ca/cs-archive/CS-99-26/.

6. Vlado Keselj. Modular HPSG. Technical Report CS-2001-05, Department of Com-
puter Science, University of Waterloo, Waterloo, Ontario, Canada, February 2001.
ftp://cs-archive.uwaterloo.ca/cs-archive/CS-2001-05/.

7. Vlado Keselj. Question answering using unification-based grammar. In Proceed-
ings of the Fourtheenth Canadian Conference on Artificial Intelligence, AI’2001,
Ottawa, Canada, June 2001. To appear.

8. Bernd Kiefer, Hans-Urlich Krieger, John Carroll, and Rob Malouf. A bag of useful
techniques for efficient and robust parsing. In Proceedings of the 37th Meeting of
the Assoctation for Computational Linguistics (ACL-99), pages 473-480, College
Park, MD, USA, 1999.

9. Gunter Neumann. Automatic extraction of stochastic lexicalized tree grammars
from treebanks. In A. Abeille, editor, Treebanks: building and using syntactically
annotated corpora. Kluwer. to appear (the book is based on the ATALA workshop
on treebanks, Paris, 1999).
http://www.dfki.uni-sb.de/"“neumann/publications/neumann-ref .html.

10. Giinter Neumann. Application of explanation-based learning for efficient processing
of constraint-based grammars. In Proceedings of the Tenth Conference on Artificial
Intelligence for Applications, San Antonio, Texas, March 1994.

Vlado Keselj: Just-in-time subgrammar extraction for HPSG 13

11.

12.

13.

14.

15.

16.

17.

Giinter Neumann. Applying explanation-based learning to control and speeding-up
natural language generation. In Proceedings of ACL/EACL-97, Madrid, 1997.
Ginter Neumann. An on-line learning method to speed-up natural language pro-
cessing. Technical report, DFKI GmbH, 1997.

Ginter Neumann. Learning stochastic lexicalized tree grammars from HPSG.
Technical report, DFKI GmbH, Saarbriicken, 1999.

Carl J. Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar. Uni-
versity of Chicago Press, 1994.

Ivan A. Sag and Thomas Wasow. Syntactic Theory: A Formal Introduction. CSLI
Publications, Stanford, 1999.

Stuart M. Shieber. An Introduction to Unification-Based Approaches to Gram-
mar. Number 4 in CSLI Lecture Notes. Center for the Study of Language and
Information, Stanford University, Stanford, CA, 1986.

Rémi Zajac and Amtrup Jan. Modular unification-based parsers. In ITWPT 2000,
Stzth International Workshop on Parsing Technologies, Trento, ltaly, 23-25 Febru-
ary 2000. http://crl.nmsu.edu/“rzajac/index.html.

