LINEAR REDUCTIONS OF MAXIMUM MATCHING*

THERESE BIEDL f

Abstract. Maximum matching is a classic problem in graph theory with many practical appli-
cations. The fastest currently known algorithm solves this problem in O(m+/n) time for an n-vertex
m-edge graph.

In this paper, we give linear reductions from maximum matching to maximum matching in a
special graph class, such as 3-regular graphs, or biconnected graphs with maximum degree 3. We also
reduce maximum matching in planar graphs to maximum matching in triangulations with maximum
degree 9. Our results imply that rather than searching for faster maximum matching algorithms
general, one should concentrate on maximum matching algorithms for these special graph classes.
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1. Introduction. The maximum matching problem has many practical applica-
tions, for example in personnel assignments, determining chemical bonds and pattern
recognition. It is also one of the first problems to be studied in graph theory, and
characterizations such as Hall’s theorem had wide-ranging implications in the devel-
opment of combinatorial optimization and duality theory. See the book by Lovasz
and Plummer [LP86] for an overview of the history of the matching problem and
algorithms to solve it.

Initial research focused on when a graph had a perfect matching (see Section 2
for precise definitions.) In particular, the famous theorems by Petersen [Pet91] and
Konig [K6n16] state that any 3-regular biconnected graph and any k-regular bipartite
graph has a perfect matching. Hall [Hal35] characterized when a bipartite graph has
a perfect matching, and Tutte [Tut47] extended the result to general (not necessarily
bipartite) graphs.

Hall’s theorem can be used for a polynomial-time algorithm to find a perfect
matching in a bipartite graph [Hal56], and this can easily be extended to finding
a maximum matching. As opposed to that, Tutte’s theorem does not easily lend
itself to a polynomial-time algorithm. (However, some such algorithms do exist, see
for example [Gee00].) In 1957, Berge [Berb7] provided another characterization of
maximum matchings using augmenting paths, and this was used by Edmonds [Edm65]
for the first polynomial-time maximum matching algorithm for general graphs.

From then on, research has focused on improving the time-complexity of maxi-
mum matching algorithms, both for the bipartite and the general case. For the bipar-
tite maximum matching problem in an n-vertex m-edge graph, the time-complexity
was improved to O(nllzm) by Hopcroft and Karp [HK73]. For the general maximum
matching problem, the time-complexity improved to O(mn) [Gab76], then to O(n®/?)
or O(n'?mlogn) [EKT75], and finally to O(n'/?m) by Micali and Vazirani ([MV80],
see also [PL88] and [Vaz94]).

So for both the bipartite and the general maximum matching problem, the cur-
rently best algorithm takes O(m+/n) time, and no improvement has been made in 20
years. But it seems unlikely that this is the final answer, at least for graphs with a

*A 2-page version of this paper will appear at the 12th Annual Symposium on Discrete Algorithms.
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special structure such as planar graphs. These graphs have O(n) edges, and hence
the currently best algorithms take O(n®/2) time.

Faster maximum matching algorithms are known for some special graph classes if
we want to find a perfect matching if one exists. Examples of this include bipartite k-
regular graphs [Sch99, COS99], 3-regular biconnected graphs [BBDL99], and various
subgraphs of regular grids [Thu90, HZ93, KR96]. The last four algorithms all work
in linear time for a subclass of planar graphs. We can also efficiently find a perfect
matching if it is unique [GKT99].

1.1. Our results. Our research was motivated by the work in [BBDL99], where
together with Bose, Demaine and Lubiw we showed how to find a perfect matching
in a 3-regular biconnected graph in O(nlog*n) time, and in O(n) time for planar
graphs. (A perfect matching always exists by Petersen’s Theorem.) A naturally
arising question is whether this extends to 3-regular graphs that are not biconnected.
Such graphs need not have a perfect matching, but could a similar algorithm be used
to find a maximum matching in a 3-regular graphs, or at least to test whether a
3-regular graph has a perfect matching?

In this paper, we show that whether a 3-regular graph is biconnected or not has
significant impact for finding a matching. More precisely, we show that there is a
linear reduction from the maximum matching problem to the maximum matching
problem in 3-regular graphs. By this we mean that we can transform any graph G
into a 3-regular graph G* with O(m(G)) edges such that a maximum matching in G
can be recovered from one in G* in O(m(G)) time. We denote this linear reduction by
MATCHING <; MATCHING IN 3-REGULAR GRAPHS,! where MATCHING stands for the
problem of finding a maximum matching. Such a reduction implies that any O(f(m))
algorithm for maximum matching in 3-regular graphs yields an O(f(m)+m) algorithm
for maximum matching in arbitrary graphs.?

