
SMASH:
A Next-Generation API for

Programmable Graphics Accelerators

Technical Report CS-2000-14
Computer Graphics Lab

Department of Computer Science
University of Waterloo

August 1, 2000

API Version 0.2

http://www.cgl.uwaterloo.ca/Projects/rendering/Papers/smash.pdf

http://www.cgl.uwaterloo.ca/Projects/rendering/shaders.html

Michael D. McCool
mmccool@cgl.uwaterloo.ca

Abstract

The SMASH API is a testbed for real-time, low-level graphics con-
cepts. It is being developed to serve as a concrete target for the
development of advanced extensions to OpenGL as well as a driver
to test hardware architectures to support these extensions. SMASH
is syntactically and conceptually similar to OpenGL but supports
(along with other experimental features) a programmable shader
sub-API that is compatible with both multi-pass and single-pass im-
plementations of shaders.

Arbitrary numbers of shader parameters of various types can be
bound to vertices of geometric primitives using a simple immediate-
mode mechanism. Run-time specification, manipulation, and com-
pilation of shaders is supported. The intermediate-level shad-
ing language includes integrated support for per-vertex and per-
fragment shaders under a common programming model.

Implementation of real-time rendering effects using SMASH
could be enhanced with metaprogramming toolkits and techniques,
up to and including RenderMan-like textual shading languages and
C++ toolkits with similar levels of compactness and functional-
ity. We give several examples of how a two-term separable BRDF
approximation could be implemented using such higher-level con-
structs.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics Processors; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Color, shading, shad-
owing, and texture.

Keywords: Hardware acceleration and interactive rendering,
graphics application programming interfaces, shading languages.

1 Introduction

Real-time graphics systems have reached a turning point. Perfor-
mance levels, measured in triangles per second, are so high and
growing so rapidly that within a year, commodity systems will be

available that can overwrite every single pixel of a640 × 480 dis-
play with its own individual textured polygon over 50 times every
30th of a second. The XBox game platform will be one such exam-
ple.

While there are still performance issues with renderingreally
large (trillion-primitive) environments and models, the real-time
rendering research focus has shifted from rendering scenes quickly
to rendering them well.

Due to this shift in emphasis, some classic computer graphics
themes have been revived, but with a new emphasis on real-time
implementation. Many papers have recently appeared on real-time
physically-based global [21, 31, 52, 57] and local [9, 21, 24, 27,
28, 29] illumination, programmable shading [14, 33, 39, 41, 45],
lens simulation and tone mapping [10, 15, 22], and even real-time
raytracing [49].1

We have come to expect high quality from offline rendering sys-
tems. However, in some cases we have known for decades how to
simulate certain effects in offline systems that are still infeasible in
online systems. Implementing these effects in real time, and all at
once as in sophisticated offline systems, will open up a range of
new applications and will enhance existing ones.

At the same time, suddenly low-end graphics systems are band-
width limited. Just a couple of years ago PC rasterization sys-
tems were so fast, relative to host-based geometry manipulation and
transformation, that a good first approximation in analyzing ren-
dering algorithms was to assume that hardware-accelerated textur-
ing and rasterization speed was infinite. Now, with hardware-based
transformation engines, graphics subsystems are bandwidth limited
for bothgeometry specificationand for texture and framebuffer ac-
cess. This problem will only get worse as the exponentially rising
ability to perform computation in the host and in the graphics ac-
celerator continues to grow faster than the ability of memories and
buses to provide data at high bandwidths and with low latency.

OpenGL and similar APIs are built around a conceptual model

1 For a summary of real-time rendering techniques, see the recent book
by Möller and Haines [38]—although the field is advancing so rapidly that
this book should only be considered an introduction.

http://www.cgl.uwaterloo.ca/Projects/rendering/Papers/smash.pdf
http://www.cgl.uwaterloo.ca/Projects/rendering/shaders.html
mailto:mmccool@cgl.uwaterloo.ca

of graphics hardware. The conceptual model is a kind of contract
between hardware architects and rendering algorithm implementors
about what features will be provided by the graphics accelerator.
This conceptual model, the common point of reference for both
programmers and hardware architects, evolved under considerably
different constraints than exist today. Unfortunately, some aspects
of this conceptual model have outlived their usefulness.

For instance, it was necessary in the early stages of real-time ren-
dering to use a very simple, hardwired, per-vertex lighting model,
in conjunction with linear interpolation of color in screen space, to
get adequate performance. However, not only is linear screen-space
interpolation of colour inaccurate and artifact-prone, but for local
lighting in particular there now exist several per-fragment light-
ing models based on texturing, which are not only more flexible
than the existing OpenGL per-vertex lighting model, but also have
greatly superior visual quality, and are not much more expensive
to implement. In this context, hardware support for a per-vertex
Phong lighting model, or at least foronly this model, doesn’t make
a lot of sense.

It is probably a good time, therefore, to reexamine the concep-
tual architectures of our APIs to see if they are really the optimal
solutions for implementing real-time, high-quality rendering algo-
rithms. Of course, it’s possible that the existing conceptual architec-
ture is appropriate for efficiently implementing advanced rendering
algorithms.

For instance, it has been recently demonstrated [45] that with
some small changes, namely extended precision and signed arith-
metic, the framebuffer and texture operators in the existing con-
ceptual architectures can be used to evaluate RenderMan shading
programs using multiple rendering passes. Programmable shaders
are a major component of production-quality offline rendering sys-
tems, and the computational ability exposed and facilitated by such
a system can be used to help implement many other advanced ren-
dering techniques, so this is an important advance.

However, multipass shader evaluation has drawbacks. The num-
ber of operations in even a simple shader can be large. A shader that
combines a number of rendering effects (shadows, glossy reflec-
tion, volumetric effects, etc.) can explode in complexity as features
interact. Since a pure multipass implementation ties execution of
operations to consumption of bandwidth, a complex shader has the
potential to quickly use up all available memory bandwidth, even at
the high rasterization speeds noted above.

Many hardware accelerators can be configured to perform ad-
ditional computation in a single pass, via multitexturing and other
extensions. Research work is ongoing to extend shader compiler
technology to map onto multitexturing architectures, but graphics
accelerators currently have several limitations that make this pro-
cess difficult.

This begs the following questions:

1. Can we design accelerators so they would be easier to compile
to?

2. How can an API be structured so that programs written to it
will be portable, yet implementations will be scalable?

3. How should we design accelerators so they can be used to
efficiently implement a variety of advanced rendering tech-
niques?

4. For what workloads and feature sets should accelerator archi-
tectures be optimized?

These questions are difficult to answer, especially the last one.
Hardware designers use traces of “typical” graphics applications to
analyze performance [11, 25], but of course these applications have
been optimized to map onto thecurrentconceptual architecture.

There is a chicken-and-egg problem here: Until there are exam-
ples of advanced accelerators, applications cannot be optimized for
them. Until there are applications for advanced accelerators, there
is no motivation for developing these accelarators, no test data to
optimize their performance, and no guidance as to what the appro-
priate feature sets should be. OpenGL’s solution to this problem is
to evolve incrementally—but evolutionary optimization can easily
get stuck in local minima. The alternative is for hardware designers
and algorithm developers to work together to try and reach consen-
sus on a new conceptual architecture.

1.1 Goals and Assumptions

The SMASH project is a next-generation graphics accelerator/API
hardware/software codesign project and architectural study. The
goal is to develop a conceptual architecture appropriate for future
graphics accelerators capable of efficiently supporting advanced
rendering and modelling algorithms. SMASH is an acronym that
stands for “Simple ModellingAnd SHading”—simplicity and ele-
gance being among our goals.

Revisiting the basic assumptions of real-time rendering, we
are designing and analyzing the potential performance of a next-
generation, programmable, real-time graphics subsystem. Our de-
sign has the following specific goals:

1. High frame rate.

2. High modelling complexity.

3. High rendering quality.

4. Low frame latency.

5. Low cost.

6. Flexibility.

7. Portability.

8. Scalability.

9. Ease of learning and use.

If the last goal doesn’t seem important, consider that even now ad-
vanced performance features, such as multitexturing or host SIMD
instructions, are often not used because they are relatively difficult
to program. A system that is easy to use and learn will get used
more and will have a wider impact, all other things being equal.

To keep things easy to learn, we have tried to keep the num-
ber of basic concepts low, have made SMASH consistent with
OpenGL when reasonable, have striven for simplicity and consis-
tency, and have eliminated redundant features. However, we have
also implemented “conveniences” where appropriate and where
they would improve programmer productivity, for instance to en-
hance debugging—as long as these features do not interfere with
high performance.

Scalability means the ability to scale an implementation from a
low-cost, moderate performance system to one with very high per-
formance, ideally with a linear or near-linear increase in cost [11].
Portability means that the same program should run on systems
from different manufacturers, with reasonable performance levels
and scalability being obtained without extensive programmer inter-
vention. Attaining these goals means devising a conceptual archi-
tecture which permits a range of implementations that can effec-
tively exploit massive parallelism.

The flexibility goal is also important. OpenGL has proven to be
flexible, but getting it to do what you want sometimes requires the
use of operators for tasks for which they were not designed and are
often not optimal, extensive testing on different implementations to

find fast paths and work around the bugs and limitations of various
implementations, application of various tricks to simulate signed
numbers or higher precision or range, etc. The result is code that is
often brittle and unmaintainable, inefficiently uses resources, and is
quickly obsolete.

We want to avoid these problems by generalizing the operators
that have proven to be most powerful, providing an explicit portable
model of programmability, virtualizing resources, providing a pow-
erful compiler subsystem as part of the driver, and removing unnec-
essary “legacy” limitations (or in some cases, addressing the lack of
appropriate limitations).

Portability is also enhanced by the emphasis in SMASH on
programmablity—features supported with specific hardware on one
platform can be simulated with appropriate programming on an-
other. The SMASH API has been designed to deliberately hide
distinctions between built-in and programmed features.

As for the goal of a low-cost implementation, ideally we want
SMASH to be simple enough that a high-performance implemen-
tation can be built as a single-chip solution in the near future. To
facilitate this goal, the design is in fact somewhat conservative. For
instance, the design usesz-buffer hidden surface removal rather
than order-independenta-buffer, ray-tracing, or scan-line hidden
surface removal. SMASH also uses a relatively standard pipeline
order so that existing studies of how to implement such pipelines in
a scalable fashion [11, 25] are applicable.

Finally, the design is also based on and constrained by the fol-
lowing assumptions about near-future hardware:

1. Relatively low-bandwidth, high-latency memory systems.

2. A relatively low-bandwidth host port, but with a need for flex-
ible (i.e. immediate-mode) geometry specification.

3. High computational performance and density in individual
custom integrated circuits, with relatively high on-chip band-
width.

To address the memory and host bandwidth issues in particular,
the new conceptual model should include features to offload mod-
elling and rendering tasks from the host (for instance, by tesselating
higher-order surfaces) and to do as much computation (for instance,
shading) in a single pass as feasible.

Because we want to contribute to the evolution of OpenGL and
because we want SMASH to be easy to learn, the SMASH API is
based loosely on OpenGL. However, large chunks of fixed func-
tionality in OpenGL are replaced in SMASH with programmable
subsystems, and parts of OpenGL which have been rendered obso-
lete, like the fixed lighting model, have been removed.

The SMASH API depends heavily on metaprogramming for op-
timization. Writing to the SMASH API really involves writing a
host-CPU program that writes an accelerator-GPU program adapted
to the capabilities of a given graphics system. SMASH drivers will
include significant just-in-time compiler support to perform low-
level adaption of the intermediate-level specification supplied at the
API level to the hardware implementation. The programmer is ex-
pected to provide high-level strategic guidance only.

The idea of the SMASH project is not to replace OpenGL, but to
provide an example to guide its evolution, hopefully allowing it to
avoid getting stuck in a local optimum. Like a concept car, the idea
isn’t that you can buy one right away (or ever), but at least it will be
possible to determine if you want something like it.

1.2 Outline

In this document we focus mainly on the programmable shading
API for SMASH, which is currently its most well-developed as-
pect. It is our intention to make freely available the base software

implementation of SMASH for research and evaluation purposes;
please visit the website noted on the first page of this document.
We are also working on a testbed hardware implementation using a
Xilinx FGPA prototyping system and a high-performance software
implementation on the Intel architecture. This document will be up-
dated as we develop further aspects of SMASH; please mention the
date, the version number, and the URL when citing this document.

This document is structured as follows: In Section 2 we review
interesting rendering algorithms that have been implemented using
hardware acceleration, and make some general observations about
these systems that we have used to guide our design. Then, in Sec-
tion 3, we review the conceptual architectures of current graphics
subsystems, and present a high-level overview of the SMASH con-
ceptual architecture.

The sections following these introductory sections provide de-
tail on specific subsystems within SMASH: geometry specification
(Section 4), parameter binding (Section 5), defining texture objects
(Section 6), shader specification (Section 7), and fragment opera-
tions and rasterization (Section 8).

In Section 9 we consider approaches to high-performance imple-
mentation, with a focus on the programmable parts of the revised
pipeline. We review potential implementation strategies for accel-
erators, in particular multithreaded processors and reconfigurable
computing.

Section 10 is devoted to programming examples. The SMASH
API and the just-in-time compiler subsystem built into its driver is
meant to be used in conjunction with metaprogramming, and has
specific built-in features to make this relatively easy. We give ex-
amples of how higher-level shading languages can be built (using
the operator overloading facilities of C++ in particular) and can be
layered on top of the base functionality provided.

Capabilities intentionally omitted for various reasons are dis-
cussed in Section 11. We conclude with a list of future topics we
plan to attack in the development of SMASH in Section 12. Cur-
rently several “obvious” things are missing—SMASH isdefinitely
a work in progress.

1.3 Conventions and Further Information

SMASH uses many of the naming conventions of OpenGL but with
sm andSMin place ofgl andGL. This renaming is necessary so
that OpenGL and SMASH can coexist peacefully—SMASH im-
plementations may in fact be layered on top of OpenGL. The base
SMASH API uses a C interface like OpenGL but will be associated
with utility libraries written in C++ to provide selective syntactic
sugaring.

2 Prior Art

Prior work relevant to the development of SMASH includes work
done to map advanced rendering algorithms to existing accelera-
tors, work on the efficient implementation of shading languages,
and work on the development and analysis of architectures for
graphics accelerators. We cover the first two topics briefly here
and cover some topics relevant to the implementation of high-
performance graphics accelerators in Section 9.

2.1 Advanced Rendering Effects

Several researchers have developed multipass techniques for gen-
erating high-quality images using the operations available in con-
temporary graphics hardware. The effects covered by these tech-
niques include bump mapping [37], normal mapping [23], and re-
flections off planar [9] and curved reflectors [16, 21, 40]. The tra-
ditional local illumination model used by graphics hardware can

also be extended to include shadows (using shadow maps [50],
shadow volumes [9, 35], or horizon maps (for precomputed self-
shadowing) [24, 51]), arbitrary bidirectional reflectance functions
[7, 27, 29, 30, 28, 21], complex light sources [20, 50], and caustics
[54]. The abstract operations supported by OpenGL’s conceptual
model have been summarized and mathematically characterized by
Trendall [54].

Other researchers have developed methods for solving the global
illumination problem with the help of graphics hardware. Keller
[31] uses multipass rendering to generate indirect illumination for
diffuse environments. Stürzlinger and Bastos [53] can render indi-
rect illumination in glossy environments by visualizing the solution
of a photon map algorithm. Stammingeret al [52] and Walteret
al [57] place OpenGL light sources at virtual positions to simu-
late indirect illumination reflected by glossy surfaces, effectively
using Phong lobes as a set of basis functions. Heidrich and Seidel
[21] use multiple rendering passes and environment maps to render
global illumination solutions for non-diffuse environments.

Another useful class of techniques uses light fields; these can be
either rendered directly [12, 34], used to illuminate other objects
[20], or used to simulate realistic cameras and lens systems [22].
Hardware acceleration has been used for decompressing light fields
at interactive rates.

In summary, it has been clearly demonstrated that high qual-
ity images can be achieved using current graphics hardware, using
hand-tuned multipass techniques. Systems have also been demon-
strated that combine several techniques [8, 9].

2.2 Shading Languages

Shading languages, such as Pixar’s RenderMan shading language,
[4, 17, 46, 56] can be used for more than just specifying local
lighting models. Since shading programs assign color to a surface
with a relatively arbitrary computation, and can use other sources
of pretabulated information, they can also be used to render shad-
ows, generate non-photorealistic “sketch” renderings for visualiza-
tion and artistic purposes, and can be potentially used to integrate
the results of global illumination solutions into a rendering.

Several attempts have been made to integrate programmable
shading languages into interactive rendering. Some researchers
have accelerated the software evaluation of shaders by precomput-
ing parts of them (known as specialization) [14], or by parallelizing
shader computation over a number of MIMD or SIMD processors
[46].

Explicit hardware and architectural support for procedural shad-
ing has appeared in graphics accelerators, although until recently
full support was limited to research prototypes. The most promi-
nent example is the PixelFlow architecture [39, 41, 33], which is
in the process of being commercialized (PixelFuzion). In this ar-
chitecture, several rendering units based on both general-purpose
microprocessors and specialized processor-enhanced memory run
in parallel a program implementing a rendering pipeline on part of
the scene database. Shaders are implemented using a SIMD array,
with shader programs compiled from a high-level language (pfman)
almost identical to Pixar’s RenderMan shading language, except for
the addition of fixed-point types. However, programmable shaders
have not yet appeared in the commercial version of this system.

3 Accelerator Architectures

Diagrams of the current high-level architecture for OpenGL 1.2.1
are shown in Figure 1. There are actually several OpenGL concep-
tual architectures, depending on which of the various extensions
and optional features are supported. Particularly important for the
implementation of advanced rendering effects are the imaging ex-
tensions (which include convolution as well as other simpler frame-

texture
feedback

Rasterization
and
Interpolation

pixel

Geometric
Primitive
Assembly and
Transformation

Host

Texture Lookup and Filter

Memory Display

textures

pbuffers
framebuffer

Fragment
Operations

depth test
alpha test
stencil test
compositing

Texture
Coordinate
Generation
and
Lighting

Memory

Texture Lookup and Filter

Rasterization
and
Interpolation

Geometric
Primitive
Assembly and
Transformation

Host

Texture Lookup and Filter

Memory

Multitexture
Combination

Display

textures

pbuffers
framebuffer

Fragment
Operations

depth test
alpha test
stencil test
compositing

Texture
Coordinate
Generation
and
Lighting

Figure 1:In practice OpenGL 1.2.1 defines two main architectures,
diagrammed here. In the first architecture, only a single texture
unit is supported. This is typical of high-end SGI systems, some of
which also support additional features such as pixel texture feed-
back, and which usually also have physically separate texture and
framebuffer memories. On PC graphics systems, multitexturing
units are common, in which multiple texture lookups and a lim-
ited amount of computation can be performed before fragments are
written to the framebuffer. Also, usually a single unified memory is
used.

buffer manipulation operations), various forms of multitexturing,
extended environment map formats such as cube maps, higher-
dimensional texture formats, and various forms of dependent tex-
turing (including bump-mapping and pixel-texture feedback).

OpenGL implementations can also vary along other dimensions,
such as in the relative performance of rasterizationvs. transforma-
tion. Memory models can also vary between implementations; in
particular, copies between texture memory and framebuffer mem-
ory may or may not be cheap, an issue for certain algorithms that
conceptually render into texture maps [51]. OpenGL’s conservative
approach of using a split memory system in its conceptual model
(because some systems are in fact implemented that way) requires
an explicit copy between the framebuffer and texture memory. Un-
fortunately, this can lead to unnecessary data movement on systems
with a unified memory system: such systems could potentially ren-
der directly into a texture but this possibility is not currently ex-
posed in OpenGL.

