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Abstract

Given a goal position for the end effector of a highly articulated model, the task of finding the

angles for each joint in the model to achieve the goal is an inverse kinematics problem. Redundancy

of the degrees of freedom (DOF) can be used to meet secondary tasks such as obstacle avoidance.

Joint limit constraints and collision detection can also be considered, as can loops.

Solutions to redundant inverse kinematic problems are well developed. The most common

technique is to differentiate the nonlinear equations and solve a linear Jacobian matrix system.

The pseudoinverse of the Jacobian can be calculated via a singular value decomposition (SVD).

The general SVD algorithm reduces a given matrix first to a bidiagonal form then diagonalizes

it. The iterative Givens rotations method can also be used in our case, since the new Jacobian is

a perturbation of previous one. Secondary tasks can be easily added to this matrix system, but

it is nontrivial to generalize this problem to a highly redundant model in a complex environment

in the computer graphics context.

For this thesis, I implemented and compared several SVD techniques; and found that both

general and iterative algorithms are of linear time-complexity when solving a three-row matrix. I

also programmed and compared different methods to avoid one or multiple obstacles. A complete

system was built to test the speed and robustness of the implementation.
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Chapter 1

Introduction

Elephant trunks, tentacles, snakes, and even some desk lamps can be considered as highly artic-

ulated multilink structures. To model those highly articulated structures and manipulate them

interactively using computer techniques is challenging.

Research on articulated models is well developed in the fields of robotics and mechanical

engineering, although their concerns are somewhat different than those of computer graphics.

Researchers in both robotics and mechanics have their own concerns and criteria, such as dexterity,

forces, etc. Most of the time, these physical concerns can be ignored in computer graphics.

Computer graphics researchers tend to want to simulate arbitrary highly linked models and control

them in an arbitrary complex environment, while robotic scientists and mechanical engineers care

only about the specific robot or machine that they are using. A third major difference is that

computer scientists prefer to present (or render) animated frames on line, while robotic scientists

and engineers would rather to do complex off line computation to ensure correctness. All of

the above motivated my work on solving inverse kinematics (IK) constraint problems for highly

articulated models in a computer graphics framework.

For any articulated model, the end effector’s position and orientation in Cartesian space is

defined by its joint configuration. Given a final position (and orientation) of the end effector,

finding a suitable joint configuration is an inverse kinematic problem. In general, this is a nonlinear

1



CHAPTER 1. INTRODUCTION 2

problem and there are no closed-form solutions for it incrementally. But by differentiating the

nonlinear equations with respect to time, we can get a linear equation and use the pseudoinverse

of the Jacobian to solve it. The joint configuration of an articulated model is specified by a tree

structure. Each node in the tree represents a rigid body or a joint. Each joint has its joint limit

constraints and they are handled by two different methods in my work. Collision detection among

body parts or between the model and its environment, and joint loops, are also considered in my

work.

The pseudoinverse can be calculated via a singular value decomposition (SVD). This method

can detect singularities of a matrix. To avoid the discontinuities caused by singularities and to

robustly calculate the pseudoinverse, I used the damped least square method [22].

LAPACK implements an optimized version of the general SVD method developed by Golub

and Reinsch [10]. This method can be used to compute the SVD for any matrix. Maciejewski [24]

incrementally uses Givens rotations to calculate the SVD for robotic joint configurations. He

uses previous joint configuration information to speed up the algorithm. To suit the needs of my

application, where three-row matrices are mainly considered, I developed a similar incremental

method based on Givens rotations by simply computing the SVD of the transposed Jacobian

matrix. The time spent on inverse kinematic computation for both my method and the algorithm

implemented by LAPACK are linear functions of the number of degrees of freedom, and they run

at almost the same speed.

To specify position (and orientation) of an end effector only takes 3 (or 6) degrees of freedom.

When a linked model has more than 3 (or 6) joints (degrees of freedom) we call it a redundant

system. The redundancy can be used to accomplish secondary tasks such as obstacle avoidance.

The task priority technique, the cost function method, and the objective function approach are

implemented in this work to avoid obstacles. Multiple obstacles can be considered either simul-

taneously using task space augmentation or separately as weighted multiple tasks.

I ran several experiments to test the accuracy of the SVD algorithms and the obstacle avoidance

algorithms. Empirical performance analysis was also done.
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Placing this work in context requires some background knowledge about articulated kinematic

modeling. The following sections of this chapter presents data structures for representing jointed

linked models and the basic motion control techniques for these models. Chapter 2 to Chapter

4 talks about previous research by others. Different inverse kinematic techniques are reviewed in

Chapter 2. Chapter 3 describes the pseudoinverse used in the inverse kinematic solvers, and the

singular value decomposition that finds it. Chapter 4 explains how to avoid obstacles using the

redundancy of the kinematic system. Chapter 5 discusses the results I have obtained by imple-

menting the previous algorithms and by extending them. Chapter 6 concludes and summarizes

my work, and gives some idea for future work.

1.1 Modeling

An articulated object is often modeled as a set of rigid segments connected with joints. The

joints are usually rotational (also known as revolute), or translational (also known as prismatic),

with one single degree of freedom (DOF). They may also be a combination of joints of these

two types, for instance, a spherical joint is a joint with 3 rotational DOFs in the x, y, and z

directions. Multiple DOF joints can be decomposed into kinematically equivalent sequences of

one DOF joints separated by zero length links. Most joints in this work are rotational, and each

of them has one rotational degree of freedom in one of three (x, y, z) directions subject to joint

limits.

A minimal kinematic model is defined by its individual rigid segment lengths, the joint degrees

of freedom, their maximum and minimum joint limits, and a tree structured hierarchy of the

segments and joints.

In such a hierarchy, each node in the tree represents either a rigid body or a joint. Each

segment is associated with a coordinate system to which it is rigidly affixed. Each joint maintains

the rotations currently in effect at the corresponding joint. Joint rotations are coordinate system

transformations relating the orientation of the parent and child segments in the tree. This hier-

archical definition ensures that all segments inherit the rotations applied to joints higher in the
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tree. For instance, in a human model, a rotation applied at the shoulder joint causes the entire

arm to rotate, instead of just the upper arm segment. One fixed joint or rigid segment in the

model should be specified as the root of the tree. When a transformation is applied to it, the

entire model is transformed.

Mathematically, each joint i has a transformation matrix Mi. The matrix Mi is either a trans-

lation matrix T (xi, yi, zi) or a rotation matrix R(θi), both of which are relative to the coordinate

frame of joint i’s parent. The matrix T (xi, yi, zi) is the matrix that translates by the offset of

joint i from its parent joint i−1, and R(θi) is the matrix that rotates by θi about joint i’s rotation

axis.

The position and orientation of any segment in the model is found by concatenating the trans-

formations at each joint from the root (joint 1) to the last joint node (joint i) above this segment

in the tree structure. Since column vectors are used in this project, the overall transformation

from the child’s coordinate system to the parents is given by the product of the matrices along

the path from parent to child,

M = MiMi−1...M2M1, (1.1)

where each M on the right hand side is the transformation matrix of each joint relative to its

parent coordinate system.

There are two fundamental approaches to control the movement of the model: kinematics and

dynamics.

1.2 Forward Kinematics

Forward kinematics explicitly sets the position and orientation of each segment at a specific

frame time by specifying the joint angles for each joint. The position of the end effector in the

parent’s coordinate system is found by multiplying the position vector of the end effector in its

own coordinate system with the transformation matrix M in Equation 1.1.

Normally, not every frame in an animation is defined explicitly. Only a series of keyframes are

given such information. The rest are calculated by interpolating the joint parameters between the
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keyframes.

Linear interpolation is the simplest method, but the result is unsatisfactory. Consider any

degree of freedom in position or orientation of a segment, expressed as a function of time and

denoted by x(t). The velocity and acceleration are the first and second time derivatives. The value

x(t) should be twice differentiable, since physically acceleration can never be infinite. However,

linear interpolation has a discontinuous first derivative and so introduces jerky, non-physical

movement.

Higher order interpolation methods, such as quadratic and cubic spline methods, can provide

continuous velocity and acceleration. This produces smoother transition between and through

the keyframes.

1.3 Inverse Kinematics

Forward kinematics can only indirectly control the position of each segment by specifying rotation

angles at the joints between the root and the end effector. This may result in unpredictable

behavior during interpolation. In contrast, inverse kinematics provides direct control over the

placement of the end effector by solving for the joint angles that can place it at the desired

location.

1.3.1 Problem Statement

A kinematic chain is a linear sequence of segments connected pairwise by joints. It can also be

referred to as a “manipulator” in robotics. The segment that needs to be moved is called the

end effector and it is the free (distal) end of the chain. The other end of chain is called the fixed

(proximal) end or base.

We specify the configuration of a chain with n one-DOF joints as a vector (q1, ..., qn), or simply

q. The position (and orientation) of the end effector, x, is described by its forward kinematic

function:

x = f(q).
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This is a non-linear function with the joint space as its domain and the task space as its range.

The joint space is formed by vectors with n elements, the joint parameters. The task space is

formed by vectors with 3 elements if only the position of the end effector is considered, or 6

elements if the orientation is also considered. In my work, only position is considered.

The goal of inverse kinematics is then to place the end effector at a specified position x, and

determine the corresponding joint variable vector q:

q = f−1(x). (1.2)

Solving this equation is not trivial and the result may not be unique, since f has no unique inverse.

The next chapter is dedicated to different solutions to the inverse kinematic problem.

1.3.2 Redundancy

If the number of joints in the kinematic chain is the same as the dimensionality of the task space

in which they lie (which in our case is 3), we call this system perfectly constrained. If the joint

space has a lower dimensionality, we call it an overconstrained system.

The most interesting case is when a system has more degrees of freedom than the number

of constraints imposed by the goal parameters. We call this underconstrained or redundant.

The difference between the degrees of freedom and goal-imposed constraints is the degree of

redundancy. In this case, there may be infinitely many q’s for one particular x in Equation 1.2.

These extra degrees of freedom can be used to improve the ability of the manipulators in

robotics in both kinematic and dynamic contexts [29, 30, 32, 28, 15, 3, 26]. These abilities include

avoiding one obstacle [23, 9, 13, 39, 16, 11, 5, 12, 35], satisfaction of joint limits [19], singularity

avoidance [27], torque optimization [8, 14], dexterity optimization [17], etc. Chapter 4 talks about

avoidance of one obstacle. Multiple obstacle avoidance is also considered in this work and will be

developed more in Section 5.3.



CHAPTER 1. INTRODUCTION 7

1.4 Dynamics

Unfortunately, inverse kinematics of redundant system does not consider the physical laws of the

real world. Dynamic methods are often used in robotic and engineering fields, since they must

take gravity and external forces into account.

Motion generated by dynamic methods is more realistic since physical laws are considered. In

addition to the kinematic definition of a model, for a dynamic model segment descriptions must

include such physical attributes as the center of mass, the total mass, and the moments of inertia.