We provide a few more linear reductions of maximum matching, and study the
special case when the graph is bipartite and/or planar. Our results are summarized
in Table 1.1. Most reductions also hold for the problem PERFECT MATCHING, which
is the problem of finding a perfect matching if one exists.

Our results can be interpreted in two ways: A pessimist would take them as
indication that there is no fast algorithm for 3-regular graphs (or any of the other
special graph classes), for if there were, say, an O(nlogk n) algorithm for 3-regular
graphs, then this would imply an O(mlogk m) algorithm for arbitrary graphs, and
this seems unlikely since no progress has been made to this problem in so long.

We prefer an optimist’s point of view, which would be to hope for improve-
ment in the complexity of maximum matching by concentrating on much more struc-
tured graphs. In particular for planar graphs, we hope that an algorithm with time-
complexity, say, O(nlogk n) for some k > 0, can be found. By our results (see Ta-
ble 1.1) it would suffice to show such a time complexity for planar 3-regular graphs,
planar biconnected graphs with maximum degree 3, or triangulations with maximum
degree 9.

The paper is structured as follows: After giving definitions, we devote three sec-
tions to transformations: In Section 3, we develop some basic transformations, in

1 The notation is borrowed from complexity theory where a similar concept exists, see for example
[Sch7g].

2However, the number of vertices in the 3-regular graph G* is not necessarily proportional to the
number of vertices in the original graph G. Hence, running times bounds containing n may or may
not be preserved under this transformation. For example, O(m+/n) is unfortunately not preserved.
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MATCHING
<; MATCHING IN 3-REGULAR GRAPHS
<; MATCHING IN BICONNECTED MAX-DEG-3 GRAPHS

MATCHING IN BIPARTITE GRAPHS
Sl MATCHING IN BICONNECTED BIPARTITE MAX-DEG-3 GRAPHS

MATCHING IN PLANAR GRAPHS
Sl MATCHING IN PLANAR 3-REGULAR GRAPHS
Sl MATCHING IN BICONNECTED PLANAR MAX-DEG-3 GRAPHS
Sl MATCHING IN MAX-DEG-9 TRIANGULATIONS

MATCHING IN PLANAR BIPARTITE GRAPHS
Sl MATCHING IN BICONNECTED PLANAR BIPARTITE MAX-DEG-3 GRAPHS
Sl MATCHING IN MAX-DEG-6 QUADRANGULATIONS

TaBLE 1.1
Overview of linear reductions presented in the paper.

Section 4, we study how to change vertex-degrees in a graph, and in Section 5, we
study how to change the degrees of faces in a planar graph. These transformations,
when combined suitably, give all results. We conclude with open problems in Sec-
tion 6.

2. Definitions. Let G = (V, F) be a graph with n vertices and m edges; we write
V(G), E(G), n(G) and m(G) when the graph in question is not clear. The degree of a
vertex v is the number of incident edges of v and denoted deg(v). G is called k-regular
if all vertices in G’ have degree exactly k. G is called a maz-deg-k graph if all vertices
in G have degree at most k.

We assume throughout the paper that G is simple, i.e., there are no loops (edges
(v,v) for some v € V) or multiple edges (two or more edges (v, w) for some v, w € V).
We also assume that G is connected, i.e., there exists a path between any pair of
vertices. A vertex v is called a cutverter if deleting v results in a graph that is
not connected. A graph is called biconnected if it has no cutvertex. The maximal
biconnected subgraphs of the graph are called biconnected components.

A graph is called bipartite if it has a 2-coloring, i.e., if its vertices can be colored
with two colors such that the endpoints of any edge have different color. A graph
is called planar if it can be drawn in the plane without edges crossing each other.
A planar drawing of a planar graph is characterized by giving the counter-clockwise
cyclic order of edges around each vertex. For a given graph, testing whether it is
planar, and finding such a cyclic order if it is can be done in linear time [HT74, MM96].

A matching in G is a subset M of the edges such that each vertex is incident
to at most one edge of M. A mazimum matching of G is a matching of maximum
cardinality; its cardinality is denoted u(G). A matching M is called a perfect matching
if all vertices are incident to an edge of M.

