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Abstract

One of the fundamental tasks in any distributed computing system is routing mes-

sages between pairs of nodes. An Interval Routing Scheme (IRS) is a space efficient

way of routing messages in a network. The problem of characterizing graphs that

support an IRS is a well-known problem and has been studied for some variants of

IRS. It is natural to assume that the costs of links may vary over time (dynamic cost

links) and to try to find an IRS which routes all messages on shortest paths (optimum

IRS). In this paper, we study this problem for a variant of IRS in which the labels

assigned to the vertices are d-ary integer tuples (d-dimensional IRS). The only known

results in this case are for specific graphs like hypercubes, n-dimensional grids, or for

the 1-dimensional case. We give a complete characterization for the class of networks

supporting multi-dimensional strict and linear (which is a variation of IRS) interval

routing schemes with dynamic cost links.

Keywords: Interval routing, networks, routing algorithms, dynamic, multi-dimensional,

characterization.
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1 Introduction

One of the fundamental tasks in any distributed computing system is routing messages

between pairs of nodes (processors). The classic method for routing messages in a network is

to store a routing table at each node of the network. A routing table has one entry for each

destination node that indicates which outgoing link should be used to forward a message

going to that destination. This is an example of a routing scheme which in general is a

strategy that determines which path a message, originating from a known source and going

to a known destination, should take in the network.

Using routing tables is not always efficient, because each routing table requires Ω(n) worst

case space in an n-node network. An interval routing scheme (IRS), which was originally

proposed by Khatib and Santoro [SK85], is a more efficient routing scheme. In this method

each node v of the network is assigned a unique integer label, L(v), taken from {1, 2, ..., n} (n

is the number of nodes in the network). Each outgoing link e at a node v is also associated

with a cyclic interval Ie, which denotes the set of destinations reachable through e. This

routing method was used in the C104 Router Chip of INMOS T9000 transputer design

[INM91].

Throughout this paper, a network is modeled by a graph G = (V,E). The set of vertices

V represents the nodes of the network and the set of edges E represents the links between

the nodes. Whenever there is no ambiguity, we will use the terms nodes and vertices and

also links and edges interchangeably. We assume that the graph is simple, connected and

does not have any self-loops. For any edge (u, v) ∈ E we will use both (u, v) and (v, u) in

order to assign two unidirectional labels to the edge.

A Linear Interval Routing Scheme (LIRS) is a variant of IRS in which the intervals

assigned to the links are not cyclic. Another variation is a Strict Interval Routing Scheme

(SIRS). In SIRS, no interval associated with a link e, which is adjacent to a node v, can

contain the label of v. For example, a node with label 4 cannot have a link that is labeled

with the interval [2..8]. An IRS which is both linear and strict is denoted by SLIRS.

In any IRS, the routing is completed in a distributed way. At each intermediate node p,

the routing process ends if the destination of the message, dest, is p. Otherwise, the message

is forwarded through a link e labeled by an interval Ie, such that dest ∈ Ie. This method

requires O(l) space at each node (l is the number of links at that node), which is a more

efficient memory allocation than required by routing tables.

The class of networks which have an LIRS or SLIRS such that each message eventually

reaches its destination has been characterized by Fraigniaud and Gavoille [FG98]. There,

the routes traversed by messages are not necessarily shortest paths. If an IRS routes all

messages on shortest paths, the IRS is called an optimum IRS. Given a graph G and an IRS
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defined on G, it is reasonable to assume that the labels of the vertices remain fixed over time,

but the cost of the links may vary. Assuming that the costs of the links are non-negative

numbers that vary over time, the question is: can we always relabel the links of G such that

the path traversed by any message always remains optimum? In other words, does a given

graph G having dynamic cost links, have an optimum IRS?

This problem has been studied for graphs supporting optimum SIRS by Fredrickson and

Janardan [FJ86]. They characterize the class of graphs supporting optimum SIRS with

dynamic cost links. Bakker et al. give a complete characterization for the class of networks

supporting optimum LIRS [BvLT91]. They assume that the labels assigned to the links of

the graph remain fixed, even if the costs of the links change. This makes the class of graphs

supporting optimum LIRS very restricted. Tan and Leeuwen have also studied the problem

of characterizing networks supporting optimum IRS with dynamic cost links and have a

characterization for this class of networks [TvL95].

Here, a natural question is: can we slightly change IRS (LIRS, SLIRS, etc.) to expand

the class of graphs supporting LIRS, SIRS and SLIRS, or improve the length of routing

paths?

