*

The Verification of Hypermedia Design Composition

Jing Dong, Paulo S.C. Alencar, Donald D. Cowan
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
{jdong,palencar,dcowan}@csg.uwaterloo.ca

Abstract

Developing large-scale software systems by integrating software components becomes important practice
due to the increasing complexity and size of these software applications. However, the unexpected interactions
among the components of software systems are often the cause of failure of component-based systems. The
analysis of the properties of the components and their compositions allows us to detect these interactions
and correct the composition errors. Discovering composition errors early in the development process can save
considerable effort of fixing them downstream. This paper introduces a rigorous analysis approach based on
model checking to software design composition. In particular, the analysis goal is to verify whether properties
related to structural, behavioral and evolutionary aspects of the design component specifications hold when
these components are integrated. We illustrate our approach with a hypermedia case study, showing how to
represent, instantiate and integrate design components, and how to find design composition errors using model
checking techniques.

Keywords: Software design and analysis, complex software systems, component-based software development,
formal methods, web-based systems, model checking, hypermedia design patterns, design components.

1 INTRODUCTION

Software product information becomes more frequently delivered as hypermedia documents because of the avail-
ability of the World-Wide Web and its associated communications infrastructure. As one of the world’s largest
publishers of printed and machine-readable documentation, IBM is constantly seeking new ways to create, man-
age and deliver documentation to make it more effective for the customer and less expensive to produce and
manage. This joint industry/university project is motivated by the difficulties that large software companies face
when they have to create, manage and maintain large size of rapidly changing complex hypermedia documents
of product information. LivePage [10] was proposed to address the documentation needs of IBM within this new
Web and Internet-based world.

However, although developing hypermedia systems with component-based techniques [25] can lead to fast time-
to-market, complex software applications such as these normally cannot be built from simply putting software
components together. Many experiments [12, 14] indicated that deep knowledge about the domain and about
the software design is a critical factor in the construction of such applications. Many software components must
guarantee critical functional, fault-tolerant, real-time, and performance properties. Proving such properties still
hold after the composition of these components can increase our confidence on the correctness and reliability of
the integration. Proofs based on formal, rather than informal, techniques make our reasoning precise; moreover,
they are amenable to mechanical aids such as syntax and semantics checkers. Errors in the designs of these
systems are difficult and expensive to find and correct if propagated to the implementation phase. Designers
must be able to formally analyze the composition of the software components at the design level.

*This work is being supported in part by the NSERC, and the CSER grant funded by IBM Canada and NRC.

Design components [16] have been proposed to reify good design practice, such as design patterns [11], from
conceptual design building blocks into a tangible and composable form. Design components focus on achieving
component-based problem solving instead of component-based implementation. People are especially interested
in discovering and documenting such reusable design experience in different domains as, for example, in hypertext
design [24]. However, less work has been done on reasoning about the composition of these design patterns.

There is an increasing interest in modeling software by various formalisms, and checking properties or finding
errors against the models by model checkers [6]. Numerous examples can be found [7] in areas such as requirement
analysis, distributed cache coherence analysis, word processor design analysis, mobile IP protocol analysis, CAD
algorithm analysis, real-time operating system kernel analysis, and Java meta-locking algorithm analysis.

In this paper, we describe a generic specification approach for design components in hypermedia applications
and a framework in which the composition of such components can be verified. The approach allows us to
characterize structural and behavioral aspects, and a specific form of evolution of these components. The main
contributions of this paper can be summarized as follows: (i) an approach to specify an abstract design component
in a generic way. This generic specification can be instantiated to the model of a concrete design component with
the corresponding domain knowledge of the application. The specification language is based on a well-known
declarative programming language, Prolog, which reduces the user’s learning curve; (ii) a process that supports
the verification of design components in order to analyze through model checking whether composition properties
hold; (iii) the definition of some aspects (structural, behavioral and evolutionary) of the design analysis with the
specification language that allows us to check not only the properties of each aspect independently, but also to
check how changes to one aspect may affect properties of other aspects. For example, we are able to check whether
behavioral properties of the composition hold when the system structure changes, or whether the structural and
behavioral properties still hold when the design component evolves by the addition or removal of a component
element; (iv) a case study applying the systematic approach to specify and verify the composition of design
components in the hypermedia domain.

The remainder of this paper is organized as follows. Section 2 describes the gist of our analysis techniques
including a design analysis process based on abstract design component specifications and model checking tech-
niques. Section 3 gives details of a case study illustrating the design analysis process. We analyze a hypermedia
design by checking whether relevant structural, behavioral and evolutionary system properties hold. The last two
sections are about related work and conclusions.

2 ANALYSIS TECHNIQUE

In this section, we introduce our design analysis process including design component representation, instantiation,
integration and property checking. We also describe the model checking technique used in our design analysis to
verify composition properties.

Figure 1 illustrates the main characteristics of the design analysis process underlying our approach. Design
components are represented in a declarative way using XL. The representations are generic in the sense that they
capture good design practice in a domain-independent way. These declarative representations, which constitute
models of the design components, are instantiated into concrete domain-specific representations and, in this
way, design practice can be reused. The concrete design components are integrated to be a model of the design
composition, X, which is then subjected to automated verification.

2.1 Formal Specification and Verification Techniques

Formal automated verification techniques constitute the core of our analysis approach. Essentially, we rely
upon Prolog proofs [27] and model checking techniques [6] to analyze the composition and integration of design
components. Model checking entails comparing two formal objects (X, ¢), e.g. the software design components
and their compositions are portrayed as a logic model, 3, and the properties of these components are represented
as logic formulas, ¢. One assumes that if a formula ¢ is true in the model X, then the corresponding property holds
in the model of the design. We use a model checker as a black box to check ¥ against the property specification,
¢. The model checker outputs either true, if ¥ satisfies ¢, or a counterexample, if it does not. When a property

Design Component A Design Component B

Representation

\

Generic Description of Generic Description of
Design Component A Design Component B

Instant iation N

Model of Design
Component B

Model of Design
Component A

Integration

(Model of Design Composition J(———

XSB Prolog,
XMC Model
Checker

Property

=

Figure 1: The Design Analysis Process

violation is found, we can go back to check and update the design composition. One reason why this verification
technique is so promising is that model checking can be automated for many temporal logics.