The SMASH high-level conceptual architecture is shown in Fig-
ure 2. The units which we are primarily concerned with in this doc-
ument are the programmable vertex shader and the programmable
fragment shader, which replace the lighting and the texturing units,
respectively.

Ultimately SMASH will support a “synchronized” buffer model
which can be efficiently implemented on both split and unified

Rasterization
and
Interpolation

Programmable
Geometric
Primitive
Assembly

Host

Memory

Programmable
Fragment
Shader

Display
textures
pbuffers
framebuffer

Fragment
Operations

depth test
alpha test
stencil test
compositing

Programmable
Vertex
Shader

Figure 2:The SMASH conceptual architecture replaces parts of the
OpenGL graphics pipeline with programmable units, although the
overall structure of the pipeline is retained.

memory models, and a programmable geometry generation and
manipulation system (shown here immediately before the vertex
shader unit). We will cover these subsystems in greater detail in
later versions of this report.

Rather than the fixed texture coordinate generation and lighting
units of OpenGL, the SMASH architecture has a programmable
vertex shading unit. Vertex shaders can be simulated in the driver on
the host system, ideally using high-performance features of the host
CPU, such as Intel’s SSE or AMD’s 3DNow! instructions. Defining
them as part of the graphics API, however, permits the transparent
migration of vertex shader capabilities into the hardware accelera-
tor.

Fragment shadersapply additional shading operations after the
rasterization stage, ultimately generating the color and depth of
each fragment. Results of the vertex shaders, as well as additional
parameters attached to the vertices of the primitives, are hyperboli-
cally interpolated [5, 43] before being passed down to the fragment
shader. For maximum performance, the fragment shader should
ideally be supported by a hardware accelerator, since it must ef-
ficiently process the large number of fragments generated by the
rasterizer.

In the SMASH conceptual model the vertex shader and the frag-
ment shader have identical capabilities, including access to textures.
This permits parts of a shader evaluation to be allocated to either
the vertex or fragment level, as required. It also permits the use of
lookup tables in vertex shaders to evaluate tabulated functions.

4 Specifying Geometry

Geometric primitives in SMASH can currently be specified using
only an immediate-mode interface. While an immediate-mode in-
terface puts more of a burden on the host processor, it is more flex-
ible than an array-based interface, use of higher-level primitives
(subdivision surfaces, displacement maps) will eventually offset
some of its limitations, and multithreaded interfaces can be used
to balance host generation and accelerator consumption rates, as
proposed for OpenGL [11, 26, 25]. Retained mode is useful for
some purposes, so SMASH will eventually support an array-based
interface and OpenGL-style display lists.

There are a few differences between the SMASH model of prim-
itive assembly and OpenGL’s. SMASH assembles triangles inter-
nally from generic streams of vertices and “steering” commands. It
is our intention to make the assembly process programmable, with
the flexibility to support advanced features such as various forms of

mesh compression, subdivision surfaces, and displacement maps.
To this end, the identifier passed to thesmBegincall is ageome-
try assembly object identifier, not just an enumerated constant as in
OpenGL.

A geometry assembly object identifies ageometry assembly pro-
gram that converts vertex/command streams into streams of trian-
gles. For compatibility, there are predefined geometry assembly
objects that support generalizations of the usual OpenGL primitive
types, with names similar to those of OpenGL.

The triangle strip primitive supported by SMASH, using one of
these predefined assemblers, is in fact a generalization of OpenGL’s
triangle strip primitive. SMASH triangle fans are just a special case
of the SMASH triangle strip primitive with slightly different initial
conditions. Hybrids of strips and fans can also be created.

Like GL, but unlike OpenGL, SMASH can explictly indicate a
“vertex swap” operation without actually repeating a vertex. Unlike
GL, SMASH uses a generalized mechanism to indicate the swap,
which can ultimately be extended to other purposes.

ThesmSteercall issues anassembly steering commandinto the
vertex stream. Assembly steering commands can modify the cur-
rent geometry assembly state, but their effect depends on the cur-
rent assembler and the current state of the assembler. This is best
explained with an example.

For the predefined SMTRIANGLE STRIP and
SMTRIANGLE FAN geometry assembly program, the cur-
rent assembly state can be one of eight values:FanLoadLeft,
FanLoadRight, Left, Right, AltLeft, AltRight, StripLoadLeft,
andStripLoadRight. The geometric primitive assembler also has
a vertex cache. To implement steerable triangle strips, only two
vertices need to be cached: an “old left” vertexL and an “old right”
vertexR. These cache slots will be used to hold the vertices to the
left and right of the last edge crossed before the current triangle,
when that triangle is viewed from its front face.

In both theSMTRIANGLE FAN and SMTRIANGLE STRIP
primitive assemblers the first two vertices given are placed inL
and R, in that order. These are the roles of theFanLoadLeft
andFanLoadRight states for triangle fans, and theStripLoadLeft
and StripLoadRight states for triangle strips. The initial state
when assembling a triangle fan isFanLoadLeft. A transition
from FanLoadLeft to FanLoadRight is caused by asmVertex*
call and loads the vertex intoL. When another vertex is speci-
fied in theFanLoadRight state, the vertex is loaded intoR and
a transition is made into theLeft state. These transistions can-
not be initiated or affected by steering commands. A similar se-
quence holds forSMTRIANGLE STRIP but with the state se-
quenceStripLoadLeft, StripLoadRight andAltRight.

Each subsequent vertexV generates triangles and replaces theL
andR vertices using the following rules when in each of the four
remaining states:

Left : This is the initial state forSMTRIANGLE FANafter the first
two vertices are loaded. When a new vertex arrives, it is used
to generate a new triangle and then the strip turns to the left.
Turning to the left means that the new current edge has the
same leftmost vertex, but we replace the rightmost vertex in
the cache:

• Emit a triangle usingLRV .

• ReplaceR with V .

AltLeft : In this state, a new vertex generates a new triangle, turns
to the left, then changes state to turn to the right next time:

• Emit a triangle usingLRV .

• ReplaceR with V .

• Enter theAltRight state.

Right : When a vertex arrives when the assembler is in this state,
the assembler generates a new triangle, then turns to the right
while remaining in the same state. This state can be used to
generate a right-handed triangle fan:

• Emit a triangle usingLRV .

• ReplaceL with V .

AltRight : This is the initial state for the
SMTRIANGLE STRIP assembler after loading the first two
vertices. When a new vertex arrives while the assembler is in
this state, it generates a new triangle by turning to the right,
then changes state to turn to the left next time:

• Emit a triangle usingLRV .

• ReplaceL with V .

• Enter theAltLeft state.

The steering commands for this assembler simply force a change
of state without changing the vertex cache or emitting a tri-
angle. These commands use predefined constants named after
their target states:SMLEFT, SMRIGHT, SMALT RIGHT, and
SMALT LEFT. In summary, the assembly state can be changed
explicitly, with an smSteercall, or implicitly, with ansmVertex
call.

5 Binding Parameters

In OpenGL, the fixed lighting model is parameterized by a number
of multidimensional values, such as normals, light source direc-
tions, colors, and texture coordinates. These parameters are bound
to vertices when primitives are specified. Some of these parameters
are used to compute other values at the vertices that are then inter-
polated, while others are interpolated directly. Finally, the interpo-
lated parameters and derived values are interpreted by the fragment
processing unit.

Multiple texture coordinates are currently supported only in
some implementations of OpenGL and with a tight binding between
texture units, texture parameters, and texture objects. While they
have been used as such, texture coordinates as they currently ex-
ist in OpenGL do not really have the right properties to be used as
general-purpose shader parameters.

The introduction of per-vertex and per-fragment programmable
shaders requires a much looser binding of parameters to primitives,
and also access to and application of other important internal state,
such as the modelview transformation.

The parameter sub-API of SMASH permits the specification of
a list of generalized parameters that can be bound to each primitive
and each vertex of a primitive. Parameters are typed: they can be
normals, covectors, vectors, tangents, planes, points, texture coor-
dinates, and just plain generic parameters.

The different types of parameter differ in how they are trans-
formed and normalized, and can also be used, during development,
to catch mismatches between shader parameters and the parame-
ters expected by a shader (i.e. to perform type checking). However,
ultimately all parameters are represented by fixed-length tuples of
numbers which are identically and hyperbolically interpolated by
the rasterizer, without reference to the type.2

Multiple normals, tangents, and any other kind of parameter may
be specified in immediate mode with one API call each. Specifying
a parameter pushes it onto a stack. The parameter stack actually
consists of a stack of numbers and a stack of indexes into the stack

2 The common interpolation model may be lifted in the future. For now,
SMASH shouldat leastuse a common hyperbolic interpolator.

for each parameter; in this way we can support parameters of dif-
ferent dimensionality on the stack.

A distinction is made between parameters that vary across a sur-
face and those that are constant over a primitive using a “stack lock-
ing” mechanism. Inside a primitive’s scope, the parameter stack is
reset at eachsmVertexcall to the state it had at thesmBegincall for
that primitive. Therefore, parameters pushed onto the stack before
opening a primitive are constant for the duration of that primitive.
An example is in order before we get into the details of the interface
mechanism. Consider Figure 3.

smParam2d(0.2, 0.5);
smMatrixMode(SM_MODELVIEW);
smPushMatrix();

smRotated(30.0, 0.3, 0.4, 0.5);
smTranslatei(50, -30, 10);
smPoint3d(100.0, 10.5, 15.6);

smPopMatrix();
smTangent3d(0.0, -0.5, 0.5);
smBegin(SM_TRIANGLES);

smColor3d(0.3, 0.5, 0.2);
smTexCoord2d(0.2, 0.1);
smParam1i(5);
smTexCoord1d(0.0);
smNormal3d(0.7, 0.5, 0.5);
smVertex3d(0.0, 0.0, 0.0);

smColor3d(0.4, 0.6, 0.1);
smTexCoord2d(0.6, 0.7);
smParam1i(7);
smTexCoord1d(0.4);
smNormal3d(0.5, 0.7, 0.5);
smVertex3d(0.0, 1.0, 0.5);

smColor3d(0.3, 0.5, 0.2);
smTexCoord2d(0.9, 0.8);
smParam1i(3);
smTexCoord1d(0.7);
smNormal3d(0.5, 0.5, 0.7);
smVertex3d(1.0, 1.0, 1.5);

smEnd(SM_TRIANGLES);

Figure 3: Example of parameter binding mechanism. This code
fragment defines a triangle with three constant parameters (a
generic 2D parameter, a transformed point, and a tangent vector)
as well as five per-vertex interpolated parameters (an RGB color,
a 2D texture coordinate, a 1D parameter, a 1D texture coordinate,
and a normal). Parameters are specified before the vertex to which
they attach, and constant parameters are specified outside smBe-
gin/smEnd blocks. At a smVertex call the index pointing to the
top of the parameter stack, by default, is reset to its value at the
time of the smBegin call.

5.1 Parameter Types and Transformation

Given a transformation matrixA, a vector~b is conceptually co-
ordinatized by a tuple of numbers arranged in a column, and is is
transformed byA~b. In contrast, acovector~c is conceptually co-
ordinatized by a tuple of numbers arranged in row. A covector is
transformed by~cA−1. Normals are covectors; tangents are vectors.
Covectors and vectors are duals of one another.

Vectors and covectors should be normalized to unit length for
certain operations, so they represent a “pure” direction. The nota-
tion ĉ will be used for vectors and covectors of unit length.

Points and planes (as coefficients of plane equations) are also
duals can both be represented as homogenous tuples, in which case

they are coordinatized using columns and rows and transform like
vectors and covectors, respectively.

SMASH defines nine types of parameters in five categories. The
categories differ in how they are transformed.

Generic: Basic (generic) parameters are not transformed at all,
just pushed onto the parameter stack.

Color: Colors are not transformed. We use a separate type, how-
ever, because color-space transformations may be supported
in the future, and (secondarily) to enhance type-checking.

Primal Geometry: Tangents, vectors, and points are trans-
formed by the current modelview matrix. Conceptu-
ally they are coordinatized using column tuples. De-
pending on the state of theSMNORMALIZETANGENTS
and SMRESCALETANGENTSflags, tangents may also be
rescaled or normalized to unit length. Points and vectors are
never normalized automatically.

The output dimensionality of a transformed point, vector, or
tangent is always the same as the input.

Dual Geometry: Normals, covectors, and planes are transformed
by the inverse transpose of the current modelview matrix.
Conceptually they are coordinatized using row tuples. De-
pending on the state of theSMNORMALIZENORMALSand
SMRESCALENORMALSflags, normals may also be rescaled
or normalized to unit length. Planes and covectors are never
normalized automatically.

Coordinates: Texture coordinates are transformed by the current
texture matrix and then pushed onto the parameter stack.

Variants of the texture coordinate specification function give
the dimensionality of the post-transformed texture coordinate
if it is different than the input, for instance to extend a 1D
texture coordinate to 3D or vice-versa.

Several familiar operations for which specialized interfaces are
used in OpenGL can use the parameter stack (in conjunction with
an appropriate shader) instead.

For instance, to specify a light source position, just push a point
onto the parameter stack. To specify a light source direction, push a
vector. Both will be transformed by the current modelview matrix
and end up in the view coordinate system.

You can push multiple light source positions or directions, a set
of generic parameters to specify attenuation coefficients, etc. Of
course, you need an appropriate shader to interpret these parame-
ters. A utility library for SMASH will implement the Phong light-
ing model using the shader interface defined in Section 7, among
other lighting models. The Phong lighting model is not part of
SMASH proper.

5.2 Specifying Parameters

To specify a parameter, simply use one of the following calls to
transform the parameter according to its type and push it on the
parameter stack:

smParam{1234}{sifd}(T p...)
smColor{1234}{sifd}(T p...)
smTexCoord[{1234}from] {1234}{sifd}(T p...)
smNormal{3}{sifd}(T p...)
smCovector{3}{sifd}(T p...)
smPlane{34}{sifd}(T p...)
smTangent{3}{sifd}(T p...)
smVector{23}{sifd}(T p...)
smPoint[4from] {234}{sifd}(T p...)

When one ofsmParam*, smNormal*, smColor* etc. is called (we
will refer to these functions generically as “parameter specification
functions”), its argument is transformed and pushed onto the pa-
rameter stack. The parameter stack consists of an undifferentiated
sequence of floating-point numbers (called “parameter stack ele-
ments”). A second stack is used internally that indexes into this
sequence to identify the start of each parameter tuple (called a “pa-
rameter stack item”). The net effect is that the parameter stack be-
haves as if it can store variable-length parameters.

Transformations are linear or affine depending on the type of the
parameter. They may be linear transformations of homogeneous
coordinates, but such coordinates arenot normalized after transfor-
mation. Projective normalization, if any, must be performed explic-
itly by the shader, and of course can be omitted for points if the
transformation is affine. This is to permit, for instance, indexing
of a 4D lightfield by a 4D texture coordinate, and omission of the
projective divide when it is unnecessary.

Each element of every parameter will always be interpolated
identically and hyperbolically in a projectively correct manner.
Normals and tangents arenot spherically interpolated or renormal-
ized at each pixel to unit length. If this is desirable, it can be simu-
lated using an appropriate shader program.

Strictly speaking, onlysmParamis really needed, the rest of the
types and their associated transformations are just for convenience.
The shader program could just apply appropriate matrix transfor-
mations as needed. Unfortunately this would require constant inser-
tion of chunks of code into the shader given by the user for what is
likely to be an extremely common operation, and delaying transfor-
mation may not have the right effect. For instance, we usually want
to specify lights in a different coordinate system than our models.
The explicit-transformation approach also obfuscates the role and
transformation properties of normal covectors and tangent vectors
making the resulting code harder to maintain. The current proposal
also permits a certain amount of type-checking and manipulation of
parameters using transformations set up on the matrix stacks.

SMASH supports various modes for deferring transformations
to make the semantics of SMASH easier to implement on hardware
expected in the near future—as foreshadowed, for instance, by the
proposed modifications to the DirectX interface for supporting pro-
grammable vertex shaders.

Deferring transformation of parameters until thesmVertex call
would be better for implementation on hardware with a pro-
grammable vertex shader. Unfortunately, this behaviour would be
contrary to the current OpenGL semantics and would have the prob-
lems noted above with specification of lighting parameters. There-
fore, we currently support a mode which can be set with a flag
namedSMDEFERTRANSFORMATIONSto defer transformations
of parameters constant over a primitive to thesmBegincall and of
interpolated parameters to thesmVertex call. Depending on the
implementation, this can be faster, slower, or the same speed as
transforming parameters immediately3. However, as testing this
flag in parameter API calls takes time that is in short supply dur-
ing immediate-mode rendering, we may change this in the future.
Options include never deferring (best for user flexibility), always
deferring (probably best for performance, so parameters can be sent
down to the hardware as a group), and supporting disjoint sets of pa-
rameter specification calls, one set that defers, another that doesn’t.

The parameter specification functions may be called anywhere,
inside or outside asmBegin/smEnd primitive block. Normally,
calls outside a primitive block will be used to define constant pa-
rameters, those inside will be used to define parameters that vary
for each vertex and are interpolated across the primitive. This is
done using a set of stack-resetting rules, described in detail in the
following section.

3 Querying performance tradeoffs is another place OpenGL needs some
work. . .

5.3 Parameter Stack Control

The call

smPopParam()

explicitly discards the frontmost (last-defined) item of the parame-
ter stack. The call

smDropParams(SMsizei n)

pops then ≥ 1 frontmost items off the stack. Finally, the call

smClearParams()

clears or partially clears the stack, depending on whether it is called
inside or outside asmBegin/smEndprimitive block.

Associated with the parameter stack are several externally visible
and manipulable pieces of state: a Boolean flag accessed with the
enumerated constant

SMPARAMAUTORESET

and integers accessed with the enumerated constants

SMPARAMCONSTANTITEMS
SMPARAMITEMS
SMPARAMCONSTANTELEMENTS
SMPARAMELEMENTS

The limits on size of the parameter stack can be determined by
recalling integers using the enumerated constants

SMPARAMMAXITEMS
SMPARAMMAXELEMENTS

In the following we will use these names to refer to the corre-
sponding state and values.

The integerSMPARAMELEMENTSholds the total number of
elements (individual scalar numbers) currently on the parame-
ter stack. If the element stack is visualized as an array of
scalars, it points to the next free element. It is always less
than or equal to the implementation-dependent integer constant
SMPARAMMAXELEMENTS. Its initial value is 0, indicating that
the stack is by default empty.

The integerSMPARAMITEMS holds the total number of items
currently on the parameter stack. If the element stack is visualized
as an array of items, it points to the next free item slot. However, as
an item may consist of a variable number of elements, an item slot
should be visualized as holding an offset into the element stack for
the start of each item pushed onto the item stack. The maximum
value ofSMPARAMITEMS is given by the value associated with
SMPARAMMAXITEMS. Of course, the number of parameters that
can be pushed may be less than this if the total number of elements
in all items pushed exceedsSMPARAMMAXELEMENTS.