One way to make IRS more flexible and the routing more efficient is to assign more

than one label to each link. Bakker, Leeuwen and Tan have proved that the class of graphs

supporting LIRS with k (k > 1) intervals per link is a strict subset of the class of graphs

supporting LIRS with k+1 links [vLT87, BvLT91]. Hence, increasing the number of intervals

at each link increases the power of interval routing and allows a larger class of networks to

support IRS. Narayanan and Nishimura study the problem of finding the number of intervals

needed at each link for the case of optimum IRS on k-trees [NN98]. Using the notion of tree-

width, Bodlaender et al also give an interesting characterization of the graphs supporting

optimum IRS with dynamic cost links and k intervals per link [BvLTT97].

Another interesting variant is to assign multi-dimensional labels to the nodes and multi-

dimensional interval labels to the links of the network. This extension of IRS is called aMulti-

dimensional Interval Routing Scheme (MIRS) and was originally proposed by Flammini et

al. [FGNT98]. More formally, in a d-dimensional MIRS we will assign a d-dimensional label

which is a d-ary tuple of the form (p1, p2, ..., pd), 1 6 pi 6 n, for 1 6 i 6 d, to each node of the

network. We will also assign a d-dimensional intervals to each outgoing link (at each node)

where a d-dimensional interval, denoted by I = [a1..b1, a2..b2, ..., ad..bd] (ai, bi ∈ 1, 2, ..., n for

1 6 i 6 d) is the set of all d-ary tuples, like P = (p1, p2, ..., pd), such that ai 6 pi 6 bi, for

every i, 1 6 i 6 d.

The routing process in an MIRS is quite similar to the routing process in a 1-dimensional

IRS. A Linear MIRS (MLIRS), a Strict MIRS (MSIRS), and a Strict and Linear MIRS

(MSLIRS), are defined analogously to 1-dimensional LIRS, SIRS and SLIRS, respectively.
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Let us consider a graph G which has a d-dimensional MIRS with k intervals associated with

each link. If for any pair of nodes s and t in V (G), the message originating from s eventually

reaches t, we say that G is in 〈k, d〉-MIRS or G supports 〈k, d〉-MIRS. Classes of networks

supporting 〈k, d〉-MLIRS and 〈k, d〉-MSLIRS are defined similarly.

The class of networks supporting 〈1, d〉-MLIRS and 〈1, d〉-MSLIRS (not an optimum IRS)

has already been characterized [Gan01]. In this paper, we completely characterize the class of

networks supporting an optimum 〈1, d〉-MSLIRS with dynamic cost links. This is a natural

generalization of the characterization results (for the 1-dimensional case) mentioned above.

The rest of this paper is organized as follows: in Section 2 we introduce some preliminary

concepts. Then, in Section 3 we show which graphs can have an optimum 〈1, d〉-MSLIRS

with dynamic cost links. Section 3.1 demonstrates how to assign d-dimensional labels to

the vertices of a given graph and Section 3.2 shows how to assign labels to the links of the

graph, for a given set of link costs. Finally in Section 4 we conclude and give a list of open

problems.

2 Preliminaries

In this section we just briefly mention some of the important definitions used throughout

this paper. For basic graph theoretic definitions and notation we refer the reader to standard

texts [BM76, Wes96]. Any graph considered in this paper is assumed to be connected, simple

and undirected. If removing a vertex v disconnects a graph G, v is called a cut-vertex in G.

A connected graph having no cut-vertex is called a block. Every block which has at least

three vertices is 2-connected. A block of a graph is a maximal subgraph that is a block. A

vertex joining two blocks of a graph G is called an articulation point of G. A vertex which

is not an articulation point is called a non-articulation point.

Observation 1. If a graph G is connected, removing any of its articulation points will

disconnect the graph. It follows directly from this observation that any two blocks of a graph

share at most one vertex (which is an articulation point).

Any d-dimensional label associated with a node of a network denotes a point in d-

dimensional Cartesian space with integetr coordinates. We will use this point and the label

interchangeably. Let us consider a set of points P in d-dimensional space. If for any di-

mension i, 1 6 i 6 d, the ith coordinate of a point b in P is less than or equal to the ith

coordinate of every other point in P , b is called a minimum point for the ith dimension. A

maximum point is defined similarly. A boundary set B of P is a minimal set of points in

P containing a minimum and a maximum point for each dimension i, 1 6 i 6 d, where one

point can be both the minimum and the maximum point for some or many dimensions.
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Example 1. Figure 1 illustrates an example of a boundary set in 2-dimensional space. Here,

P = {1, . . . , 7} and {1, 5, 7} is a boundary set of P . The set {2, 5, 7} is also a boundary set

of P . We note that point 7 is the maximum point for one dimension and the minimum point

for another dimension.