Forward dynamics apply explicit time-varying forces and torques to objects. Using Newton’s

law F = ma, we can figure out object accelerations from the given forces and masses. Then with

the position and velocity known at the previous time step, we can integrate the acceleration a

twice to determine a new velocity and position for each object segment in the current time step.

Forward dynamics provides only indirect control of object movement. It is challenging to

calculate the time varying forces needed to produce a desired motion. Plus, there will always be

one equation for each degree of freedom in the model, which leads to a large system of equations

to solve.

Inverse dynamic methods are able to compute the force and torque functions needed to achieve

a specified goal. This is an interesting topic in robotics and engineering, and it can also produce

realistic physical motion in computer graphics. However, if the position and orientation of the

end effector is the main concern, and the motion trajectory and timing of the end effector are

known beforehand, we normally would not care about the physical forces.

1.5 Discussion

From above discussion, we see that no one approach is absolutely better than the other. Depending

on the application, incorporating all the four approaches to some degree seems to be a reasonable

solution.

In the following chapters, the use of inverse kinematics in the interactive manipulation of a

highly articulated model is explored. The goal is to generalize robotic and engineering techniques
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into the computer graphics context. Specifically, we will be looking at techniques suitable for

real-time animation or for use in a modeling user interface.



Chapter 2

Inverse Kinematics Solvers

In this chapter I review several inverse kinematics solvers by other researchers. The numerical

solutions using matrix pseudoinverse is the work of Maciejewski [22]; the numerical solutions using

matrix transpose is the work of Chiacchio et al [6]; and the rest of the solutions are summarized

in a paper of Korein and Norman [18].

2.1 Analytic Solutions

When the system of equations arising from the specification of a goal for a chain is perfectly

constrained, we can sometimes find an analytic solution. Ideally, analytic solutions produce all

possible satisfactory solutions.

As a simple example, consider the three-segment planar chain shown in Figure 2.1 (also

see [18]). The proximal end is constrained to the origin. The segment lengths are a1, a2, and a3,

respectively. The angular joint variables are q1, q2 and q3. For convenience, we give each joint

the same name as the joint variable, each segment the same name as its length variable, and call

the chain’s distal terminal q4.

We can obtain the position of any joint qi by examing the projections of segments on the X

and Y axes, marked off in Figure 2.1. Let xi and yi be the x and y components of the position of

9
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Figure 2.1: A three-segment planar chain

joint qi, we see from the figure that

x2 = a1 cos(q1)

y2 = a1 sin(q1)

x3 = a1 cos(q1) + a2 cos(q1 + q2) (2.1)

y3 = a1 sin(q1) + a2 sin(q1 + q2) (2.2)

x4 = a1 cos(q1) + a2 cos(q1 + q2) + a3 cos(q1 + q2 + q3)

y4 = a1 sin(q1) + a2 sin(q1 + q2) + a3 sin(q1 + q2 + q3).

We can also obtain the orientation θi of segment ai by simply accumulating proximal joint angles:

θ1 = q1
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θ2 = q1 + q2

θ3 = q1 + q2 + q3. (2.3)

These position and orientation equations can be generalized to any 2D kinematic chain with

arbitrary number of segments and arbitrary segment lengths.

Let the goal be to move joint q3 (not the tip q4) to a point (kx, ky). This imposes two

constraints:

x3 = kx

y3 = ky.

Combining these constraints with Equation 2.1 and Equation 2.2, we get

kx = a1 cos(q1) + a2 cos(q1 + q2)

ky = a1 sin(q1) + a2 sin(q1 + q2).

We now have two equations in two unknowns, namely q1 and q2. These equations can be solved

analytically for q1 and q2.

We may also add to the goal a constraint on the orientation of the last link:

θ3 = kθ.

Combining this with Equation 2.3 we have

kθ = q1 + q2 + q3.

Since q1 and q2 are already constrained, this combination gives the solution for orientation.

Unfortunately, if the system is not perfectly constrained, no unique solution exists. How-

ever, Abdel-Rahman [1] developed a generalized practical method for the analytic solution of

constrained inverse kinematics problems with redundant manipulators. This method first yields a
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numeric solution proceeding under the guidance of a selected redundancy resolution criterion. It

then also yields analytic expressions for computing the nonredundant joint rates in terms of the

redundant joint rates. This generalized recursive method can systematically derive the analytic

expressions for all possible solutions of any redundant manipulator.

2.2 Numerical Solutions

Even though the position and orientation equations are non-linear, the relationship between the

velocity of the distal end and the velocities of the joint angles is linear. If the forward kinematic

problem is stated by x = f(q), then numerical solutions to the inverse kinematic problem typically

involve differentiating the constraint equations to obtain a Jacobian matrix

J =
∂f

∂q
,

and solving the linear matrix system

ẋ = J q̇,

where ẋ = dx
dt and q̇ = dq

dt . The matrix J maps changes in the joint variables q to changes in

the end effector position (and orientation) x. The matrix J is an m × n matrix, where n is the

number of joint variables and m is the dimension of the end effector vector x, which is usually

either 3 for a simple positioning task, or 6 for a position and orientation task.

The ith column of J , ji, represents the incremental change in the end effector due to the joint

variable qi. In other words, it is the direction and scale of the resulting infinitesimal end effector

velocity for an infinitesimal unit rotational velocity at ith joint [22]. The columns of J are closely

related to the vector defined from a joint’s axis to the end effector, denoted by pi in Figure 2.2.

In particular, the magnitudes of the ji’s and pi’s are equal, and their directions are perpendicular.

The relation can be extended to three dimensions easily by using the cross product of a unit vector
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Figure 2.2: A physical interpretation of the columns of the Jacobian matrix

along the axis of rotation ai with the vector pi to obtain ji:

ji = ai × pi.
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2.2.1 Matrix Pseudoinverse

The most widely adopted method to solve inverse kinematic problems uses the pseudoinverse of

the Jacobian:

q̇ = J+ẋ. (2.4)

The pseudoinverse gives the unique least-squares solution when the system is redundant.

Iterative schemes are used to compute the desired positional solution from the solution for the

velocities. At each iteration a desired ẋ can be computed from the current and desired end effector

positions. The joint velocity q̇ can then be computed using the pseudoinverse of the Jacobian,

and integrated to find a new joint configuration vector q. The procedure repeats until the end

effector has reached the desired goal. Since the linear relationship represented by J is only valid

for small perturbations in the manipulator configuration, J must be recomputed at each iteration.

Fortunately, when the time interval is small, the finite displacement relationship is nearly

linear [19]:

δq ≈ J+δx,

and the assumption that J is constant over the interval of the displacement is valid. This is

equivalent to Euler integration of the differential equation represented by Equation 2.4, and is the

approach used in my work.

For a redundant system, the joint velocities corresponding to a given end effector velocity

can be computed using a null-space projection technique. This will be discussed in Chapter 4 in

detail.

2.2.2 Matrix Transpose

One shortcoming of the pseudoinverse solution is that it has no repeatability. In other words,

a closed or cyclic work space trajectory will not generally produce a closed or cyclic joint space

trajectory [21]. This non-repeating property is not desired in most practical robot applications.

Chiacchio, Chiaverini, Sciavicco, and Siciliano [6] uses the Jacobian transpose to resolve closed-

loop inverse kinematic problems. While in an interactive goal-position specified computer graphics
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application it is difficult to lead the kinematic chain back to its original configuration to form a

cyclic work space trajectory, and this might lead to usability problems, we will not consider this

difficulty further here.

2.3 Lagrangian Methods

Another approach to solving a redundant (underconstrained) system is to propose an objective

function to be minimized and to apply optimization techniques. Lagrangian methods can be

used to extend an underconstrained redundant system to a perfectly constrained system using

Lagrange multipliers.

The objective function is application dependent. Examples based on joint limit constraint

functions are given in Section 2.5.1 and Section 2.5.2. Suppose we are given an objective func-

tion P (q), where q is the joint vector (q1, ..., qn), and we want to minimize it subject to the m

constraints

c1(q) = 0

...

cm(q) = 0.

We introduce a vector of variables u = (u1, ..., um), called the Lagrange multipliers, and write

down the Lagrangian function:

L(q,u) = P (q)− (u1c1(q) + u2c2(q) + ...+ umcm(q)).

By setting the partial derivatives of L with respect to q1 through qn to zero, we create n new

equations:

∂L/∂q1 = 0

...
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∂L/∂qn = 0.

This results in a system of m+n equations in m+n unknowns (q’s and u’s), which is a perfectly

constrained system.

By rewriting the constraints as a single vector-valued function and performing algebraic ma-

nipulation directly on it, it is sometimes possible to avoid solving such a large system of equations.

Suppose we write the original constraints as follows:

c(q) = 0. (2.5)

The Lagrangian, which is scalar-valued, can be rewritten as

L(q,u) = P (q)− uT c(q).

Setting the derivative with respect to the vector q to zero, we get the vector equation:

∂L

∂q
=
∂(P (q))
∂q

− ∂(uT c(q))
∂q

= 0. (2.6)

Equation 2.5 and Equation 2.6 form two vector equations in two vector unknowns (q and

u). If we can eliminate u from these two equations, we can obtain in a single vector equation

consisting of n scalar equations in the original n unknowns, q1, ..., qn.

2.4 Reach Hierarchy

Korein and Badler [18] proposed a different approach to solving point goal reaching problems.

The procedure relies on precomputed workspaces for the chain and each of its distal subchains.

A distal subchain is a subset of a larger chain that shares its distal end.

We still use the three-segment planar chain in Figure 2.1 as our example. Let the chain be C1,

and its workspace be W1. Let the subchain with just the most proximal joint (q1) and segment

(a1) deleted be C2 with workspace W2, and so on. Then each workspace Wi is constructed by
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Figure 2.4: Basic(a) and dual(b) joint adjustment problems. In the basic problem, we adjust Wi+1

to includes p; in the dual case, we look for the intersection between the Wi+1 and the trajectory
of p.

sweeping Wi+1 about joint qi, as shown in Figure 2.3.

Given these workspaces, the algorithm proceeds as follows:

If goal p is not in W1, then

it is not reachable: give up

Otherwise:

for i := 1 to number of joints in C1:

adjust qi only as much as is necessary so that the next workspace Wi+1 includes the goal p.

We can carry out the adjustment step without iteration by solving the dual adjustment problem

of bringing the goal into the workspace as shown in Figure 2.4. This becomes a problem of finding

the intersection between the workspace boundary and the trajectory of the goal, which is a circle

for a revolute joint and a line for a translational joint.

The disadvantage of this method is that it requires precomputation and storage of workspaces.

A workspace can be geometrically very complex in the case of a large number of constrained joints.

When the goal and orientation spaces are of high dimensionality, this method is difficult to use.

2.5 Constrained Inverse Kinematic Problems

The most common constraint on inverse kinematic systems is joint limits. This is also the con-

straint I considered in my application. Joint constraints are represented by inequality constraints.
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Several different methods can be used to make sure a solution satisfies them.