XMC [21] is a model checker for verifying temporal properties of a system. It is written in the XSB tabled
Prolog programming system [27]. Temporal properties are expressed in the alternation-free fragment of the u-
calculus, a very expressive temporal logic [18]; the system to be verified is described in the model specification
language for XMC (called XL) which is a highly expressive extension of value-passing CCS [20]. Prolog terms
and predicates are used respectively to represent values and computations. Thus specifications can make use
of recursive data structures and computations. XMC has been successfully used to verify various systems as
documented in [22].

In the next subsections we describe each phase of our design analysis approach. In particular, we show how the
structural and evolutionary design component representations are specified in XSB Prolog by rules and facts and
the behavioral design component representations are specified in XL, the XMC specification language. In this
way, we will be able to verify structural and evolutionary composition properties using the XSB Prolog deductive
facilities and verify behavioral composition properties expressed in the p-calculus temporal logic using the XMC
model checker.

2.2 Representation

In the initial phase, design components, such as design patterns, are represented in Prolog and XL and stored in
a XSB Prolog database. There are several advantages of using XSB Prolog as a repository of design knowledge.
First, the representations of these components can be reused by instantiating the corresponding generic Prolog
and XL descriptions of each component when it is applied to produce a concrete domain-specific component
representation. Second, the properties and constraints of each design component can be described in temporal
logic and thus be checked in XMC. Third, the addition and removal of structural facts about design components
can be accomplished by using the Prolog assert and retract clauses. Fourth, design components can be recovered
through Prolog deductive facilities.

2.2.1 Structure

The structural representation of design components is specified in XSB Prolog in terms of object-oriented design
primitives in a predicate-like format. Each design primitive consists of two parts: name and argument. The
name part contains the name of an entity or a relation in object-oriented design, such as class, inheritance, etc.
The argument part contains generic information about an entity or a relation such as the information on the
participants of an inheritance relation. In the following, we present the syntax and the meaning of the design
primitives used in this paper?!:

e class(C): C is a class.
e abstractclass(C): C is an abstract class.
e inherit(4, B): B is a subclass of A.

e variable(C, A, V,T): V is the name of an attribute in class C' with type T. T is optional. A describes the
access right of this attribute, e.g. public, private, or protected.

e method(C, A, F, R, P;,T1, P2, T3, ...): Fis a method of a class C. A describes the access right of this method,
e.g. public, private, or protected. R describes the return type. If no return value is required R can be the
value “void”. The method’s parameters and their types are Py, T1, P, T3, ..., respectively, and are optional.
The return type R is also optional if the method has no parameters.

o invoke(C, Cy, 0,04, P): A method O; which belongs to the object O is invoked in the method Cj of the
class C, where P is the parameter of the method Oy. P can contain zero or more parameters depending on
the number of parameters the method Oy has.

o element(E,, S1, B2, Sa, ...): E; is an element of set S;. E3 is an element of set S, and so on.

Reference omponent Component
Update(Component) reference
Display() Shoyv()
GoTo() o) Notify() 0
A component ->Show(); N

| ——

ConcreteReference reference > Update(this);

Update(Component)
Display()

Figure 2: Active Reference Pattern (Class Diagram)

As an example, we use the Active Reference pattern [24] to illustrate our representation formalism. In many
hypermedia applications, particularly those with spatial or time structures, the user usually needs to have visual
knowledge about the current location in terms of spatial or time space during the navigation. Providing this
information not only helps the user to find out the current position in the complex navigation space, but also
allows him or her to change to other position freely. The Active Reference pattern was proposed to address this
issue by providing a perceivable and permanent reference about the current status of navigation. The current
status is usually highlighted. One common example of the application of the Active Reference pattern is to
keep an index permanently visible on the screen while navigating a multi-page document. An OMT description
of this pattern is shown in Figure 2. The Component class is the navigation component, in which the Show
operation is defined to show its contents on the screen. The Notify operation is used to notify the change of
the current navigation status as, for example, closing the display of the current component and opening another
component. The Reference class is an abstract class which defines the interface of a list of operations. The Update
operation is used to change the visual highlight showing the current position in the navigation structure when a
new navigation component is on display. The Display operation is to display or refresh the active reference on the
screen. The GoTo operation is defined to change the current status by directly selecting an item on the active
reference to display the corresponding component. The ConcreteReference class implements different concrete
active references. For instance, an index can be a textual active reference to a document; a map can be a graphic
active reference to a travel information system.

The representation of the structural aspect of the Active Reference pattern in XSB Prolog is shown as follows:

active_reference(Component,Reference,ConcreteReferenceSet,
Show, Notify, Update, Display, GoTo) :-

assert(class(Component)),

assert(method(Component, public, Show)),

assert(method(Component, public, Notify)),

assert(variable(Component ,private,reference,Reference)),

assert(invoke(Component, Notify, reference, this)),

assert(abstractclass(Reference)),

assert(method(Reference, public, Update, void, component, Component)),

assert(method(Reference, public, Display)),

assert(method(Reference, public, GoTo)),

assert(invoke(Reference, GoTo, component, Show)),

forall (member(ConcreteReference, ConcreteReferenceSet), assert(class(ConcreteReference))),

forall(member(ConcreteReference, ConcreteReferenceSet),

assert(method(ConcreteReference, public, Update, void, component, Component))),
forall(member(ConcreteReference, ConcreteReferenceSet),

1 A more comprehensive set of design primitives is described in 8, 2].

assert(method(ConcreteReference, public, Display))).

The Prolog rule, active reference, represents the structural aspect of the Active Reference pattern. The ar-
guments of active reference denote the generic elements, e.g., classes, attributes, or methods. For example,
Reference is an abstract class; Show is a method. The Prolog operators, assert and retract, are used to
insert or remove certain facts into or from the Prolog database, respectively. The forall predicate represents the
universal quantification operator. When it is used with the member predicate, it can quantify over a set of class
names and apply a Prolog rule on the selected members.