Whenever smParam (or some other parameter specifica-
tion function) is called, insideor outside a primitive block,
the integer SMPARAMITEMS is incremented by 1, and
the integer SMPARAMELEMENTS is incremented by the
(post-transformation) dimensionality of the parameter. If
the resulting number of elements would be greater than
SMMAXPARAMELEMENTSthe contents of the stack are unde-
fined. WheneversmPopParamis called, insideor outside a prim-
itive block,SMPARAMITEMS is decremented by 1, and the value
of SMPARAMELEMENTSis decremented by the dimensionality
of the item popped from the top of the stack. If more items are

popped than had been previously pushed, the contents of the stack
will again be undefined.4

A smBegin call copies the current val-
ues of the integers SMPARAMELEMENTS and
SMPARAMITEMS to SMPARAMCONSTANTELEMENTS
and SMPARAMCONSTANTITEMS, respectively. Outside a
primitive block, a pop of an empty stack generates an error and the
contents of the stack are undefined.

A smClearParamscall should be made to reset the error state.
Inside a primitive block, if the result of a pop would result

in a stack size less thanSMPARAMCONSTANTITEMS an
error is generated and the contents of the stack are undefined.
WheneversmClearParam is called outside a primitive block
SMPARAMELEMENTSand SMPARAMITEMS are set to 0.
WheneversmClearParam is called outside a primitive block
these values are set toSMPARAMCONSTANTELEMENTS
and SMPARAMCONSTANTITEMS. Note that given these
rules and in the absence of underflow/overflow errors,
SMPARAMCONSTANTELEMENTSis always less than or equal
to SMPARAMELEMENTSand SMPARAMCONSTANTITEMS
is always less than or equal toSMPARAMITEMS and both are
greater than or equal to 0.

Both of SMPARAMCONSTANTELEMENTS and
SMPARAMCONSTANTITEMS are set to 0 outside a primi-
tive block.

The Boolean flagSMPARAMAUTORESETcontrols stack reset
behaviour. Its value cannot be changed inside a primitive block. It
defines two different modes for defining per-vertex parameters in-
side a primitive block. If it is true, then a vertex call resets the stack
by copying the integersSMPARAMCONSTANTELEMENTS
and SMPARAMCONSTANTITEMS back into
SMPARAMELEMENTSand SMPARAMITEMS. If it is false, a
smVertex call doesnot affect the stack, and the parameter stack
must be explictly managed.

The net effect of these rules is as follows. Constant parame-
ters, i.e. those that do not vary from vertex to vertex of a primitive,
should be set up outside asmBegin/smEnd block. Inside a block,
additional per-vertex “varying” parameters may be pushed onto the
parameter stack but the constant parameters may not be modified.
To share parameters between vertices, turn off the auto-reset and
pop the parameter stack explicitly.5

Whenever asmVertex call is made, a snapshot of the current
parameter stack is made and attached to the vertex. Within a sin-
gle primitive block, the length of the parameter stack and the types
of arguments need to be consistent with the types declared by the
shader. When a primitive is rasterized, first a vertex shader gener-
ates new per-vertex derived parameters and concatenates those with
the parameter stacks bound to each vertex. Within the rasterizer all
parameter elements are interpolated in a projectively correct man-
ner to each pixel fragment. Finally, all constant parameters and in-
terpolated parameters are passed down the pipeline to the fragment
shader.

4 Trying to detect underflow and overflow errors on stacks can be a po-
tential source of inefficiency. To avoid this problem, particularly for func-
tions used for immediate-mode rendering, our implementation can be com-
piled in eitherparanoidmode or infast mode. Using the library when in
paranoid mode will try to detect and report all errors. When in fast mode, if
an error is made the system is guaranteed not to crash or overwrite memory
outside the graphics subsystem, but otherwise the results will be undefined.

5 It is expected that autoreset mode will only be turned off in excep-
tionally complex cases. In fact, we’d like to invite comment on whether it is
needed at all. As with deferral, a small amount of performance is potentially
wasted in immediate mode to check the current mode and act accordingly.
A higher-performance option would be to define a non-resetting version of
thesmVertexcall.

6 Texture Objects

Texture objects in SMASH are in some ways simpler than in
OpenGL; specifically, there are no associated texture coordinate
generation modes because such functionality is subsumed by
shaders. Texture identifiers in SMASH are also opaque and use
the typeSMtexture for texture object identifiers.6

7 Shader Specification

The SMASH shader sub-API gives a way for the application pro-
gram to build a shader program on the fly. On-the-fly compilation
is supported so that shaders can be optimized dynamically by the
host program.

SMASH supports a stack-and-register expression language.
Once a shader definition has been opened, individual API calls are
used to add individual instructions to it; when a shader definition
is complete, it is closed and then the driver compiles it. Other API
calls exist to manage shader definitions, set compilation options,
activate and deactivate a current shader, let the system know which
shaders will be used in the near future (to optimize performance by
pipelining shader loading) and so forth.

It should be emphasized that the abstract model of programming
that SMASH uses is meant to be an efficient and flexible way to
specifyprograms to an optimizing backend from front ends of var-
ious kinds. We most emphatically donot mean to imply that im-
plementation of SMASH programs will necessarily use exact stack
machine semantics, although a literal implementation is a conve-
nient way to build a software interpretor for SMASH. Possible
approaches to implementation and hardware acceleration are dis-
cussed in Section 9.

Storage for a shader program takes the form of a stack containing
n-tuples of real numbers (with each tuple possibly being of differ-
ent dimensionality) and a set of registers, also holdingn-tuples.
Conceptually the stack, the number of registers, and the length of
items is unbounded. We do not define limits on registers, stack
size, or shader length since the compiler may well optimize the
shader and reduce the amount of memory needed. However, once
a shader has been closed, the system can be queried to determine
if the shader will be implemented using hardware acceleration. As
with OpenGL, SMASH will fall back to a software implementa-
tion if hardware acceleration is not feasible—although of course
this may not result in the desired performance, since software im-
plementation of fragment shaders will also require software raster-
ization.

Arithmetic operations act on the stack, popping operands off and
pushing results on. For each operation simple rules determine the
dimensionality of the result given the dimensionality of the argu-
ments; many operations come in several forms that differ only in
the dimensionality of the operands expected. For instance, multipli-
cation will multiply elementwise tuples of the same dimensionality,
but if given a scalar and ann-tuple as an argument, will multiply the
scalar by every element of then-tuple and generate a new, scaled
n-tuple. The dimensionality of the tuples are fixed at compile time
and so this overloading will not incur any performance penalty dur-
ing execution of the shader.

Load and store instructions can pop data off the stack and put it in
a register, can just copy the top of stack to a register, and finally can
retreive data from a register and push it on the stack. Registers con-
tain tuples of arbitrary lengths, but like stack items these lengths are
fixed at compile time. Registers can be allocated and deallocated in
a stack-based fashion to facilitate use of nested scopes.

6If this description seems terse, you’re right. Further detail on this part
of the API will be provided in a future version of this report.

It is assumed that the backend optimizes away unnecessary data
movement operations and dead code, so programmers are free (and
should be encouraged) to write “readable” code rather than trying
to perform these relatively trivial optimizations manually.

The stack machine architecture proposed enables a simple
metaprogramming API and in particular permits the semantics of
the host language to be used for modularity. Due to the stack-based
nature of SMASH’s execution and register allocation model, there
is little potential for naming conflicts; what remains can be resolved
using the namespace and scope mechanisms of the host language.

For instance, shader “macros” can simply be wrapped in host
language functions that emit the necessary sequence of shader oper-
ations inline into an open shader definition; likewise scoped names
can be given to registers by naming their identifiers using scoped
variables in the host language.

7.1 Definition

Definitions of shader programs are opened by the following call:

SMshader smBeginShader()

which returns an opaque identfier of typeSMshader that can be
used later to refer to the shader. Shader identifiers can only be allo-
cated by the system, unlike the case in OpenGL with texture object
identifiers. Programmers shouldnot assume shader identifiers are
small numbers.

Open shader definitions are closed, and compilation initiated on
the current shader program, by the following call:

smEndShader()

At most one shader definition can be open at any one time; calling
smBeginShaderbefore closing an open definition is an error.

Calls that can be used inside an open shader definition andonly
inside an open shader definition include the wordShader.

After callingsmEndShaderthe system should be queried to de-
termine if the shader program can be implemented using hardware
acceleration and if so, how many resources it will consume. This
can be done using the call

SMdouble smShaderResources(SMshader s , SMenum r)

with various values of the resource identifierr . To determine if
a shader will be implemented using hardware acceleration, the re-
sourceSMSHADERACCELcan be queried; a value greater than or
equal to 100 indicates full hardware acceleration, a value less than
that indicates that some fraction of the shader had to be performed
with software assistance. Other resource tokens can be used to de-
termine determine other metrics of performance, such as the num-
ber of passes, using resourceSMSHADERPASSES. Of course,
nothing beats benchmarking; the values returned by this call are
only meant to be rough guides.

7.2 Activating Shaders

Shaders are made active using the following call:

smShader(SMshader s)

The active shader is also called the “current” shader. There can be
only one active shader at a time.

Activating a shader also automatically activates and loads any
associated texture objects. To maximize performance, shaders that
share textures should be used in sequence; the system will detect
this and avoid reloading an already loaded texture object.

To permit preloading of shader programs before they are actually
used, the calls

smNextShader(SMshader s)
smNextShaders(SMsizei n, SMshader* ss)

hint to the system that the indicated shader(s) will be used in the
near future and that the system should prepare to switch to them.
When multiple shaders are hinted the ones with the lowest index in
the array will be used the soonest. Whenever a hint call is made of
either type it supercedes all previous hints. These calls should be
made immediately after a call tosmShaderto maximize the time
available for preparation. Violating a hint or omitting hints is not
an error, but may reduce performance. Note that loading shaders is
a fairly heavyweight process, since it potentially involves loading
several textures.

7.3 Deleting Shaders

Finally, shaders can be deleted using

smDeleteShader(SMshader s)
smDeleteShaders(SMsizei n, SMshader* ss)

Deleting a shader doesnot delete any texture objects it uses. It is
not mandatory to delete shader objects, but it may save resources.

7.4 Saving and Restoring Precompiled Shaders

The “shader object” abstraction is used because non-trivial compi-
lation may be needed to map a shader program onto a given imple-
mentation, and also to permit fast switching between shaders when
drawing a scene. However, while the intention is that compilation
should be fast enough to take place during load time, very complex
shaders might benefit from compilation during installation. Once
a shader has been compiled for a particular graphics accelerator, a
platform-dependent, opaque byte stream can be recalled, saved for
later use, and restored using the following calls:

SMsizei smShaderSize(SMshader s)
smGetShaderProg(SMubyte* prog , SMshader s)
SMbool smSetShaderProg(SMint s , SMubyte* prog)

Storage for the array passed tosmGetShaderProgmust be allo-
cated by the application program. If a bytestream has been pre-
viously stored, at load time the program needs only to check if
the graphics hardware configuration has changed, since such pre-
compiled bytestreams are not intended to be portable. ThesmSet-
ShaderProgcall returns false if the shader could not be loaded—
typically because it was compiled for a different platform. In that
case, it must be respecified.

When a shader is stored in a binary format all texture objects are
saved with it, by default.7

7.5 Executing Shaders

Shaders are normally executed during rendering of primitives.
However, a shader can also be executed explicitly using the fol-
lowing call:

smExecShader(SMdouble p[4])

This executes the active shader, using the parameters on the param-
eter stack, at positionp (specified using homogeneous coordinates)
in model space—the pointp is transformed, in the same way a ver-
tex would be, by the current modelview matrix. Results must be
read back using the following call:

7We are working on a mechanism to (a) permit sharing of textures and
(b) reduce storage costs when textures are shared. In the meantime, this
policy is safe, if not efficient.

smGetExecShaderColor(SMdouble c [4])

Right now shaders have only one result, a color. However, as we
add possible outputs, for instance to the view-space position to sup-
port displacement shaders, we can easily add more result functions.
Executing shaders explicitly can be used for test purposes, but can
also be used to sample points from textures or access other internal
state accessible to shader programs.

7.6 Shader Programming Calls

Shader programming calls issue instructions into an open shader
definition, and can be divided into declarations and operations.

Declarations control how the shader is implemented, define reg-
isters to hold intermediate results, and control how the shader in-
terfaces with the outside world. Operations can be divided into
categories: stack manipulation (for instance, pulling items out of
the middle of the stack to support shared subexpressions, swapping
items in the stack), arithmetic, comparisons (discontinuous func-
tions that return 0 or 1, optionally with smooth transitions for an-
tialiasing), logical operations, component manipulation, and regis-
ter load/store. Operations cannot act on registers.

7.6.1 Parameter Declaration and Access

Parameters for a shader must be declared in the order they are ex-
pected to appear on the parameter stack. While it is not manda-
tory, for readability parameters should be declared before any other
shader operations are specified.

Declaration is done with the following calls:

SMparam smShaderDeclareParam(SMuint n)
SMparam smShaderDeclareColor(SMuint n)
SMparam smShaderDeclareTexCoord(SMuint n)
SMparam smShaderDeclareNormal(SMuint n)
SMparam smShaderDeclareCovector(SMuint n)
SMparam smShaderDeclarePlane(SMuint n)
SMparam smShaderDeclareTangent(SMuint n)
SMparam smShaderDeclareVector(SMuint n)
SMparam smShaderDeclarePoint(SMuint n)

Declaration establishes both the type and the dimensionalityn of
the parameter. The type is used currently only for type-checking,8

but the dimensionality determines the size of the tuple pushed on
the stack for parameter access operations. The opaque identifier re-
turned by each call should be assigned to a variable with an evoca-
tive name for later reference.

Parameters are accessed with the following calls, which push a
copy of the parameter onto the stack.

smShaderGetParam(SMparam p)
smShaderGetColor(SMparam p)
smShaderGetTexCoord(SMparam p)
smShaderGetNormal(SMparam p)
smShaderGetCovector(SMparam p)
smShaderGetPlane(SMparam p)
smShaderGetTangent(SMparam p)
smShaderGetVector(SMparam p)
smShaderGetPoint(SMparam p)

8 Type-checking is only done in paranoid mode. Fast mode assumes the
parameters pushed and the number expected match. If not, undefined results
should be expected.

7.6.2 Register Allocation

Registers hold untyped tuples. They are allocated with the follow-
ing call; the parametern is the dimensionality:

SMreg smShaderAllocReg(SMuint n)

As with parameters, the opaque identifier returned by this call
should be assigned to a host language variable with a useful name.
It will be required later to refer to the register.

To facilitate use of subscopes, the call

smShaderBeginBlock()

records the current register allocation state, and the call

smShaderEndBlock()

restores the register allocation state in a last-in, first-out fashion;
in other words, it deallocates all registers allocated since the last
nestedsmShaderBeginBlockcall.

To store a value in a register, one of the following calls should
be used:

smShaderStore(SMreg r)
smShaderStoreCopy(SMreg r)

The smShaderStorecall pops the value from the front of the ex-
ecution stack and puts the item in the indicated register. If the di-
mensionalities do not match an error is generated. ThesmShader-
StoreCopycall just copies the item from the front of the stack into
the register but does not pop it.

To retreive an item from a register, the following call pushes it
onto the execution stack.

smShaderLoad(SMreg r)

The value stored in the register is not disturbed.

7.6.3 Stack Manipulation

For some stack manipulation instructions, items on the stack are
referred to by integer offsets from the “front” of the stack. The 0th
item is the item on the front of the stack, the 1st item is the next
item on the stack, and so forth.

The drop operation discardsk items from the front of the stack:
The items dropped can be of any dimensionality, and need not all
have the same dimensionality.

smShaderDrop(SMuint k)

ThesmShaderPopoperation is justsmShaderDropwith an im-
plied argument of 1. It is provided for consistency with “pop” op-
erations defined elsewhere in the API.

ThesmShaderDupoperation pulls any item out of the stack and
pushes it onto the front. The original is not deleted so the rest of the
stack is not disturbed:

smShaderDup(SMuint k)

ThesmShaderPushoperation is justsmShaderDupwith an im-
plied operand of 0; it makes a copy of the item on the front of the
stack.

7.6.4 Component Manipulation

Each item on the stack is a tuple of elements. Component manipu-
lation instructions permit items to be constructed from and decom-
posed into elements.

Conceptually, items are pushed onto the stackhighest element
first. This is important to understand since several operations in
this section treat the execution stack as a sequence of elements, not
items. For instance, if we push items(a0, a1, a2), (b0, b1), and
(c0, c1, c2, c3) onto the execution stack, in that order, then consid-
ered as a sequence of elements the execution stack will look like

a2, a1, a0, b1, b0, c3, c2, c1, c0

Elements are numbered starting at the “front” or extreme right. In
this example,c0 would have element index 0,c1 would have ele-
ment index 1,b0 would have element index 4,a1 would have ele-
ment index 7, and so forth.

The extraction operation permits direct access to items, and so
can be used to assemble a new item from arbitrary elements of other
items. The output of an extract operation can have a different di-
mensionality from any of its inputs. In fact, the dimensionalities of
the inputs are basically ignored, but you do have to consider them
to compute the element indices. There are several versions of this
operation, one general version that requires an array parameter and
several others with a fixed number of integer parameters for dimen-
sionality 1 through 4:

smShaderExtract(SMsizei k, SMuint* e)
smShaderExtract1(SMuint ...)
smShaderExtract2(SMuint ...)
smShaderExtract3(SMuint ...)
smShaderExtract4(SMuint ...)

The extract operation does not disturb the existing items on the
stack but generates a new item by pulling out the indicated elements
and pushing the newly constructed item onto the stack.

The smShaderSwapoperation exchanges the 0th and 1st item
on the stack. Swapping the two bottom elements doesnot change
any of the element indices of items higher on the stack, since the
total number of elements on the bottom of the stack for the first two
items will remain the same.

The smShaderRevoperation reverses the order of elements in
an item. Like the swap operation, it does not change the element
indices of elements higher in the stack.

ThesmShaderJoinandsmShaderCatoperations join two items
together into one by concatenating their elements. The join opera-
tion does this without changing the element indices, but this makes
it seem like the second operand (on the front of the stack) is con-
catenated to theleft of the first operand. The concatenate operation
smShaderCatis equivalent to a swap followed by a join and has
semantics more consistent with the arithmetic operators.

Finally, the split operation, invoked with

smShaderSplit(SMuint k)

splits all the elements of the item on the front of the stack and makes
two new items of lower dimensionality. In pseudocode:

POP(a0, a1, . . . ak−1, ak, . . . an−1)
PUSH(ak, ak+1, . . . an−1)
PUSH(a0, a1, . . . ak−1)

The results will be of dimensionalityk andn − k if the input is of
dimensionalityn. The parameterk must be greater than or equal to
1 and less than or equal ton − 1. Note that ifk is 1 then a scalar
will be placed onto the front of the stack. Ifk is equal ton − 1
then the second item on the stack will be a scalar. To be consistent
with the ordering of elements, the item on the front of the stack

will be drawn from thelower-indexed elements of the item that was
originally on the front of the stack.

Each new item must have at least one element; the parameterk
must vary between 1 andn.

This operation does not change the element indices of any ele-
ment on the stack, it just reclassifies elements into different items.
A join operation reverses a split.

7.6.5 Constants

Constants may be pushed onto the execution stack with the follow-
ing calls:

smShaderParam{1234}{sifd}(T p...)
smShaderColor{1234}{sifd}(T p...)
smShaderTexCoord[{1234}from] {1234}{sifd}(T p...)
smShaderNormal{3}{sifd}(T p...)
smShaderCovector{3}{sifd}(T p...)
smShaderPlane{34}{sifd}(T p...)
smShaderTangent{3}{sifd}(T p...)
smShaderVector{23}{sifd}(T p...)
smShaderPoint[4from] {234}{sifd}(T p...)

These operations work exactly like the corresponding parameter
specification functions, except they push items onto the shader exe-
cution stack, not the parameter stack. Transformations are also ap-
plied as with the parameter specification functions, but these trans-
formations are applied using the transformation matrices in effect
at the time the shader is specified,not when the shader is run.