3. Two elementary transformations.

3.1. Transformation 7.: Making the graph biconnected. We first show
that for maximum matching problems, we may assume that the graph is biconnected.
For if it is not, repeatedly merge two biconnected components by adding a few vertices
and edges. We denote this transformation (which is explained in detail below) by T¢,
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and the resulting graph by T, (G).

Assume that G has a cutvertex a, and let v; and vy be two neighbors of a in two
different biconnected components. If G is planar, then v; and vy should be chosen
such that (a,v1) and (a, v3) are consecutive in the cyclic order of edges around a.

We obtain T, (G) by adding a 4-cycle to the graph and connecting it to »; and
va. More precisely, we add vertices b, ¢, d, e and edges (v1, b), (b,¢), (¢,d), (d,e), (e, b)
and (d,v2). See Fig. 3.1.

FiG. 3.1. Merging two biconnected components.

LEMMA 3.1. pu(T.(GQ)) = u(G) +2, i.e., G has a matching of cardinality k if and
only if T.(G) has a matching of cardinality k + 2.

Proof. If M is a matching in G, then MU{(b, e), (¢, d)} is a matching of cardinality
[M|+2in T, (G).

Assume that M’ is a matching in T.(G). At most two of the six added edges can
belong to M’, since they are all incident to vertices b and d. Removing them gives a
matching of cardinality > |M'| — 2 in G. O

From the proof, it follows that a maximum matching of G can be recovered from
a maximum matching of T;(G) in O(1) time. The new graph has fewer biconnected
components. So after £ applications of this transformation (where & < m(G) is the
number of biconnected components), we have a biconnected graph, which we denote
by T (G).

From the definition of T.(G) and the proof of Lemma 3.1, we can observe the
following properties of T} (G):

T (G) has a perfect matching if and only if G has a perfect matching.
e T7(G) is planar if and only if G is planar.

e T7(G) is bipartite if and only if G is bipartite.

e T7(G) has at most m(G) + 6k < Tm(G) edges.

c

c R0

*

3.2. Transformation 7;: Doubling the graph. One very simple transforma-
tion, which we denote Ty, is to “double” the graph. More precisely, given a graph G,
let Ty(G) be the graph that consists of two copies of G.?

Observe the following properties of T4(G):

T4(G) has a perfect matching if and only if G' has a perfect matching.
() is planar if and only if G is planar.

) is bipartite if and only if G is bipartite.
) has 2m(G) edges.

o Ty(
o Ty(
o Tiy(

4. Changing degrees of vertices. In this section, we study transformations
that decrease or increase degrees of vertices.

3 At this point, we allow a graph that is not connected. In all applications of transformation T,
the graph will be made connected again in the next step.
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4.1. Transformation 74: Remove vertices of degree > 4. We first show
how to remove vertices with degree > 4 by repeatedly “splitting” them. We denote
this transformation (which is explained in detail below) by T4, and the resulting graph

Assume that G has a vertex a of degree > 4, and let v; and v2 be two neighbors
of a. If G is planar, then vy and vy should be chosen such that (a,v;) and (a, v3) are
consecutive in the cycle order of edges around a. We obtain T4(G) by adding two
more vertices b and ¢ and re-routing (a,v1) and (a, v3) to end at ¢ instead of a. More
precisely, we add the vertices b and ¢, and the edges (a,b), (b,¢), (v1,¢), (v2,¢) and
delete the edges (a,v1) and (a, vs). See Fig. 4.1.

Fi1G. 4.1. Decreasing the degree of a vertex of degree > 4.

LEMMA 4.1. pu(T4(G)) = p(G) + 1, i.e., G has a matching of cardinality k if and
only if T4(G) has a matching of cardinality k + 1.

Proof. Assume that M is a matching in G. We have three cases: If (a, v1) belongs
to M, then M' = M — (a,v1) U{(a,b), (¢, v1)} is a matching of cardinality |M|+ 1 in
T4(G). If (a, vg) belongs to M, then M’ = M —(a, v2)U{(a, b), (¢, v2)} is a matching of
cardinality |M |41 in T4(G). If neither of these edges belongs to M, then M U{(b,¢)}
is a matching of cardinality |[M|+ 1 in T4(G).