2.2.2 Behavior

The behavioral design component representations are specified in XL, the model specification language for XMC.
XL is a highly expressive extension of value-passing CCS.
The syntax of XL specification is given as follows:

Pdef -> (Pname ::= Pexp .)*
Pname -> Term
Pexp -> Pexp o Pexp Prefix
| Pexp # Pexp Choice
| Pexp ’|’ Pexp Parallel Composition
| Pexp @ PortMap Relabelling
| Pexp \ PortList Restriction
| Pname Recursion
| in(Port,Term) Communication (input)
| out(Port,Term) Communication (output)
| action(Term) Communication (non-sync)
| Comp Computation (Prolog expression)
| if(Comp, Pexp, Pexp) Conditional Expression
| zero Empty process (0 in CCS)
| nil Empty computation

PortMap -> [Port / Port (, Port / Port)*]
PortList -> { Port (, Port)#* }

Term -> PrologTerm

Comp -> PrologPredicate

Port -> PrologAtom

Pname is a parameterized process name, represented as a Prolog term; Comp is a computation, e.g., X is Y+1.
Process in(Port,Term) inputs a value over port Port and unifies it with term Term; out (Port,Term) outputs
term Term over port Port; Process action(Term) specifies an action that is represented by Term and used for non-
synchronous communication. Process if (Comp, Pexp, Pexp) behaves like the first Pexp if computation Comp
succeeds and otherwise like the second Pexp. Operation ‘0’ is sequential composition; ‘|’ is parallel composition;
‘4’ is nondeterministic choice; ‘@’ is relabeling where PortMap is a list of substitutions; and ‘\’ is restriction
where PortList is a list of port names. Recursion is provided by a set of process definitions, Pdef, of the form
Pname ::= Pexp.

Consider, for example, the specification of the Alternating Bit Protocol [26] in XL. We assume that any text
after the % character is a comment.

medium(Get, Put) ::=
in(Get, Data);
{ out(Put, Data)
action(drop)
};
medium(Get, Put).

sender (AckIn, DataOut, Seq) ::=
% Seq is the sequence number of
% the next frame to be sent
out(DatalOut, Seq);
{
in(AckIn, AckSeq);
if AckSeq == Seq
%% successful ack, next message
then {
NSeq is 1-Seq;
sendnew(AckIn, DataOut, NSeq)
}
%% unexpected ack, resend message
else sender(AckIn, DataOut, Seq)

%% upon timeout, resend message
sender (AckIn, DataOut, Seq)
}.

sendnew(AckIn, DataOut, Seq) ::=
action(sendnew);
sender (AckIn, DataOut, Seq).

receiver(DataIn, AckOut, Seq) ::=

%% Seq is the expected next sequence number

in(DatalIn, RecSeq);

if RecSeq == Seq

then {

NSeq is 1-Seq;
action(recv);
out (AckOut, RecSeq);
receiver(DataIn, AckOut, NSeq)

}
else {
%% unexpected seq, resend ack
out (AckOut, RecSeq);
receiver(Dataln, AckOut, Seq)
}.
abp ::=
sendnew(R2S_out, S2R_in, 0)
| medium(S2R_in, S2R_out) % sender -> receiver
| medium(R2S_in, R2S_out) % receiver -> sender

| receiver(S2R_out, R2S_in, 0).

The process medium represents a noisy channel. The sender process sends a packet to the channel and waits
for an acknowledgement. Upon timeout, it resends the packet. The receiver process receives a packet from
the channel and sends an acknowledgement back. The abp process is the parallel composition of the previously
described processes.

The UML [5] collaboration diagram shown in Figure 3 describes the dynamic aspect of the Active Reference
pattern, which contains four messages between two objects. The message r;.GoTo and c» . Show present a sequence
of operations with the subscript of the name of each object instance defines the time order of these two operations.

Cc,.Show

r .G.oTo>

r: Reference c: Component
<4+—
c'.Notify

r2.Update

Figure 3: Active Reference Pattern (Collaboration Diagram)

Similarly, ¢! .Notify and 72 .Update presents a time order by the superscript of the name of each object instance.
Note, Figure 3 describes two separate sequences which may not correlate together. Superscripts and subscripts
are used to separate these two sequences. It is also possible to use two collaboration diagrams to make this
distinction.

The behavioral aspect of the Active Reference pattern is modeled in terms of the collaboration among the
methods in the classes of this pattern in XL shown as follows:

rGoTo(Reference, GoTo, Component, Show, C) ::=
out(C, (Reference, GoTo, Component, Show))

o action(r_goTo(Reference, GoTo)).
cShow(Reference, GoTo, Component, Show, C) ::=
in(C, (Reference, GoTo, Component, Show))

o action(c_Show(Component, Show)).

cNotify(Component ,Notify,Reference,Update, R) ::=
out(R, (Component, Notify, Reference, Update))
o action(c_Notify(Component, Notify)).

rUpdate(Component, Notify, Reference, Update, R)
in(R, (Component, Notify, Reference, Update))
o action(r_Update(Reference, Update)).

ref (Reference,Component ,GoTo ,Update,Show,Notify) ::
rGoTo(Reference, GoTo, Component, Show, C)
| cShow(Reference, GoTo, Component, Show, C)

| cNotify(Component,Notify,Reference,Update, R)

| rUpdate(Component, Notify, Reference, Update, R).

where each XL process describes the behavior of a method and the ref process defines the behavior of this pat-
tern as the parallel composition of these processes. Each message shown as a line with an arrowhead in Figure 3
represents a communication between two objects. One object sends the message to a channel and the other object
receives the message from this channel. Each object may perform some actions before or after the message is sent.
For example, rGoTo (r1 .GoTo) defines a process that sends the message (Reference, GoTo, Component, Show)
to a channel C and performs an action. cShow (cz.Show) is a process that receives the message (Reference,
GoTo, Component, Show) through the channel C and also performs an action.