1

2

3

4

5

6

7

Figure 1: An example of a boundary set in 2-dimensional space.

Clearly, for any set of points in d-dimensional space, the number of points in any boundary

set is at most 2d.

In the following sections we will need a way to divide d-dimensional space and represent

the resulting subspaces. The axes in d-dimensional space are denoted by x1, x2, ..., xd. Let

us consider a point P = (p1, p2, ..., pd) in d-dimensional space. A region in d-dimensional

space having P as the origin is a set of points in that space, such that for every point

Q = (q1, q2, ..., qd) in the region the constraint qiRipi holds for each dimension i, where Ri is

one of 6,=,> or a null constraint meaning that there is no constraint for the ith coordinate

of the points in the region. We will use ←,−,→,↔ to denote each of the four constraints

6,=,> and the null constraint, respectively. To denote a region we use the coordinates of

the origin and add these symbols on top of each coordinate to show the type of constraint

in that dimension. If there is no constraint for the ith dimension of the region, the ith

coordinate of the origin can have any value. We use 0 for this coordinate for simplicity.

Example 2. The region R containing all the points in the second quadrant in the plane,

such that x1 ≤ −1 and x2 ≥ 1 is denoted by (
←−
−1,
−→
1 ) (Figure 2).

For a region R and the ith dimension, if R contains points with infinitely large positive

(negative) values in the ith dimension, the region is said to be open in the positive (negative)

side of the ith axis and the positive (negative) direction of the ith axis is said to be an open

direction for R and will be denoted by −→xi (←−xi ). It is worth mentioning that a region is defined

by the origin and the set of open directions. The negative direction of the first axis and the

positive direction for the second axis are open in the region shown in example 2, so this
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Figure 2: The region R with two open directions in 2-dimensional space.

region has two open directions. We can consider d-dimensional space as a region with origin

(0, 0, ..., 0) and call it the universal region. This region has 2d open directions (one positive

and one negative direction for each of the d axes) and can be denoted by (↔0 ,
↔
0 , ...,

↔
0 ).

A region S is said to be a subregion of a region R if the origin of S is in R and the set

of open directions of S is a subset of open directions of R. We also say two regions R and

S are disjoint if they have disjoint sets of open directions and neither origin is inside the

other region. The generalization to more than two regions is analogous. The complement of

a region R is a region, denoted by R, such that the origin of R is the same as the origin of

R and the set of of open directions of R is the complement of the set of open directions of

R relative to the set of open directions of the universal region.

Example 3. The complement of the region R = (
←−
−1,
−→
1 ) is the region (

−→
−1,
←−
1 ).

There are points in the universal region that belong to neither R nor R. For example, the

point (0, 2) is not in R or R in the previous example.

For a point P = (p1, p2, ..., pd) and a subset S of the set of open directions of the universal

region, we define a function move(P,S) which generates a new point P ′ = (p′
1
, p′

2
, ..., p′d) such

that for the ith dimension, 1 6 i 6 d, p′i = pi if S does not contain either the positive

direction or the negative direction of the ith axis or if S contains both of them. If S contains

only the positive direction then p′i = pi + 1 and if it contains only the negative direction of

the ith axis, p′i = pi − 1.

6



3 Characterization

In this section we characterize graphs supporting optimum 〈1, d〉-MSLIRS with dynamic cost

links. We can consider the assignment of d-dimensional labels to the vertices of a graph as

assigning corresponding points in d-dimensional space to each vertex. We will use a vertex

and its corresponding point interchangeably.

We start with an observation about boundary sets.

Observation 2. For a set of points P in d-dimensional space and a boundary set B of P ,

any d-dimensional interval I containing all the points in B contains all of P . This is true

because if Q = (q1, q2, ..., qd) is an arbitrary point in P , then for each dimension i, 1 6 i 6 d,

there is a minimum point mi and a maximum point Mi in P (mi and Mi can be the same)

such that mi 6 qi 6 Mi. Since I contains these minimum and maximum points, the ith

dimension of I covers the ith dimension of Q and so I contains Q. Therefore, I contains

all of the points in P .