Assume that M’ is a matching in T4(G). At most two edges in M’ are incident to
a,b or ¢, since b is only incident to a and c. If there are two such edges, then remove
one of them from M’ to obtain a matching M of cardinality > |M’| — 1. Now contract
the edges (a,b) and (b,¢). Since at most one edge in M is incident to a,b or ¢, M
is also a matching in the resulting graph, which is G. Thus we obtain a matching of
cardinality > |[M'| — 1in G. O

Following the steps of this proof, one sees that a maximum matching of G can be
recovered from a maximum matching of T4(G) in O(1) time.

The new graph T4(G) is in some sense “closer” to being a max-deg-3 graph. More
precisely, define z(G) = EUEV(G) max{0,deg(v) — 3}, then z(G) = 0 if and only if G
has maximum degree 3. Since in T4(G) vertex a contributes one unit less to the sum,
we have z(Ty(G)) = z(G) — 1.

After applying transformation Ty z(G) times, we therefore have a max-deg-
3 graph, which we denote by T;(G). From the definition of T4(G), the proof of
Lemma 4.1 and z(G) < 2m(G), we can observe the following properties of T (G):

e T (G) has at most m(G) + 2z2(G) < bm(G) edges.
Using graph T (T (G) we thus obtain the following linear reductions:
e MATCHING Sl MATCHING IN BICONNECTED MAX-DEG-3 GRAPHS
e MATCHING IN PLANAR GRAPHS Sl MATCHING IN BICONNECTED PLANAR
MAX-DEG-3 GRAPHS



e MATCHING IN BIPARTITE GRAPHS Sl MATCHING IN BICONNECTED BIPAR-
TITE MAX-DEG-3 GRAPHS
e MATCHING IN BIPARTITE PLANAR GRAPHS Sl MATCHING IN BICONNECTED
BIPARTITE PLANAR MAX-DEG-3 GRAPHS
Since T (TX(G)) has a perfect matching if and only if G has one, the same re-
ductions also hold for PERFECT MATCHING.

4.2. Removing vertices of degree 2. Now we study how to remove vertices
of degree 2. We give not one, but two transformations to achieve this. The first one
maintains planarity, but does not maintain whether the graph has a perfect matching.
The second one has opposite properties: it maintains whether the graph has a perfect
matching, but need not maintain planarity.

4.2.1. Transformation T3,. Assume that G has a vertex a of degree 2. We
obtain T,(G) by adding vertices b, ¢, d and edges (a, b), (b, ¢) and (b,d). See Fig. 4.2.

F1G. 4.2. Removing a vertex of degree 2.

LEMMA 4.2. p(Tae(G)) = p(G) + 1, i.e., G has a matching of cardinality k if
and only if Taq(G) has a matching of cardinality k + 1.

Proof. Tf M is a matching in G, then M U {(b,¢)} is a matching of cardinality
[M|+ 11in Ty (G).

Assume that M’ is a matching in T2,(G). At most one of the three added edges
can belong to M’, since all three edges are incident to b. Removing it from M’ gives
a matching of cardinality > |[M'| — 1 in G. O

Denote by T5,(G) the graph that results from G by applying this transformation
to all vertices of degree 2 in G. Observe that T3,(G) is planar if and only if G is
planar. Also, T5,(G) has at most m(G) + 3n(G) < 4m(G) edges.

Unfortunately, this transformation does not preserve biconnectivity of the graph.
It also does not preserve whether the graph has a perfect matching.

4.2.2. Transformation T5,. Assume that G has two vertices a and b of degree
2. If GG is bipartite, then furthermore assume that a and b have the same color in a
2-vertex-coloring. We obtain T (G) by adding vertices ¢, d and edges («, ¢), (b, ¢) and
(¢,d). See Fig. 4.3.

Fi1G. 4.3. Pairing two vertices of degree 2.

LEMMA 4.3. p(T2(G)) = p(G)+1, i.e., G has a matching of cardinality k if and
only if Tap(G) has a matching of cardinality k + 1.
6



Proof. Tf M is a matching in G, then M U {(¢,d)} is a matching of cardinality
[M|+ 1in Ty(G).