2.5.1 The Lagrange Approach

The Lagrange approach will find all minima for the objective function, subject to equality con-

straints as stated in Section 2.3. Those minima that do not satisfy the joint limit inequalities

can be discarded immediately. Any new minima that arise from the inequalities must lie on the

boundary of the region defined by those limits; that is, when one or more of the joint variables

take extreme values [18]. Therefore, by setting one qi to its lower bound or upper bound each

time, those minima can be found by solving 2n smaller problems, each involving one less variable,

qi, than the original.

2.5.2 Introducing New Variables

We can also introduce new variables transforming each inequality into an equality constraint [7,

18]. Assuming the ith joint angle, qi, has upper limit ui and lower limits li [41], we can add 2n

new variables yil and yiu for ith joint to transform each inequality into an equality constraint.

The old inequality constraints for ith joint are

li ≤ qi

ui ≥ qi.

These inequality constraints can be transformed to two new nonlinear equality constraints:

ui − y2
iu = qi

qi − y2
il = li,

where the squares of yiu and yil ensure the original inequalities. Now we can use the Lagrange

approach to solve the original problem plus 2n new variables and 2n new equality constraints.
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2.5.3 Penalty Function Methods

Another method adds penalty functions to the objective function. The algorithm looks for the

minimum value of the objective function, so the penalty causes the value of the objective function

to increase as joints approach their limits. The desired result is that the objective function itself

effectively prohibits joint limit violations. We can add the penalty functions into the equation

system, so as to add joint limits to the inverse kinematic constraints. This method is also called

limit spring [2] constraints, which is used to discourage the joints from reaching their limiting

value. The springs give a high value or energy level to the fully extended angle and they can be

tuned to any angle. Unfortunately, penalty function methods are not that stable since a small

change may force the objective function to a large value.

Several different penalty functions exist [40]. With an inequality-constrained problem

minP (q)

such that

gi(q) ≤ 0, i = 1, 2, ..., r,

we can define the new objective function as

P (q;K) = P (q) +
r∑
i=1

Ki[gi(q)]2ui(gi),

where

ui(gi) =

 0 if gi(q) ≤ 0,

1 if gi(q) > 0,

and Ki > 0. As Ki is increased from zero to infinity, more and more weight is attached to

satisfying the ith constraint. When Ki = 0, the constraint is ignored, and when Ki = ∞, the

constraint must be satisfied exactly. Some care must be taken in the application of this penalty-

function method, since the algorithm may converge to a fictitious solution if the problem is not

properly posed.



CHAPTER 2. INVERSE KINEMATICS SOLVERS 21

There is another important class of penalty-function method, called the interior methods,

because they proceed toward the constraint boundary from inside the feasible region. With an

inequality-constrained problem

minP (q)

such that

gi(q) > 0, i = 1, 2, ..., r,

we can define the new objective function as

P (q;K) = P (q) +K

r∑
i=1

1
gi(q)

or

P (q;K) = P (q)−K
r∑
i=1

log gi(q)

for K > 0. Note that the inequalities are strict since the penalty is infinite at the boundary.

All these solutions discussed so far have overkilling computations. A simple solution to joint

limits is used in my application. This will be discussed in Section 5.1.



Chapter 3

Singular Value Decomposition

In this chapter I review the work of Maciejewski [22, 24], and Forsythe et al [10]. I will also

describe my work on the SVD based on the work of Maciejewski.

3.1 Pseudoinverse and Singular Value Decomposition

The Jacobian matrix in a redundant system is non-square, so its inverse does not exist in the

usual sense. A generalized inverse must be used. There are multiple definitions of generalized

inverses for different purposes. Denoting the generalized inverse of J with J+, we can categorize

the generalized inverse by the following four properties, which are shared with normal inverses:

JJ+J = J (3.1)

J+JJ+ = J+ (3.2)

(J+J)∗ = J+J (3.3)

(JJ+)∗ = JJ+. (3.4)

22
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The operation ∗ denotes complex conjugate transpose. If J+ satisfies Equation 3.1, it is called

a generalized inverse of J . If J+ also satisfies Equation 3.2, it is called a reflexive generalized

inverse of J . If Equation 3.3 is satisfied, J+ is called a left weak generalized inverse, and J+J

is Hermitian. Finally, if J+ satisfies all four relationships, it is called a pseudoinverse or the

Moore-Penrose generalized inverse, whose existence and uniqueness is proved by Penrose [33]. If

J is a square and nonsingular matrix, then J+ = J−1. The pseudoinverse is the one that suits

our needs best. In practice, a Singular Value Decomposition (SVD) can be used to robustly find

the pseudoinverse.

The SVD theorem states that any matrix can be written as the product of three non-unique

matrices:

J = UDV T ,

where D is a diagonal matrix with non-negative diagonal elements known as singular values. If

one or more of these diagonal elements is zero, then the original matrix is itself singular. The

columns of U and V are called the left and right singular vectors. Depending on how the SVD is

defined, for an m× n matrix J , D could be an n× n, m×m, or even an m× n matrix. In fact,

the size of D does not matter that much, since the singular values on the diagonal of D are what

we are looking for.

The singular values have physical interpretations [22]. Consider the 2D 3-segment chain in

Figure 2.1 again. The set of all possible different combinations of joint velocities of unit magnitude

for joint q1, q2, and q3 can be represented as a sphere in joint space. Because of the directionally

dependent scaling of the Jacobian transformation, the velocity at the end effector q4 resulting

from all these possible inputs will generally be described by an ellipse. We now choose our new

coordinate system’s axes u1 and u2 as the major axis and minor axis of the ellipse respectively,

as shown in Figure 3.1.

This new coordinate system can be viewed as a simple rotation of the old coordinate system

by an angle φ, so vectors defined in one system can be transformed to the other using the rotation
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Figure 3.1: A geometric interpretation of the singular value decomposition

matrix U given by

U =
[

u1 u2

]
=

 cosφ sinφ

− sinφ cosφ

 .
Rotating the coordinate system for joint space, we can define a new coordinate system given

by the unit vector v1,v2,v3. An input along v1 results in motion of the end effector along u1.

An input along v2 results in motion of the end effector along u2. An input along v3 results in

a change in the chain’s configuration, without producing any end effector motion. This can be

mathematically represented in matrix form as

V =
[

v1 v2 v3

]
.

If we reformulate the inverse kinematic equation ẋ = J q̇ for the new coordinate systems, we

get

UT ẋ = DV T q̇, (3.5)

where UT ẋ represents the desired end effector velocity in the u1 and u2 coordinate system; V T q̇

represents the joint velocity in the v1, v2, and v3 coordinate system; D is a diagonal matrix with
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σi on the diagonal and zero in other places:

D =

 σ1 0 0

0 σ2 0

 .
The value σ1 and σ2 are equal to one half the length of the major and minor axes of the ellipse

in Figure 3.1 respectively.

Note that U is orthonormal, so UUT = I. Multiplying both sides by U we can rewrite

Equation 3.5 as

ẋ = UDV T q̇.

We can see that the three matrices U , D, and V are the SVD of J :

J = UDV T .

It is also common to write the singular value decomposition as the summation of vector outer

products [22], which for an arbitrary Jacobian would result in

J =
min(m,n)∑

i=1

σiuivTi ,

where m and n are the number of rows and columns of J , and the singular values are typically

ordered from largest to smallest.

We then can find the pseudoinverse solution from the singular value decomposition by taking

the reciprocal of all nonzero singular values. In particular, the pseudoinverse J+ is given by

J+ =
r∑
i=1

1
σi

viuTi ,

where r is the rank of J . By definition, the rank is the number of nonzero singular values σi.

The pseudoinverse solution

q̇ = J+ẋ (3.6)
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Figure 3.2: The transformation of relative uncertainty in the velocity of the end effector to
uncertainty in the calculated velocity of the joints.

minimizes the residual given by ||ẋ − J q̇||, which physically means that the velocity will be as

close to the desired velocity as possible [22]. Minimization of the residual does not guarantee an

unique solution, but the pseudoinverse solution also minimizes the norm of the solution, ||q̇||; that

is, it minimizes the total joint motion under the constraint of minimization of the residual.

3.2 Damped Least-Squares Method

The singular values are crucial in determining how error is magnified [22], since they specify how

a transformation scales different vectors between the input space and the output space. The

condition number of a transformation is defined as

κ =
σmax
σmin

.

It provides a bound on the worst case magnification of relative errors. If the uncertainty in ẋ is

denoted by δẋ, then the range of possible values of ẋ+δẋ defines a circle in the end effector space,

as illustrated in Figure 3.2. Transforming this circle back into the joint space results in an ellipse

in the joint space with minor and major axes aligned with v1 and v2 and of magnitudes equal
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Figure 3.3: An example of an ill-conditioned Jacobian: a small change in the position of the hand
requires a large change in the position of the shoulder joint.

to the reciprocals of their respective singular values. The relative uncertainty in the solution is

bounded by
||δq̇||
||q̇||

≤ κ ||δẋ||
||ẋ||

.

The condition number is also a measure of how ill-conditioned the matrix J is [22]. When

its reciprocal approaches machine precision limits, we say it is too large and the matrix is ill-

conditioned. The pseudoinverse of an ill-conditioned matrix will generate a large joint velocity.

A simple example is given by Maciejewski [22]. Consider the motion of the human arm in the

sagittal plane illustrated in Figure 3.3. If the hand is to be placed slightly under the shoulders as

on the left, the elbow must be located behind the back of the figure. If the hand is slightly over

the shoulders as on the right, the elbow must be in front of the figure. Thus, for an extremely

small change in the vertical direction of the hand, the joint in the shoulder must travel through



CHAPTER 3. SINGULAR VALUE DECOMPOSITION 28

almost its entire range of motion. If there is any small variation in the calculation of the hand’s

position, the error is magnified.

From the above, we see that using the pure pseudoinverse solution for the equations describing

the motion of articulated figures may cause discontinuities [22]. This happens between singular

and nonsingular transitions, even though physically the solution should be continuous. We again

use the human arm in the sagittal plane in Figure 3.3 as our example. While all the singular

values remain nonzero, the pseudoinverse of D, denoted by D+, will be given by

D+ =


1
σ1

0

0 1
σ2

0 0

 .

However, when the hand moves close to the shoulders, the columns of Jacobian that depend on

the orientation of the three segments upper arm, forearm, and hand (as analyzed in Section 2.2)

become linearly dependent. We say the limb moves into a singular configuration and the smallest

singular value becomes zero. The pseudoinverse becomes

D+ =


1
σ1

0

0 0

0 0

 .

Even if we set up a lower bound for the singular values, a discontinuity still occurs. The

problem with the pseudoinverse solution is that the least-square criterion of achieving the end

effector trajectory minimizing ||ẋ − J q̇|| takes priority over minimizing the joint velocity ||q̇||.

Thus one method of removing this discontinuity, and also limiting the maximum solution norm,

is to consider both criteria simultaneously.

The damped least-squares method has been used for solving ill-conditioned equations [22].