In the following lemma, we use this observation to prove a restriction on the number of

non-articulation points in a graph supporting an optimum 〈1, d〉-MSLIRS with dynamic cost

links.

Lemma 1. Any graph G having more than 2d non-articulation points cannot support an

optimum 〈1, d〉-MSLIRS with dynamic cost links.

Proof. If G has an optimum 〈1, d〉-MSLIRS with dynamic cost links, the points correspond-

ing to the labels of the vertices in G will have a boundary set B of at most 2d points. Since

G has more than 2d non-articulation points, we have at least one non-articulation point, say

v, such that the point corresponding to v is not in B.

G is a connected and non-trivial graph, so v has at least two adjacent vertices. We let

u be an arbitrarily chosen neighbor of v. Recalling that the links have dynamic costs, there

must be a labeling of the links of G for any assignment of costs. We can consider a case in

which the cost of the link (v, u) is 1 and the cost of any other link adjacent to v is arbitrarily

large, say M (e.g. M is at least n2). The cost of any other link of the graph is set to be 1

(Figure 3).

Since v is a non-articulation point, the shortest path from v to any other vertex in G

must go through the link (v, u). To prove this, let us assume that the shortest path from

v to some other vertex t in G goes through a neighbor z of v such that z 6= u. Since v is

not an articulation point, if we remove v there exist a path connecting u and z. The cost of

this path is less than M because we have less than n2 links of cost 1, and we know M > n2.

Therefore, the path going from v to u and then going from u to z and finally going to t, has a
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smaller cost than the path going from v to t through the edge (v, z). This is a contradiction

because the path from v to t passing through z is a shortest path. If v instead were an

articulation point, this argument would not work, because by removing v the graph becomes

disconnected (Observation 1).

This argument together with Observation 2 shows that the interval I assigned to (v, u)

contains all other points including the points in the boundary set B. Therefore, I contains

v, which contradicts the fact that the IRS is strict. ¥

1

1

Path connecting

v

M

M
u

G

z

u and z t

Figure 3: Costs assigned to the links of the graph G. Here, M is at least n2.

In the following sections, we will show that the necessary condition stated in Lemma 1 is

also a sufficient condition for a graph to support an optimum 〈1, d〉-MSLIRS with dynamic

cost links. We will first give an algorithm to assign labels to the vertices of the graph. Then,

we will show that with those labels assigned to the vertices, and for assignment of any costs

to the links, one can always find a suitable set of labels for the links so that the graph

supports an optimum 〈1, d〉-MSLIRS.

3.1 Labels of Vertices

We consider a graph G supporting an optimum 〈1, d〉-MSLIRS with dynamic cost links.

There is a labeling of the vertices of G such that for any set of costs assigned to the links of

the graph, one can always find a suitable set of labels for the links. By Lemma 1, G has at

most 2d non-articulation points. In this section we show how to find such a labeling for the

vertices of any graph having at most 2d non-articulation points.

We will use a structure, which we call the block tree of a graph, in order to find such a

labeling of vertices. This structure defines an ordering of the vertices of the graph, based on

which we will assign the labels to the vertices. By using this ordering we will assign labels of

vertices such that all the non-articulation points will be in a boundary set and articulation
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points are placed so that they are not contained in any boundary set. In other words, when

we assign a point in d-dimensional space, this assignment is done in a way that in some

direction (one of the 2d directions of the d-dimensional space) this point is a minimum or

a maximum point and we will not place any other point beyond this one in that specific

direction.

The block tree of a graph G, which is denoted by BT (G), is a structure in which each block

of the graph G is represented by a vertex. BT (G) also has one vertex for each articulation

point in G. Whenever there is no ambiguity, we will use the same name for a block in

G and its corresponding vertex in BT (G) and also for any articulation point in G and its

corresponding vertex in BT (G). If and only if an articulation point v is in a block B of G,

the corresponding vertices in BT (G) will be joined by an edge.

Whenever there is no ambiguity, we will use the same name for a block in G and its

corresponding vertex in BT (G) and also for any articulation point in G and its corresponding

vertex in BT (G). Figure 4 depicts an example of a block tree. The graph indicated in this

example, has four blocks B0, B1, B2, B3 and two articulation points u1 and u2. The vertex

u1 is connects B0, B1 and B2 in G, so in the block tree BT (G) the vertex representing u is

connected to the vertices representing B0, B1 and B2.

