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Abstract. We present a detailed description of the modular Head-driven
Phrase Structure Grammar (HPSG). Although the notion of modular-
ity is known in the area of programming languages, and it is described
for context-free grammars (CFG), this is the first attempt of defining
modularity for HPSGs.

We describe and formally define modularity for an HPSG-type grammar,
and we illustrate its application on an example.
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1 Introduction

HPSG is currently one of the most important formalisms used in computational
linguistics. This unification-based formalism is successfully used in theoretical
linguistics to explain many natural-language (NL) phenomena, and it is also
used in practical applications.

Although it does scale well up to a certain size of the knowledge base, it
appears difficult to achieve a “real-world” coverage with the available methods.
HPSG lexicalism supports encapsulation of some fine-grained knowledge at the
word level. We propose HPSG modules as a way of encapsulating coarse-grained
knowledge at the level of domains (semantic domains, application domains, or
similar).

There are two major advantages of using HPSG modules:

First, HPSG modularity makes NL engineering easier in the way object-
oriented programming (OOP) makes computer programming easier. Building
large and complex NL systems is easier if the problem is divided into well-defined
parts, which can be separately developed, tested, and maintained.

And second, HPSG modularity provides a framework for independent de-
velopment of NI modules in different domains, and their unifying use over the
Internet. This is a promising application in the context of current research ac-
tivity in the area of e-commerce and XML.
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2 Related Work

A very readable introduction into the area of unification-based grammarsis given
in Shieber [12]. The HPSG formalism is described in Carpenter [1], Pollard and
Sag [10], and Sag and Wasow [11]. A formal definition suitable for our current
experiments in question-answering is given in Keselj [2].

The notion of composition from the area of programming languages is applied
to linguistic formalisms in Wintner [14], where a compositional semantics for
unification-based grammars is defined. Wintner [15] presents a compositional
semantics for CFGs. It also defines modules for CFGs. Our definition of modules
for HPSGs is defined in a similar fashion, following the same motivation.

With respect to the logic of typed feature structures, Penn [9] discusses an
algebraic method for extracting sub-signatures from larger signatures. This work
is related to the operation of module extraction from a large grammar. We do
not discuss module extraction here, but it is relevant to HPSG modularity and
it is a part of our future research.

Neumann [5,7, 6, 8,4] uses machine learning approaches to automatically ex-
tract a corpus-oriented subgrammar. If a corpus is from a specific domain, then
the extracted subgrammar will be tuned towards this domain. The HPSG for-
malism is used, as well as the stochastic lexicalized tree grammars. Similarly to
[9], this work is related to module extraction.

Zajac and Jan [16] present a practical approach to modularity of unification-
based grammars. The approach is implemented in a system, which is used in
several machine-translation applications. The modules are separate executable
units, connected within the system in the style of the Unix pipe command. This
technique is simple and elegant, but it is also a limited solution. The limitations
are mandatory serialization of modules and module isolation. It is not clear that
it is always possible to divide a complex natural language processing (NLP) task
into simpler sub-tasks that are serializable.

3 HPSG

We define an HPSG to be a standard cyclic unification-based grammar with
addition of types, which form a multi-inheritance hierarchy. The types lack sig-
natures, i.e., well-typedness and appropriateness are not defined. The model
definition can be found in [2], and we do not repeat it here. In this section, we
define HPSG principles, which play an important role in the HPSG modularity.

The definition of an HPSG principle is equivalent to the definition of an
HPSG rule ([2]):

Definition 1 (HPSG principle). An HPSG principle is either phrasal (i.e.,
non-lexical) HPSG principle or lexical HPSG principle. A phrasal HPSG prin-
ciple is a tuple (X, Y1,...,Y,) € F*T (n > 1), denoted as:

X 5V...Y,,
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where X, Y1,...,Y, are AVMs. A lexical HPSG principle is a pair (A, a) €
F x Atom, denoted as:
A= a,

where A is an AVM, and a is an atom.
The difference between an HPSG rule and an HPSG principle is that an
HPSG principle is not used directly in a derivation. The principles are meant to

represent relations that are part of HPSG rules. To illustrate this, consider the
rule:

HDTR:

" ] — [the] [[n] (1)

This rule is directly applied during generation or parsing. The head principle,
which states that the head component of the head daughter is unified with the
head component of the mother, can be specified as follows:

HEAD:
HDTR: [ HEAD: H LT

This principle can be applied to rule (1) by unifying it with that rule, and by
obtaining the new rule:

np
n
HDTR: [1] | — [the] [T
[thel W LEAD: ]
HEAD:

If we do not want a principle to be applied to a particular rule, we simply prevent
unification between them. For example, the following rule could not be unified
with the head principle above:

sen

Heap: - | I

Obviously, this operation of applying a principle to a rule can be done man-
ually, ahead of parsing-time, and we do not have to mention principles in the
model. However, the principles become important for HPSG modules, since prin-
ciples from one module are applied to rules of another module. Application of a
set of principles to a set of rules is defined in the following way:

Definition 2 (Principles application). If P is a finite set of principles, and
R is a finite set of rules in the same grammar, we define P® R to be the following
set of rules:

P R={pUr:pe€ P,re€ R, and pUr exists}
U{r:reR,(Ype P)pUr does not exist}.
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4 Modularity

The notion of modularity that we present here is partly inspired by the OOP
paradigm. In particular, an access control similar to the public/protected/private
access in OOP is applied.

An HPSG module incorporates an HPSG. Additionally, we want to be able
to merge two modules into a new module. This operation provides an easy way
of handling the complexity of developing and maintaining large NL grammars.

An HPSG is a tuple (Atom, Feat, Var, Type, Init, Rule), where Atom is an enu-
merable set of atoms, Feat is a finite set of features (attributes), Var is an enu-
merable set of variables, Type is a finite, multi-inheritance type hierarchy, Init
is a finite set of initial AVMs, and Rule is a finite set of rules. A finite set of
principles Prin is also a part of an HPSG module. To define a merge operation of
two modules requires that we define how these grammar components combine to
form the same components of the resulting grammar. Hence, given two modules

My = (Atomy, Featy, Vary, Type, Inity, Ruley, Priny), and
M, = (Atomg, Featy, Vary, Type,, Init, Ruleg, Pring),

we describe how to obtain the result of their merge:

M = M; U M; = (Atom, Feat, Var, Type, Init, Rule, Prin).

Atoms. Typical atoms are words of a natural language. The set of atoms is
usually the set of all words over a finite alphabet. We assume that both modules
are defined over the same set of atoms, i.e., that Atom; = Atoms, and that
Atom = Atom; = Atoms,. In order words, all atoms are public.

Features. The features are divided into two sets: public and private features, i.e.,
Feat; = Featf“b u Feat’lmu and Featy = Feat.’Z)Ub U Featgrw. Two public features
from the modules that have the same name represent the same feature in the
resulting module. If at least one of them is private, then they are not the same
features.

For example, if the feature A is a public feature of the module M7, and it is
a public feature of the module M5, then

A 1}(M1)u [ A: 1}%): (A1 ]

where the superscripts (M7) and (Mz) denote that the first AVM is from the
module M; and the second from module M>.

However, if the feature A is a private feature of My and a public feature of
M, then we have:

{A:l}(Ml)l_l{A:l}(M2): A. 1

A), 1]
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Similarly, if the feature A is a private feature of My and a private feature of

M, then:
A, 1]

R RTIETE R IA

The resulting sets of features are created in the following way:
Feat?"’ = Featf”b U Feat.’Z)Ub
Feat?™ = {(f, M) : f € Feat’lmu} U{(f,Ma) : f€ Featgrw}, and
Feat = Feat?"’ U Feat?"™.

We assume that no public features have the form (f, M'), where M’ is an HPSG
module.

Variables. We assume that Var; = Vary = Var.

Type hierarchy. Similarly to features, the types are divided into public and
private types. Two public types with the same name are merged into one type,
while two private types from different modules are always different after a merge.

Unlike features, the types do not form just a set, but a type hierarchy. A
type hierarchy is a partial order Type = (T,C), with the minimal element L,
representing the most general type, and such that for any two types t1,t; € T
there is at most one least upper bound for both of them, i.e.,

(Vits,ta € T) (1,22 C t3) A(t1,82 Cta) = (t3 T ty) V (ta T 13). (2)

If two types t1 and t5 do not have the least upper bound, then we say that they
cannot be unified; otherwise, we say that they can be unified and the result of
their unification is the least upper bound, denoted as #1 Ll 5.