The damped least-squares criterion is based on finding the solution that minimizes the sum

||ẋ− J q̇||2 + λ2||q̇||2,
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where λ is referred as the damping factor and weights the importance of minimizing the joint

velocity with respect to minimizing the residual. This results in the augmented system of equations

 J

λI

 q̇ =

 ẋ

0

 ,
where the solution can be obtained by solving the consistent normal equations

(JTJ + λ2I)q̇ = JT ẋ.

The damped least-squares solution is

q̇(λ) = (JTJ + λ2I)−1JT ẋ =
r∑
i=1

σi
σ2
i + λ2

viuTi ẋ,

which is the unique solution most closely achieving the desired end effector trajectory from all

possible combinations of joint velocities that do not exceed ||q̇(λ)||. From this we can see that

the pseudoinverse is a special case of the damped least-squares formulation with λ = 0. In the

following part of my thesis, I use the damped least-squares solution for my pseudoinverse:

J+ =
r∑
i=1

σi
σ2
i + λ2

viuTi .

The damped least-squares solution can be considered as a function of the singular values as

shown in Figure 3.4 [22]. If a singular value is much larger than the damping factor, then the

damped least-squares formulation has little effect, because

σi
σ2
i + λ2

≈ 1
σi
,

which is identical to the solution obtained using the pseudoinverse. For the singular values on the

order of λ, the λ term in the denominator limits the potentially high norm of that component of
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Figure 3.4: A comparison of the damped least-squares solution to least-squares solution

the solution. The maximum scaling for this component is limited by

q̇
(λ)
i

ẋi
≤ 1

2λ
,

where the subscript i denotes the components associated with the ith singular value. If the

singular value becomes much smaller than the damping factor, then

σi
σ2
i + λ2

≈ σi
λ2
,

which approaches zero as the singular value approaches zero. This demonstrates continuity in the

solution, despite the change in rank at the singularity. The damped least-squares formulation can

be made arbitrarily well conditioned by choosing an appropriate damping factor.

In this thesis, the user can change the value of λ via the interface to see its different effects.

By experimentation I found out that the larger the damping factor is, the more “resistance” the
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joints will have while in motion. Theoretically, this is because the larger the value of λ is, the

smaller the maximum norm of the joint velocity ||q̇(λ)||, given by 1
2λ , is.

3.3 Golub-Reinsch (LAPACK)

A very efficient method to compute an SVD was developed by Golub and Reinsch [10].

There are two stages in the Golub-Reinsch algorithm. The first stage involves using a series

of Householder transformations to reduce J to bidiagonal form B, which is a matrix whose only

nonzero elements are on the diagonal and the first superdiagonal (or the first subdiagonal):

J = U1BV
T
1 ,

where U1 and V1 are orthogonal.

The second stage is an iterative process in which the superdiagonal (or the subdiagonal)

elements are reduced to a negligible size, leaving the desired diagonal matrix D:

B = U2DV
T
2 ,

where U2 and V2 are orthogonal and the singular vectors of J are the columns of U = U1U2 and

V = V1V2.

An implementation of this SVD algorithm is included in many numerical computation software

packages. LAPACK is one of them. It is written in Fortran, and the code is quite optimized. I

used the LAPACK double-precision dgesvd SVD subroutine through a C++ wrapper in my work

to compare the speed and robustness of the other SVD techniques.

3.4 Column-wise Givens Rotations

The Golub-Reinsch algorithm is generally regarded as the most efficient and numerically stable

technique for computing the SVD of an arbitrary matrix. But in our case, the current Jacobian
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is only a small perturbation of the previous one. Using Givens rotations for computing the SVD

incrementally using a previous solution takes advantage of this [24].

Givens rotations are orthogonal transformations of the form

Vij =



1 . .

. . .

1 . .

. . . cos θ . . . − sin θ . . . i

. 1 .

. . .

. 1 .

. . . sin θ . . . cos θ . . . j

. . 1

. . .

. . 1



,

i j

where all those elements not shown are ones on the diagonal and zeros elsewhere. This transfor-

mation can be geometrically interpreted as a plane rotation of θ in the i-j plane. Givens rotations

only affect two rows or columns of the matrix with which they are multiplied.

We can choose an orthogonal matrix V composed of successive Givens rotations, such that if

we multiply J by V ,

JV = B, (3.7)

then the columns of B will be pairwisely orthogonalized. The matrix B can also be written as

the product of an orthonormal matrix U and a diagonal matrix D,

B = UD, (3.8)
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by letting the columns of U be equal to the normalized versions of the columns of B,

ui =
bi
||bi||

,

and defining the diagonal elements of D to be equal to the norm of the columns of B

dii = ||bi||.

By substituting Equation 3.8 into Equation 3.7 and solving for J , we obtain

J = UDV T ,

which is the SVD of J .

The critical step in the above procedure for calculating the SVD is to find an appropriate

matrix V as a product of Givens rotations. Considering the current ith and jth columns of J , ai

and aj , multiplication by a Givens rotation on i-j plane results in new columns a
′

i and a
′

j given

by

a
′

i = ai cos θ + aj sin θ (3.9)

a
′

j = aj cos θ − ai sin θ. (3.10)

The constraint that these columns be orthogonal gives us

a
′T
i a

′

j = 0. (3.11)

Substituting ai and aj in Equation 3.11 by Equation 3.9 and Equation 3.10 respectively yields

aTi aj(cos2 θ − sin2 θ) + (aTj aj − aTi ai) sin θ cos θ = 0. (3.12)

Adding equation

cos2 θ + sin2 θ = 1, (3.13)
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we can solve for the two unknowns sin θ and cos θ using Equation 3.12 and Equation 3.13. This

is done for each pair of columns in the matrix J .

If the Givens rotation used to orthogonalize columns i and j is denoted by Vij , then the

product of a set of n(n− 1)/2 rotations is denoted by

Vk =
n−1∏
i=1

( n∏
j=i+1

Vij

)
.

This is referred to as a sweep. Unfortunately, a single sweep generally will not orthogonalize all

the columns of a matrix, since subsequent rotations can destroy the orthogonality produced by

previous ones. However, the procedure can be shown to converge [31], so V can be obtained from

V =
l∏

k=1

Vk,

where the number of sweeps l is not known a priori. Orthogonality is measured by

α =
(ai

Taj)2

(ai
Tai)(aj

Taj)
.

If for two columns α is below a threshold, then these two columns are considered orthogonalized

and the rotation does not need to be performed.

In my application, the user interactively specifies the goal position of the end effector, and the

Jacobian J is only a small perturbation of the previous one. If we use the previous resulting V

as the starting matrix for the current V instead of an identity matrix, in most of the cases only

one sweep is needed. As a result, in practice checking for orthogonality can be eliminated.

Maciejewski and Klein [24] also found that if the vectors ai and aj are not equal in length, θ

will be small, and we can approximate cos θ with 1 and sin θ with θ. Conversely, if their lengths

are almost equal, both cos θ and sin θ can be assigned 2/
√

2. This observation reduces the required

number of double precision multiplies by half.

Problems still exist in this algorithm. First of all, we will get accumulated errors by reusing the

previous V . One simple solution to this problem is to reset V to the identity matrix periodically.
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Another solution is to alternately orthogonalize columns and rows of matrix J . The second

problem is correctness. In my applications, the Jacobian is a 3× n matrix, so there are supposed

to be at most three non-zero singular values. By orthogonalizing and normalizing n columns of

J , it is possible to get n nonzero singular values instead of three. However, the biggest problem

is performance. When the Jacobian has a large number of columns, which is typical in my

application, this algorithm is far too slow.

3.5 Row-wise Givens Rotations

To overcome the shortcomings of the column-wise Givens rotation technique, I use Givens rotations

row-wisely. I orthogonalize the rows of the Jacobian matrix instead of columns. Since there is

only three rows, the matrix calculation in the row-wise Givens rotations method is much less than

that of the standard column-wise Givens rotations technique, so the program runs much faster.

My method also guarantees that there are no more than three non-zero singular values, since

there are only three rows in J .

To orthogonalize J by rows, we need to find an orthogonal 3×3 matrix UT . Then we multiply

J to UT to get the matrix B:

UTJ = B.

After normalizing the rows of B, we get

B = DV T .

This still gives us

J = UDV T .

3.6 Performance Comparison

The time performance of all these techniques is discussed in detail in Section 5.2. Basically, the

row-wise Givens Rotations method has the same performance as the optimized SVD subroutine in
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LAPACK. And they are both much faster than the raw Golub-Reinsch algorithm and column-wise

Givens rotations technique.



Chapter 4

Obstacle Avoidance

Redundancy in a system can be used to accomplish various secondary tasks. Obstacle avoidance

is one of them and it is the one considered in my work. This chapter will review different

approaches for avoiding one obstacle, including the task priority approach of Maciejewski [23]

and Pourazady [35], the cost function technique of Marchand and Courty [25], and the objective

function method of Samson et al [38]. These techniques will then be extended to avoiding multiple

obstacles in Section 5.3.

Recall the inverse kinematics problem, where the linear relationship between the end effector

velocity, described by a three-dimensional vector ẋ, and the joint velocities, denoted by a n-

dimensional vector q̇, where n is the number of degrees of freedom, is described by the equation

ẋ = J q̇, (4.1)

where J is the Jacobian matrix. It can be shown [20] that the general solution to Equation 4.1 is

given by

q̇ = J+ẋ + (I − J+J)z, (4.2)

where I is an n × n identity matrix and z is an arbitrary vector in q̇-space. The resultant joint

angle velocities can be decomposed into a combination of the damped least-squares solution J+ẋ

37



CHAPTER 4. OBSTACLE AVOIDANCE 38

plus a homogeneous solution (I−J+J)z. The projection operator (I−J+J) describes the degrees

of redundancy of the system. It maps an arbitrary z into the null space of the transformation.

By applying various functions to compute the vector z, reconfiguration of the manipulator can

be obtained to achieve some desirable secondary criterion, such as obstacle avoidance, without

affecting the specified end effector velocity.

4.1 Avoiding One Obstacle

There are three major methods to find a proper vector z for Equation 4.2, for the case of avoiding

one obstacle. They are discussed in following subsections.

4.1.1 Task Priority Approach

In the task priority approach [23, 35, 30, 6], the first step is to identify for each period of time the

shortest distance between the manipulator and the obstacle. As shown in Figure 4.1, the closest

point to the obstacle on the manipulator R is referred to as the critical point with xR as its world

coordinates; the closest point to the manipulator on the obstacle S is called the obstacle point

with xS as its world coordinates; and the distance between the obstacle point and the critical

point is called the critical distance denoted by d(q, t). In the second step the critical point is

assigned a velocity in a direction away from the obstacle.

The primary goal of specified end effector velocity and the secondary goal of obstacle avoidance

are described by the equations

Jeq̇ = ẋe (4.3)

Joq̇ = ẋo, (4.4)

where Je is the end effector Jacobian, Jo is the critical point Jacobian, ẋe is the specified end

effector velocity, and ẋo is the specified critical point velocity.