(b)(a) (c)

u1
v2

u2

B3

B0B1

B3

B2

v4

v6

v3

u1

v1

v5

v7

u2

B1

B0

B2

Figure 4: (a) A graph G (b) blocks of G and (c) the block tree of G.

It is a trivial task to verify that the block tree of a graph G is a tree (otherwise the blocks

of the graph form a cycle, which is impossible).

As mentioned earlier, we will use this tree (the block tree BT (G)) to assign labels to the

vertices of the graph G. We can consider BT (G) as a rooted tree with an arbitrary block B0

being the root of BT (G). To assign labels in d-dimensional space to the vertices of a graph

G, we will assign each vertex v a region in d-dimensional space. The label of a vertex v will

then be the origin of the region assigned to v.

9



Intuitively, we will assign the whole d-dimensional space to the root B0 of the block tree.

The regions assigned to the vertices in a subtree are subregions of the region assigned to

the root of that subtree. Also, in a node v which is the root of more than one subtrees, the

regions assigned to different subtrees will be disjoint. This property will allow us to assign

intervals to the links of the graph without any conflicts, as we will see later in this paper.

Formally, starting at the rootB0 (an arbitrary block) of the block tree, we letB0, B1, B2, ...

be a topological sort of the blocks in BT (G). We denote by v1, v2, ..., vα (α 6 2d) the list

of all non-articulation points in B0 followed by the set of non-articulation points in B1 and

so on. For each non-articulation vertex, vi, (1 6 i 6 min{α, d}) we assign an open direction

OD(vi) which is the positive direction of the ith axis. If α > d, for each vi, (d < i 6 α) we

also assign an open direction OD(vi) which is the negative direction of the (i− d)-th axis.

Example 4. The graph depicted in Figure 4 has 7 non-articulation points, so if we want

this graph to have an optimum 〈1, d〉-MSLIRS with dynamic cost links, d must be at least 4.

Recalling that the axes are denoted by x1, x2, x3, x4 then OD(v1), OD(v2), ..., OD(v7) will be
−→x1,−→x2,−→x3,−→x4,←−x1,←−x2 and ←−x3, respectively.

Now that each non-articulation point has an open direction, we assign a set of open

directions to each articulation point and each block in BT (G) as follows: the set of open

directions assigned to an articulation point v is the union of the open directions of all non-

articulation points in a subtree of BT (G) rooted at v. We denote this set by OD(v).

Similarly, the set of open directions assigned to a vertex B in BT (G) representing a block,

which is denoted by OD(B), is the union of the open directions of all non-articulation points

in a subtree of BT (G) rooted at B. Obviously, this subtree includes all non-articulation

points in the block B.

Example 5. For the graph G denoted in Figure 4 (a), the block tree is depicted in Fig-

ure 4 (b). Here, B0 is the root of the block tree. In this graph, OD(u1) = OD(B2) = {←−x2,←−x3}

which is the same as OD(v6) ∪ OD(v7) (the non-articulation points in the subtree rooted at

B2 or u1).

The next step is to assign an origin to each set of open directions associated with a vertex

in BT (G). The origin of the region assigned to v (any vertex in BT (G)) will be denoted by

X(v). This will be used for calculating the origin of each non-articulation point later.

We start with the block B0 and let X(B0) = (0, 0, ..., 0). If G has 2d non-articulation

points, recalling that we have already assigned all 2d open directions to B0, the region

assigned to B0 would be the universal region, (↔0 ,
↔
0 , ...,

↔
0 ). To compute the origin of

the region assigned to u, a child of a vertex v with a known origin, we let X ′(v, u) =
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(b)(a) (c)

B2

v1

B0

u1

B1

B0

v3

v2

v4

u2

u1

B2

B1

u2

X(v1)

X(B0) X(v2)

x1

x2

X(B1)

X(B2)

X(u1)

X(u2)

X(v3)

X(v4)

Figure 5: (a) A graph G (b) The block tree of G rooted at B0 (c) The origin of each region

assigned to each block and each vertex in G.

move(X(v), OD(v)). Then we let X(u) = move(X ′(v, u), OD(u)). This is the origin of the

region associated with u. Since the root of the tree BT (G) has a known origin, by repeating

this step every vertex in BT (G) will eventually have an origin.

If v is a non-articulation point in a block B of G, the origin of the region assigned

to v (which has exactly one open direction), X(v), is computed as follows: we first let

X ′(B, v) = move(X(B), OD(B)). Then we let X(v) = move(X ′(B, v), OD(v)) which is

the origin of the region assigned to v.