For each module, the types are divided into private and public types, i.e.,
T, = Tllmv u Tllwb, and Ty = Tg”u U Tg“b. The sets Ty and Ty are the type sets
of the modules M; and My, i.e., Type; = (T1,C1) and Type, = (T2, C2). The
resulting type set is obtained in the same way as the feature set:

-I—pub — Tzlmb U -I—];ub
TP = {(t, My) s t € TP U{(t, M) : t € TE™™}, and
T=TruTr™

We assume that no public types have the form (¢, M'), where M’ is an HPSG
module. The most general type is always public, so the resulting hierarchy will
also have the most general type. The resulting partial order, i.e., the resulting
type subsumption, is the result of the transitive closure of the union of the
relations C1 and Co, i.e.:
C=(CiuG)*

The resulting relation ‘C’ is not necessarily a partial order, even less it necessarily
satisfies condition (2). For this reason, two HPSG modules can be merged only
if the resulting type hierarchy Type = (T,C) is well-defined, i.e., it is a partial
order, and condition (2) is satisfied.
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Initial AVMs. The set of initial AVMs Init is the union of Init; and Inity: Init =
|nit1 @] |nit2.

Rules. The rules are divided into private and public rules: Rule; = Rulezlou{j U
Rule!™ and Rules = Rulegmj U Rulef™. The resulting set of rules is obtained in
the following way:

b b

Rule?™’ = Rule!™” U Ruleb™
Ruleprl’l/ — Rule{rl’u U Rulegrl'u
Rule = Rule?*® U Rule?™

Principles. All principles are public, i.e.:

Prin = Prinqy U Priny

The previous discussion can be summarized into the following two definitions,
in which we finally precisely define the notion of HPSG module and module
merge operation.

Definition 3 (HPSG module). An HPSG module is a tuple
(Atom, Feat?™®, Feat” ™, Var, T?"®, TP™ [, Init, Rule”®, Rule?™™, Prin),  (3)

such that Feat?™® NFeat?™ = (§, TP**NTP" = (), no elements from Feat?™® have
form (f, M) where M' is an HPSG module, no elements from TP have form
(t, M'), and the tuple

(Atom, Feat”"® U Feat?"", Var, (Tp“b uTrrY, C), Init, (Prin ® Rule) U Rulep””) 4)

ts an HPSG grammar.
We say that grammar (4) is defined by module (3).

Definition 4 (Module merge). The merge of two HPSG modules My and
My, where:

M; =
b j b j . b v
(Atomy, Feat]"”, Feat!™" Vary, TV"", T{™", C1, Inity, Rule}™”, Rule!™", Priny)
M, =

(Atomg, Feat.’Z)Ub, Featgrw, Var,, T.’Z)Ub, T.’Zmu, Co, Inita, Rule.’Z)Ub, Rulegrw, Pring)
is the HPSG module M = My U M5, where
M = (Atom, Feat” ", Feat”™" Var, T?"* TP™" [, Init, Rule”™, Rule’™", Prin)
satisfying the following conditions:

1. Atom = Atom; = Atoms
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2. Feat?™’ = Featf”b U Featé’“b and
Feat?™ = {(f, M) : f € Featf”v} U{(f,Mz) : f€ Featgrw}
3. Vary = Vary = Var.

Jo TP =T UTE™ and
T ({100 € T U M) ¢ 1 € TE)
5. (Tpmj U TP, C) is a type hierarchy,
6. Init = Inity U Inity ' ' '
7. Rule”® = Rule?*® U Rule!"® and Rule’™™ = Rule?”" U RuleZ™, and
8. Prin = Prinq U Priny
5 Example

We use a toy example to show how HPSG modules are used in an application to
the problem of question answering. The details about using HPSG in the problem
of question answering can be found in [3]. Here, we give a short description of
the method. The problem of question answering is defined in the following way:

Given a collection of natural-language documents, find an answer to
given NL query that is a short substring of one of the documents, and it
is found in a relevant context.

This substring to be returned is called an answer string. To find an answer
string, we first parse the question and obtain its semantic representation in
form of an AVM. After finding relevant passages, each passage is parsed using
a chart parsing algorithm. Parsing fills the chart with edges: one edge per one
successfully recognized word, phrase, or sentence. Each edge contains an AVM,
and these AVMs are matched to the question AVM. The best matching AVM
determines the phrase that is the answer string.
The NL component is defined by the five HPSG modules:

. chart module,

. general syntactic module,

. general semantic module,

. question syntactic module, and
. question semantic module.