2.2.3 Evolution

The evolutionary representation of design components is also specified in XSB Prolog in terms of object-oriented
design primitives in a predicate-like format. For example, the non-determinism in active reference leaves space
for evolution, i.e., for adding or removing concrete classes which inherit from the abstract class Reference. The
addition or removal of such classes can be performed by the extend reference and retract_reference rules
respectively, which in turn assert or retract the corresponding facts related to the insertion or removal of these

concrete classes.

extend_reference(Component, Reference, NewConcreteReference, Update, Display, GoTo) :-
assert(class(NewConcreteReference)),
assert(inherit(Reference, NewConcreteReference)),
assert(method(NewConcreteReference, public, Update, void, component, Component)),
assert(method(NewConcreteReference, public, Display)).

retract_reference(Component, Reference, 0OldConcreteReference, Update, Display, GoTo) :-—
retract(class(0ldConcreteReference)),
retract(inherit (Reference, 0OldConcreteReference)),
retract (method(0ldConcreteReference, public, Update, void, component, Component)),
retract (method(0ldConcreteReference, public, Display)).

2.3 Instantiation and Integration

Whenever a component is used in a specific application, it needs to be instantiated to include the application
domain information. This process can be achieved by unifying the arguments of the description of each design
component with terms representing domain information. On the other hand, the composition of two design
components can be achieved by overlapping their common parts.

In summary, the design components are represented as Prolog theories (first-order theories), but our results can
be applied to other formalisms. Component instantiation is based on theory interpretation, a formal approach to
refinement. Composition is also based on theory interpretation and on some criteria to ensure that the composition
of design components is correct. However, in this paper, instead of focusing on our instantiation and composition
techniques, we concentrate on the verification of composition properties. For a more detailed description of the
composition techniques see, for example, [9].

2.4 Property Checking

As we have previously mentioned, we will verify structural and evolutionary composition properties using the
XSB Prolog deductive facilities and verify behavioral composition properties expressed in the p-calculus temporal
logic using the XMC model checker.

The p-calculus temporal logic is a modal calculus whose semantics is usually described over sets of states of
labeled transition systems. The p-calculus is encoded in XMC in an equation form as follows:

D -> Z += F (least fixed point)
| Z -= F (greatest fixed point)
F->Z |ttt | ff| F\/FIF/\NFI|<A>F| [A]IF

Z is a set of formula variables encoded as Prolog atoms; A is a set of actions; tt and £f are propositional constants;
A and V are standard logical connectives; <A> F ([A] F) denotes that possibly (necessarily) after the action A

the formula F holds.
Some temporal properties, such as deadlock and drop package, are described in p-calculus as follows:

%% The system can deadlock.
deadlock += [-] £ff \/ <-> deadlock.

%% A packet can be lost without being received
drop_packet += <sendnew>lost \/ <->drop_packet.
lost += <sendnew>tt \/ <-recv>lost.

These properties can be checked against the model of the Alternating Bit Protocol by XMC.

3 CASE STUDY

In this section, we first describe two hypermedia design components and then analyze their compositions by
representation, instantiation and integration of these components. Properties are checked against the structural
and behavioral aspects of the composition model. We also check whether structural and behavioral properties
hold when a design component evolves by the addition or removal of a component element. We have adopted the
case study related to the design of the LivePage system [10].

3.1 Two Design Components

Hypermedia design patterns [24] have been proposed to reuse design experience, to improve communication
within and across software development teams, to capture explicitly the design decisions made by designers, and
to record design tradeoffs and design alternatives in hypermedia applications. A number of design patterns have
been discovered, such as the Navigation Observer pattern, the Active Reference pattern, the Navigational Contexts
pattern, and the Information on Demand pattern. A comprehensive catalog of hypermedia design patterns can be
found in [13]. In the following, we will use the Active Reference pattern and the Navigational Contexts pattern,
as an example, to show the description of these design pattern components and their composition, and to verify
the properties by a model checker (XMC).

3.1.1 Active Reference

The Active Reference pattern was previously described in Section 2.2.

3.1.2 Navigational Contexts

Hypermedia applications usually involve navigating collections of nodes, which may be explored in different ways
according to the task the user is performing. For example, collections of paintings may be studied author by author,
or explored by different categories, e.g., nature paintings or architecture paintings. The Navigational Contexts
pattern [24] separates the context information from the content of a hypermedia component and dynamically
attaches different context information to a component. This enrichment of the navigation interface, when a
component is visited in that context, can be achieved similar to the Decorator pattern [11] (see the OMT diagram
in Figure 4). If the collections of hypermedia components are modeled as an aggregate similar to that in the
Composite pattern [11] (see the OMT diagram in Figure 5), the Navigational Contexts pattern can be seen as
the integration of the Decorator pattern and the Composite pattern. Its OMT diagram is shown in Figure 6.
The names of some classes and operations have been changed to represent the corresponding meanings in the
Navigational Contexts pattern, e.g., the Decorator class is changed to the Context class, the Leaf class is changed
to the Content class, and all Operation operations are changed to the Show operations which are used to display
the corresponding content or context information on the screen.

3.2 Representation

The representation of the structural, behavioral and evolutionary aspects of the Active Reference pattern was
previously described in Section 2.2.

The Prolog description of the structural aspect of the Navigational Contexts pattern can be achieved by
incorporating all corresponding name changes (discussed in the previous section) and instantiating the Prolog
descriptions of the Decorator pattern and the Composite pattern® as follows:

2The Prolog description of the structural aspect of the Composite pattern can be found in [8].

10

Component
Operation()
ConcreteComponent Decorator m
Operation() Operation() 0o] Icomponems > Operation(); \l
ConcreteDecoratorA ConcreteDecoratorB
Operation() Operation() -0 Decorator::Operation();v
addedState AddedBehavior () AddedBehavior ();
Figure 4: Decorator Pattern (Class Diagram)
Component
Operation()
Add(Component)
Remove(Component)
GetChild(int)
l children
Leaf Composite Ko -
. - forall g in children
Operation() Operation() o=~~~ -~~~ -~~~ g.Operation();
Add(Component)
Remove(Component)
GetChild(int)

Figure 5: Composite Pattern (Class Diagram)

11

Component

Show()
Add(Component)
Remove(Component)
GetChild (int)

A
. |

N Context Content Composite R Egrrr—
component S —
Show() 0 Show() Ad d(é)()mponent) fo;e;:(l’ wg l(l')thlld.l’&ﬂ &‘
Remove(Component) & .
A oo > srowg] [GeChid im0

ConcreteContextA ConcreteContextB
Show0 Show() o .| Context::Show(); =
addedState AddedBehavior () AddedBehavior ();