Example 6. In the graph G depicted in Figure 5 the region associated with B0 is (
↔
0 ,
↔
0 ).

To find X(v1) we move X(B0) = (0, 0) in the direction of OD(B0) (which includes all four

directions) and get (0, 0). Then this point is moved in the direction of OD(v1) which is −→x1.

Therefore, X(v1) = (1, 0).

In the optimum 〈1, d〉-MLIRS defined on G, we let the label assigned to each vertex v,

denoted by L(v), be the same as the origin of the region assigned to that vertex (L(v) = X(v).

Figure 6 is the pseudo-code for labeling the vertices of a graph G. We can verify that this

algorithm can be executed in O(n2) time.

Before showing how to find the labels of links for a given set of link costs, we review some

properties of the labels assigned to the vertices.

Observation 3. For a block B in G, we let X ′(B) = (a1, a2, ..., ad) be the point resulting

from moving X(B) in the direction of OD(B). If v is a non-articulation point in B, then,
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L(v) = (b1, b2, ..., bd) where bi = ai for all i, 1 6 i 6 d except for one dimension j such that

OD(v) = ←−xj or OD(v) = −→xj . In this dimension bj = aj + 1 or bj = aj − 1 based on the

direction of OD(v).

Lemma 2. If v is a vertex in a block B or in the subtree of BT (G) rooted at B, the region

assigned to v, Rv by the VL algorithm, is a subregion of RB, the region assigned to B.

Proof. First, let us consider a point p in a region R. We let S be a subset of open directions

of R. The point p′ = move(p, S) is a point in R. We can repeat this with another subset of

open directions of R as many times as we want. The final point would still be in R. This is

exactly what happens to the origin of RB in the VL algorithm, so X(v) is in RB.

The set of open directions of any vertex in the subtree rooted at B (non-articulation

vertices as well as articulation vertices and blocks) is a subset of open directions of B. The

origin of the region Rv is in RB and the set of open directions of Rv is a subset of the set of

open directions of RB. Therefore, Rv is a subregion of RB. ¥

If Rv is the region assigned to a vertex v in BT (G), the previous lemma shows that all

vertices in the subtree of BT (G) rooted at v are in Rv. With an argument similar to that of

the proof of Lemma 2 we can verify the following lemma.

Lemma 3. Any vertex not in the subtree of BT (G) rooted at v is in the region Rv.

Lemma 4. For e = (u, v) an edge in block B and z a vertex contained in a block B ′ 6= B

which is in the subtree of BT (G) rooted at B, if the shortest path from u to z goes through

e, then there is a shortest path from u to any other vertex t in the subtree of BT (G) rooted

at B which goes through e.

Proof. To verify this, we notice that any shortest path going from u to any vertex in the

subtree of BT (G) rooted at B not including B itself must go through the articulation point

w connecting B to the rest of that subtree. Since the shortest path from u to z (which is one

of those shortest paths) goes through e, there is a shortest path from u to w going through

e. This path can be expanded to a shortest path for any other vertex t by just adding the

shortest path from w to t. ¥

In the following section, we show how to assign intervals to the links for any set of link

costs.

12



3.2 Labels of Links

In this section we show that for a given graph G and the labels assigned to the vertices of

G using the Vertex Labeling (VL) algorithm, introduced in Section 3.1, we can always find

labels for the links of G for any set of link costs. By this labeling of links, any message from

any source vertex to any destination vertex in G will be routed on a shortest path.

First, we show that if we just consider the non-articulation vertices in one block, we can

always find labels for the links for any set of costs assigned to the links, so that the messages

are routed on shortest paths.

Lemma 5. With the labels assigned by the VL algorithm, for any subset C of the non-

articulation vertices in a block B, we can always find a d-dimensional interval containing the

vertices in C and no other vertex in B.

Proof. We assume that X ′(B) is the point resulting from moving X(B) in the direction of

OD(B). Without loss of generality, we can assume that X ′(B) = (0, 0, ..., 0) (otherwise we

can shift every label by −X ′(B)). By Observation 3 one can verify that the label of each

non-articulation vertex v in B is of the form (0, 0, ..., 1, ..., 0) or (0, 0, ...,−1, ..., 0) (exactly

one coordinate is 1 or −1 and the rest of coordinates are all 0).

We let mi be −1 if there is a vertex in C having −1 as its ith coordinate and 0 otherwise.