Assume that M’ is a matching in T3 (G). At most one of the three added edges
can belong to M, since all three edges are incident to ¢. Removing it gives a matching
of cardinality > |M'| —1in G. O

If we double graph G (i.e., apply transformation Ty) beforehand, then we can
always use a vertex of degree 2 in GG and its copy in the copy of G for transformation
Ty,. Hence by applying this transformation repeatedly to all vertices of degree 2 in
T4(G), we can remove all vertices of degree 2. Observe the following properties of the
resulting graph Ty, (Tq(G)):

o T (T4(G)) has a perfect matching if and only if G' has a perfect matching.
o T (T4(G)) is bipartite if and only if G is bipartite.
o T (T4(G)) has at most m(Tq(G)) +3n(G) = 2m(G) + 3n(G) < 5m(G) edges.

Unfortunately, this transformation does not necessarily preserve planarity or bi-
connectivity of the graph.

4.3. Transformation 77: Remove vertices of degree 1. Assume that G
has a vertex a of degree 1. We obtain T1(G) by adding vertices b, c,d, e and edges
(a,b), (b,¢), (¢,d), (d,a), (b, e), (c,e), and (d,e). See Fig. 4.4.

b
a e‘
. ' c
d
F1G. 4.4. Removing a vertex of degree 1.

LEMMA 4.4. pu(Ti(G)) = p(G) + 2, i.e., G has a matching of cardinality k if and
only if T1(G) has a matching of cardinality k + 2.

Proof. Tf M is a matching in G, then MU{(b, e), (¢, d)} is a matching of cardinality
[M|+2in T1(G).

Assume that M’ is a matching in T1(G). At most two of the seven added edges
can belong to M’, since they are incident to only five different vertices. Removing
them gives matching of cardinality > |M'|— 2 in G. O

Denote by Ty (G) the graph that results from applying this transformation to all
vertices of degree 1 in G. Observe the following properties of T} (G):

e T7(G) has a perfect matching if and only if G has a perfect matching.
e T7(G) is planar if and only if G is planar.
e T7(G) has at most m(G) + 7Tn(G) < 8m(G) edges.

Unfortunately, this transformation does not preserve bipartiteness.

4.4. 3-regular graphs. To reduce matching to matching in 3-regular graphs,
we combine the transformations in this section. First, remove all vertices of degree
> 4 with transformation Ty. Then, remove all vertices of degree 2 with transformation
Tyq or Ty, Finally, remove all vertices of degree 3 with transformation 77.

Studying the properties of the individual transformations, we can observe that
graph Ty (T3, (T (G))) proves the following linear reductions:

o MATCHING <; MATCHING IN 3-REGULAR GRAPHS
e MATCHING IN PLANAR GRAPHS Sl MATCHING IN 3-REGULAR PLANAR GRAPHS
On the other hand, graph T7 (75, (Ta(T4(G)))) proves the following reductions:
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o MATCHING <; MATCHING IN 3-REGULAR GRAPHS
e PERFECT MATCHING <; PERFECT MATCHING IN 3-REGULAR GRAPHS

Sadly, neither bipartiteness nor biconnectivity is maintained in these reductions,
since transformations T5, and T3, add vertices of degree 1, which destroys biconnec-
tivity. To remove the vertices of degree 1 we apply transformation 77, which destroys
bipartiteness.

Indeed, this is to be expected, because every 3-regular bipartite graph has a
perfect matching by Konig’s Theorem [K6n16], and hence a reduction MATCHING IN
BIPARTITE GRAPHS <; MATCHING IN 3-REGULAR BIPARTITE GRAPHS seems unlikely.
For the same reason, Petersen’s Theorem makes a reduction MATCHING <; MATCHING
IN 3-REGULAR BICONNECTED GRAPHS unlikely.

5. Changing degrees of faces. Now we study matching in planar graphs. We
first give a few more definitions. A planar drawing of a graph defines connected
components of the plane; these components are called faces. The number of vertices
incident to a face is called the degree of the face, where vertices that are encountered
repeatedly while walking around the face are counted repeatedly to the degree.

A planar graph is called a triangulation if it is simple and all faces have degree
3. Much is known about triangulations. For example, a triangulation is 3-connected
(it cannot become disconnected by removing 2 vertices), its edges can be split into
three edge-disjoint spanning trees [Sch90], and its vertices can be ordered such that
any prefix of the order induces a biconnected graph [FPP90]. Recently, we showed
that any triangulation has a matching with at least (n + 4)/3 edges [BCD*00].