If you want to transform something explicitly using the transfor-
mations in effect at the time the shader is executed, use the trans-
formation access and matrix multiplication operators.

7.6.6 Environment Access

The shader may depend on information like model-space posi-
tion, view-space position, view direction, and device-space posi-
tion. These can be accessed with the following calls:

smShaderGetViewVec()
smShaderGetViewPos()
smShaderGetModelPos()
smShaderGetDevicePos()

The last actually returns a 3D item containing the integer pixel po-
sition relative to the origin at the lower-left corner of the output
image, and the depth value used in forz-buffering. The depth alone
can be accessed with

smShaderGetDepth()

Under perspective using our conventions (seesmFrustum) the
view vector and the view positions are negations of one another,
but this is not necessarily the case. In an orthographic view, for
instance, the view vector is constant. ThesmShaderGetViewVec
call uses the projection matrix to compute the correct view vector,
by first back-projecting the eye-point, then (if it is located at a finite
position) subtracting the view-space position from it. It doesnot
normalize the vector to unit length; the length of the view vector
will be the distance to the eye from the point being rendered, in the
viewing coordinate system. If the eye point is at infinity, as with an
orthographic projection, then the view vector is set up to point in
the correct direction but is not guaranteed to be of unit length.

7.6.7 Buffer Access

The current value of the target pixel in the destination buffer can be
obtained with the following call:

smShaderGetBuffer()

This pushes value of the destination sample in the destination buffer
onto the execution stack.

This permits a simple interface to compositing operations, a
fixed set of which are usually implemented at the end of the frag-
ment pipeline on current accelerators. However, use of this feature
followed by complex processing of buffer contents may force mul-
tipass execution of the shader.

7.6.8 Texture Lookup

Texture accesses can be invoked by the following call:

smShaderLookup(SMtexture t)

This call takes the item off the front of the stack and uses it as a
texture coordinate for a texture lookup in texture objectt. The di-
mensionality of the item must match the dimensionality declared
for the texture object, and the texture object must have been previ-
ously defined.

7.6.9 Arithmetic Operations

For arithmetic operations, the execution stack should be visualized
as a list written left-to-right, with the front (top-of-stack) item on
the extreme right. Binary operators go between the two items on
the right of this list. For non-commutative operators, the item on
the front of the stack (item position 0) is theright operand and the
item at position 1 is theleft operand.

Arithmetic operators are overloaded on the dimensionality of
their arguments. Two-operand arithmetic operators generally op-
erate in one of three modes:

Vector: (Rn,Rn) 7→ Rn.

In this case the two operands have the same dimensionality,
and the operation is applied elementwise. Specifically, if⊕ is
the operator,

POP(b0, b1, . . . , bn−1)
POP(a0, a1, . . . , an−1)
PUSH((a0 ⊕ b0), (a1 ⊕ b1), . . . , (an−1 ⊕ bn−1))

The result will have dimensionalityn.

Left Scalar: (R1,Rn) 7→ Rn.

In this case the first operand (the second item on the stack,
or equivalently the one just behind the front of the stack) is a
scalar, and is applied to all elements of the second vector as
the left operand of the operation.

Specifically, if⊕ is the operator,

POP(b0)
POP(a0, a1, . . . , an−1)
PUSH((a0 ⊕ b0), (a1 ⊕ b0), . . . , (an−1 ⊕ b0))

The result will have dimensionalityn.

Right Scalar: (Rn,R1) 7→ Rn.

In this case the second operand (the front of the stack) is a
scalar, and is applied to all elements of the second vector as
the right operand of the operation, resulting in an output of
the same dimensionality as the first operand.

Specifically, if⊕ is the operator,

POP(b0, b1, . . . , bn−1)
POP(a0)
PUSH((a0 ⊕ b0), (a0 ⊕ b1), . . . , (a0 ⊕ bn−1))

The basic two-operand arithmetic operators are invoked by the
following calls:

smShaderMult()
smShaderDiv()
smShaderAdd()
smShaderSub()

The following unary operations are also defined:

smShaderNeg()
smShaderRecip()
smShaderSqrt()
smShaderRecipSqrt()
smShaderSq()
smShaderRecipSq()
smShaderProjDiv()
smShaderSum()
smShaderProd()

The smShaderNeg (negation), smShaderSqrt (square root),
smShaderRecipSqrt (reciprocal square root),smShaderSq
(square),smShaderRecipSq(reciprocal square) andsmShader-
Recip (reciprocal) calls operate on every element of a tuple sep-
arately, generating a new tuple of the same dimensionality.

ThesmShaderProjDiv call performs homogeneous normaliza-
tion, multiplying every element of a tuple by the reciprocal of its
last element. It generates a new tuple of dimensionality one less
than its input tuple.

The smShaderSumcall sums all elements in a tuple and gen-
erates a scalar. Likewise,smShaderProdforms the product of all
elements in a tuple and outputs a scalar.

7.6.10 Transformations and Matrices

The transformation matrix in effect at the time the shader is exe-
cuted can be pushed onto the stack with the following call:

smShaderGetMatrix(SMenum m)

where m is one of SMMODELVIEW, SMTEXTURE, or
SMPROJECTION. This call pushes 16 elements onto the
stack in row-major order. If for some reason you only want a
submatrix, use ansmShaderExtract operation to extract the
elements you want; dead-code removal will eliminate the extra
data movement if it is possible.

To push the inverse or adjoint of a standard matrix, use one of
the following calls, each of which also pushes 16 elements:

smShaderGetInvMatrix(SMenum m)
smShaderGetAdjMatrix (SMenum m)

Note that the inverse is the the adjoint divided by the determinant.
The determinant can be obtained separately:

smShaderGetDetMatrix(SMenum m)

Using these calls will likely be cheaper than computing an inverse
explictly. Note as well that these will be the matrices in effect at the
time the last vertex in the current triangle was specified.

To multiply a vector by a matrix or a matrix by a vector, use

smShaderMultVecMatrix ()
smShaderMultMatrixVec ()

The first operation treats the left operand as a row vector; the second
operation treats the right operand as a column vector. The

smShaderMultMatrix (SMuint r , SMuint c)

operation multiplies matrices together and outputs a new matrix of
the given numbers of rowsr and columnsc . The inner dimensions
of the factors are inferred from their sizes and the size specified for
the output matrices. This works on matrices of any size.

Square matrices can be inverted. This operation uses Cramer’s
rule to generate a closed-form expression so it should not be used
for matrices much larger than four dimensions:

smShaderInvMatrix ()

In some situations, i.e. for projective geometry operations where
constant scale factors cancel, the adjoint can be used in place of the
inverse:

smShaderAdjMatrix ()

Again, if you only want some elements of the inverse or the adjoint,
use an extraction operation and the optimizer will get rid of the extra
unused computations.

The determinant of a matrix can also be computed:

smShaderDetMatrix()

Matrices equivalent to the transformation calls defined for the
immediate mode interface are also supported. Like the calls that
manipulate the immediate-mode matrix stacks, these calls generate
a matrix and postmultiply it onto an existing matrix:

smShaderRotateMatrix()
smShaderTranslateMatrix()
smShaderScaleMatrix()

The other parameters for these calls are located on the execution
stack. ForsmShaderRotateMatrix, the stack should contain a
4×4 matrix, a scalar angle, and a 3D unit-length axis vector. These
will be popped off and replaced with a transformed matrix. The
smShaderTranslateMatrix call expects ann × n matrix and an
(n− 1)D vector, generates a translation matrix, and postmultiplies
it by the given matrix. ThesmShaderScaleMatrixcall expects an
n × n matrix and annD vector, generates a diagonal scale matrix,
and postmultiplies it by the given matrix. If the scale vector is of
lengthn−1, the last scale factor is taken to be 1. Note thatsmSha-
derMult can be used for uniform scaling.

Finally, the identity and an arbitrary constant matrix can be
loaded onto the execution stack. These calls do not replace the item
on the bottom of the stack, they push on new items:

smShaderLoadIdentityMatrix (
SMuint r , SMuint c)

smShaderLoadMatrixd(
SMuint r , SMuint c ,
SMmatrixd m)

Obviously matrix operations can potentially use a lot of re-
sources, although in the end they just boil down to a sequence of
arithmetic and extraction operations.

7.6.11 Geometric Operations

Geometric operations perform standard operations on vectors and
points. While easily definable in terms of basic arithmetic and ele-
ment manipulation operations defining them explicitly is helpful to
both the programmer and possibly the compiler.

They are given as follows:

smShaderDot()
smShaderCross()
smShaderLen()
smShaderSqLen()
smShaderRecipLen()
smShaderRecipSqLen()
smShaderNorm()
smShaderDist()
smShaderSqDist()
smShaderRecipDist()
smShaderRecipSqDist()

ThesmShaderDotoperation computes a dot (or inner) product. It
works on tuples of any dimensionality, and produces a scalar. The
smShaderCrossoperation computes a cross product. It takes two
three-tuples as input and produces a three-tuple as output.

ThesmShaderLenoperation computes the Euclidean length of
a tuple; it operates on tuples of any dimension. ThesmShader-
SqLenoperation computes the squared Euclidean length of a tuple;
the smShaderRecipLenoperation computes the reciprocal of the
Euclidean length of a tuple; thesmShaderRecipSqLenoperation
computes the reciprocal of the squared Euclidean length of a tu-
ple. Like thesmShaderLenoperation, these work on tuples of any
dimensionality.

ThesmShaderNormoperation normalizes a tuple to unit length,
and works on tuples of any dimensionality. ThesmShaderDist
operation computes the Euclidean distance between two tuples of
any dimensionality, andsmShaderSqDist, smShaderRecipDist,
and smShaderRecipSqDistcompute the square, reciprocal, and
squared reciprocal of that value.

7.6.12 Standard Mathematical Functions

The SMASH API defines a number of standard mathematical func-
tions. Ultimately, functions equivalent to most builtin RenderMan
shading language functions will be defined to make the conver-
sion of RenderMan shading programs to SMASH shaders easier.
Note that most of these “built-ins” will probably be implemented
as macros and so will not require extra support from the driver.
They will be defined, however, in case an acceleratorwould want
to provide direct support.

Lowering the input or output precision may be a good idea for
some of these functions; performance may be improved. This will
be particularly true if an implementation uses iteration or table
lookup to evaluate functions.

To evaluate trigonometric functions, use the following calls,
which work elementwise on tuples:

smShaderSin()
smShaderArcSin()
smShaderCos()
smShaderArcCos()
smShaderTan()
smShaderArcTan()
smShaderArcTan2()

The smShaderArcTan2call takes two tuples of the same dimen-
sionality as arguments. The elements of the first are interpreted as
r sin(θ) values, the second asr cos(θ) values. Angles are always
measured in radians.

7.6.13 Noise

Randomness is a critical component of many shaders. SMASH pro-
vides the following noise generation calls:

smShaderHash()
smShaderVNoise()
smShaderPNoise()

ThesmShaderHashfunction computes a hash value between 0 and
1 based on each element of its input tuple. This value will appear
random, but will be repeatable.

ThesmShaderVNoisefunction computes value noise between 0
and 1. At each point on a grid with unit spacing, a hash value will
be computed, and then over the cell linear interpolation will be per-
formed. The input is a multidimensional index into the grid. This
noise is inexpensive, but will not look as nice as Perlin noise. Its
cost will also grow exponentially with dimensionality at the number
of vertices at the corners of each cell grows.

ThesmShaderPNoisefunction computes derivative-continuous
Perlin noise bounded over[0, 1] with a unit cell spacing. This will
look nicer than value noise but may be more expensive to compute.

Different platforms may use different hash functions and noise
generators, so application developers should not expect features
generated by noise functions to be consistent across platforms.

7.6.14 Discontinuities

The following functions results in hard discontinuties, and so
should be used with care:

smShaderMax()
smShaderMin()
smShaderClamp()
smShaderAbs()
smShaderSgn()
smShaderStep()
smShaderFloor()
smShaderCeil()
smShaderSelect()

The smShaderMax operation compares two tuples elementwise
and keeps the larger of each element. If a scalar and a tuple are
compared, the scalar is first replicated to the same dimensionality
as the tuple. ThesmShaderMin operation is similar, but keeps the
smaller of each element. ThesmShaderAbsoperation computes
the elementwise absolute value of each element of a tuple. The
smShaderClampoperation limits each element in its input to the
range[0, 1]. ThesmShaderSgnoperation computes the element-
wise signum function of each element of a tuple (i.e. the output is
-11 if the element was negative, zero if it was zero, and 1 if it was
positive). ThesmShaderStepfunction is a step function, return-
ing zero for negative or zero values and 1 for positive values. The
smShaderFloorfunction finds the largest integer less than or equal
to each element of its input. ThesmShaderCeilfunction finds the
smallest integer greater than or equal to each element of its input.

Finally, thesmShaderSelectfunction is used as a kind of “if
statement”. It takes three arguments: two items of the same dimen-
sionality and a scalar. If the scalar is negative or zero, the first item
is taken, otherwise the second item is taken.

Versions of the previous functions with soft transitions are also
provided, and are important for writing antialiased shaders. They
all take an additional scalar argument on the stack which should
be the width of the transition region. The exact functions used are
implementation-dependent but should be derivative continuous:

smShaderSMax()
smShaderSMin()
smShaderSClamp()
smShaderSAbs()
smShaderSSgn()
smShaderSStep()
smShaderSFloor()
smShaderSCeil()
smShaderSSelect()

7.6.15 Discarding Fragments

The following calls consume a single scalar from the execution
stack:

smShaderRejectOpen()
smShaderRejectClosed()

ForsmShaderRejectOpen, if that value is positive and greater than
or equal to zero, then the fragment is retained. Otherwise, if the
value is negative, the fragment is rejected. ForsmShaderReject-
Closed, if that value is strictly positive, then the fragment is re-
tained. Otherwise, if the value is negative or zero, the fragment is
rejected.

These operations always executes at the highest frequency level;
if you use them inside a subshader, they will be “pushed down”
to a finer level. Multiple rejections are permitted in a shader. A
fragment is rejected ifanyrejection test passes.

7.6.16 Indicating Results

Every shader has to call the function that sets the output color:

smShaderSetColor()

The input tuple can be 1, 2, 3, or 4 dimensional. A 1D item will
be interpreted as a luminance and the alpha will be set to 1. A 2D
item will be interpreted as a luminance plus alpha. A 3D item will
be interpreted as an opaque RGB color (alpha of 1). A 4D item will
be interpreted as an RGBA color.

7.7 Subshaders

Often parts of a shader can be evaluated at low resolution and in-
terpolated, and when this is possible, it will generally be a perfor-
mance win. The simplest example is the evaluation of “smooth”
parts of a shader at vertices, such as the diffuse irradiance. The
results of these per-vertex evaluations can then be interpolated to
fragments, where the shader computation can be completed using
the rest of the shader.

The mechanism SMASH uses to specify subshaders permits a
shader first to be written at the finest resolution level available and
tested. Then, to identify a part of the shader program which can be
evaluated at a lower resolution, wrap the desired subexpressions in
the following calls:

smBeginSubShader(SMenum level)
smEndSubShader()

Currentlylevel must be one of

SMCONSTANT
SMPRIMITIVE
SMVERTEX
SMSUBVERTEX
SMFRAGMENT
SMSAMPLE

Constant shaders are defined and evaluated once at shader defini-
tion time. Primitive shaders are defined for everysmBegin/smEnd
block. Vertex shaders are evaluated at each vertex of a primitive.
Subvertex shaders are evaluated at the vertices of primitives that
are subdivided internally (i.e. subdivision surfaces, displacement
maps). Fragment shaders are evaluated at every pixel fragment. Fi-
nally, the finest level of detail may be the sample, in the case of
multisampled antialiasing. On systems without multisampling the
fragment and sample levels will be identical. By default, shaders
are evaluated at the finest possible level.

Subshaders cannot depend on any result computed at a finer level
of detail, but otherwise the evaluation semantics are unchanged.
Note that to implement SMASH shaders in their full generality,all
resolution levels need to support identical sets of operations, in-
cluding, for instance, texture lookups at vertices. While it would
be possible to limit the operations that can be used at each level,
and such shaders would be forward-compatible with more general
systems, such restrictions are undesirable as they could be a source
of portability problems and complicate programming.

The syntax given above for subshaders can be extended to other
purposes. For instance, part of a shader could be identified for
automatic approximation using a particular technique, or part of a
shader could be identified for tabulation and storage in an unnamed
texture object.

7.8 Precision Management

Precision is currently one of the major limitations in all multipass
implementations of shaders. Single-byte-per-component color rep-
resentations are (barely) adequate for representing the final result
of a shader, but are often not sufficient for internal computations,
and even the twelve bit color components supported on high-end
machines can be limiting.

The SMASH API includes support for specifying the desired nu-
merical precision and dynamic range of shader computations. The
mechanism can be considered a way to “annotate” the shade tree
specified by the shader program. Precision annotations have the
status of hints, not absolute specifications.

The following calls define the current precision mode in an open
shader:

smShaderPrecision(SMuint b)
smShaderExponentPrecision(SMuint e)
smShaderRadix(SMint r)
smShaderClamping(SMboolean c)
smShaderSigned(SMboolean s)

Each of these calls sets state variables which influence the precision
modes of operators following them.

ThesmShaderPrecisioncall specifies the number of bits of pre-
cision. This will be the number of bits of precision in the mantissa
for a floating-point number (not counting the implied initial 1), and
overall for a fixed-point number.

ThesmShaderExponentPrecisioncall specifies the number of
bits of precision in the exponent of a floating-point number; a value
of 0 specifies a fixed-point number. An excess2e−1 − 1 encoding
for the exponent should be assumed if the radix position is zero.

The smShaderRadix call indicates the position of the radix
point for fixed-point numbers. It is treated as an additional ex-
ponent bias for floating point numbers. If the radix position is 0,
the number can only represent fractions between[−1, 1) if signed,
and between[0, 1) if unsigned. If the radix position is equal to the
precision, the representation is an integer.

Clamping can be turned on withsmShaderClamping; by de-
fault it is on. If it is turned off computed values exceeding the range
of the result representation may give undefined results, except for
operations involving reciprocation, which always clamp.

The smShaderSignedfunction specifies whether arithmetic
should be signed or unsigned. If clamping is on the outputmay
be clamped to zero if negative. Note: turning off signed arithmetic
doesn’t save any time or resources for thecurrentoperation, it just
guarantees the output of an operation is unsigned, which may make
operations that depend on a result simpler.

As each operation is specified the current numerical represen-
tation mode is applied to the output of that operator and tracked
through the dependency graph indicated by the shader program.
Conceptually operations will be performed at “infinite” precision

and then mapped to the output representation. For instance, if you
multiply two fixed-point 8-bit numbers, the result requires 16 bits
to represent exactly. If the output has less precision, it will either be
clamped or rounded, depending on the current radix and precision
modes.

Precision modes can be changed at any point, on an operator-
by-operator basis if necessary. However, continually flipping be-
tween floating point and fixed point representations, for instance,
will likely not yield the best performance. Generally speaking, al-
though floating-point can be specified, fixed-point may be much
more efficient—in fact, specifying floating-point may require soft-
ware simulation on some platforms.

Precision modes should be considered implementation hints;an
implementation is free to ignore themand just provide a single rep-
resentation with “adequate” precision and range, signed numbers,
and clamping at large maximum and minimum values (the single-
precision IEEE floating point representation and behaviour is to be
considered adequate). An implementation can also provide greater
range and precision in fixed-point computations than what has been
requested.