Ot = W Do =

We use an example question from TREC-8 [13]:
When was London’s Docklands Light Railway constructed? (5)

A classical TR system based on a keyword approach could not find an answer
to this question. However it did retrieve a relevant passage. A correct answer
string was:

... the opening of the railway in 1987 ... (6)



8 University of Waterloo CS-2001-05

Chart module is related to chart parsing, and it is not concerned with linguistic
knowledge. The span of each edge in the chart is determined by two features
FROM and TO, which have integer values. These two features are private, which
is an important fact for the operation of matching the query AVM to the passage
AVMs. Since there are two different charts for queries and passages, the values
of the features FROM and TO cannot be compared, i.e., unified. It is achieved
by having both features private, and by creating two different instances of the
chart module.
The chart module includes the following principles:

[ FrROM: [1] ] . [ FROM: [T ]

_TO: _ _TO: _

[ FROM: [1] ] . [ FROM: [1] ] [ FROM:

_TO: _ _TO: _ TO:

[ FrROM: [1] ] . [ FROM: [1] ] [ FROM: FROM:
_TO | _TO: | TO: TO:

In our grammar, there are no rules with more than three daughters, so the
principles above cover all rules. The principles introduce the natural relations of
spans between daughters and a mother.

General syntactic module describes syntactic properties of words and phrases.
It consists of the following type hierarchy:

1

np pp npl n verb ed the prep

name year of in

the following lexical rules:

ﬁiﬁ:ﬂe — London’s Docklands Light Railway
:sg
[verb_ed] — constructed  [the] — the
[n] — opening [of] = of
[n] — railway [in] = in
[year] — 1987

and the following phrasal rules:

[pp] = [prep][np] [np1] = [n]
[np1] = [np1][pp] [np] — [the][np1]
All features and all types are public, and there are no principles. This mod-
ule recognizes words and some phrases of given query (5) and string (6). Due
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to prepositional phrase attachment ambiguity, it produces two parses for the
passage. The phrase ‘in 1987’ can be attached to the word ‘railway’ as well as
to the word ‘opening’.

General semantic module describes semantics of words and phrases. We use
this general module to disambiguate prepositional phrase attachment ambiguity
using the feature ‘EVENT’. Namely, if we assume that ‘opening’ is an event, that
‘railway’ is not an event, and that a prepositional phrase of the form ‘in year’
can only modify events, then the previous ambiguity is resolved.

All types are public and the type hierarchy is:

L

/N

year pp npl n in

The module does not contain any rules, and the set of principles is the following:

pp
— 1
SEM:OBJ: [of] [ ()
o — [prep] | ot
SEM:DATE: SEM:DATE:
npl ] N [
SEM:EVENT: SEM:EVENT:
npl ] N —n pp
SEM:EVENT: - SEM:EVENT: - | [ SEM:DATE: -
npl | r
n pp
EVENT: — ] ]
SEM: SEM:EVENT: [1 SEM:DATE: |2
DATE: - iy 2l

[SEM:EVENT:DESC: open} — opening
[SEM:EVENT: -} 5 railway
[SEM:DATE: 1987} 5 1987

[ SEM:EVENT:DESC: construct } — constructed

Now, the prepositional phrase attachment is resolved since the word ‘railway’ is
not an event, and thus it will not allow a modifier with a feature value of ‘DATE’
set, i.e., different than ‘-,

Question syntactic module defines higher-level question topology. It has one
feature ‘NUM’, all its types are public, and the type hierarchy is:



10 University of Waterloo CS-2001-05

€

when_was  question_mark question np verb ed

All rules are public and the following is the set of rules:

[ when_was} — When was

[ question_mark} -7

[ verb_ed } [ question_mark

[question} — {when_was} ﬁ]iJIVI: g

Using this module, we can completely parse the question.
Question semantic module defines specific question semantics. We define ques-
tion semantics in an SQL-like style using ‘SELECT’ and ‘WHERE’ attributes. We
use the following set of public attributes:

{SEM, SELECT, WHERE, DATE, OBJ}
All types are public and the following is the type hierarchy:
1

when_was question_ mark np verb_ed

The module does not contain any rules, and it contains one principle:
SELECT:
WHERE: { DATE: }

verb_ed

SEM: [OBJ: }

] [question_mark]

[when_was] 3] [np]

Module application. We merge all four modules and apply the resulting grammar
to query (5). One parse tree is obtained, and the semantic part of the result is

the following:

—question 1
SELECT:
EVENT: | DESC: construct}
SEM: WHERE: | OBJ: np
NUM: sg
i DATE:
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The semantic part of the representation of string (6) is:

np
EVENT: [DESC: open}
SEM: | DATE: 1987
OBJ: {np}

Now, since the word ‘railway’ appears in the span of the AVM associated
with the feature ‘OBJ’, we can match the question AVM to the answer AVM.

6 Conclusion and Future Work

We present a first attempt of defining modularity for HPSGs. The notion of an
HPSG module is discussed, and precisely defined. Using a small example from
a real-world application, we show how it can be used to handle complexity of

NLP.

The future work includes:

— defining operation of module extraction from a large grammar, give a domain
specification, and
— defining modules for stochastic HPSGs.
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