For many combinatorial problems on planar graphs, for example straight-line
drawings and vertex-coloring, it suffices to study triangulations, since any planar
graph can be triangulated by adding vertices and/or edges without changing the
problem. We show now that this also holds for MAXIMUM MATCHING and PERFECT
MATCHING.

Triangulated graphs are by nature not bipartite, but a related concept for bi-
partite graphs is a quadrangulation, where every face has degree 4. We also show
that maximum matching in bipartite planar graphs reduces to maximum matching in
quadrangulations.

5.1. Transformation 7;: Triangulating. Transformation T; converts an arbi-
trary planar graph into a triangulation by inserting a subgraph into a face with degree
> 4. So assume that f is a face with degree £ > 4. We insert £ vertices into f, and
connect them as an f-cycle C;. Next we add a 2/-cycle that connects alternatingly a
vertex in Cy with a vertex on the cycle Cp that forms the boundary of f. (This does
not add multiple edges since G has no loops.) Next we insert £ vertices inside Cy, and
connect them as an f-cycle C3. Next we add a 2¢-cycle that connects alternatingly a
vertex in Cy with a vertex in C7. This 2¢-cycle creates 2¢ triangular faces, and inside
each of them, we add one more vertex connected to the three vertices on the face.
See Fig. 5.1. Finally we triangulate the inside of C'y by adding edges in a zig-zag line,
such that all degree on C3 increase by at most 2. The resulting graph T;(G) has 4¢
new vertices.

LEMMA 5.1. p(Ti(G)) = u(G)+2¢, i.e., G has a matching of cardinality k if and
only if T,(G) has a matching of cardinality k + 2¢.

Proof. For convenience of notation, we call the 2¢ vertices of the two added
cycles the “black” vertices, and the 2/ vertices added inside the triangles the “white”
vertices. If M is a matching in GG, then we can take the same matching in T;(G) and
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FiG. 5.1. Triangulating a face of degree £; shown here is £ = 4. The £-cycles are dashed and
the 2{-cycles are dotted.

add 2¢ edges, one from each white vertex to a black vertex, to get a matching of size
| M|+ 2¢.

Assume that M’ is a matching in T;(G). Note that any new edge is incident
to one of the 2/ black vertices, so at most 2¢ of the added edges can belong to M’.
Removing them gives a matching of size > |M'| — 2£in G. O

Denote by T;(G) the graph that results from G by applying transformation T;
to all faces of degree > 4. Then Ty (G) is a triangulation. Also, Ty (G) has a perfect
matching if and only if G has one. Since the sum of the degrees of the faces in G
is 2m(G) < 6n(G), the number of vertices of T (G) is at most n(G) + 24n(G) €
O(m(G)).*

All added vertices have degree < 9. If a vertex v has degree d in G, then it
is incident to d faces of GG, and at most 2d incident edges have been added to » in
T; (G). In particular, if G has maximum degree 3, then T;*(G) has maximum degree
9. Therefore, graph T;*(T4(G)) proves that

e MATCHING IN PLANAR GRAPHS Sl MATCHING IN MAX-DEG-9 TRIANGULA-
TIONS and

e PERFECT MATCHING IN PLANAR GRAPHS <; PERFECT MATCHING IN MAX-
DEG-9 TRIANGULATIONS.

5.2. Transformation 7,: Quadrangulating. Transformation 7; converts a
bipartite planar graph into a quadrangulation by inserting a subgraph into each face
with degree > 6. So assume that G' has a face f with degree £ > 6. We insert an
f-cycle C in f, and add a perfect matching between the vertices of C and the vertices
of the f-cycle Cy that forms the boundary of f. We then add another /-cycle C5 inside
C1, and add a perfect matching between C3 and Cf.

Inside each of the £ resulting quadrangular faces between C7 and Cy, we add
two more vertices connected to two diagonally opposite vertices on the face. Finally
we quadrangulate the inside of Cy by adding a matching inside Cs; this is possible
because G is bipartite and hence £ is even. See Fig. 5.2. The resulting graph T,(G)
has 4¢ new vertices.

LEmMma 5.2, p(T,(G)) = p(G) + 2¢, i.e., G has a matching of cardinality k if
and only if T;(G) has a matching of cardinality k + 2¢.

Proof. For convenience of notation, we call the 2¢ vertices of the two added
cycles the “black” vertices, and the 2¢ vertices added inside the quadrangular faces
the “white” vertices. If M is a matching in GG, then we can take the same matching

4With a more careful analysis, this bound could be improved to n(G) + 16n(G), since faces of
degree 3 do not add new vertices.