Figure 6: Navigational Contexts Pattern (Class Diagram)

navigational_contexts(Component, Context, ConcreteContextSet, Content, Composite,
Show, Add, Remove, GetChild, AddedBehavior, Components, Children) :-
decorator(Component,Content,Context,ConcreteContextSet, Show,AddedBehavior,Components),
composite(Component ,Composite,Content,Children,Show).

where the decorator rule describes the structural representation of the Decorator pattern:

decorator(Component, ConcreteComponent, Decorator, ConcreteDecoratorSet, Operation,
AddBehavior, Components) =

assert(abstractclass(Component)),

assert(method(Component, public, Operation)),

assert(inherit(Component, ConcreteComponent)),

assert(class(ConcreteComponent)),

assert(method(ConcreteComponent, public, Operation)),

assert(inherit (Component, Decorator)),

assert(abstractclass(Decorator)),

assert(variable(Decorator, private, Components, Component)),

assert(method(Decorator, public, Operation)),

assert(invoke(Decorator, Operation, Components, Operation)),

forall(member (ConcreteDecorator, ConcreteDecoratorSet),
assert(inherit(Decorator, ConcreteDecorator))),

forall(member (ConcreteDecorator, ConcreteDecoratorSet),
assert(class(ConcreteDecorator))),

forall(member (ConcreteDecorator, ConcreteDecoratorSet),
assert(method(ConcreteDecorator, public, Operation))),

forall(member (ConcreteDecorator, ConcreteDecoratorSet),
assert(method(ConcreteDecorator, public, AddBehavior))),

forall(member (ConcreteDecorator, ConcreteDecoratorSet),
assert(invoke(ConcreteDecorator, Operation, Decorator, Operation))).

forall(member (ConcreteDecorator, ConcreteDecoratorSet),
assert(invoke(ConcreteDecorator, Operation, ConcreteDecorator, AddBehavior))).

The evolutionary aspect of the Navigational Contexts pattern is represented as follows:

12

extend_contexts(Context, NewConcreteContext, AddedBehavior, Show) :-
extend_decorator(Context, NewConcreteContext, AddedBehavior, Show).

retract_contexts(Context, 0ldConcreteContext, AddedBehavior, Show) :-
retract_decorator(Context, 0OldConcreteContext, AddedBehavior, Show).

extend_content(Component, NewContent, Show) :-—
extend_component (Component, NewContent, Show).

retract_content (Component, 0ldContent, Show) :-
retract_component (Component, 0ldContent, Show).

where we have reused the following evolutionary representation of the Decorator pattern:

extend_decorator(Decorator, NewConcreteDecorator, AddBehavior, Operation)
assert(inherit(Decorator, NewConcreteDecorator)),
assert(class(NewConcreteDecorator)),

assert(method(NewConcreteDecorator, public, Operation)),
assert(method(NewConcreteDecorator, public, AddBehavior)),
assert(invoke(NewConcreteDecorator, Operation, Decorator, Operation)).
assert(invoke(NewConcreteDecorator, Operation, ConcreteDecorator, AddBehavior)).

extend_component(Component, NewConcreteComponent, Operation)
assert(inherit(Component, NewConcreteComponent)),
assert(class(NewConcreteComponent)),
assert(method(NewConcreteComponent, public, Operation)).

retract_decorator(Decorator, 0ldConcreteDecorator, AddBehavior, Operation)
retract(inherit(Decorator, 0ldConcreteDecorator)),
retract(class(0ldConcreteDecorator)),
retract (method(0ldConcreteDecorator, public, Operation)),
retract (method(0ldConcreteDecorator, public, AddBehavior)),
retract (invoke(0OldConcreteDecorator, Operation, Decorator, Operation)).
retract(invoke(0ldConcreteDecorator, Operation, ConcreteDecorator, AddBehavior)).
retract_component (Component, 0ldConcreteComponent, Operation) :-—
retract(inherit(Component, 0ldConcreteComponent)),
retract(class(0ldConcreteComponent)),
retract(method(0ldConcreteComponent, public, Operation)).

The behavioral aspect of the Navigational Contexts pattern is modeled in terms of the collaboration (see Figure
7) among the methods in the classes of this pattern in XL:

xShow(Context, Component, Concrete, Show, R, T) ::=
in(R, (Concrete, Show, Context, Show))
o out(T, (Context, Show, Component, Show))
o action(x_Show(Context, Show)).

cShow(Context, Component, Concrete, Content, Composite, Show, P, T) ::=
in(P, (Composite, Show, Component, Show))
in(T, (Context, Show, Component, Show)) }

contextShow(Context, Component, Concrete, Show)
contentShow(Content, Show)
compositeShow(Composite, Component, Show)

H H A0 H A

13

x:Context

.Sh
ch.Show n-ohow

|cc:Concretngntext|

cc.AddedBehavior

Figure 7: Navigational Contexts Pattern (Collaboration Diagram)

}

o compShow(Context, Component, Concrete, Content,
Composite, Show).

nShow(Content, Show) ::=
action(n_Show(Content, Show)).

iShow(Composite, Component, Show, P) ::=
out(P, (Composite, Show, Component, Show))
o action(i_Show(Composite, Show)).

ccShow(Concrete, Context, Show, R) ::=
out (R, (Concrete, Show, Context, Show))
o action(cc_Show(Concrete, Show))
o action(AddedBehavior).

nav(Context, Component, Concrete, Content, Composite, Show) ::=
xShow(Context, Component, Concrete, Show, R, T)
| cShow(Context, Component, Concrete, Content, Composite, Show, P, T)
| nShow(Content, Show)
| iShow(Composite, Component, Show, P)
| ccShow(Concrete, Context, Show, R).

3.3 Instantiation

In the previous section, we have shown the generic description of each pattern in XL. Whenever a component is
used in a specific application, it needs to be instantiated to include the application domain information. This

14

process can be achieved by unifying the arguments of the description of each design pattern component with
terms representing domain information. For instance, the Active Reference pattern can be instantiated as the
design of a collection of paintings in a museum with a map as an active reference showing the current visiting
location by highlighting it on the map. This instantiation process is shown as following: active_reference(painting,
ref_interface, [map], show, notify, update, display, goTo). The behavioral aspect can be instantiated as following:
ref(ref-interface, painting, goTo, update, show, notify). Therefore, the design decision and information of the
Active Reference pattern are written in the XSB Prolog database which can be composed with those of other
component instances.