One simple way to find a common solution to these two equations, called task space augmen-

tation, is to adjoin both the two matrices on the left hand side and the vectors on the right hand
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Figure 4.1: Primary and secondary goal of a redundant manipulator

side into a single matrix equation [6, 23]:

 Je

Jo

 q̇ =

 ẋe

ẋo

 .
However, it is not desirable to treat the end effector and obstacle avoidance velocity in the same

way. A task priority can be used in this case to first satisfy the primary goal of end effector

velocity and then use the system’s redundancy to best match the secondary goal of critical point

velocity.

Substituting the general solution Equation 4.2 of primary goal Equation 4.3 to the secondary

goal Equation 4.4 yields

JoJ
+
e ẋe + Jo(I − J+

e Je)z = ẋo.
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From this we can solve for z

z = [Jo(I − J+
e Je)]

+(ẋo − JoJ+
e ẋe). (4.5)

Replacing z in Equation 4.2 with Equation 4.5, the final answer can be written as

q̇ = J+
e ẋe + (I − J+

e Je)[Jo(I − J+
e Je)]

+(ẋo − JoJ+
e ẋe).

Since the projection operator is both Hermitian and idempotent, the result can be simplified [23]

to

q̇ = J+
e ẋe + [Jo(I − J+

e Je)]
+(ẋo − JoJ+

e ẋe)

or alternatively

q̇ = J+
e ẋe + αh[Jo(I − J+

e Je)]
+(αo ˆ̇xo − JoJ+

e ẋe), (4.6)

where ˆ̇xo is now considered as an unit vector indicating the direction moving the manipulator

away from the obstacle, which is defined from the obstacle point to the critical point as shown in

Figure 4.1. The factor αo is the magnitude of the secondary goal velocity, and the value αh is a

gain term for the amount of the homogeneous solution to be included in the total solution.

Each term in the Equation 4.6 has a physical interpretation [23]. As discussed earlier, the

pseudoinverse solution J+
e ẋe ensures the exact desired end effector velocity in the redundant

system with the minimum joint velocity norm. The added homogeneous solution sacrifices the

minimum norm solution to satisfy the secondary obstacle avoidance goal. The matrix composed

of the obstacle Jacobian times the projection operator, Jo(I − J+
e Je), represents the degrees of

freedom available to move the critical point while creating no motion at the end effector. This

matrix is used to transform the desired obstacle motion from Cartesian obstacle velocity space

into the best available solution in joint velocity space, again through the use of the pseudoinverse.

Finally, the vector describing the desired critical point motion, αo ˆ̇xo, obtained from environmental

information, is modified by subtracting the motion caused at the critical point due to satisfaction

of the end effector velocity constraint, JoJ+
e ẋe.
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Figure 4.2: The form of the homogeneous term gain αh and the obstacle avoidance gain αo as a
function of the critical distance.

The functions αo and αh can be described by polynomials of the form shown in Figure 4.2 [23].

From the figure we can see that there are three distances that characterize the changes in the value

of the gain functions. These distances are defined as the task abort distance dta, the unit gain

distance dug, and the sphere of influence distance dsoi. These distances define four zones for each

obstacle. If the manipulator is further from the obstacle than the distance dsoi, then the obstacle

has no influence on the manipulator. Between the distance dsoi and the distance dug, there is a

smooth transition from the obstacle influence being fully considered to totally ignored. Inside the

distance dug, the gain factor is constant. If the critical distance reaches dta, then further motion

will cause a collision.

The value of αo could be any function that is inversely related to the distance, as long as the

first derivative of this function at dug is zero.

Pourazady and Ho [35] came up with an influence function for αo that is a function of both

the critical distance and the relative velocity of the manipulator with respect to the obstacle. If

the critical point is moving away from the obstacle, meaning the approaching velocity v is less

than zero, the influence function is then defined as zero. On the other hand, if the manipulator
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is approaching the obstacle, the influence function is increased from zero to infinity and the

acceleration needed to avoid the obstacle increases from zero to the acceleration limit amax.

The minimum avoidance time τ is the time to stop the manipulator by applying the maximum

allowable acceleration. From the equation of motion vf = v + amaxτ where vf is zero, we have

τ = − v

amax
.

On the other hand, an arbitrary constant acceleration less than amax has to be applied to the

critical point to stop the manipulator before it has traversed the critical distance d. The maximum

avoidance time T is given by

T =
2d
v
.

The reserve avoidance time is the difference between the maximum and minimum avoidance time,

T − τ . The influence function P is defined as the reciprocal of the reserve avoidance time when

the manipulator is approaching the obstacle:

P =

 0 if v < 0

amaxv
2damax−v2 if v ≥ 0

Then αo in Equation 4.6 is defined by

αo = (1− e−P )vmax.

Unfortunately, this technique is based on the physical limitation of a robot, such as its maximum

acceleration and its maximum velocity. It turns out to be a poor solution for my program, since

this introduces new parameters to be tuned and they are both application dependent.
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4.1.2 Cost Function Approach

Marchand and Courty [25] use a cost function to avoid obstacles in their camera control problem.

The cost function is defined as

hs =
1
d2
,

where d is the critical distance. The arbitrary vector z in Equation 4.2 is defined as

z = −αh2
s(δx, δy, δz, 0, ..., 0)T , (4.7)

where α is a positive factor, and (δx, δy, δz) is the vector xS − xR.

Comparing the cost function technique with the task priority approach, computation of the

cost function technique is much simpler. Also, the cost function technique gives a smoother joint

transition than the task priority approach. For example, in my application, the kinematic chain

will remain a smooth curve while using the cost function technique to avoid obstacles, but the task

priority approach will sometimes distort the chain into a “kinked” form as shown in Figure 5.5.

Unfortunately, the cost function technique has no clear physical interpretation; furthermore, it

only uses the first three columns of the projection operator (I − J+J). This makes it difficult to

generalize to the avoidance of multiple obstacles.

4.1.3 Objective Function Approach

Yet another redundancy resolution scheme computes z as the gradient of an objective function

P (q, t) and projects it to the null space of the Jacobian. The equation can be rewritten as

q̇ = J+ẋ + α(I − J+J)
∂P

∂q
, (4.8)

where α should be a positive gain factor if P is to be maximized, or a negative gain factor if P is

to be minimized.

The objective function P is defined according to the desired secondary criterion. In terms of

obstacle avoidance, the function can be defined to maximize the distance between the obstacle
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Figure 4.3: Using objective function method to avoid an obstacle

and manipulator [5], minimize the joint angle availability [19], represent a certain aspect of robot

dexterity [12], minimize a performance index [16], or maximize some areas between the links and

the obstacles [26].

Samson, Le Borgne, and Espiau [38] discussed a minimal distance method to avoid obstacles.

Given an objective function of the form

P (q, t) = λd−k(q, t)

with

λ > 0

k ∈ N,

the gradient of P is
∂P

∂q
= −kλd−(k+1)(q, t)

∂d

∂q
(q, t). (4.9)

This in turn requires the calculation of ∂d
∂q (q, t). To do this, we define the unitary vectors nr and

ns as shown in Figure 4.3, where

nr =
1

d(q, t)
(xS − xR) (4.10)
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and

ns = −nr.

Then the critical distance can be written as

d(q, t) = 〈nr, RS〉 ,

where 〈a,b〉 = aTb, and

ḋ = 〈nr, VS − VR〉 = −〈nr, VR〉+ 〈nr, VS〉 . (4.11)

Rewriting the equation of the second goal Joq̇ = ẋo yields

VR = Joq̇. (4.12)

Finally, recall that

ḋ =
∂d

∂q
q̇ +

∂d

∂t
. (4.13)

Substituting VR and nr in Equation 4.11 by Equation 4.12 and Equation 4.10 respectively, and

then substituting the result into the left hand side of Equation 4.13, we obtain

−
〈

1
d(q, t)

(xS − xR), Joq̇
〉

+ 〈nr, VS〉 =
∂d

∂q
q̇ +

∂d

∂t
. (4.14)

By definition,

〈nr, VS〉 =
∂d

∂t
.

so the equation can be simplified to

−
〈

1
d(q, t)

(xS − xR), Joq̇
〉

=
∂d

∂q
q̇. (4.15)
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Writing the vectors and matrix on the left hand side of Equation 4.15 by their elements, we get

−

〈
1

d(q, t)


x

y

z

 ,

a11 a12 ... a1n

a21 a22 ... a2n

a31 a32 ... a3n





q̇1

q̇2

.

.

.

q̇n



〉

= − 1
d(q, t)

[x(a11q̇1+a12q̇2+...+a1nq̇n)+y(a21q̇1+a22q̇2+...+a2nq̇n)+z(a31q̇1+a32q̇2+...+a3nq̇n)]

=

〈
− 1
d(q, t)



a11 a21 a31

a12 a22 a32

. . .

a1n a2n a3n




x

y

z

 ,



q̇1

q̇2

.

.

.

q̇n



〉
,

from which we can solve for ∂d
∂q (q, t):

∂d

∂q
(q, t) = − 1

d(q, t)
JTo (xS − xR).

Substituting this back to Equation 4.9, the gradient of P is

∂P

∂q
= λkd−(k+2)(q, t)JTo (xS − xR).

I assign k as 2 and λ as 1 in my application. This results in a smooth transition between

frames with a relatively simple calculation.
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4.2 Avoiding Multiple Obstacles

One advantage of the objective function method is that it can be used for multiple obstacles

without any change. Unfortunately, extending the other two techniques to avoid multiple obstacles

is non-trivial. I tried several approaches that will be discussed in Section 5.3, and it appears that

the objective function method is best for my application.



Chapter 5

Results

To test the idea of the preceding chapters, I implemented an interactive program for animating a

highly articulated model - an elephant using C, Tcl/Tk, and OpenGL. The implementation details

of this application are stated in Appendix A. Figure 5.1 is a screen shot of the application. The

elephant is placed in a complex environment including a table and a tree. The elephant trunk is

served as the highly articulated kinematic chain. By default it is formed by a series of 30 spheres,

and each pair of spheres is linked by 3 rotational joints. The basic idea is to make the tip of

the elephant trunk follow the mouse cursor within its joint limits, while avoiding obstacles in the

environment. This chapter compares and discusses my results, including joint limit constraints,

the implementation of the SVD and pseudoinverses, and obstacle avoidance techniques. I compare

existing techniques with some of the new approaches I have developed.

I implemented two joint limits methods: clipping and projection. The projection technique

works better than the clipping technique, because the clipping technique can easily lock the

kinematic chain when one of its joints solutions is out of the limit and the solution for the next

time frame continues in the same direction. Four algorithms for the SVD were compared. Two

of them were based on the Golub-Reinsch algorithm. The third one used column-wise Givens

rotations. I developed a SVD algorithm using Givens rotations working incrementally over the

rows of the Jacobian matrices. This method is as robust and fast as the Golub-Reinsch algorithm

48
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Figure 5.1: A snapshot of the application

o

na

b

Figure 5.2: Two joint limits methods: projection and clipping. When the new position n is within
one joint limits and out of another, we can either project n back to the boundary at point a or
clip it at the point b where the joint constraints are about to be exceeded.
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implemented in LAPACK, but it is a much simpler computation to implement. I also tried several

multiple obstacle avoidance techniques. They are variations of three major approaches: the task

priority approach, the cost function approach, and the objective function approach. Among them,

the objective function technique suits my application most.