This means that precision modes shouldnot be relied upon. For
instance, don’t try to convert numbers to integers by setting the pre-
cision equal to the radix position, usesmShaderFloorinstead. To
clamp a number to zero, don’t fiddle withsmShaderSignedand
smShaderClamping, usesmShaderMaxto force a clamp against
a constant zero value.

Specifying precision information is extremely tedious for the
programmer, and a programmer is unlikely to discover an optimal
arrangement of precision settings in complex situations.

One of our current research goals is the development of tech-
niques for automatic precision and dynamic range selection, and
supporting techniques for implementing multiple-precision signed
arithemetic in a shader context. Currently, implementing signed
multiple-precision arithmetic within certain real-time rendering al-
gorithms is just barely feasible—it has been demonstrated for
shadow map comparisons on the GeForce by Mark Kilgard, for
example. However, some changes to existing hardware support,
for instance a capability to save and take carries from the sten-
cil planes, might make multiple-precision frame-buffer arithmetic
a reasonable implementation alternative.

8 Fragments and Rasterization

Once fragments have been shaded, then they must be applied to
the destination color and depth buffers, subject to depth and stencil
tests. SMASH does not support compositing operators or the alpha
test; that functionality is specified using the shader sub-API.

We assumez-buffering is supported as well as the standard
OpenGL compositing operations. SMASH also guarantees that
fragments will be written into the destination buffers in the same
order that the primitives that generate them are specified to the in-
terface.

Values in buffers are limited to the range[0, 1] as in OpenGL and
will have a limited set of precisions to conserve bandwidth. When
the output is set in the fragment shader it is automatically clamped
and quantized to the representable precision of the target buffer.

Despite these similarities, we propose the use of slightly differ-
entz-buffer and rasterization coverage conventions than OpenGL.
The major design revisions which have been made for fragment
generation and depth testing are as follows:

1. The view volume is a semi-infinite pyramidal cone,nota frus-
tum.

2. The rasteriser is required to generate fragments forall parts of
primitives visible in the view volume. By default,nohither or
yon clipping is performed.

3. By default, the rasterizer saturates depth values rather than
clipping fragments that fall outside the representable depth
range.

4. A complementary-z device coordinate convention is used
which can maximize depth precision over a specified near-far
range when a floating-point orz/w rational depth representa-
tion is used.

Doing depth testing after fragment shading would permit shaders
to manipulate depth values; this would be useful to simulate curved
primitives such as spheres [42]. On the other hand, if the depth
test is forced to come last in the pipeline we cannot cull shading
operations by testing the depthbefore fragment shading, since a
shader program might modify the depth. We have chosen not to
support depth shaders, since culling fragments before shading is a
potentially valuable optimization, depth shaders would probably be
a rarely used feature, and displacement maps and programmable
geometry assembly (which we do plan to support) will provide an
alternative way to define curved geometric “primitives”.

8.1 Device Coordinates

The normalized device coordinate system of SMASH is defined as
[−1, 1]× [−1, 1]× [0, 1]. The standard perspective map in SMASH
maps the far plane in the viewing coordinate system to0.0 in the
normalized device coordinate system and maps the near plane in
the viewing coordinate system to1.0 in the normalized device co-
ordinate system. In other words, unlike OpenGL, the convention
will be that points closer to the eye will map tolarger z values in
the normalized device coordinate system.

8.2 Near and Far Clips

For compatibility with OpenGL, SMASH supportsoptionalclips at
z = 0 andz = 1 in device coordinates, to restrict the infinite view
pyramid to a frustum. We specify an infinite viewing volume be-
cause the hither and yon clips are a major source of irritation when
rendering virtual environments. Yet, it is possible to implement a
simple and efficient rasterization algorithm (using hierarchical test-
ing of edge equations) that does not require these clips, does not
have a wrap-around-infinity problem, and furthermore eliminates
the need to implement a clipper to the window edge [42, 47]. Also,
a semi-infinite volume is more compatible with ray-casting, should
that ever become part of real-time fragment generation.

The hither and yon clips are off by default. When mapping to
older hardware, leaving these clips off will slow things down, since
extra screen-aligned polygons will have to be drawn to fill in the
clipped part of the polygon to simulate depth saturation. On newer
hardware using an edge-equation tiling rasterizer (for instance),
leaving the clipping off should ideally speed things up.

With depth saturation,z-buffer based depth testing will become
ineffective once objects are closer to the eye than a certain mini-
mum distance; likewise, with a floating-point depth representation,
depths beyond the far plane will lose precision rapidly. However,
appropriate fragments must still be rasterized, which means that al-
gorithms like shadow volumes [35] should still function properly.
Furthermore, if there is only one object close to the eye, probably
the most usual case, there is no possibility for a depth-ordering con-
flict.

To turn hither and yon clips on and off, enable/disable the
Boolean flags accessible through the following enumerated con-
stants:

SM_NEAR_CLIP
SM_FAR_CLIP

The 0 and 1 depth values in the normalized device coordinate
system must be representable, but an implementation is permitted
to represent additional depth values outside this range, and will sat-
urate fragment depths to the minimum and maximum representable
values instead of clipping. A mode can also be enabled that forces
saturation at 0 and 1 if strict depth-map consistency is desired be-
tween implementations; enable/disable the Boolean flag

SM_STRICT_DEPTH_SATURATION

which is false by default. Of course, if hither/yon clipping is en-
abled, the value of this flag is moot.

8.3 Viewport Mapping

After mapping to the normalized device coordinate system, frag-
ments are mapped to pixel coordinates in the current destination
buffer with a viewport transformation, set up with the call

smViewport(
SMint x bo, SMint y bo,
SMuint w, SMuint h)

wherexbo andybo are the lower-left corner of the viewport rectan-
gle, in buffer pixel coordinates,w is the width in pixels, andh is the
height in pixels. Ifxn andyn are normalized device coordinates,
the viewport mapping is given by

xb = w
(

xn + 1

2

)
+ xbo

yb = h
(

yn + 1

2

)
+ ybo

wherexb andyb are the final buffer coordinates of the fragment.

8.4 Projection and View Volume

To set up perspective, the following call multiplies the current ma-
trix (usually the projection matrix) by a matrix representing a pro-
jective transformation:

smFrustum(
SMdouble `, SMdouble r,
SMdouble b, SMdouble t,
SMdouble n, SMdouble f)

The parameters̀ andr are the positions of the left and right clip-
ping planes,t andb are the positions of the top and bottom clipping
planes, and the parametersn andf are the near and far plane dis-
tances (down thenegativez axis in the viewing coordinate system,
although these arepositivedistances). Although we will talk about
near and far planes in the following, it should be emphasized again
thatnear and far plane clipping is optional in SMASH.

The planes defining the viewing pyramid under this transforma-
tion will be given by the sets of points

Bottom: {[0; 0; 0], [r; b;−n], [`; b;−n]}.

Top: {[0; 0; 0], [`; t;−n], [r; t;−n]}.

Left: {[0; 0; 0], [`; b;−n], [`; t;−n]}.

Right: {[0; 0; 0], [r; t;−n], [r; b;−n]}.

Near (optional clip): {[`; b;−n], [`; t;−n], [r; t;−n], [r, b,−n]}.

Far (optional clip): {[`; b;−f], [r; b;−f], [r; t;−f], [`, t,−f]}.

using the convention that the direction of the interior is given by the
right-hand rule. This results in the following plane equations, using
the convention that a positive sign denotes the interior of the view
volume:

Bottom: [0, n,−b, 0].

Top: [0,−n,−t, 0].

Left: [n, 0,−`, 0].

Right: [−n, 0,−r, 0].

Near (optional clip): [0, 0,−1,−n].

Far (optional clip): [0, 0, 1, f].

The perspective matrixP = [pij] generated by thesmFrustum
call is given by

P =

n

`−r
0 `+r

`−r
0

0 n
b−t

b+t
b−t

0

0 0 n
n−f

fn
n−f

0 0 1 0

If the view-space position[xv; yv; zv] is given by the homogeneous
coordinates[(wvxv); (wvyv); (wvzv); wv], then this matrix results
in the rational linear mapping

xn =
n(wvxv) + (` + r)(wvzv)

(`− r)(wvzv)

yn =
n(wvyv) + (b + t)(wvzv)

(b− t)(wvzv)

zn =
n(wvzv) + nfwv

(n− f)(wvzv)

to the normalized device coordinates[xn; yn; zn].
The normalized device coordinate system valueszn are to be

used directly as depth values. No mapping is supported to mod-
ify the depth range other than what can be accomplished with the
projection matrix.

Another way to define the clipping planes above would be to
map plane equations for the normalized device coordinate system
boundaries at[−1, 1]× [−1, 1]× [0, 1] back through the inverse of
the current projective matrix.

An implementation can (and probably should) test homogeneous
vertex positions against these plane equations to cull triangles that
do not intersect the view volume. This can be done in model space
as well if we map the plane equations back throughMP rather than
P. An additional eye-plane (zv = 0) test will also be useful if
near-plane clipping is disabled; the plane equation for this in model
space can be derived from the eye position and view direction.

The call

smPerspective(
SMdouble θ, SMdouble a,
SMdouble n, SMdouble f)

whereθ is the field of view angle,a is the aspect ratio (width over
height), n is the near-plane distance, andf is the far-plane dis-
tance, is a special case (axis-aligned symmetric perspective) con-
venience function which simply callssmFrustum with appropriate
arguments.

8.5 Depth Representation

Under the complementary-z convention, the eye will be located at
positive infinity. Infinitely far away objects in the viewing coor-
dinate system will be mapped towards negative infinity, although
under a rational (projective) mapping large view-space depths will
actually converge to a finite negative value.

Over the[0, 1] device coordinate range, if floating-point or ra-
tional numbers are used to represent depth, this has the effect of
compensating for the the loss of precision at the far plane due to
the perspective projection, since such representations have greater
precision close to zero [32]. Comparisons on floating-point values
are inexpensive—if stored in the right way, with the exponent in the
high-order bits as a biased number, sign-magnitude integer compar-
ison suffices. This “integer” is in fact a (signed) scaled piecewise
linear approximation to the logarithm of the value represented by
the floating-point number [6]. Therefore, we can actually do depth
comparisons using integer arithmetic and still get the right answer,
while still supporting readback of the depth buffer as floating-point
numbers without any conversion cost. Comparisons between ratio-
nal numbers requires two multiplies, but we can potentially avoid a
division when rasterizing.

8.6 Depth Tests

To avoid confusion between OpenGL code and SMASH code given
the new SMASH device coordinate conventions, new SMASH
names are used for depth tests that refers to the geometrical situ-
ation instead of the representation, following the complementaryz
conventions:

SMCLOSER
SMCLOSEROREQUAL
SMFARTHER
SMFARTHEROREQUAL

If objects closest to the eye are rendered last, as in Painter’s algo-
rithm, depth order will be preserved either with depth testing turned
off or with theCLOSEROREQUALdepth test.

For most implementations memory bandwidth is better utilized
if objects farthest from the eye are rendered last, since more ob-
jects will fail the depth test, which will cause more fragments to be
discarded before updating the color and depth buffers, and possibly
even before performing shading. Occlusion-culling optimizations
also depend on an approximate front-to-back ordering. To max-
imize performance, an application should generally try to render
objects closest to the eye first, using theCLOSERtest.

8.7 User-Defined Clipping

SMASH doesnot have an API to define additional user-defined
clipping planes, nor does it have an alpha test. This functional-
ity is not required in the base API since it can be programmed as
needed using an appropriate shader and the rejection operator.

The parameter specification sub-API permits the specification of
plane equations. These plane equations will be transformed into
the viewing coordinate system if they are specified with the model-
view matrix stack active. The elimination of fragments on one
side of the clipping plane can be performed using ansmShader-
Dot shader operation to evaluate the plane equation against the ho-
mogenous view-space position and one ofsmShaderRejectOpen
or smShaderRejectClosedto reject appropriate fragments.

More complex clipping regions, such as spheres and cylinders,
or any other region that can be expressed in implicit form, can also
easily be programmed.

Clipping in this way does not reduce the workload of the frag-
ment shader if the semantics of the SMASH pipeline are interpreted

literally, since the rasterizer would still generate fragments. On the
other hand, the driver shader compiler could scan for shader expres-
sions that set up clips according to this idiom and set up clipping
equations in the rasterizers as an internal optimization.

9 Implementation

In this section we consider various strategies for the high-
performance implementation of the feature set described for
SMASH. First, we consider software implementation, and describe
how the base software prototype for SMASH is being implemented
and how a higher-performance software implementation could be
obtained. Then, we survey some possible hardware acceleration ar-
chitectures and present candidate designs for single-pass shading
using multithreading and reconfigurable computing, and the global
architectural consequences of these approaches.

9.1 Base Software Implementation

Our base software implementation is meant to be as portable as pos-
sible while still being reasonably efficient. It can be used in an inter-
active mode after setting up an appropriate OpenGL context. Cur-
rently our implementation only uses OpenGL for displaying com-
pleted images. For maximum portability, it can be compiled so it
can run without an OpenGL backend, in which case frame-buffer
readback should be used to access the completed images.

After a shader DAG is defined using the shader sub-API, it is
optimized, then compiled down to a virtual machine language byte-
code, which is interpreted. The interpretor evaluates several shader
threads in “parallel” over batches of fragments, i.e. by doing one in-
struction at a time over multiple shader threads, so that its overhead
is low and reasonable CPU utilization is obtained.

To construct the DAG, we actually “execute” the shader symbol-
ically during definition by maintaining pointers to the roots of di-
rected acyclic graphs (DAGs) describing shader expressions rather
than actual values in the stacks and registers. This also permits us to
determine if the shader program is well-formed and set appropriate
error flags immediately after each shader API call.

When the shader definition is closed, we scan the DAGs rooted
at the color and depth “results”. This automatically results in dead-
code removal, since dead code cannot be reached from the results.
We then search for and eliminate common subexpressions using
hash values computed for the DAGs rooted at each node, propagate
constants (effectively evaluating constant parts of the shader), as-
sign register slots for each intermediate value, and perform various
other optimizations such as strength reduction.

We also track sharing of shared vertices and edges during prim-
itive assembly to try and reduce recomputation. All primitives in
SMASH are first reduced to triangles whose vertices have been
transformed by the modelview matrix into the viewing coordinate
system. After a reasonably large number of triangles have been
assembled that share the same vertex and fragment shaders, a “ras-
terization packet” is set up. A rasterization packet consists of an
array of vertices (whose view-space positions are described in ho-
mogeneous coordinates), associated parameter arrays, an array of
pairs of vertex indices for each edge, and a triple of indices into the
edge array for each triangle. Edge indices use a low-order bit to
indicate if the edge orientation should be flipped for that triangle.

Our software rasterization module operates almost entirely in ho-
mogeneous coordinates. It performs the following operations on
each rasterization packet:

1. Vertices are tested against the plane equations for the viewing
volume. Outcodes are used to cull triangles which cannot be
visible.

2. Vertices of all potentially visible triangles are marked using
an array of bits so blocks of vertices that are unmarked (and
so are not part of any potentially visible triangle) are easily
identifiable.

3. Edge equations are computed for each potentially visible tri-
angle, sharing computation among shared edges. Computing
the edge equations for each edge of a triangle is equivalent
to computing the adjoint of the matrix containing the vertex
coordinates of each triangle.

4. Triangles in the packet are culled if they are backfacing and
the backface cull mode is set. We have to do the test for back-
facing triangles even if backface culling is off, since we have
to make backfacing polygons visible by reversing the sense of
their edge equation tests.9

Triangle orientation is determined by testing the sign of the
determinant of the vertex matrix. This requires relatively little
additional work as we already have the adjoint of this matrix.

5. Vertex shaders are evaluated on each potentially visible
(marked) vertex. A new parameter array is generated by the
vertex shader using code generated by the compiler. This new
array contains both the results of the vertex shader and param-
eters copied from the input parameter array for parameters
that are simply to be passed down to the fragment shaders.
This permits the vertex shader to edit out parameters con-
sumed by the vertex shader.

During compilation fragment shaders are rewritten to treat the
results of vertex shaders as extra parameters by replaceing the
code for the subshader with an appropriate parameter access
instruction. The results of vertex shaders and passed-through
parameters will be interpolated identically by the rasterizer.
For simplicity, the rasterizer does not use any information
about the internal stucture of the parameter array, it just treats
it as a list of numbers to interpolate.

6. For all potentially visible triangles interpolation coefficients
are set up for all parameters. This is done by multiplying the
three numbers bound to each vertex for each corresponding
position in the parameter arrays by the three-dimensional ma-
trix given by the adjoint of the vertex matrix. A projective
correction factor is also computed by transforming the refer-
ence vector[1; 1; 1] by the same matrix. Note that computing
the inverse of the vertex matrix by dividing the adjoint by the
determinant is not necessary; the determinants would cancel
anyways upon division by the interpolated projective correc-
tion factor.

7. Each potentially visible triangle is rasterized and the depth of
each fragment is computed.

We actually perform rasterization by testing potential frag-
ment positions against quantized edge equations expressed in
device coordinates. This is done incrementally and in a hi-
erarchical fashion, using only integer arithmetic (mostly ad-
ditions). This approach is efficient yet completely avoids the
need for window-edge and hither and yon clipping having to
generate new triangles, and can tolerate primitives crossing
the eye plane, or even being semi-infinite.

If hither and yon clipping are requested, each potential frag-
ment position is tested against two additional plane equations.

9 SMASH does not support different shaders for front and back surfaces.
Two-pass rendering can simulate this if necessary.

8. If a fragment passes the depth test, the elements of the param-
eter array output by the vertex shading stage are interpolated,
normalized by multiplying by the reciprocal of the interpo-
lated projective correction factor, and a fragment with an in-
terpolated parameter array is added to the fragment processing
queue.

Interpolation of each parameter is projectively correct, i.e. it
uses rational linear interpolation [43]. We also structure the
code so the long latency of computing the reciprocal of the
projective correction factor (which we assume happens in par-
allel with the multiplications and additions required for inter-
polation) does not affect our throughput. Interpolation of pa-
rameters is currently done using floating-point arithmetic.

Our rasterizer actually generates output fragments in blocks.
Incomplete blocks are only generated when we have to flush
the pipeline to switch shaders. In particular, fragments from
different primitives are combined in the order they are sub-
mitted to the rasterizer. Once a block has been filled, it is sent
down the pipeline to the fragment shader.

9. The fragment shader implementationdoes not assumethat
fragments are arranged in a regular grid; each fragment carries
its device coordinates with it. However, the fragment shader’s
performance should be improved if samples are spatially co-
herent as texture cache coherency will be improved, so the
rasterizer orders visits to tiles and samples to improve spatial
coherence.

10. Shaded fragments are finally written to the framebuffer if they
have not been rejected and if the stencil tests pass. Stenciling
can be applied earlier in the pipeline if and only if the shader
does not include rejection operators. Note that the depth tests
takes placebeforeinterpolation and fragment shading to cull
occluded fragments.

The shader execution module, used for both vertex and frag-
ment shaders, is currently an interpretor. Each operation in a shader
program applies to all vertices/fragments in a block at once. This
has the advantage that each instruction invokes a reasonably large
amount of work so the relative overhead of the interpretor (i.e.
the time spent looking up the next instruction) is minimized. The
shader interpretor implementation can be considered to be a simu-
laor for the multithreaded machine architecture discussed later.

The interpretor still suffers the overhead of copying data to/from
memory rather than storing it in registers, althogh the data size is
small enough that most of these memory accesses should refer to
cached data. We also store the front of the stack in a local variable
rather than in the stack array to encourage the compiler to keep it in
registers.