For the example of exploring the paintings in a museum, the user may need to study them with different contexts
through context links. This design decision can be realized and recorded by the application of the Navigational
Contexts pattern as: navigational_contexrt(painting, conteszt, [button], content, composite, show, add, remove,
getChild, showButtons). The behavioral aspect can be instantiated as: nav(context, [button], painting, content,
composite, show). The context link can be a list of buttons, e.g., first, next, previous, last buttons, which are
used to connect all hypermedia components with the same kind of context by a linked list for easy navigation.
For example, Van Gogh’s painting Sun Flowers can be reached while exploring paintings about nature, where
the context information can be the list of buttons connecting to the next, previous, first, or last paintings about
nature in this collection. On the other hand, Sun Flowers can be accessed as a Van Gogh’s work, where the
context information can be the list of buttons connecting to the next, previous, first, or last paintings of Van
Gogh’s work.

The instantiation of the generic design components is similar to framework instantiation, where the classes keep
their relationships (e.g. inheritance and association relations). Only the names of the classes and their attributes
and operations are changed to include the application domain information. Classes in each concrete design
component can be further instantiated to objects using conventional object-oriented techniques. For example,
Van Gogh’s painting SunFlowers can be an instance of the class painting in the concrete Navigational Contexts
component. This instance is represented as | Sun Flowers:painting | in both the object and the collaboration

diagrams.
painting
ref_interface show()
— S add(painting)
inti reference | remove(painting)
ngz;‘tle(zamtmg) getChild (int) -
gogo}(]) . L - notify() g —Ireference > update(thls);xl
"""" ------ f-Jcomponent ->show(); BI
map
update(painting)
display() I I
content . ~_
component conext v composite children
S show show() o
show() o 0 add(painting)
remove(painting)
A - —Icomponem > show();q getChild (int)

forall g in children

button g.show ();

Context::show(); >

show() o T R "
showButons () showButtons ();

Figure 8: The Design Composition

15

3.4 Integration

As the application requires both having an active map showing the current position of the user in a museum and
being able to explore the museum according to different contexts, we can compose the two design component
instances described in the previous section to achieve these goals. The composition can be achieved by overlapping
their common parts. For example, as shown in Figure 8, the painting class is an overlapping part of the two design
components (see Figure 2 and Figure 6). The integrated design can be described as a process in XL (Figure 9).
Essentially, this design, which we call reference _context, is the parallel composition of the structural and
behavioral models of each of the two design components.

reference _context ::=
active reference(painting, ref_interface, [mapl, show, notify, display, goTo)
| navigational context(painting, context, [button], content, composite, show,
add, remove, getChild, showButtons)
| ref(ref_interface, painting, goTo, update, show, notify)
| nav(context, [button], painting, content, composite, show).

Figure 9: The Integration in XL

3.5 Design Analysis Results

The goal of our design analysis is to be able to find design composition errors, with the help of model checking
tools, which can be difficult to detect by visual inspection. In this section, we describe the discovery and correction
of two design errors in the design composition: one error is related to the structural aspect and the other is related :
to the behavioral aspect. We then show how to check the behavioral properties with the structural evolution of
the design. .

There are many different structural properties that can be verified in this application. A simple example "
related to the structural consistency is that a class cannot be defined as both abstract and concrete. This
property is a simple syntactic property of the UML object model and is related to basic type checking of the
structural representations. The negation of this property is represented as: inconsistent -= class(4) /\
abstractclass(A). The verification result showed there was class definition inconsistency because the painting
class was defined as both an abstract class and a concrete class in the composition of the Prolog descriptions. The
reason for this inconsistency is that the Active Reference pattern defines the Component class, whose instance is
the painting class, as a concrete class whereas the Navigational Contexts pattern defines the Component class,
whose instance is the painting class, as an abstract class. This means that the Component class in the Active
Reference pattern cannot be overlapped with the Component class in the Navigational Contexts pattern and
instantiated to the painting class. Instead, it should overlap with the concrete component (the content class) in
the Navigational Contexts pattern. Thus, the ref_interface class in Figure 8 (an instance of the Reference class
in the Active Reference pattern in Figure 2) should have association relationships with the content class instead
of with the painting class. This change can be simply achieved in our design composition model by updating the
bold underlined parts from painting to content in Figure 9.

After the composition takes place and some classes are identified, we can also check properties that do not
amount to basic type checking. As an example, we can check whether classes that have been identified in the
resulting composition are still correctly connected to its dependent classes. The following property describes
that the design composition does not affect the inheritance relationships in the Navigational Contexts pattern

component:

forall(member (inherit(4,B), navigational_contexts(painting, context,
[button], content, composite, show, add, remove, getChild, showButtons)),

member (inherit(A, B), reference_context)).

16

As we continue our analysis on the new design composition with the help of XMC, we found out another error
of the new design. The idea of the Active Reference pattern is to have a permanent and visible reference to a
navigation structure and be able to change the current position by calling the goTo operation in the ref_interface
class. Therefore, the invocation of the goTo operation should eventually invoke both the show operation in the
content class to display the content of a hypermedia component (livenessi1), and the show operation in the
concrete context class, i.e. the button class, to display the context information of the hypermedia component
(Lliveness2). These two liveness properties are described generically in XMC as follows:

livenessi(Reference, GoTo, Content, Show) -=
[r_GoTo(Reference, GoTo)] formulal(Content, Show)
/\ [-] livenessi(Reference, GoTo, Content, Show).

formulal(Content, Show) +=
<n_Show(Content, Show)> tt
\/ formi(Content, Show)
\/ [-] formulai(Content, Show).

formi(Content, Show) +=
<n_Show(Content, Show)> tt
\/ [-{r_GoTo(_,_)}] formi(Content, Show).

liveness2(Reference, GoTo, ConcreteContext, Show) -=
[r_GoTo(Reference, GoTo)]
formula2(ConcreteContext, Show)
/\ [-] liveness2(Reference,GoTo,ConcreteContext,Show).

formula2(ConcreteContext, Show) +=
<cc_Show(ConcreteContext, Show)> tt

\/ form2(ConcreteContext, Show)
\/ [-] formula2(ConcreteContext, Show).

form2(ConcreteContext, Show) +=
<cc_Show(ConcreteContext, Show)> tt
\/ [-{r_GoTo(_,_)}] form2(ConcreteContext, Show).