Fi1G. 5.2. Quadrangulating a face of degree £; shown here ts £ = 6. The £-cycles are dashed.

in T,(G) and add 2¢ edges, one from each white vertex to a black vertex, to get a
matching of size | M|+ 2¢.

Assume that M’ is a matching in T,(G). Note that any new edge is incident
to one of the 2/ black vertices, so at most 2¢ of the added edges can belong to M’.
Removing them gives a matching of size > |M'| — 2£in G. O

Denote by 77 (@) the graph that results from G by applying transformation T to
all faces of degree > 6. Then T (G) is a quadrangulation. Also, T;(G) has a perfect
matching if and only if G has one. Since the sum of the degrees of the faces in G
is 2m(G) < 4n(G) (recall that G is planar and bipartite), the number of vertices of
Ty (G) is at most n(G) + 16n(G) € O(m(G)).

All added vertices have degree < 6. If a vertex v has degree d in G, then it is
incident to d faces of GG, and hence at most d incident edges have been added to v in
17 (G). In particular, if G has maximum degree 3, then Ty (G) has maximum degree
6. Therefore, graph T; (T4(T.(G))) proves that

e MATCHING IN PLANAR BIPARTITE GRAPHS Sl MATCHING IN MAX-DEG-6
QUADRANGULATIONS and

e PERFECT MATCHING IN PLANAR BIPARTITE GRAPHS <; PERFECT MATCH-
ING IN MAX-DEG-6 QUADRANGULATIONS.

6. Conclusion and open problems. In this paper, we studied how to reduce
matching in an arbitrary graph to matching in a more structured graph, such as a 3-
regular graph or a biconnected max-deg-3 graph. For planar graphs, we also reduced
matching to matching in triangulations with maximum degree 9. Our result should
have implications for future research into simplified/improved matching algorithms,
since such research can restrict the these special graph classes.

Many other linear reductions are possible. In particular, one can reduce matching
in 3-regular graphs to matching in 4-regular graphs, by doubling the graph and doing
a transformation similar as Transformation T%,. Another intriguing reduction is to
reduce matching to weighted matching in biconnected 3-regular graphs (which have
a perfect matching by Petersen’s theorem). This is possible by first reducing the
problem to a biconnected max-deg 3 graph (which has only vertices of degree 3 and
2), then doubling the graph, and finally adding a new edge between the two copies
of any vertex of degree 2. If all new edges have weight 1, while all other edges have
a weight of 0, then a maximum matching in the original graph can be found by
computing a minimum-weight perfect matching in the new graph.

5With a more careful analysis, this bound could be improved to n(G) + 12n(G), since faces of
degree 4 do not add new vertices.
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Our results highlight the sensitivity of Petersen’s theorem: Every 3-regular bi-
connected graph has a perfect matching, but as soon as we are allowed to have (a)
vertices of degree 2 or (b) cutvertices or (c) weights on the edges, such graphs can be
used to encode any matching problem.

As for open problems, we are mainly interested in other simplifications of match-
ing. In particular:

e Do we have MATCHING <; MATCHING IN BIPARTITE GRAPHS? Note that the
time-complexities of the best currently known algorithms are equally high in
both cases (O(m+/n), see [HK73] and [MV80]), though the algorithm for the
non-bipartite case is significantly more complicated.

While such a reduction would not directly simplify the algorithm by Micali
and Vazirani (because the time-complexity of O(m+/n) is not maintained un-
der a linear reduction), one would expect such a reduction to give enough
insight into the structure of non-bipartite graphs to allow for a simpler algo-
rithm.

Note that for the mazimal matching problem, a reduction that adds a log-
factor is possible and has been used for parallel algorithms [KS00].

e Can matching be reduced to matching in planar graphs? That is, given a
graph G drawn with ¢ crossings, is there a planar graph G* with O(m(G) +¢)
edges such that a maximum matching in G can be recovered in O(m(G) + ¢)
time from a maximum matching in G*? (This would not be a linear reduction,
since ¢ € Q(m?) might be necessary.)

Finally, can the time-complexity of maximum matching be improved, especially
for planar graphs?

Acknowledgements. The author would like to thank Jonathan Buss, Erik De-
maine and Jim Geelen for useful discussions and pointing out references.
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