There are two versions of the interpretor, one with unrolled
loops that operates on constant-sized blocks, and one that handles
variable-sized blocks. The later is only used when we flush the
pipeline to change shaders.

We intend to optimize the implementation of each instruction
in our software interpretor by exploiting the Intel SSE and AMD
3DNow! instructions. The rasterizer could also be optimized to
use MMX instructions during the evaluation of the edge equations.
Finally, we would ultimately like to compile shader programs on the
fly to machine language to eliminate the overhead of the interpretor.

9.2 Multipass Fragment Shaders

Fragment shaders can be implemented by compiling them to mul-
tiple passes under OpenGL and using OpenGL’s compositing op-
erations to perform arithmetic. Basically, extra rendering buffers

and/or textures are used to hold intermediate results of the compu-
tation. Compositing and texturing operations can be used to imple-
ment each shader operation.

For full generality both color storage formats and the composit-
ing and texturing operations must be extended to support high-
precision signed arithmetic, but this is a relatively small change that
does not require rearchitecting existing designs. In some contexts
extended precision can be implemented even on current graphics
accelerators. This implementation possibility, when used as a fall-
back, permits a single API to cover machines both with and without
single-pass fragment shading capabilities.

The chief disadvantage of the multipass approach is that even
after optimization of the shader program, a large number of passes
and a great deal of memory may be required, particularly since high
precision may be required in the pbuffers, and high-precision op-
erations may themselves require multiple passes. This limits the
complexity of the shaders than can be implemented. Furthermore,
if a scene has multiple shaders that each cover a small part of the
display area, then memory (and bandwidth) utilization will be low.
Memory and bandwidth utilization will also be low unless tight
bounding boxes around the pixels affected by each shader can be
built.

If a processor-enhanced memory is used, as in PixelFlow, similar
problems arise, except the memory costs more and so the memory
allocation problems are more acute. Optimizing memory usage was
one of the primary preoccupations of the PixelFlow shader imple-
mentation [42, 41].

Therefore, the multipass approach will be most useful in do-
mains such as industrial design, where the number of shaders in
the scene is low and shader coherence is high. The multipass ap-
proach is also useful as a fall-back in case shaders get too complex
for a single pass even on machines that support single-pass shaders.

9.3 Single-Pass Fragment Shaders

A direct implementation of the conceptual stack machine used in
SMASH in hardware would be too slow to be useful. Normally, we
would reconstruct the shader expression, optimize it, and then map
it onto a different implementation architecture, such as an vector
processor, a SIMD or MIMD array, or a multithreaded processor.
Shading processors need not be general-purpose units; in particular,
branches conditioned on data values are not necessary, and this can
simplify implementation.

Since without branches each invocation of a shader takes the
same amount of time, for certain architectures we can guarantee
that shaders will complete in the order they are started, and so we
do not have to reorder fragments to perform front-to-back or back-
to-front rendering correctly, at least at the level of a single shading
unit.

9.4 General Observations

Some general observations and assumptions can be made:

1. Shader temporal coherence can be assumed. This means that
once we activate a single shader, we will probably use it for
a while. Even on current systems it makes sense to reorder
rendering so that all primitives that use a particular texture, for
instance, are rendered together. Shader temporal coherence
permits multiple invocations of the same shader program on
different fragments to be combined.10

2. Shader spatial coherence can be arranged. There are some
caveats here. Shader spatial coherence will be broken oc-
casionally, and so this effect will not be as large as that for

10 Unfortunately, reordering primitives by the shaders they use conflicts
with front-to-back reordering to improve occlusion culling. . .

temporal coherence. However, we should be able to break
shader evaluations into small “blocks” each with a reasonable
amount of spatial coherence.

3. Shaders can vary widely in complexity and memory require-
ments. Therefore, an architectural approach that gracefully
degrades in performance with increased shader complexity (as
opposed to hitting a wall at a certain level of complexity) is
desirable.

4. Texture access can assumed to be cached. While it will be
reasonably fast most of the time, memory access may require
a long multiple-cycle pipeline, and may occasionally require
a delay to reload a cache line. Therefore the architecture has
to be able to stall while waiting for a texture access to com-
plete, and/or should be able to tolerate large memory access
latencies (64 to 256 cycles) so a prefetch cache architecture
can be used to hide the variable latency.

5. Fragments must be delivered to each pixel of the frame buffer
in the same order that their source primitives are rendered.
Therefore, any delays due to cache misses, etc. cannot have
the effect of reordering the output of the fragment shader.
In the future, techniques for order-independent transparency
may make this unnecessary, but for now this constraint is a
necessity.

9.5 Multithreaded SIMD Processor

In the multithreaded SIMD approach, shown in Figure 4, we ba-
sically implement the strategy described in Section 9.1 for the
base software implementation, i.e. using an inner loop over threads
rather than instructions. This approach leads to the per-instruction
multithreaded processor [1, 2, 3].

In this architecture, instructions are fetched one at a time but
are invokedn times for each thread, each time using a different
subset of the register file. This is not really a general-purpose mul-
tithreaded processor in that we do not execute completely separate
instruction streams, but instead use the same instruction stream over
different data, as with a SIMD parallel processor.

A multithreaded SIMD processor like this maximizes utilization
of functional units and can tolerate high latency, so processors can
be relatively small but we can use deeply pipelined, high perfor-
mance floating-point functional units. To scale up performance, we
would then need to have many such processors running in parallel,
possibly running different shader programs (which raises the issue
of resynchronization of shaded fragments).

The register mapper unit shown in Figure 4 indexes the register
file using both the instruction register and athread counter. The
register file is multi-banked and multi-ported to allow the external
system to read out results and load new parameters in parallel with
the fetches and writebacks required for computation. The register
file doubles as a FIFO to buffer incoming parameters, so if we are
executing small shader programs the “extra” space in the register
file will not go to waste: it can be used to improve the elasticity of
the rasterizer-to-shader communications network.

While one shader program is executing, we could also load the
next shader program indicated by thesmNextShaderhint into the
shader program memory. Since we only have to read instructions
from the shader program memory once everyn cycles there is
plenty of bandwidth for this—in fact we could share a single in-
struction memory among a cluster of processors. Therefore, it
should rarely be necessary to wait for a new shader program to load.
However, as in the software implementation, we do need enough
temporal coherency to be able to assemble an adequate number of
fragments using each shader program.

The advantage of this architecture is that pipeline latency can be
hidden. If the number of threads exceeds the maximum pipeline
latency, once we arrive back at the first thread, the previous instruc-
tion for that thread has completed and the result has been written
back, ready to be used in the next instruction. For “small shaders”
that can use a large number of threads latency can becompletely
hidden, eliminating the problem of scheduling instructions and sim-
plifying compilation.

For functional units, we can expect latencies of up to 30 cycles
for a high-precision pipelined divider/square root unit. Unfortu-
nately, texture lookup units can potentially have much higher laten-
cies, from 64 to 256 cycles. Such large latencies are required in
texture lookup units to provide adequate elasticity in a prefeteched
texture caching architecture and get performance levels consistent
with current graphics accelerators [25]. The larger value of 256
would be expected in a large-scale NUMA distributed-memory ar-
chitecture or for AGP texturing. In a single-chip solution with a
single local memory 64 cycles is (currently) adequate, but this re-
sult was derived under the assumption that memory latency would
be relatively constant. In the case we are contemplating, a large
number of parallel shader units would be competing for the mem-
ory access port and so even with a single external memory latencies
might be highly variable, as in the NUMA case. To be pessimistic
we should take the larger value when evaluating our design.

Under this assumption, 256 threads would be required to com-
pletely hide latency. This would require a large register file, so we
can expect shader units to be dominated by the space requirements
of the registers and the texture caches, not by the functional units.

For complex shaders, we may have larger memory requirements
and so may only be able to run a small number of threads. Fortu-
nately, with more work to do we will have an easier time scheduling
instructions even if some pipeline latency is exposed. Even with
a smaller number of threads the apparent latency can be reduced.
For instance, with a texture lookup latency of 256 cycles and 64
threads, each texture lookup would have an apparent latency of 4
instructions, an amount manageable with scheduling.

If it is desired at some time in the future this architecture could
be extended to support data-dependent branching and loops sim-
ply by using multiple PC’s indexed by the thread counter, thereby
extending it to a true simultaneous multithreaded architecture. In
this case a natural barrier for ordering would be the “thread block”.
By ensuring that fragments in a block can not overwrite each other
and ordering arrival of thread blocks at the frame buffer, we can
guarantee a framebuffer write order consistent with the primitive
ordering. Even if data-dependent loops are present, spatial coher-
ence may result in all the threads in a block taking a similar number
of cycles to complete their execution, and so utilization should still
be reasonably high. Dynamic scheduling in the processor could be
used to improve performance [55] if execution times of threads are
expected to vary greatly.

Another issue breaking the “deterministic execution time” prop-
erty of shaders will be memory access cache misses. If the ras-
terizer takes care to group spatially close shader threads together
as proposed, and if temporal coherence is strongly associated with
spatial coherence, then a stall on one thread will likely mean oth-
ers would also stall. Under these conditions, all threads can share
a single texture cache and a miss can stallall threads to maintain
synchronicity. The whole point of the large lookup latencies noted
above is to reduce the miss rate to under 1%, so stalls should not be
frequent.

In summary, a simplified multithreaded architecture could poten-
tially run at full CPU utilization for both large and small shader pro-
grams, with graceful degradation for larger shaders. However, each
thread would run slower so we would have to have many shader
processors running in parallel to get good performance. The size
of the register file gives an upper bound on shader complexity but

Result

(1 or more)

Address

Data

(1 or more)

Reg Mapper

Register File

Bank 0

Bank 2

Bank 3

Bank 1

Data

Address

Program Counter

Program RAM

Pipelined

Instruction Reg

Memory Access
Unit

Pipelined
Functional
Unit

Thread Counter

Figure 4: The multithreaded processor implementation approach
uses deeply pipelined functional units (which may be able to do
multiple operations in parallel as well) and a single large register
file. Only a single program counter and instruction memory is nec-
essary since all threads are executing the same program in lockstep.
However, different threads need to access different subsets of the
register file.

can be made large, as it will double as a FIFO to buffer fragment
packets.

9.6 Reconfigurable Computing

A pipelined expression evaluator can also be implemented using an
array of reconfigurable logic [13]. Such an implementation could
potentially have very high performance and would be completely
insensitive to texture lookup latency.

This architecture is diagrammed in Figures 5, 6, and 7.
A simple reconfigurable logic element (the internals of which

are shown in Figure 6) is replicated many times to make a large
mesh of processing elements. In the example shown here, a very
simple element is used that maps three inputs to three outputs using
lookup tables to implement three arbitrary Boolean functions. Each
element also contains three edge-triggered registers so the entire
mesh forms a large configurable pipeline.

With appropriate configuration data each element can implement
a single-bit adder, a single-bit conditional adder (useful for imple-
menting multipliers and dividers), a shifter (useful for implement-
ing floating-point operations), or any other necessary logic. Ele-
ments can also be used to route data from one place in the mesh to
another, to encode constants, and to implement small lookup tables
(which can possibly be used in place of small textures, or to help
implement functions such as square root).

To implement a pipelined expression evaluator, first macro cells
for larger units of functionality (for instance, pipelined adders and
multipliers) are designed, then appropriate combinations are con-
catenated with any necessary routing. This is a relatively simple
process for the design shown here and so would satisfy our desire
for reasonably efficient run-time metaprogramming.

To complete the design, the expression evaluator would be com-
bined with pipelined texture lookup units, as shown in Figure 7. In
this diagram, the expression pipeline flows data from left to right,

Figure 5: A reconfigurable mesh pipelined expression evaluator.
Data flows from left to right, reconfiguration information flows
from top to bottom. The internals of each unit in the mesh are
shown in Figure 6.

while data in the texture lookup units flow from right to left.
To compile a shader expression, it would be first broken into ba-

sic “evaluation” blocks between texture lookups. Each such subex-
pression would be compiled into a separate pipelined evaluator and
packed into the evaluation block. To execute a shader, parame-
ters would be pipelined in from the left, would go through the ex-
pression evaluator, back through the texture units from right to left,
through the expression evaluator again, etc. as many times as nec-
essary to completely evaluate the expression. The result would be a
completely pipelined shader evaluator that could generate a shader
evaluation on every clock, as long as data (shader parameters) could
be fed to it at that rate. The system can also process and accept data
of arbitrary precision.

While easy to understand, there are several problems with the
simple architecture shown here:

• Single-bit mesh elements require a large amount of configu-
ration data for a small amount of functionality. It would prob-
ably be best to use larger, more complex mesh elements, such
as a multibit ALU (perhaps even including a multiplier) com-
bined with shifting and routing elements [18, 19]. Providing
more flexible routing, so data would not always have to flow
in one direction, could also lead to better utilization of the
array and the memory access units.

• For implementing shaders in a graphics system, high-
bandwidth reconfiguration is required. The system shown
here would require a large number of cycles to reload recon-
figuration data, which would be a problem if shader temporal
coherency was low. Many reconfigurable systems are not de-
signed to permit rapid, run-time reconfiguration.

One option would be to reuse the data lines as ports over
which reconfiguration data could also be streamed, using a
pair of shared mode lines to switch elements betweenEx-

8x1 S
h

ift R
A

M

8x1 S
h

ift R
A

M

8x1 S
h

ift R
A

M

B0

B1

B2

A0

A1

A2

A0

A1

A2

B0

B1

B2

Figure 6:The internals of a single unit in the mesh shown in Fig-
ure 5. Each unit is basically a lookup table that can implement three
arbitrary boolean functions with three inputs each.

ecution , Forward , Load , and Reset states. TheExe-
cution state would use the loaded configuration data; the
Forward state would send streaming configuration data onto
the next element using a fixed communications arrangement
(such as left-to-right), theLoad state would place the incom-
ing configuration data into memory, and finally theReset
state would clear the configuration data and set up the element
to simply forward data.

If the number of input and output bits per element could be
matched to the amount of reconfiguration data in each ele-
ment, it should be possible to pipeline in reconfiguration data
between shader evaluations, and to only reprogram as many
columns as needed to implement a shader, using resets on the
other columns, making reconfiguration time proportional to
shader complexity.

• Another design challenge would be figuring out how to feed
the shader unit with data at an adequate rate. Unfortunately,
shader expressions will vary in the number of parameters they
require, and so the input bandwidth required to feed the shad-
ing unit will vary. If not enough bandwidth is available on the
input to the shader unit to get all the parameters to the shader
unit in one cycle, they will have to be buffered over multiple
cycles and bubbles will have to be inserted into the pipeline.

• The evaluator has a limited capacity; there will also be a lim-
ited number of texture lookup pipelines. Once these limits
are exceeded there will be no option but to break the shader
evaluation into multiple passes, although with each accom-
plishing a relatively large amount of work. Note that with a
processor, we can use more cycles to perform more complex
tasks, but there will be other resource limits (like the number
of registers).

In a way this architecture is similar to the systems currently avail-
able for multitexturing (i.e. register combiners), but with a finer
granularity.

Shader
Config
RAM

R
o

u
ter

Expression
Evaluator

R
o

u
ter

Shader
Config
RAM

Texture Lookup and Filtering

Texture Lookup and Filtering

Figure 7: A complete reconfigurable shader unit. The reconfig-
urable mesh is combined with pipelined texture lookup units which
feed data from the output of the expression evaluator back to its in-
put. Routers at the inputs and outputs of the expression evaluator
provide flexibility in configuring the evaluator.

9.7 Stream Processor

Another possibility for the implementation of a programmable
graphics accelerator is the stream processor [44]. A stream pro-
cessor is optimized for operating on homogeneous streams of data,
which in the case of SMASH would be vertex/mode/parameter
streams for geometry and fragment parameter streams for fragment
shading.

The system described by Owenet al. consists of multiple
pipelined functional units loosely bound by a high-speed commu-
nications network, and coordinated with a sequencer. It can be pro-
grammed in C++ using overloaded operators to describe connec-
tions between streams. The system has only been simulated but
hardware is expected at the end of 2000.

This architecture would actually be capable of a completely re-
configurable graphics pipeline, and could also be used for video
processing, simulation, and scientific computing. With the addi-
tion of support for fast dynamic reconfigurability, it would certainly
be capable of implementing the conceptual architecture described
here, perhaps with the addition of a specialized rasterization unit
and a load-balancing network between parallel pipeline stages as in
the Pomegranate architecture [11].

To summarize, there appear to be several ways to implement
programmable shading with performance levels comparable to cur-
rent graphics accelerators. In fact, if memory access becomes the
chief bottleneck (as expected based on current trends), such systems
could outperform traditional accelerator architectures if rendering
algorithms can be devised that replace memory accesses with com-

putation. However, much more work needs to be done to validate
these architectures and adapt them to the needs of real-time graph-
ics.

10 Metaprogramming Techniques

This section explores the use of the SMASH API as a backend to
higher-level shading languages and APIs. It should be emphasized
again that SMASHis a low-level API, and so our initial exam-
ples will look suspiciously like assembly language programs, al-
though with virtualized stack and register resources. However, un-
like string-based shader language interfaces (see the DX8 vertex
shader proposal, for instance), the base SMASH API is type and
syntax-checked at the time of compilation of the host language, and
features of the host language can be used to manipulate shader pro-
grams conveniently and directly. In particular, modularity and con-
trol constructs in the host language can be “lifted” into the shader
language, and this rapidly lets us build higher-level abstractions.

We will use as our running example an implementation of a two-
term, single light source, separable reflectance model [28, 36]. We
will assume that four hemicube maps are defined to hold the fac-
tors of the two-term separable BRDF approximation. This gives,
for example, a good approximation of brushed metal using the
Poulin/Fournier reflectance model [28, 48]. The variablesa, b,
c , andd will be predefined to hold the appropriate texture object
identifiers. The values stored ina, b will be unsigned fixed-point
values over[0, 1], but will require a common scaling 3-coloraAB
to represent values over a wider range. The values stored inc , and
d will also be over[0, 1] but will representsignedfactors over a
potentially wide range, and so will require biases ofbC andbD and
another common scaling 3-color ofaCD. The pointersaAB, bC,
bD, andaCDwill refer to appropriate predefined 3-element arrays.
Because of this biasing and scaling, several operations will be re-
quired in the shader simply to “unpack” these textures.11

In the following sections we will implement the separable BRDF
shader expression for a single point source. We will start with the
simplest and lowest-level programming technique, the macro, and
then work up to higher-level shader programming techniques.

10.1 Macros

Macros are implemented using host language functions that emit
shader operations as side effects; they are lifts of the procedure
modularity concept into the shader language from the host lan-
guage. This lets us use the naming scope mechanism of the host
language, with a little bit of help from the API, to strongly encap-
sulate shader modules.

The following conventions should be used for writing macros:

• Pass operand(s) and result(s) on the stack.

• Consume all parameters.

• Leave undisturbed any values higher on the stack than the
macro’s parameters.

• Use smShaderBeginBlockbefore issuing any other shader
operations and issuesmShaderEndBlockafterwards. The
smShaderBeginBlockcall pushes the current number of reg-
isters allocated onto a stack; callingsmShaderEndBlockat
the end of the macro definition restores the count of the num-
ber of registers allocated by popping it from the stack. This
encapsulates register allocation and usage.

11 We may modify the texture API in the future to include scaling and
biasing as part of the definition of texture objects. For now, and for the
purposes of this example, we will state these operations explicitly.

We suggest using registers for storing intermediate results to
enhance readability. In the example we also show how to
name registers; by wrapping shader definitions in host lan-
guage scope blocks that match the register allocation and deal-
location blocks, register names can be limited in scope and so
isolated from the rest of the program.