These descriptions can also be instantiated to represent the liveness properties in this application as follows:
livenessi(ref_interface, goTo, content, show). liveness2 (ref_interface, goTo, button, show).
The model checking of these liveness properties shows that the first liveness property, that the show operation
in the content class is eventually invoked, holds. However, the second liveness property, that the show operation
in the concrete context class (the button class) is eventually invoked, does not hold. Therefore, when the user
clicks on the active reference (e.g. the map of a museum) to change the current position, only the content of the
newly chosen component will be displayed. The context information (the buttons) of this component will not be
shown. We have lost all context information and are not able to navigate by the context links. The solution to
this problem is to move the overlapping part further down to the concrete context class (button). This change
can be achieved in our design composition model by updating the bold underlined parts from painting to button
in Figure 9. The model checking results show that both liveness properties hold this time.

One of the advantages of using design patterns is that they cope with the evolution of the designs. We encode
this evolution information in the descriptions of each design component by the extend_ and retract. rules.
When the application requires to have another kind of context information, e.g. text information, in addition to
button information, we can achieve this design decision of structural change simply by instantiating a predefined
Prolog rule (see Section 3.2) as follows: extend contexts(context, text, showText, show). For example,

17

Van Gogh’s painting Sun Flowers can be reached while exploring paintings about nature through a context link
of buttons, additionally, it can contain the information about the natural aspect of the painting Sun Flowers as
another kind of context information. On the other hand, Sun Flowers can be accessed as a Van Gogh’s work.
In addition to a context link of buttons connecting Van Gogh’s work, the new context (tezt) can contain the
information about the relationships with other paintings by him. The modified design is shown in Figure 10. It
contains one additional concrete context class (text). Therefore, we need to ensure the show operation in this
new concrete context class will be eventually invoked when the goTo operation in the ref_interface class is called.
This property can be described by instantiating the second liveness property as: liveness2(ref_interface,
goTo, text, show). The model checking results show that this property holds in the modified design. Because
the evolution of the design composition may affect the properties related to the unchanged parts as shown in [1],
we need to make sure other properties we have checked still hold after the design changes. For this case, we have
also verified the (1iveness1) and the inconsistent properties in the modified design and there was no reported

error this time.

painting

show()
add(painting)
remove(painting)
getChild (int)

A

—> context content composite <>
component show() o
show() o show() add(painting)
remove(painting)
-] component > show (). getChild (int)
forall g in children N
I] g.show ();
ext| rof interf button button
text m— ef _interface __—_ereference
show) o | update(painting) show() o................. . | Context::show(); >
showText () display() showButtons () showButtons ();
o gl o notify)
Context::show(); > text ->show(); = reference -> update(this) kI
showText (); button ->show();
reference -> update(this); kI map
update(painting)
display()

Figure 10: The Evolved Design Composition

4 RELATED WORK

Keller et al. [16] described a methodical approach to design composition which was illustrated as a process within
a four-dimensional design space. Although our approach is also in the area of software composition, it focuses on
the formal, declarative, and property-based aspects of design composition.

Batory et al. [4] provided domain-independent algorithms to validate component compositions for the GenVoca
model of software generators. In addition to syntactical checking, such as type checking, they provided design rule
(domain-specific constraint) checking to ensure semantical correctness. The design rule checking was achieved
by the debugging capabilities of a general utility based on attribute grammars. In contrast, our work focuses on

reasoning about the design compositions.
Riehle [23] proposed an analysis method for the composition of design patterns. Role diagrams were introduced

18

to describe the patterns, and a role relation matrix was used to visually depict the composition constraints. His
work was restricted to deal with patterns based on object collaborations, and lacked generality and formal
treatment of composition.

Various design pattern recovery methods and tools [17, 15] are related to our work in the sense that all
recovered patterns can be modeled and checked for anomalies in their compositions. The correction of these
anomalies completes the reengineering tasks.

Formalizing design patterns and architecture patterns has been proposed in [3, 19]. Although Mikkonen [19]
has discussed the composition of two design patterns based on a formal method, his approach relies on a specific
specification language (DisCo). The correctness depends on the refinement correctness of this language since
the composition is achieved in terms of refinement. Our approach emphasizes on specifying design components
and their compositions, and checking the properties by a model checker. Moreover, his approach focuses on
formalizing design patterns, whereas our work deals with a more general approach based on design components
[16] and their composition.

5 CONCLUSIONS AND FUTURE WORK

Discovering design errors is very important in that a small piece of design may be mapped to thousands of lines
of implementation code. Finding these errors at the implementation stage might incur much higher expense and
more resource, because these errors may hide in the complex implementation structures, thus are very difficult to
detect.

We illustrate our analysis techniques through a case study on the analyses of the composition of hypermedia
design components. However, our analyses are not restricted to the hypermedia domain. We have analyzed a
design on general system sort [1]. We also developed a method to prove structural and behavioral correctness in
the generic design composition [9].

Our approach showed that the structural and behavioral aspects of design components can be described in
the same formal language so that we can analyze the properties of both aspects of design composition with the
same method. This also opened the door to many interesting and important design analyses as, for instance,
the interactions between the structural and behavioral aspects of software design as illustrated in our case study.
Our approach has several advantages: first, it allows us to find errors in the design composition early in the
development process and save expense to correct them later. Second, it provides mechanisms to achieve automated
verification of the properties of software design. Third, it promotes reuse since the generic representations of
design components can be stored in a repository and retrieved for instantiation and integration in an application.
Fourth, as the composition of components can be treated as a component, the design analysis can be scaled up
incrementally to large component-based software systems. This also addresses the state explosion problem in
model checking by incrementally modeling components and checking their compositions. Fifth, the change of the
design compositions can be achieved by simply modifying limited arguments in the descriptions of the integration
of components as shown in Figure 9. The structural design evolutions can be achieved by applying corresponding
Prolog rules.