5.1 Joint Limits Methods Comparison

A simple solution to joint limits is used in my application. Recall that my inverse kinematic

solution is incremental; a new joint configuration is calculated every time a new goal position is

given. During this calculation, the joint limits are ignored until a proposed solution violates them.

The joint angles are then mapped back to the boundaries of the solution space. I implemented

two mapping methods, projection and clipping. The difference between them is demonstrated in

Figure 5.2.

Assume that a new configuration involves the modification of two joint angles. Both of them

are bounded, shown as a rectangle in the solution space in Figure 5.2. The old configuration

maps the joint angles to position o, and the new configuration maps the joint angles to position

n. When we try to bound the joint angles to a “solution” that respects the boundaries, we have

two choices. The first one is projection. We project the angle that is out of bounds back onto

the closest boundary point, as point a shows. The second method is clipping. We follow the

same trajectory and scale both angle’s movement to make the approximate solution lie within the

boundary, as point b shows.

Practical differences exist between these two boundary methods. By projecting the exceeded

joint angle back to the boundary, we obtain a more flexible solution than clipping the joint angles

at a portion of their trajectory. With clipping, if the intended movement continues when one of

the joint angles is at its boundary, the entire chain will lock at that position, since all the angles

are still trying to follow the same trajectory. This is undesirable. With projection, the kinematic

chain can still be reconfigured in above situation, and give continuous approximate feedback to

the user.
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5.2 SVD Techniques Comparison

In Chapter 3, I presented three techniques for singular value decomposition. The first one is the

classic Golub-Reinsch algorithm, where any arbitrary matrix is reduced first to a bidiagonal form,

then to a diagonal matrix. The second approach uses Givens rotations taking advantage of the

fact that in the inverse kinematic problem the new Jacobian is a perturbation of previous one. The

original idea was to orthogonalize the Jacobian by columns. However, as a Jacobian of a highly

redundant system, its number of columns is much larger than the number of rows. Orthogonalizing

columns is an expensive computation. Another disadvantage of the standard Givens rotations

approach is that it usually results in more singular values than the Jacobian actually has. Based

on the original Givens rotations technique, I developed an alternative incremental evaluation

method. This method orthogonalizes the rows of the Jacobian, which gives us a reliable result

with less computation.

The time performance of all these techniques is shown in Figure 5.3. The x axis is the number

of spheres in the kinematic chain of my application. Each pair of spheres in the chain is linked

by three rotational joints. The y axis is the time spent solving q̇ = J+ẋ in double precision,

in nanoseconds. The experiments were run on a SGI Octane with 1175 MHZ IP30 processor,

MIPS R10000 CPU, and 384 Mbytes main memory size. We can see that as the number of joints

increases, the basic incremental Givens rotation technique takes much more time to compute the

SVD than the other methods. The raw Golub-Reinsch algorithm, which I coded in C based on a

procedure from Numerical Recipes [36], runs slower than the optimized code in LAPACK.

As the curve for row-wise Givens rotations method overlaps the curve of LAPACK in Fig-

ure 5.3, I present a closer look at these two methods in Figure 5.4. From the curves, we can see

that row-wise incremental Givens rotations evaluation has almost exactly the same performance as

LAPACK. The times are so similar, in fact, that I suspect that both algorithms are bottlenecked

by memory access and not CPU operations. However, the row-wise Givens rotations method is

easier to program, and would even be suitable for a high-performance hardware implementation

if desired.
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Figure 5.3: The time performance comparison of all the SVD techniques discussed.
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Figure 5.4: The time performance comparison of LAPACK and row-wise Givens rotations method.
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5.3 Avoiding Multiple Obstacles Approaches

Section 4.1 talked about three different approaches for avoiding one obstacle using the equation

q̇ = J+ẋ + (I − J+J)z, (5.1)

which is a damped least-squares solution J+ẋ plus a homogeneous solution (I − J+J)z. The

scientists who developed these techniques also suggested extensions for avoiding multiple obstacles.

The following sections talk about these original extension ideas, their problems, and my own

extensions.

5.3.1 Task Priority Approach

Using the task priority approach, multiple secondary goals can be considered by weighting the

homogeneous solutions of each of them [23]. In the case of obstacle avoidance, we can ignore large

critical distances and concentrate on worst case(s). Since the use of a single worst-case obstacle

point may result in oscillation for some configurations or environments, two worst-case obstacles

are considered. The solution is modified to

q̇ = J+
e ẋe + α1(d2/d1)h1 + α2(d2/d1)h2, (5.2)

where hi is the ith homogeneous solution, αi is its corresponding gain, and di is the critical

distance to the obstacle. The subscript 1 denotes the worst-case obstacle. The greater the

difference between d1 and d2, the closer α1 approaches to unity and the closer α2 approaches zero.

If d1 is approximately equal to d2, then α1 and α2 are both 0.5 with the overall homogeneous

solution split between the two worst-case goals.

This method unfortunately requires extensive computation. It also generates a non-smooth

solution chain in some circumstances, as shown in Figure 5.5.
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Figure 5.5: The elephant trunk may be in a “kinked” form when the task priority technique is
used to avoid obstacles.

5.3.2 Cost Function Approach

The cost function for multiple obstacles suggested by Marchand and Courty [25] simply adds the

cost of the critical distances for each obstacle together:

hs =
∑ 1

d2
i

.

The problem with this method is obvious. Firstly, there is no priority for the most urgent

closest critical distances; secondly, the α in

z = −αh2
s(δx, δy, δz, 0, ...0)T (5.3)

must be tuned whenever the number of obstacles is changed, otherwise the obstacle influence will

become larger as the number of obstacles grows.
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To address these problems, I came up with a new cost function, which I call “blending”, for

multiple obstacles:

hs =
n∑
i=1

( 1
n− 1

.

∑
d− di∑
d

) 1
d2
i

. (5.4)

Now the gain of each critical distance depends on how urgent the situation is. The most urgent

one, which has the smallest di, will have the largest gain; also, the sum of the gains is unity.

Theoretically, once we have tuned the parameter α in Equation 5.3, we can keep using it no matter

how many obstacles we have. But this still cannot overcome the fact that only the first three

columns of the projection operator are used, which results in lack of of physical interpretation.

5.3.3 Objective Function Approach

In Section 4.1.3 I used a critical distance objective function to avoid one obstacle. The formulation

that I used in my implementation was

q̇ = J+ẋ +
2α
d4

(I − J+J)JTo (xS − xR), (5.5)

recalling that d is the critical distance, J is the end effector Jacobian, Jo is the critical point

Jacobian, xS is the world coordinates of the obstacle point, and xR is the world coordinates of

the critical point. This formulation still works with multiple obstacles. The α in the equation

does not need to be tuned each time the number of obstacles or number of DOFs changes. The

kinematic chain moves in between the obstacles and the solution remains smooth.

5.3.4 Other Approaches

The following are approaches that I tried based on the original multiple obstacle avoidance al-

gorithms suggested in the papers. Unfortunately, they are not good in practice and are not

recommended in their current form.
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Task Space Augmentation

To avoid expensive matrix computations, I tried to simply augment the original matrices and

vectors.

In the task priority technique, assuming each obstacle i has Jacobian Joi and obstacle velocity

ẋoi, we can replace the secondary goal Joq̇ = ẋo with



Jo1

Jo2

.

.


q̇ =



ẋo1

ẋo2

.

.


.

In the cost function approach, we can write the arbitrary vector z as

z = −α



δx1/d
4
1

δy1/d
4
1

δz1/d
4
1

δx2/d
4
2

δy2/d
4
2

δz2/d
4
2

.

.



,

where (δxi, δyi, δzi) is the vector xSi − xRi for each obstacle i, and di is the distance between

them.

This augmentation method gives high performance, but the result is not satisfying, since it

handles every obstacle in the same way regardless of its urgency. It also limits the number of

obstacles, since the number of rows of these matrices and vectors cannot be more than that of the

end effector Jacobian. To address the first problem of prioritization, I multiplied the corresponding
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element in vector z by the blending factors defined in Equation 5.4. Unfortunately, the limits on

the number of obstacles remain.

Adaptive Cost Function

Another cost function I tried was

hs =
∑

αe−2βd2
i ,

where di is the critical distance for the ith obstacle. The vector z in Equation 5.1 is then defined

as

z = −hs(δx, δy, δz, 0, ..., 0)T ,

where (δx, δy, δz) is the vector xS−xR for the worst critical distance. After each critical distance

is calculated, the value of α and β can be adjusted by comparing the critical distance to dug

and dta. If the distance is larger than the dug defined in Section 4.1.1, the situation is not that

urgent, so α is reduced to a half and β is reduced to a quarter, by which the integration of the

cost function remains the same. If the distance is smaller than the dta, α will be doubled and β

will be quadrupled. Otherwise, α and β remain the same.

Unfortunately, this gave an even worse result than those techniques with no automatic param-

eter adjustment; furthermore, it gives us two new parameters to tune.

Priority Reversing

From the point of view of a user, not penetrating into obstacles is very important, often more

important than reaching the goal. One more thing I tried was to reverse the primary end effector

velocity goal and secondary obstacle avoidance goal by changing Equation 4.6 to

q̇ = J+
o ẋo + αh[Je(I − J+

o Jo)]
+(αe ˆ̇xe − JeJ+

o ẋo).

This did not succeed. The manipulator just looks like it is dancing freely in 3D space. This may

be because the obstacle avoidance approach is based on trying to maximize the distance between

obstacles and the object, and this dominates the solution no matter how big or how small the
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OA Techniques Performance Smoothness Parameters Physical Extension
Task Priority slowest fair αo, αh, dta, dug, dsoi yes fair
Cost Function fastest good α no bad

Objective Function medium good α (once for all) yes good

Table 5.1: The comparison of the three one-obstacle avoidance techniques.

critical distance is. Since there is no stationary maximum critical distance for the system to settle

into, the result is not stable.

5.4 Obstacle Avoidance Techniques Comparison

In Chapter 4 three major existing methods for avoiding one obstacle were discussed. Their original

suggested extensions to avoiding multiple obstacles and my own extensions from a computer

graphics point of view are presented in Section 5.3.

Table 5.1 is a comparison of these one-obstacle avoidance techniques in different categories,

including their performance, kinematic chain (the elephant trunk in my application) smoothness

after applying these methods, parameters to be tuned by the user or automatically by the program,

the existence of physical interpretation, and their availabilities to be extended to avoid multiple

obstacles.