With these conventions, macros are syntactically indistinguishable
from built-in API calls. This is an important and useful feature, as
it permits macros to be used to enhance portability while providing
a growth path for the API.

If a particular hardware vendor wants to provide a hook to some
special feature of their hardware (say, bump-mapped environment
maps, a new noise function, whatever), they should first write a
“compatibility macro” using the standard operators guaranteed to
be available on all implementations. Then, in the driver for their
particular system, the standard instructions would be replaced with
an appropriate hook into the special feature. User-level programs
would not change, and would not even have to be recompiled if a
dynamically-linked library is used for the required macro package.
If precompiled shaders are used, this still works if compilation takes
place upon installation; of course, every time the program runs, it
should make sure it is using the same graphics subsystem for which
it was installed.

On the other hand, if some set of utility macros comes into wide
use, a hardware vendor can add explicit support for these macros to
their hardware. In any case, all shaders can be portable across all
hardware that supports the base shader instruction set.

Certain macro packages may have initializers that declare and
initialize texture objects or other information. For instance, “math”
macros to implement special functions via table lookup might be
useful. SMASH will support a set of useful, “built-in” macros of
this nature (as well as other useful, more specific macros, such as
the orthonormalization macro used in this example). Because of
the need to allocate hidden texture objects, the use of “specified”
texture object identifiers (and shader identifiers) isnot supported.
A programmermustuse system-allocated identifiers, and their in-
ternal structure is opaque. While shader and texture identifiers are
guaranteed to take the same amount of space as a pointer, they are
not to be considered equivalent to pointers (or integers) and an im-
plementation should not depend on their exact value, range, or in-
ternal structure.

A shader defined using macros is shown in Figures 8 through 11.
The functionFrameVector defined in Figure 8 outputs shader
instructions that generate texture coordinates for a separable BRDF
approximation, given a unit-length light source vector, a unit-length
normal, and a tangent on the stack. The normal and a tangent arenot
assumed orthonormal. This permits the use of a constant “global”
tangent along the axis of a surface or near-surface of revolution, a
handy technique to add tangents to objects that don’t have them as
part of their definition.12

The smShaderDupand smShaderExtract operations used in
this example, as well as register store and load operations, will usu-
ally be zero cost after compilation and optimization, but they are
convenient in this case to specify the dataflow. To reiterate, the
SMASH API just specifies an expression tree which will be rebuilt
inside the driver, then internal mapping onto the implementation
architecture will take place, with its own internal optimization al-
gorithms. For instance, for processor based shaders, register allo-
cation will be performed to minimize the total storage required to
implement the specified expression, and scheduling will reorder the
operations to maximize usage of the processor’s functional unit(s).

12 This is sadly a problem currently. Most modelling packages can’t ex-
port per-vertex tangents, mostly because most 3D modelling languages have
no way of specifying them.

/** Compute coordinates of normalized vector relative to frame.
* in:
* â: frame vector3 1; normalized to unit length
* b̂: frame vector3 2; normalized to unit length
* ĉ: frame vector3 3; normalized to unit length
* ~v: source vector3
* out:
* ~p: surface texcoord3 (3D hemisphere map index)
* assumes: frame vectors are orthonormal
*/
void
FrameVector () // â, b̂, ĉ, ~v

{
// Save register allocation state
smShaderBeginBlock(); {

// Allocate new registers
SMreg v = smShaderAllocReg(3);
SMreg a = smShaderAllocReg(3);
SMreg b = smShaderAllocReg(3);
SMreg c = smShaderAllocReg(3);

// Put arguments into registers
smShaderStore(v); // â, b̂, ĉ

smShaderStore(c); // â, b̂

smShaderStore(b); // â

smShaderStore(a); // <empty>

// Compute coordinates of ~v relative to â, b̂, ĉ

smShaderLoad(c); // ĉ

smShaderLoad(v); // ĉ, ~v

smShaderDot(); // (ĉ·~v)

smShaderLoad(b); // (ĉ·~v), b̂

smShaderLoad(v); // (ĉ·~v), b̂, ~v

smShaderDot(); // (ĉ·~v), (b̂·~v)

smShaderLoad(a); // (ĉ·~v), (b̂·~v), â

smShaderLoad(v) // (ĉ·~v), (b̂·~v), â, ~v

smShaderDot(); // (ĉ·~v), (b̂·~v), (â·~v)

smShaderJoin(); // (ĉ·~v), ((â·~v), (b̂·~v))

smShaderJoin(); // ~p = ((â·~v), (b̂·~v), (ĉ·~v))

// Release registers
} smShaderEndBlock();

} // ~p

Figure 8:Definition of a macro to project a vector against a frame.
This is basically a 3 × 3 by 3 matrix-vector product, but with the
matrix assembled from three vectors. Note that the driver can easily
ignore any extraneous data movements, i.e. the movement of the
arguments to and from registers.

10.2 Textual Infix Expressions

A stack-based shading language can sometimes be inconvenient,
particularly if complex dataflow requirements must be specified.
The addition of registers to the programming model makes it un-
necessary to use the stack for intermediate results. However, it is
also relatively easy to define some conventions for a simple textual
language for shader expressions that can be compiled on-the-fly to
shader operations. By implementing some functions in a utility li-
brary to give string names to parameters, texture objects, and reg-
isters this can be made convenient, yet we can freely intermix such
string-based infix expressions and macro or base API calls.

Here are the conventions and functions we propose for thesmu
utility library:

1. ThesmuBeginTexturefunction wrapssmBeginTexturebut,
in addition, inserts a string name into a symbol table. Square
brackets will be used after a texture object name in a string-
based shader expression to indicate texture lookup.

/** Orthonormalize one vector against a normalized vector
* in:
* ~t: target vector; unnormalized
* b̂: base vector; normalized to unit length
* out:
* v̂: orthonormalized target vector
*/
void
Orthonormalize () // ~t, b̂

{
// Save register allocation state
smShaderBeginBlock(); {

// Allocate and name registers
SMreg b = smShaderAllocReg(3);

// Store base vector
smShaderStore(b); // ~t

// Orthonormalize
smShaderDup(0); // ~t, ~t

smShaderLoad(b); // ~t, ~t, b̂

smShaderDot(); // ~t, (~t·b̂)

smShaderLoad(b); // ~t, (~t·b̂), b̂

smShaderMult(); // ~t, (~t·b̂)b̂

smShaderSub(); // ~v = ~t − (~t·b̂)b̂

smShaderNorm(); // v̂ = ~v/|~v|

// Release registers
} smShaderEndBlock();

} // v̂

Figure 9: Definition of a macro to orthonormalize one vector
against another.

2. The special names%i refer to thei th item on the stack.

3. The special names#i refer to thei th element on the stack.

4. The comma operator can be used to concatenate items. In
particular, this permits the formation of items out of individual
elements.

5. Parameters can be referred to by names defined in
smuShaderDeclare* calls. These calls differ from their
smShaderDeclare*namesakes only in that a string name is
associated with the parameter.

6. Registers can also be referred to by names defined in a
smuShaderAllocRegcall, which differs fromsmShaderAl-
locRegonly in that a string name is associated with the reg-
ister. Assignments can also be made to registers using the
“=” operator at the beginning of an expression; this executes
a smShaderStoreoperation, so the result isnot left on the
stack after an assignment.

7. Arithmetic infix operators act onn-tuples using the same
dimensionality rules as the associated operatorssmShader-
Mult , smShaderDiv, smShaderAdd, smShaderSub, and
smShaderNeg. Other operators have the same name as those
in the shader language proper but take extra arguments for
their operands, use all lower case, and drop thesmShader
prefix. The vertical bar is used to indicate a dot product and
the circumflex is used to indicate a cross product. Operator
precedence is the same as in C for compatibility with operator-
overloaded utility libraries in C++; for dot and cross product
to work as expected, it is suggested that they always be en-
closed in parentheses.

8. All names (i.e. for texture objects, parameters, and registers)
share a common namespace. However, a name defined by
the user will take preference over those of built-in functions.
More precisely, built-in functions are defined in an outermost
“system” scope, and names defined by the user are automat-
ically in a name scope nested inside the system scope. The
functionssmuShaderBeginBlockandsmuShaderEndBlock
push and pop register allocation and environment frames and
so create scopes and subscopes for names.

9. The functions smuShaderAllocReg and smuShaderDe-
clare* return identifiers just likesmShaderAllocRegand
smShaderDeclare*. If you usejust the infix operators you
can ignore these return values. If they are retained they should
be assigned toSMreg andSMparamvariables with the same
names as the strings used in the infix expressions.

Finally, the utility function

smuShaderExpr(char* string)

converts an expression given in the string argument into an appro-
priate sequence of base API calls to execute the operations specified
in the string. An example is shown in Figure 12, using our running
example of a separable BRDF reconstruction for two terms and one
light source.

10.3 Textual Shading Languages

The above approach uses only a small part of a compiler, so macros
and infix expressions can be freely mixed. A complete textual shad-
ing language could also be defined. Because of the common back-
end compiler and extensive support for optimization expected in the
driver, however, this can be a simple syntactic transformation. The
transformation can be done on the fly, or using a separate program.
Syntax analysis and transformation can be easily implemented us-
ing the yacc/lex or the bison/flex compiler-compiler systems, for
example.

Following the initiative of the group at Stanford, a type system
can be used to distinguish quantities to be computed at different
levels of detail (i.e. vertices vs. fragments). The textual language
should also have the capability to explicitly set precision require-
ments.

10.4 Object-oriented Toolkits

You can also lift object-oriented modularity constructs into the
shader language. For instance, you can build a shader expres-
sion graph from object instances, and then provide a function to
“walk” the graph in postfix order and emit appropriate base API
calls. Garbage collection is essential in this case to avoid insanity—
fortunately, since only DAGs are required, this can be implemented
using a reference-counting “smart pointer” or “handle” class in
C++.

The running example implementing the separable BRDF is re-
peated in Figure 13 using a very simple set of object constructors;
theSmExpr classes are in fact reference-counting “smart pointer”
classes that once initialized with a pointer to an object, start tracking
references to those objects. Whenever the last reference is removed
from an object, the smart pointer “releasing” the object automati-
cally deletes it.

By wrapping object constructors in functions that take handles
(smart pointers) and dynamically allocate new nodes but return such
handles rather than pointers, we can simplify the syntax for defining
each new expression node. Reference-counted garbage collection
also permits the use of nested expressions, so we can avoid hav-
ing to declare and name all the intermediate expression nodes. We

can also use a namespace to simplify the names for the constructor
functions and other parts of the SMASH API. Consider the example
given in Figure 14.

Finally, if we use operator overloading for these constructor
functions, we can use simple expressions to specify shading expres-
sions. An example is given in Figure 15. Although it looks simi-
lar to the RenderMan shading language, this “shading language”
differs from the use of a textual shading language since operator
overloading is fully type and syntax checked in the host language
at compile time, while we retain all the power of metaprogram-
ming (i.e. programmer-controlled specialization). The only things
really missing are specialized constructs such as RenderMan’sil-
luminate , but we can easily use alternative approaches to sup-
port equivalent functionality. In the case ofilluminate , a util-
ity library function could be implemented that executes a (host lan-
guage)for loop over light sources and that calls previously regis-
tered function pointers to invoke shader macros for each light, then
issues shader instructions to accumulate the results. If C++ is used
instead of C, such an approach is to be preferred over the use of the
smuShaderExprfunction.

The statements where we “wrap” constants and texture objects
(using smart pointer subclasses that automatically invoke the appro-
priate constructor functions) could be omitted if we did this at the
point of declaration of the constants and texture objects. Wrapping
in the case of texture objects is necessary for the use of operator
overloading of the square bracket operator for thelookup opera-
tion. We also add wrapping functionality to other subclasses of the
smart pointer type to help declare parameters. Likewise, subshader
and type attributes can be set using template parameters to the smart
pointer classes. Registers are not required; the host language pro-
vides equivalent functionality through the use of variables, and the
compiler can detect sharing and allocate registers internally to de-
scribe this sharing to the API.

The main point of all these programming examples is that several
syntaxes and approaches to programming shaders are possible, but
do not need to be built into the base API. Syntax is a type of user
interface: a linguistic one. Several such user interfaces are possi-
ble for specifying shaders, and are appropriate for different kinds
of users at different times. In fact, although we gave no examples,
visual interfaces to programming shader specifications are also pos-
sible and for many users desirable.

By providing a basic, low-level API, SMASH does not force use
of a particular high-level shader language but hopefully enables the
straightforward implementation of a variety suited to different pur-
poses and users. At the same time, a standard C++ utility library
can be provided that gives nearly all the expressiveness of the Ren-
derMan shading language.

11 Omitted Features

The SMASH API does not include many features included in, for
instance, the RenderMan geometry format or shading language, or
in OpenGL. There are two cases: features may have been omitted
intentionally to improve performance, or features may be missing
just because we haven’t gotten around to implementing or specify-
ing them yet. The later case is handled in Section 12; here we deal
with intentional omissions.

Each of the major omissions is detailed below, along with the
reason for leaving it out. In most cases the “missing” feature was
left out intentionally to enhance performance in a hardware imple-
mentation. In some cases the feature can be partially simulated.

Built-in Lighting Model: Unlike OpenGL, SMASH does not
have a built-in lighting model. However, a variety of lighting
models, including the Phong lighting model, can be imple-

mented in a utility library using the functionality provided by
the shader sub-API.

Separate Light and Surface Shaders:SMASH does not explic-
itly support separate specification and compilation of surface
and light shaders, it only supports “surface” shaders. The rea-
son for this is that to get the best performance, surface and
light shaders have to be combined into a single shader for
compilation anyways. To get the same effect, use separate
macros for surface and light shaders, then compile the appro-
priate combinations as you need them.

Looping and Selection Control Constructs: Selection must be
implemented using a step function between two expressions,
both of which will be, at least conceptually, evaluated. While
this may seem wasteful, it is required anyways in SIMD and
multipass implementations. A compiler can recognize such
constructs and optimize out such evaluations if it is possible.

Looping within the shader is not supported at all, although
one can write a loop in the host language to “unroll” parts of
a shader. However, this only supports loops whose iteration
limits are known at compile time—data-dependent iteration
is not supported. For instance, you can’t iterate a Newton
recurrence until some convergence test passes, you must use
a fixed number of iterations.

This is the most severe restriction in SMASH shaders—they
are not Turing-complete. This limitation is intentional, to per-
mit a wider range of efficient implementation possibilities.
Shader expressions as defined in SMASH execute in a fixed
finite amount of time, always use the same resources in the
same order, can be statically scheduled, can be pipelined, etc.
It should be noted that existing implementations of real-time
shaders, i.e. SIMD or multipass approaches, don’t take good
advantage of data-dependent loops anyways: they must do as
many iterations as the worst-case shader invocation.

Looping over Light Sources: This limitation is related to the two
limitations above. If you want a shader that can handle four
light sources, set up a compile-time loop to expand the ap-
propriate part(s) of your shader program four times. You
may have to expand both the parameter definition part and
the lighting evaluation parts of your shaders.

This means you need a different version of the compiled
shader for different numbers of light sources, but you’d want
to “specialize” your shaders in this manner anyways for effi-
ciency.13

Named Parameters: The parameter binding mechanism in
SMASH only permits the definition of which parameters
are constant over a primitive to vary by the position of the
break-point in the sequence of parameters, i.e. by which
are stated before thesmBegin call and which after. This
seems limiting, but consider that you can recompile shaders
at any time to use different orderings of parameters. The
fixed ordering of parameters permits a fixed schedule and
ordering to be established for delivering parameters from
the interpolator/rasterizer to the shading unit in a hardware
implementation.

Default Values for Parameters: Default parameter values, if per-
mitted and if used, would be constants that can be exploited
during optimization. If you really aren’t going to use a pa-
rameter, you should replace access to that parameter with a

13 The only problem with this approach is code bloating due to unrolling.
We may add some kind of “repeat” construct to SMASH later, but it’s likely
that such a construct would still be limited to a fixed number of iterations.

constant in your shader program and recompile it to get better
performance. With a little metaprogramming you can easily
compile versions of a shader with different parameters held
constant as needed.

Arrays: Texture maps can be used as read-only arrays when neces-
sary, with integer indexing possible using appropriate clamp-
ing and interpolation modes. However, textures cannot be (di-
rectly) written by a shader program at run-time, and register
and stack addresses can only be specified as constants at com-
pile time. There is no equivalent structure for writing into
an array. This is so the resulting shader has a fixed dataflow
graph, again so it can map onto a wider range of implementa-
tions.

You can use multiple passes to simulate writing into an array:
render into a buffer, load the result into a texture, and render
again with another shader.

Subfunctions: There is no mechanism for separate compilation of
shader subfunctions. However, the modularity constructs of
the host language can be lifted into the shader language, and
at any rate, to get maximum performance, a shader compiler
would normally want to inline subfunctions and analyse the
shader as a whole.14

In general, run-time flexibility has been given up for perfor-
mance in the design of SMASH, but you can often make up the
difference with compile-time metaprogramming.

Some further limitations include lack of volume shaders, ray-
tracing capabilities, etc. These limitations and the ones noted above
may be overcome in time, and in the meantime you can simulate the
effect, but you may have to come up with an approach more suited
to the capabilities provided by SMASH.

12 Future Work

Currently, SMASH does not address some crucial issues:

1. SMASH currently only supports a limited subset of the
full functionality of OpenGL. Several important features in
OpenGL do not yet appear in SMASH. We hope to address
these issues over time.

2. It is possible but unlikely that in the short term floating-point
arithmetic will be widely supported for per-pixel computa-
tions.

Automating the derivation of precision settings for interme-
diate values is currently one of our highest priorities. While
setting these by hand is possible, it is extremely tedious and
the chance that non-optimal settings will be chosen is high.

3. Shaders do not necessarily have to be implemented exactly as
specified. What is important is that the results “look” right. As
an adjunct to precision analysis we plan to look at ways to au-
tomatically or semi-automatically simplify shaders by gener-
ating approximations for parts of shaders that are only needed
to a low precision, driving the entire process with perceptual
metrics applied to the output of the shader.

Prime candidates for this are antialiasing threshold genera-
tors, the derivation of which can again be automated with au-
tomatic differentiation.

14 Again, this can lead to code bloat, so we may add a mechanism for
separate compilation in the future.

4. A single-pass shader could in theory be used for image pro-
cessing operations. However, the current conceptual model of
SMASH cannot be used to specify, for instance, convolution-
type operators unless the frame buffer is first copied to a tex-
ture map. An image-processing mode in which a shader could
be applied to the frame buffer, with support for access to
neighboring pixels, would be interesting and useful.

5. Support for procedural geometry would be a useful adjunct to
shader support. Vertex shaders can be used to implement ver-
tex blending and limited displacement mapping, but structural
manipulation or dynamic refinement of meshes is not yet pos-
sible. We plan to add support for programmable geometry,
starting with displacement shaders, but also need to further
develop the API for programmable triangle assembly. Stan-
dard assemblers for advanced geometry processing, such as
compression and view-dependent tesselation, would be very
interesting.

13 Conclusions

SMASH, when completed, will hopefully provide a useful target
for the extension of graphics APIs to programmable graphics sub-
systems, or at least will stimulate discussion about the forms such
an API should take.

Our main focus so far has been the provision of a useful and
powerful programmable shading sub-API. In addition to an API
for specifying shaders, we have also presented a simple but flex-
ible immediate-mode mechanism for binding shader parameters to
primitives and vertices.

Possible hardware implementations of an accelerator for
SMASH have been sketched, including a multithreaded processor
and a reconfigurable computing architecture. We have also shown
how metaprogramming can enhance the usability of the relatively
simple API outlined here.