Our analysis approach is limited to the kinds of properties that can be proved using Prolog and the highly
expressive p-calculus temporal logic. In principle, as a result of the experiments we have done so far, these under-
lying deductive facilities seem to be adequate for the purposes at hand. Besides verifying structural, behavioral
and evolutionary properties, we are currently defining other classes of properties that we can use in our analysis
of design compositions. These classes may include the properties about (real-)time, event ordering and access
control. We are also working on techniques to map the XL counter-examples back onto the original structural
and behavioral descriptions and assessing how much of this feature can be automated and how much effort is
required to be able to show which parts of the structural and behavioral descriptions need to be revised under
the light of the counter-examples.

The analysis results shown in this paper indicate that it could be highly beneficial to pursue further research
on how the structural design changes may affect the behavior of software system composition, and how these
changes can affect various properties of the design composition. These analyses cannot only provide guidance
on important design decisions, but also be documented to provide information on the rationale behind these

decisions.

19

References

[1] Paulo Alencar, Donald Cowan, Jing Dong, and Carlos Lucena. A Pattern-Based Approach to Structural
Design Composition. Proceedings of the IEEE 23rd Annual International Computer Software & Applications
Conference (COMPSAC), Phoeniz USA, pages 160-165, October 1999.

[2] Paulo Alencar, Donald Cowan, Jing Dong, and Carlos Lucena. An Evolutionary Approach to Structural
Design Composition. Technical Report CS-99-16, Computer Science Department, University of Waterloo,
1999.

[3] P.S.C. Alencar, D.D. Cowan, and C.J.P. Lucena. A Formal Approach to Architectural Design Patterns.
Proceedings of the Third International Symposium of Formal Methods Europe, pages 576-594, 1996.

[4] D. Batory and B.J. Geraci. Validating Component Composition in Software System Generators. Proceedings
of the 4th International Conference on Software Reuse, pages 72-81, April 1996.

[5] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language User Guide. Addison-
Wesley, 1999.

[6] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Verification of Finite-State Concurrent Systems
Using Temporal Logic Specifications. ACM Transactions on Programming Languages and Systems, 8(2):244~
263, April 1986.

[7] E. M. Clarke and J. M. Wing. Formal Methods: State of the Art and Future Directions. ACM Computer
Surveys, 28(4), December 1996.

[8] Jing Dong. A Transformational Process-Based Approach to Object-Oriented Design. Master’s Thesis,
Computer Science Department, University of Waterloo, 1997.

[9] Jing Dong, Paulo Alencar, and Donald Cowan. Ensuring Structure and Behavior Correctness in Design
Composition. Proceedings of the 7th Annual IEEE International Conference and Workshop on Engineering
of Computer Based Systems(ECBS), Edinburgh UK, pages 279-287, April 2000.

[10] B. Fraser, J. Roberts, G. Pianosi, P. Alencar, D. Cowan, D. Germén, and L. Nova. Dynamic Views of SGML
Tagged Documents. Proceedings of the ACM SIGDOC, pages 93-98, Sept. 1999.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns, Elements of Reusable
Object-Oriented Software. Addison-Wesley Publishing Company, 1995.

[12] David Garlan, Robert Allen, and John Ockerbloom. Architectural Mismatch or Why It’s Hard to Build
Systems out of Existing Parts. Proceedings of the 17th International Conference on Software Engineering,
pages 179-185, April 1995.

[13] Daniel M. Germéan and Donald D. Cowan. Towards a Unified Catalog of Hypermedia Design Patterns.
Proceedings of the 38rd Annual Hawaii International Conference on System Sciences, Jan. 2000.

[14] Scott A. Hissam. Experience Report: Correcting System Failure in a COTS Information System. Proceedings
of the International Conference on Software Maintenance, Bethesda, USA, pages 170-176, Nov. 1998.

[15] Daniel Jackson and Allison Waingold. Lightweight Extraction of Object Models from Bytecode. Proceedings
of the 21st International Conference on Software Engineering, Los Angeles, USA, pages 194-202, May 1999.

[16] Rudolf K. Keller and Reinhard Schauer. Design Components: Towards Software Composition at the Design
Level. Proceedings of the 20th International Conference on Software Engineering, pages 302-311, 1998.

[17] Rudolf K. Keller, Reinhard Schauer, Sébastien Robitalille, and Patrick Pagé. Pattern-Based Reverse-
Engineering of Design Components. Proceedings of the 21st International Conference on Software Engi-
neering, Los Angeles, USA, pages 226-235, May 1999.

20

[18] D. Kozen. Results on the Propositional p-calculus. Theoretical Computer Science, 27:333-354, 1983.

[19] Tommi Mikkonen. Formalizing Design Pattern. Proceedings of the 20th International Conference on Software
Engineering, pages 115-124, 1998.

[20] R. Milner. Communication and Concurrency. International Series in Computer Science. Prentice Hall, 1989.

[21] Y.S. Ramakrishna, C.R. Ramakrishnan, I.V. Ramakrishnan, S.A. Smolka, T. Swift, and D.S. Warren. Effi-
cient Model Checking Using Tabled Resolution. Proceedings of the 9th International Conference on Computer
Aided Verification (CAV), Haifa Israel, LNCS1243, Springer-Verlag, July 1997.

[22] C.R. Ramakrishnan, I.V. Ramakrishnan, and S.A. Smolka. XMC: A Logic-Programming-Based Verification
Toolset. Proceedings of the International Conference on Computer Aided Verification (CAV), LNCS1855,
Springer- Verlag, July 2000.

[23] Dirk Riehle. Composite Design Patterns. Proceedings of the ACM Conference on Object-Oriented Program-
ming Systems, Languages & Applications (OOPSLA), USA, pages 218-228, October 1997.

[24] Gustavo Rossi, Daniel Schwabe, and Alejandra Garrido. Design Reuse in Hypermedia Applications Devel-
opment. Proceedings of the ACM International Conference on Hypertext, pages 57-66, April 1997.

[25] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison Wesley Longman,
Reading, Mass., 1998.

[26] A. S. Tanenbaum. Computer Networks. Prentice Hall, 1996.

[27] XSB. The XSB Logic Programming System, Version 2.1. Available from http://www.cs.sunysb.edu/~ sbprolog,
1999.

21