From the table we can see that although the objective function technique is not the fastest

technique, it produces a smooth kinematic chain, and its physical interpretation makes the tech-

nique easily extendible to the multiple obstacles situation. The best part of this technique is

that the user only needs to adjust a single parameter once at the beginning and then can use

this value for any number of obstacles and any number of degrees of freedom. While the cost

function approach has the highest performance among the three, it has no reasonable physical

interpretation, which makes it hard to extend it to avoiding multiple obstacles. On the other

hand, while the task priority approach has a clear physical interpretation, it is slow and has more

parameters1 to be tuned than other methods. Another disadvantage of the task priority approach

1There is also another damping factor λ for the pseudoinverse for all three methods. However it does not affect
the obstacle avoidance that much.
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OA Techniques Performance Smoothness Parameters Physical Obstacles
Original Task Pri-
ority

slow fair dta, dug, dsoi,
αo, αh

yes ≥ 2

Task Augmented
Task Priority *

slow fair dta, dug, dsoi,
αo, αh

no < # of DOFs

Original Cost
Function

fast good α no none

Task Augmented
Cost Function *

fast good α no < # of DOFs

Blending * fast good α no none
Blended Task
Augmented Cost
Function *

fast good α no < # of DOFs

Adaptive Cost
Function *

fast good α, β no none

Original Objec-
tive Function

medium good α (once for all) yes none

Table 5.2: The comparison of multiple obstacles avoidance techniques. The techniques with * are
my extensions to the original approaches in the papers.

is that it sometimes may generate a “kinked” kinematic chain as shown in Figure 5.5.

Although robotic scientists and engineers developed the above three techniques for avoiding

one obstacle, most of them also suggested on how to extend their algorithm to avoiding multiple

obstacles. By analyzing and implementing these extensions, I also came up with my own extensions

that is more suitable for the more general computer graphics applications. Table 5.2 summarizes

the comparisons among them. The performance speeds of these multiple obstacle avoidance

algorithms are not compared quantitatively as I did for SVD algorithms, because besides speed,

there are other important issues such as number of parameters to be tuned while running the

program and the limitation on the number of obstacles.

From Table 5.2 we can see that the original extension of the task priority technique has too

many uncertain parameters and it runs slowly. The task space augmentation is not a good idea for

avoiding an arbitrary number obstacles, since it sets a upper limit on the number of obstacles, and

it also involves heavy matrix computations when the number of obstacles is close to the number of

degrees of freedom in the kinematic chain. The original suggested extension of the cost function
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approach is simple and fast, but the parameter α has to be tuned whenever there is a change in

the number of obstacles and the number of degrees of freedom in the kinematic chain. Based on

the original cost function, I created a new cost function called blending. Theoretically, the value

of α does not need to be tuned when the number of obstacles is changed, but it did not work

that way in my application. Then I decided to use a completely new adaptive cost function and

tried to adjust its parameters automatically. But this adaptive cost function technique did not

give me a satisfying result. After all these trials, I came back to the original objective function

method, and proved its physical interpretation in Section 4.1.3. Surprisely, this method gives a

good obstacle avoidance behavior at a reasonable speed, and the user only needs to tune its single

parameter α once at the beginning.

5.5 Discussion

Not all of the results of the above methods were as good as expected. The main reason is that the

subspace projection operator is very sensitive and there were often too many uncertain parameters

in the obstacle avoidance formulations. Taking the homogeneous gain term αi in the task priority

technique (Equation 5.2) or the factor α in the cost function (Equation 5.3) or the objective

function approaches (Equation 5.5) as examples, tuning these scalars has proven to be a non-

trivial issue [4]. These parameters give the weight of the obstacle avoidance velocity in the final

joint angle solution. If the weight is too strong, when the critical distance is small it will result

in some oscillations, in other words, there will be big jumps in the solution. On the other hand,

if the weight is too weak, the change in the configuration will occur when the homogeneous term

becomes large with respect to the primary task, which may be too late and the manipulator may

go through the obstacles. Without appropriate parameters, the end effector will not even follow

the goal position given by the mouse cursor.

Even when those parameters are manually tuned for one special case, they have to be adjusted

when the number of DOFs or the number of obstacles is changed. In most cases in robotics or

engineering, they are set based on trial and error. Chaumette and Marchand [4] developed an
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automatic parameter tuning engine to adjust the influence of the joint limits secondary goal with

respect to the positioning primary goal. However, its extension to other secondary goals such as

obstacle avoidance still needs to be investigated.

Generally, robotic scientists and engineers use off-line computation to integrate the velocity

of the end effector, which gives the manipulator a much more accurate trajectory. Sensors are

used to detect the critical distance between obstacles and the manipulator. Their techniques are

tested with a small number of DOFs, fewer obstacles, and with no intention to get close to the

obstacles. One more thing that needs to be pointed out is that most of their techniques are tested

on 2D kinematic chains. Not much analysis is done in 3D.

5.5.1 Objective Function Method

From my experiments, the objective function method suits computer graphics applications the

most. It does not require as expensive a computation as the task priority approach, which gives

the program higher performance. It also takes full advantage of the null space projection operator

and the critical point Jacobian. It has the most convenience for a user since there is no need

to tune the gain factor while changing the number of obstacles or the number of DOFs in the

kinematic chain. Finally, there is the possibility that in the future the objective function could

be extended to target additional secondary goals.

In my program, when the objective function method is invoked to avoid obstacles, the elephant

trunk tip will follow the mouse cursor while the trunk itself will try to avoid obstacles. When the

trunk is about to go through an obstacle, the elephant trunk will get as close as possible to the

obstacle first, then keep its position there for next few frames even if the user insists on dragging

the trunk in that direction. If the user ignores the resistance of the trunk and continues dragging

the trunk through the obstacles, the primary positioning goal will win over the secondary obstacle

avoidance goal, and the trunk will jump over the obstacles to reach its new position. However,

the trunk will never interpenetrate obstacles.



Chapter 6

Conclusion

6.1 Summary

We have examined solutions to the inverse kinematics constraint problem for highly articulated

models in the context of computer graphics. The pseudoinverse was used to solve the problem

robustly and a singular value decomposition was applied to get the pseudoinverse for a Jacobian

matrix. Based on existing SVD algorithms, I developed a fast and simple incrementally approach

to evaluate the SVD. This algorithm uses Givens rotations to orthogonalize the rows of a Jacobian

based on the result of previous SVD. With the size of the Jacobian matrices in my application

being 3 × n, where n � 3, row-wise Givens rotations method gives a performance as fast and

robust as the highly optimized commercial numerical package LAPACK, but the algorithm itself

is much simpler.

Various techniques were implemented and created to use the redundant degrees of freedom of

a highly articulated model to accomplish secondary obstacle avoidance goals besides the primary

end effector positioning inverse kinematic goal. After experimenting with several methods in the

course of this work, one thing become apparent: they all exhibit problems of one type or an-

other; no one approach seems uniformly superior to others with respect to performance measures.

Different approaches are suited to different applications. The objective function method suits
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the generalized applications characteristic of computer graphics the most. It gives relatively fast

performance with intuitive behavior and also has reasonably stable parameters.

6.2 Conclusion

From the discussion above we can conclude that robotic and engineering inverse kinematic so-

lutions for constrained redundant system can be used by computer graphics applications with

appropriate porting. Even though those solutions are not designed for generalized problems such

as a kinematic chain with arbitrary number of degrees of freedom that can avoid arbitrary number

of obstacles in a complex environment, as long as they have clear physical interpretations, they

can usually be extended to reasonable solutions. However, different methods will have different

performances under different values of parameters and in different environments. These uncer-

tainties are not wanted in computer graphics applications. A good solution should have relatively

high speed and few parameters to be tuned during changes to the environment and the kinematic

chain itself.

I did research on three major approaches in robotics and engineering on obstacle avoidance.

Instead of blindly trying to extend these three methods to avoid multiple obstacles, I started from

analyzing their physical interpretation and proving their correctness. Based on the interpretation

I found different solutions to the generalized problem. Although some of the techniques did not

give good results, this research still provides an analysis of why they are not satisfying. These

reasons include limitations on number of obstacles, lack of physical interpretations, kinks in the

kinematic chains, and the disadvantages of having parameters to be tuned.

The objective function method I implemented used the most common obstacle and manipulator

distance objective function. It gave a good result with relatively high performance. The best thing

about this method is that the user does not not need to tune its parameter during environment

changes. This simple solution satisfies our computer graphics needs nicely, although there are still

some disadvantages. The formulations of this method make a kinematic chain avoid obstacles by

keeping away from them, while graphically we want the chain to avoid penetrating obstacles but
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still to be able to get close to them.

6.3 Future Work

Further research directions for this work would include finding the internal relationship between

the parameters of the redundant inverse kinematic solution techniques and the highly articulated

model and complex environment. A general solution to this problem would release computer

graphics animators from constantly tuning the parameters in their tools and let them concentrate

on a collision free animation for a highly articulated kinematic chain.

Even though by my experiments the objective function technique suits the computer graph-

ics application the most, we should not stop here. The objective function that I used was the

traditional critical distance objective function. New objective functions have been developed, for

example, Mayorga, Janabi-Sharifi, and Wong [26] tried to maximize areas between the manipula-

tors and the obstacles. Although this idea is hard to generalize to 3D, it brings us a new direction

and motivation to find better objective functions for a highly redundant system in 3D.

On the other hand, we should not totally give up the task priority method and the cost function

approach. Theoretically, the task priority method has a physical explanation for its formulations.

If we can find a less sensitive approximation of those matrices and their pseudoinverse, we could get

a good result. The cost function technique has the least calculation and works fine for one obstacle.

There probably exists a better generalization of this approach. Also, automatic parameter tuning

software needs to be developed to remove the burden of tuning these parameters from the user.

Although solving inverse kinematics constraint problems for highly articulated models is not

a well developed research topic in computer graphics so far, I believe it will attract the attention

of more and more researchers in the new century. General high-performance solutions to this

problem will have wide applicability in animation creation and simulation.



Appendix A

Application

This Appendix talks about the implementation details of the application I made to test the

inverse kinematic solvers and obstacle avoidance algorithms discussed before. The application

screen window is split to two parts as shown in the screen shot of the application Figure 5.1. The

left part of the screen is the skeleton structure window, and the right part is the main window

which shows a view of the inverse kinematic animation.

A.1 Modeling

To test my inverse kinematic solver and obstacle avoidance algorithms, an elephant is modeled in

my application, since the elephant can be modeled as an articulated object and the elephant trunk

is a good example of a highly redundant manipulator. The modeling hierarchy of the skeleton

of the elephant is shown in Figure A.1. The boxes in the figure represent rigid body segments,

and the ellipses present the joints. All the joints are rotational joints with joint limits except two

translational joints for left and right shoulders. Notice that the elephant trunk is not shown in

the figure and it is in fact another branch starting from the root, instead of a branch starting from

the head. This is because this application allows the user to modify the elephant structure by

adding and deleting rigid bodies and joints, so it is a good idea to keep our focus - elephant trunk
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Figure A.1: DAG of the elephant skeleton structure
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- separately from the rest of the skeleton. Each rigid body part is modeled by a scaled sphere

except the elephant trunk, which is modeled by unit unscaled spheres. Cylinders are added in

between the spheres to give a smooth connected elephant body and elephant trunk.