Similarly, Mi will be set to 1 if there is a vertex in C having 1 as the ith coordinate and 0

otherwise. Obviously mi 6 0 6Mi.

For any non-articulation point v in C (with L(v) = (b1, b2, ..., bd)) and for any dimension

i, 1 6 i 6 d, we have m i 6 bi 6 Mi. As a consequence, the d-dimensional interval I =

[m1..M1,m2..M2, ...,md..Md] contains all the vertices in C.

We define ODC = ∪OD(v) for any v ∈ C. For any vertex u in B − C, OD(u) 6∈ ODC .

Therefore, if L(u) = (b1, b2, ..., bd), there is a dimension j such that bj < mj or bj > Mj (this

is the direction which belongs to OD(u) but not to ODC). Hence, u is not in I and thus I

contains exactly the vertices of B which are in C. ¥

The next step is to generalize this argument to the case in which C contains articulation

points of B, not including the parent of B in BT (G) (if it has any).

Lemma 6. With the labels assigned by the VL algorithm, for any subset C of the vertices

in a block B which does not include the parent of B in BT(G), we can always find a d-

dimensional interval containing exactly the vertices in C and no other vertex.

Proof. We let B′ be the set resulting from replacing each articulation point z in B with

the set of non-articulation points in the subtree(s) of BT (G) rooted at z say z1, z2, ..., zt
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(B′ = B − {z} ∪ {z1, z2, ..., zt} for any articulation point z in B). These new vertices

({z1, z2, ..., zt}) all together represent the articulation point z in B.

Lemma 5 shows that for any subset C ′ of B′ there is an interval containing exactly the

vertices in C ′. If C contains the articulation point z, we let C ′ = C − {z} ∪ {z1, z2, ..., zt}.

By Lemma 5 there is an interval I containing exactly the vertices in C ′. If I contains aal of

the points z1, z2, ..., zt, it will also contain z, so this interval contains all the vertices in C.

On the other hand, any vertex v in B − C is in B ′ − C ′. It means if I contains a vertex v

in B − C, it also contains a point from B ′ − C ′ which is impossible by Lemma 5. ¥

Example 7. In graph G shown in Figure 5, the origin of region associated with B2 is

(−4,−4) and moving this point in the direction of OD(B2) results in the point (−5,−5),

because OD(B2) contains the negative direction of both axes. If we consider this point as

the origin, the coordinates of X(v3) and X(v4) (v3 and v4 are non-articulation points in B2)

are (−1, 0) and (0,−1) respectively. If C = {v3, v4} then the interval covering C would be

I = [−1..0,−1..0].

In the VL algorithm, each block has at most one articulation point as its parent in

BT (G). For a block B and v the vertex in BT (G) which is the parent of B, Lemma 2 shows

that all the vertices in the subtree of BT (G) rooted at B are contained in the region RB.

Lemma 3 states that any other vertex is in RB.

Lemma 7. If I is an interval in the region RB containing the articulation point v, we can

find another interval I ′ such that I ′ contains all the vertices in the subtree rooted at v and

the same set of points in RB as I. Also, if I is an interval in RB containing v, we can find

another interval I ′ such that I ′ contains all the vertices which are not in the subtree rooted

at v and the same set of points in RB as I.

Proof. If we repeatedly move L(v) (which is X(v)) in the direction of OD(B) and let I ′

be the interval that contains the resulting point, we can verify that I ′ contains exactly the

same set of points in RB as I. By moving L(v) a sufficiently large number times in the

direction of OD(B), the new interval I ′ will also contain all points in RB (any point with

finite coordinates which is in RB), which completes the proof. The other claim can be proved

similarly. ¥

Now, let us assume that we are given the costs of the links in a graph G and want to find

the labels for the links based on the labels given by the VL algorithm to the vertices of G.

The following lemma illustrates how to do this.
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Lemma 8. For any assignment of costs to the edges of a graph G, and with labels assigned

to the vertices of the graph by the VL algorithm, we can always find suitable intervals for

the links so that the result is an optimum 〈1, d〉-MSLIRS.

Proof. First, we will consider a link e = (u, v) and the set of vertices Se reachable (by a

shortest path) through e. The link e is in a block, say B, of G. We let Q1 = B ∪ Se that

is Q1 is the subset of vertices in B that are contained in Se. Let us consider a vertex z

which is a vertex in the subtree of BT (G) rooted at B. If z is not in B but is contained in

Se, by Lemma 4, Se also contains all the vertices in the subtree of BT (G) containing z (we

denote the vertices in this subtree by the set Q2). Finally, if z is not in a child block of B,

Se must contain all the vertices that are not a child of B (we denote the set containing all

these vertices by Q3).

Lemma 6 shows that we can always find an interval covering exactly the vertices in Q1.

If there is any point in Q2 (or Q3) then the articulation point joining B to the vertices in

Q2 (Q3 respectively) must also be in Q1. This is because this articulation point is the only

vertex connecting B to the child subtree (or the vertices of G that are not contained in the

subtree rooted at B) and so the only way to reach those vertices. Lemma 7 shows that we

can always find an interval containing the same set of points in Q1 at the previously assigned

interval, and covering all the points in Q2 (Q3). This completes the proof. ¥

Example 8. In the graph G of Figure 5, let us assume that the cost of the edge (v1, v2)

is extremely large and the cost of any other edge is 1. The interval assigned to the edge

e = (v1, u1) should contain all the vertices, except v1. The interval [−1..0,−1..1] contains

Q1 = {v2, u1}. Therefore we can find another interval which contains all vertices in the

subtree of BT (G) rooted at u1 (Lemma 7). This interval is [−6..0,−6..1].

Now we can easily prove the main result of this paper.

Theorem 1. A graph G has an optimum 〈1, d〉-MSLIRS with dynamic cost links, if and

only if G has at most 2d non-articulation vertices.

Proof. Lemma 1 states that any graph having more than 2d non-articulation points can

not support an optimum 〈1, d〉-MSLIRS with dynamic cost links. By Lemma 8 if a graph G

has at most 2d non-articulation points we can always find a fixed labeling for the vertices

such that for any costs assigned to the links, we can find intervals for each link to support

an optimum 〈1, d〉-MSLIRS. ¥

Corollary 1. The class of graphs supporting an optimum 〈1, d〉-MSLIRS with dynamic cost

links is a strict subset of the class of graphs supporting an optimum 〈1, d+1〉-MSLIRS with

dynamic cost links.
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4 Conclusion and open problems

Characterizing the class of graphs which support different variations of IRS is a well-known

problem. Assuming that the costs of links (and therefore the intervals assigned to links) may

vary over time for a fixed set of labels assigned to nodes seems quite natural. In this paper,

we completely characterized the class of networks supporting an optimum 〈1, d〉-MSLIRS

with dynamic cost links. Theorem 1 shows that adding the number of dimensions strictly

increases the power of IRS. In other words, for any d ∈ IN there is a is a class of graphs

which does not support optimum 〈1, d〉-MSLIRS with dynamic cost links, but supports an

optimum 〈1, d+ 1〉-MSLIRS.

Characterizing the class of graphs supporting an optimum 〈k, d〉-MSLIRS with dynamic

cost links which is a generalization of the result of this paper, is a very interesting open prob-

lem. Even if we consider the case with fixed cost links the problem is still open. Assuming

the case in which the IRS is not necessarily optimum, another open problem is to find lower

bounds on the length of paths traversed by messages. We can also consider the variants in

which the IRS is not necessarily linear or strict. For more open problems in this area, we

refer the reader to a comprehensive survey by Gavoille [Gav00].
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Algorithm VertexLabeling(G, BT );

Input: G (a simple connected and undirected graph).

BT (the block tree of G).

Output: L (an array containing a d-dimensional label for each vertex of G).

begin

let k ← number of non-articulation points in G;

let d← dk/2e;

let B0, B1, ... be the DFS order of blocks in BT ;

let v1, v2, ..., vk be the order of non-articulation vertices

in B0, B1, ... respectively;

for each vi, 1 6 i 6 d

let OD(vi)← −→xi ;

for each vi, d < i 6 k

let OD(vi)←←−−xi−d;

for each vertex v of BT

let OD(v)← empty set;

for each non-articulation vertex u in the subtree of BT rooted at v

let OD(v)← OD(v) ∪OD(u) ;

let X(B0)← (0, 0, ..., 0);

for each vertex v in BT such that X(v) is already known

for each child c of v

let Y ← move(X(v), OD(v));

let X(c)← move(Y,OD(c));

for each block B in G

for each non-articulation point v in B

let Y ← move(X(B), OD(B));

let X(v)← move(Y,OD(v));

for each vertex v in G

let L(v)← X(v);

end;

Figure 6: Algorithm for labeling the vertices of a given graph G.
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