L-Systems [37] are used in my application to generate a tree to serve as an obstacle formed by

multiple cylindrical branches.

An animation recorder is also implemented in the application. The user can record the move-

ment of the end effector starting from any configuration and ending at any time. The time spent

on inverse kinematic computation while recording is written to a file with an automatically gen-

erated file name. This can be used to compare the performance of different methods used to

accomplish the same task.

A.2 Editable Tree Structure

The elephant skeleton is a collection of named rigid bodies or joints arranged in a hierarchy.

This Directed Acyclic Graph (DAG) tree structure is editable. The current skeleton structure is

displayed on the left of the main window. The user can double click on any node in the DAG tree

structure. If the node represents a rigid body, the user can change the shape of this segment by

changing the scaling factors of the sphere. If it represents a rotational joint, the user can change

its joint limits and its current joint angle. If it is a translational joint, the displacement along x,

y, and z axes can be changed. A right mouse click can give the user a choice of adding or deleting

a branch from current node. Nodes to be added can be a sphere segment, a translational joint, or

one of three different axis rotational joint. For convenience, the number of spheres used to form

the elephant trunk can also be changed via a pull down menu.

A.3 Collision Detection

Collision detection in my application includes collision detection between the elephant’s trunk

and the environment as well as with the body of the elephant itself.

Collision detection between the elephant and the environment only applies to the tip of the
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elephant trunk. This is because the rest of the trunk is supposed to avoid environmental obstacles

using an obstacle avoidance algorithm. The next section talks about how to find the distance

between the environmental objects and the center of a sphere. Note that the spheres forming the

elephant trunk are unscaled, so given this distance we only need to compare it to the radius of

the sphere to detect a collision.

The collision detection of the body itself is still reasonably easy, since all the body parts of

the elephant are scaled spheres, i.e., ellipsoids. The following algorithm is used to detect collision

for two ellipsoids. I assume that they are centered at (centeri.x, centeri.y, centeri.z), they are

scaled by scalei.x in x axis, scalei.y in y axis, and scalei.z in z axis, and they are rotated by

transformation matrix Mi. The i here is 1 or 2 for each of a pair of ellipsoids.

Consider an unit sphere first. The equation of an unit sphere is

x2 + y2 + z2 = 1.

Now transform this sphere the same way as one of the two ellipsoids, say, ellipsoid1. After scaling

by factors scale1.x, scale1.y, and scale1.z, the equation becomes

( x

scale1.x

)2

+
( y

scale1.y

)2

+
( z

scale1.z

)2

= 1.

After translating the sphere from origin to (center1.x, center1.y, center1.z), we have

(x− center1.x
scale1.x

)2

+
(y − center1.y

scale1.y

)2

+
(z − center1.z

scale1.z

)2

= 1.

Now we slice the original unit sphere both horizontally and vertically, and pick one of the inter-

section points and call its x coordinate unit.x. Then the relationship between unit.x and the x

coordinate of the same point on the sphere after transformation and scaling, real.x, is

unit.x =
real.x− center1.x

scale1.x
.
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If the sphere is rotated by transformation matrix M1, we have



unit.x

unit.y

unit.z

1


= inv(M1)

(real.x− center1.x
scale1.x

,
real.y − center1.y

scale1.y
,
real.z − center1.z

scale1.z
, 1
)T
.

(A.1)

We can figure out the real intersection points (real.x, real.y, real.z) on the first ellipsoid by Equa-

tion A.1. To detect collision of this ellipsoid with another, we can transfer these real intersection

points back to the unit sphere of the other ellipsoid, ellipsoid2:

(x, y, z, 1)T = inv(M2)
(real.x− center2.x

scale2.x
,
real.y − center2.y

scale2.y
,
real.z − center2.z

scale2.z
, 1
)T
.

If the squares of x, y, and z add up to a number less than 1, a collision is detected.

A.4 Obstacle Geometry

Spheres, planes, and cylinders are three types of obstacles considered in my application. The

elephant trunk is formed by unit unscaled spheres. The critical distance between each obstacle

and elephant trunk is the smallest distance among all those distances between the obstacle and

all spheres in the trunk. The following subsections talk about how to find the distances between

these three types of obstacles and elephant trunk spheres.

A.4.1 Spheres

The distance from an obstacle sphere to another elephant trunk sphere is simply the distance

between the centers of these two spheres, less the sum of the radii of the two spheres.
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Figure A.2: Finding distance between a point to a plane.

A.4.2 Planes

Let the obstacle be a plane, and the center of the elephant trunk sphere be qi. To find the distance

from a point qi to a unbounded plane, I simply project the point to the plane and calculate the

distance from qi to the projected point, q
′

i, then subtract the radius of the sphere. If the plane is

bounded, we still need to find the projection point first. As shown in Figure A.2, if q
′

i is within the

bounded plane, area E, we just need to calculate the distance between qi and q
′

i. If the projection

point is within the area A, C, I, or G, the result is the distance between qi and the corner of the

bounded plane a, b, c, or d, respectively. If the projection point q
′

i falls into area B, D, H, or F,

the result distance is the distance between qi and edge ab, ad, dc, or bc, respectively.

A.4.3 Cylinders

Consider a cylindrical obstacle and a sphere with center qi. The cylinder can be considered as

a line segment in this calculation. The point qi is first projected to the line that overlaps with

this line segment. If the projection point q
′

i is within the line segment, the result distance is the

distance between qi and q
′

i. If not, the result is the distance is between pi and the line segment

end that is closer to the projection point as shown in Figure A.3. To detect which case it is, three

vectors need to be calculated as shown in Figure A.4. One is v which is defined from one end of

the line segment to the other end. The other two are v1 and v2, which are the vectors from the

ends of the line segment to the point qi. If the dot product of v and v1 has the same sign as the
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Figure A.3: Finding distance between a point to a cylinder.
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Figure A.4: Finding distance between a line segment to a sphere.



APPENDIX A. APPLICATION 72

dot product of v and v2, it is the case shown in (b) - the projection point is outside of the line

segment; otherwise it is the case (a) - the projection point is on the line segment.

A.5 Direct Manipulation

The 3D direct manipulation facility allows the user to interactively manipulate the model position,

orientation, and its joint angles [34, 2]. The facility is built upon an operator that interactively

manipulates general homogeneous transformations with a three-button mouse and the keyboard.

The direct manipulation operator is a loop that repeatedly does the following:

1. read mouse coordinates on the screen and button status,

2. convert mouse information into a 3D geometric transformation,

3. apply transformation to the end effector or root of the tree structure accordingly,

4. invoke inverse kinematics positioning algorithm with joint limits if the transformation is on

the end effector,

5. redraw the graphic windows.

The loop continues until it is explicitly terminated or aborted by the user.

A.5.1 Identifying the Chain

The chain root is selected by highlighting (left click) a node in the DAG structure window. The

end effector is determined by picking (also by left clicking) a rigid body in the main window. If

at least one of them is not specified, the default kinematic chain is the elephant trunk.

To determine the whole kinematic chain, the skeleton hierarchy is traversed backwards from

the end effector. While traversing, at each node, I check if it is the kinematic chain root, or if it

is the ancestor of the kinematic chain root. If neither case is true, we continue going backwards

to the DAG root. If it itself is the chain root, we are finished traversing the chain. If it is the

ancestor of the chain root, we need to traverse from the chain root backwards to the current node
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to complete the whole chain. Referring to Figure A.1, there are two examples for each case. If

the left hand is selected as the end effector and the shoulders are chosen as the chain root, the

kinematic chain is traversed from the left hand to shoulders backwards. If the right upper arm is

picked as the chain root, the kinematic chain is traversed from the left hand to the shoulders first.

After finding out that shoulders are ancestors of the right upper arm, I continue the kinematic

chain from the right upper arm to the shoulders backwards.

The user can also define a loop in the data structure. After selecting one rigid body in the

DAG window and another one in the main window, the user can join the two into a loop by a pull

down menu and break the loop later. I move this loop by solving two different inverse kinematic

problems that have the same goal position movement. The kinematic chain roots of these two

inverse kinematic chains is the common root of the two rigid bodys in the DAG tree structure;

the end effectors are those two rigid bodys. For instance, in a human figure, we can join our left

and right hands by clasping them together, and move them together with the shoulders as the

chain roots for both hands.

A.5.2 Determining an End Effector Goal

When the inverse kinematic chain is the elephant trunk and the middle mouse button is depressed,

the elephant trunk tip begins to follow the mouse cursor on the screen till the button is released.

To compute new goal positions for the end effector as the cursor moves around on the screen, we

must resolve the ambiguity of mapping a 2D screen location to a 3D location. The solution adopted

here is to cast a ray from the eye to the plane that is parallel to the monitor screen intersecting

the end effector, and then transfer the mouse displacement on the screen to world coordinates.

The scene can be rotated around a trackball while the right mouse button is depressed, so the

end effector can be moved around arbitrarily in a 3D environment.

To state this clearly, we can look at Figure A.5. Let P1 be the monitor screen with equation

z = −d, P2 be the plane that is parallel to P1 and contains the end effector with equation z = −ez,
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Figure A.5: Determining an end effector goal

and the screen window has nx × ny pixels. Now each pixel on P1 is equal to

d tan(fov/2)
ny/2

in the world coordinate system, and each pixel on P2 is equal to

ez tan(fov/2)
ny/2

in the world coordinate system. If the view position has been changed by the trackball, and the

transformation is denoted by matrix M , it has the same effect as that the model is transformed

by matrix MT . I multiply the pixel displacement vector (pixelx, pixely, 0) by MT first, and

then multiply the resulting pixel displacement by the above factor to get its corresponding world

coordinate displacement. Notice that ez is not simply the z value of the end effector any more.

It is calculated by first transfer the z value of the end effector into modeling coordinate system,

then multiply M to it, and finally change it back to the world coordinate system.

A.5.3 Menu Items

Besides the mouse functions mentioned so far, there are menu items. The “Obstacle” menu gives

the user multiple choices of different obstacles and obstacle avoidance methods. The “SVD” menu
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gives the user the choice of different SVD techniques to solve inverse kinematic problems. Joint

limits constraint can be turned on or off by menu “Joint Limit”, and the user can use this menu to

choose between the projection and clipping methods. Collision detection can be turned on or off

by menu “Collision Detect”. The “Priority” menu can give the user choice between the general

solution of the inverse kinematic problem and the task space augmentation method. The user

can tune some important parameters via the “Parameter” menu. There is a “Record” menu to

save a sequence of model motions and play it back. The menu “Loop” allows the user joining two

rigid bodys to a loop and breaking the loop later. Finally, the “File” menu can reset the model

orientation or position, the joint angles, segment scalings, etc.
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