Interactive computer graphics has been very fortunate in having
an API, OpenGL, which mapped onto a wide range of implementa-
tions. However, programmability provides an opportunity to make
a radical change in the structure of graphics APIs and conceptual
architectures, and such a change may be necessary if we are to take
full advantage of the potential of programmability. This is an op-
portunity to rearchitect graphics accelerator interfaces with the goal
of making them substantially more powerful yet simpler and easier
to use.

Acknowledgements

We would like to acknowledge the help and advice of members
of the Computer Graphics Lab at the University of Waterloo, the
Computer Graphics Group at Universität Erlangen, and the Com-
puter Graphics Group of the Max-Planck-Institut für Informatik in
Saarbr̈ucken, Germany, especially Jan Kautz and Wolfgang Hei-
drich.

Vincent Ma helped to implement version 0.1 of SMASH.
Several useful discussions with Mark Kilgard and David Kirk of

NVIDIA, John C. Hart of Washington State University, Roger Allen
of 3dfx, Mark Peercy, Marc Olano, Kurt Akeley and Jon Leech of
SGI, Michael Deering of Sun Microsystems, Juan Guardado of Ma-
trox, Pat Hanrahhan, Bill Mark, and Kekoa Proudfoot of Stanford,
and Steve Morein of ATI contributed to my thoughts on the matter
of programmable graphics APIs.

This research was sponsored by research grants from NSERC,
the National Science and Engineering Research Council of Canada,
and by a grant from CITO, the Centre for Information Technology

of Ontario. We also gratefully acknowledge the donation of graph-
ics boards from NVIDIA.

References

[1] A. Agarwal, B. H. Lim, D. Kranz, and J. Kubiatowicz. April:
A processor architecture for multiprocessing. InInternational
Symposium on Computer Architecture, pages 104–114, 1990.

[2] H. Akkary and M. A. Driscoll. A dynamic multithreading
processor. InInternational Conference on Supercomputing,
pages 226–236, 1998.

[3] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith. The tera computer system. InIn-
ternational Conference on Supercomputing, pages 1–6, 1990.

[4] Anthony A. Apodaca and Larry Gritz.Advanced RenderMan:
Creating CGI for Motion Pictures. Morgan-Kaufmann, 2000.

[5] James Blinn.Jim Blinn’s Corner: A Trip Down the Graphics
Pipeline. Morgan-Kaufmann, 1996.

[6] James Blinn. Jim blinn’s corner: Floating-point tricks.IEEE
Computer Graphics & Applications, 17(4), July–August
1997.

[7] B. Cabral, M. Olano, and P. Nemec. Reflection Space Image
Based Rendering. InProc. ACM SIGGRAPH, pages 165–170,
1999.

[8] P. Diefenbach.Pipeline Rendering: Interaction and Realism
throught Hardware-Based Multi-pass Rendering. PhD thesis,
Department of Computer and Information Science, 1996.

[9] P. Diefenbach and N. Balder. Multi-Pass Pipeline Rendering:
Realism for Dynamic Environments. InSIGGRAPH Symp. on
Interactive 3D Graphics, pages 59–70, April 1997.

[10] Frédo Durand and Julie Dorsey. Interactive Tone Mapping. In
Rendering Techniques ’00 (Proc. Eurographics Workshop on
Rendering), pages 219–230. Springer, 2000.

[11] Matthew Eldridge, Homan Igehy, and Pat Hanrahan.
Pomegranate: A Fully Scalable Graphics Architecture. In
Proc. ACM SIGGRAPH, page to appear, 2000.

[12] S. Gortler, R. Grzeszczuk, R. Szelinski, and M. Cohen. The
Lumigraph. InProc. ACM SIGGRAPH, pages 43–54, August
1996.

[13] Steven Guccione. Programming Fine-Grained Reconfig-
urable Architectures. PhD thesis, 1995.

[14] B. Guenter, T. Knoblock, and E. Ruf. Specializing shaders. In
Proc. ACM SIGGRAPH, pages 343–350, August 1995.

[15] Paul Haeberli and Kurt Akeley. The accumulation buffer:
Hardware support for high-quality rendering. InProc. ACM
SIGGRAPH, pages 309–318, August 1990.

[16] Paul Haeberli and M. Segal. Texture mapping as A fun-
damental drawing primitive. InRendering Techniques ’93
(Proc. Eurographics Workshop on Rendering), pages 259–
266. Springer, June 1993.

[17] P. Hanrahan and J. Lawson. A language for shading and light-
ing calculations. InProc. ACM SIGGRAPH, pages 289–298,
August 1990.

[18] R. Hartenstein, M. Herz, T. Hoffmann, and U. Nageldinger.
Mapping Applications onto Reconfigurable Kress Arrays. In
Proc. Conference on Field Programmable Logic and Applica-
tions, 1999.

[19] Reiner W. Hartenstein, Michael Herz, Thomas Hoffmann, and
Ulrich Nageldinger. Using the kressarray for configurable
computing. InProceedings of SPIE, Conference on Config-
urable Computing: Technology and Applications, pages 39–
45, November 2–3 1998.

[20] W. Heidrich, J. Kautz, Ph. Slusallek, and H.-P. Seidel. Canned
lightsources. InRendering Techniques ’98 (Proc. Eurograph-
ics Workshop on Rendering). Springer, 1998.

[21] W. Heidrich and H.-P. Seidel. Realistic, hardware-accelerated
shading and lighting. InProc. ACM SIGGRAPH, August
1999. Accepted for publication. Preprint soon available from
http://www9.informatik.uni-erlangen.de/Persons/Heidrich.

[22] W. Heidrich, Ph. Slusallek, and H.-P. Seidel. An image-based
model for realistic lens systems in interactive computer graph-
ics. InGraphics Interface ’97, pages 68–75, 1997.

[23] W. Heidrich, R. Westermann, H.-P. Seidel, and Th. Ertl. Ap-
plications of pixel textures in visualization and realistic image
synthesis. InACM Symposium on Interactive 3D Graphics,
1999. Accepted for publication.

[24] Wolfgang Heidrich, Katya Daubert, Jan Kautz, and Hans-
Peter Seidel. Illuminating Micro Geometry Based on Precom-
puted Visibility. In Proc. ACM SIGGRAPH, page to appear,
July 2000.

[25] Homan Igehy.Scalable Graphics Architectures: Interface &
Texture. PhD thesis, Computer Science Department, 2000.

[26] Homan Igehy, Gordon Stoll, and Pat Hanrahan. The Design
of a Parallel Graphics Interface. InProc. ACM SIGGRAPH,
pages 141–150, 1998.

[27] Jan Kautz. Hardware Rendering with Bidirectional Re-
flectances. Technical Report TR-99-02, Dept. Comp. Sci., U.
of Waterloo, 1999.

[28] Jan Kautz and Michael D. McCool. Interactive Rendering
with Arbitrary BRDFs using Separable Approximations. In
Eurographics Rendering Workshop, June 1999.

[29] Jan Kautz and Michael D. McCool. Approximation of Glossy
Reflection with Prefiltered Environment Maps. InProc.
Graphics Interface, pages 119–126, May 2000.

[30] Jan Kautz, Pere-Pau Vázquez, Wolfgang Heidrich, and Hans-
Peter Seidel. A Unified Approach to Prefiltered Environ-
ment Maps. InRendering Techniques ’00 (Proc. Eurographics
Workshop on Rendering), pages 185–196. Springer, 2000.

[31] A. Keller. Instant radiosity. InProc. ACM SIGGRAPH, pages
49–56, August 1997.

[32] Eugene Lapidous and Guofang Jiao. Optimal depth buffer
for low-cost graphics hardware. InEurographics/SIGGRAPH
Workshop on Graphics Hardware, pages 67–73, 1999.

[33] Anselmo Lastra, Steven Molnar, Marc Olano, and Yulan
Wang. Real-Time Programmable Shading. InSymposium on
Interactive 3D Techniques, pages 59–66, 207, 1995.

[34] M. Levoy and P. Hanrahan. Light field rendering. InProc.
ACM SIGGRAPH, pages 31–42, August 1996.

[35] M. McCool. Shadow Volume Reconstruction from Depth
Maps.ACM Trans. on Graphics, 2000.

[36] Michael D. McCool and Wolfgang Heidrich. Texture Shaders.
In Proc. Eurographics/SIGGRAPH Workshop on Graphics
Hardware, pages 117–126, 1999.

[37] T. McReynolds, D. Blythe, B. Grantham, and S. Nelson. Ad-
vanced graphics programming techniques using OpenGL. In
SIGGRAPH 1998 Course Notes, July 1998.

[38] Tomas M̈oller and Eric Haines.Real-Time Rendering. A. K.
Peters, 1999.

[39] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-speed
rendering using image composition. InProc. ACM SIG-
GRAPH, pages 231–240, July 1992.

[40] E. Ofek and A. Rappoport. Interactive reflections on curved
objects. InProc. ACM SIGGRAPH, pages 333–342, July
1998.

[41] M. Olano and A. Lastra. A shading language on graphics
hardware: The PixelFlow shading system. InProc. ACM SIG-
GRAPH, pages 159–168, July 1998.

[42] Marc Olano. A Programmable Pipeline for Graphics Hard-
ware. PhD thesis, Department of Computer Science, 1998.

[43] Marc Olano and Trey Greer. Triangle Scan Conversion us-
ing 2D Homogeneous Coordinates. InProceedings 1997
Eurographics/SIGGRAPH Workshop on Graphics Hardware,
pages 89–95, 1997.

[44] John D. Owens, William J. Dally, Ujval J. Kapasi, Scott
Rixner, Peter Mattson, and Ben Mowery. Polygon Rendering
on a Stream Architecture. InProc. Eurographics/SIGGRAPH
Workshop on Graphics Hardware, page to appear, 2000.

[45] Mark Peercy, Mark Olano, John Airey, and Jeff Ungar. In-
teractive Multi-Pass Programmable Shading. InProc. ACM
SIGGRAPH, July 2000. To appear.

[46] K. Perlin. An image synthesizer. InProc. ACM SIGGRAPH,
pages 287–296, July 1985.

[47] Juan Pineda. A Parallel Algorithm for Polygon Rasterization.
In Proc. ACM SIGGRAPH, pages 17–20, August 1988.

[48] P. Poulin and A. Fournier. A Model for Anisotropic Reflec-
tion. In Proc. ACM SIGGRAPH, pages 273–282, August
1990.

[49] Erik Reinhard, Brian Smits, and Charles Hansen. Dynamic
Accleration Structures for Interactive Ray Tracing. InRen-
dering Techniques ’00 (Proc. Eurographics Workshop on Ren-
dering), pages 299–306. Springer, 2000.

[50] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. Hae-
berli. Fast Shadows and Lighting Effects using Texture Map-
ping. InProc. ACM SIGGRAPH, volume 26, pages 249–252,
July 1992.

[51] Peter-Pike J. Sloan and Michael F. Cohen. Interactive Horizon
Mapping. InRendering Techniques ’00 (Proc. Eurographics
Workshop on Rendering), pages 281–286. Springer, 2000.

[52] M. Stamminger, Ph. Slusallek, and H.-P. Seidel. Interactive
walkthroughs and higher order global illumination. InMod-
eling, Virtual Worlds, Distributed Graphics, pages 121–128,
November 1995.

[53] W. Sẗurzlinger and R. Bastos. Interactive rendering of glob-
ally illuminated glossy scenes. InRendering Techniques ’97
(Proc. Eurographics Workshop on Rendering), pages 93–102.
Springer, 1997.

[54] Chris Trendall and A. James Stewart. General Calculations
using Graphics Hardware, with Applications to Interactive
Caustics. InRendering Techniques ’00 (Proc. Eurographics
Workshop on Rendering), pages 287–298. Springer, 2000.

[55] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. InInterna-
tional Symposium on Computer Architecture, pages 392–403,
1995.

[56] Steve Upstill.The RenderMan Companion. Addison-Wesley,
1990.

[57] B. Walter, G. Alppay, E. LaFortune, S. Fernandez, and
D. Greenberg. Fitting virtual lights for non-diffuse walk-
throughs. InProc. ACM SIGGRAPH, pages 45–48, August
1997.

/** Compute coordinates of halfvector and difference vector relative
* to local surface frame.
* in:
* n̂: normal covector; normalized to unit length
* ~u: tangent vector; may be unnormalized, non-orthonormal
* l̂: light vector; normalized to unit length
* out:
* ~p: half vector surface coords (3D hemisphere map index)
* ~q: difference vector surface coords (3D hemisphere map index)
*/
void
HalfDiffSurfaceCoords () // n̂, ~u, l̂

{
// Save register allocation state
smShaderBeginBlock(); {

// Allocate and name registers
SMreg h = smShaderAllocReg(3);
SMreg t = smShaderAllocReg(3);
SMreg s = smShaderAllocReg(3);
SMreg n = smShaderAllocReg(3);
SMreg tp = smShaderAllocReg(3);

// Compute normalized half vector ĥ

smShaderGetViewVec(); // n̂, ~u, l̂, ~v

smShaderNorm(); // n̂, ~u, l̂, v̂

smShaderAdd(); // n̂, ~u, ~h = l̂ + v̂

smShaderNorm(); // n̂, ~u, ĥ

smShaderStore(h); // n̂, ~u

// Generate full surface frame from n̂ and ~u

smShaderSwap(); // ~u, n̂

smShaderStoreCopy(n); // ~u, n̂

Orthonormalize(); // t̂

smShaderStoreCopy(t); // t̂

smShaderLoad(n); // t̂, n̂

smShaderSwap(); // n̂, t̂

smShaderCross(); // ŝ = (n̂×t̂)

smShaderStore(s); // <empty>

// Orthonormalize t̂ against ĥ

smShaderLoad(t); // t̂

smShaderLoad(h); // t̂, ĥ

Orthonormalize(); // t̂′

smShaderStore(tp); // <empty>

// Coordinates of ĥ relative to (t̂, ŝ, n̂)

smShaderLoad(t); // t̂

smShaderLoad(s); // t̂, ŝ

smShaderLoad(n); // t̂, ŝ, n̂

smShaderLoad(h); // t̂, ŝ, n̂, ĥ

FrameVector(); // p̂ = ((t̂·ĥ), (ŝ·ĥ), (n̂·ĥ))

// Coordinates of ~v relative to (t̂′, ŝ′, ĥ)

smShaderLoad(tp); // p̂, t̂′

smShaderLoad(h); // p̂, t̂′, ĥ

smShaderDup(1); // p̂, t̂′, ĥ, t̂′

smShaderCross(); // p̂, t̂′, ŝ′ = (ĥ×t̂′))

smShaderLoad(h); // p̂, t̂′, ŝ′, ĥ

smShaderGetViewVec(); // p̂, t̂′, ŝ′, ĥ, ~v

FrameVector(); // p̂, ~q = ((~v·t̂′), (~v·ŝ′), (~v·ĥ))

// Release registers
} smShaderEndBlock();

} // p̂, ~q

Figure 10: Definition of a macro to compute texture coordinates
for a separable BRDF approximation using the reparameterization
proposed by Kautz and McCool [28].

/** Local reflectance model using two-term separable BRDF approximation.
*/
SMshader sepbrdf = smBeginShader();
{

// allocate and name parameters
SMparam C = smShaderDeclareColor(3);
SMparam L = smShaderDeclareVector(3);
SMparam T = smShaderDeclareTangent(3);
SMparam N = smShaderDeclareNormal(3);

// Allocate and name registers
SMreg p = smShaderAllocReg(3);
SMreg q = smShaderAllocReg(3);

// Compute surface coordinates (using vertex shader)
smBeginSubShader(SM_VERTEX);

smShaderGetNormal(N); // n̂

smShaderGetTangent(T); // n̂,~t

smShaderGetVector(L); // n̂,~t, l̂

HalfDiffSurfaceCoords(); // p̂, ~q

smEndSubShader();

// Put interpolated surface coordinates in registers
smShaderStore(q); // p̂

smShaderStoreCopy(p); // p̂

// Compute BRDF
smShaderLookup(a); // a[p̂]

smShaderLoad(q); // a[p̂], ~q

smShaderLookup(b); // a[p̂], b[~q]

smShaderMult(); // ab = a[p̂] ∗ b[~q]

smShaderColor3dv(aAB); // ab, α

smShaderMult(); // AB = ab ∗ α

smShaderLoad(p); // AB, p̂

smShaderLookup(c); // AB, c[p̂]

smShaderColor3dv(bC); // AB, c[p̂], β1

smShaderAdd(); // AB, bc = c[p̂] + β1

smShaderLoad(q); // AB, bc, ~q

smShaderLookup(d); // AB, bc, d[~q]

smShaderColor3dv(bD); // AB, bc, d[~q], β2

smShaderAdd(); // AB, bc, bd = d[~q] + β2

smShaderMult(); // AB, bcd = bc ∗ bd

smShaderColor3dv(aCD); // AB, bcd, γ

smShaderMult(); // AB, CD = bcd ∗ γ

smShaderAdd(); // f = AB + CD

// Compute irradiance and multiply by BRDF
smBeginSubShader(SM_VERTEX);

smShaderGetVector(L); // f , l̂

smShaderGetNormal(N); // f , l̂, n̂

smShaderDot(N); // f , (̂l·n̂)

smShaderParam1d(0); // f , (̂l·n̂), 0

smShaderMax(); // f , s = max((̂l·n̂), 0)

smShaderGetColor(C); // f , s, c

smShaderMult(); // f , e = s ∗ c

smEndSubShader();

smShaderMult(); // f ∗ e

// Set output fragment color
smSetColor(); // <empty>

} smEndShader();

Figure 11:Top level of the definition of a shader that implements
a two-term separable approximation to a BRDF assuming a single
directional light source.

/** Local reflectance model using two-term separable BRDF approximation.
* Uses infix expression compiler to simplify expression of the shader.
*/
SMshader sepbrdf = smBeginShader();
{

// allocate and name parameters
SMparam C = smuShaderDeclareColor(3,"C");
SMparam L = smuShaderDeclareVector(3,"L");
SMparam T = smuShaderDeclareTangent(3,"T");
SMparam N = smuShaderDeclareNormal(3,"N");

// Allocate and name registers
SMreg p = smuShaderAllocReg(3,"p");
SMreg q = smuShaderAllocReg(3,"q");

// Compute surface coordinates using macro
smBeginSubShader(SM_VERTEX);

smShaderGetNormal(N);
smShaderGetTangent(T);
smShaderGetVector(L);
HalfDiffSurfaceCoords();

smEndSubShader();

// Put interpolated surface coordinates in registers
smShaderStore(q);

// Another (silly) way of doing the above
smuShaderExpr("p = %0");

// Compute BRDF
smShaderColor3dv(aAB);
smuShaderExpr("%0*a[p]*b[q]");
smShaderColor3dv(bD);
smShaderColor3dv(bC);
smShaderColor3dv(aCD);
smuShaderExpr("%0*(c[p]+%1)*(d[q]+%2)");

// Compute irradiance and multiply by BRDF
smBeginSubShader(SM_VERTEX);

smuShaderExpr("C*max((L|N),0)");
smEndSubShader();

smShaderMult();

// Set output fragment color
smSetColor();

} smEndShader();

Figure 12:A rewrite of the example shader to use the textual infix
expression compiler defined in the utility library and named param-
eters and registers. We still show only the main shader here and still
use the macros defined earlier.

/** Local reflectance model using two-term separable BRDF approximation.
* Builds up DAG as a C++ data structure.
*/
SMshader sepbrdf = SmBeginShader();
{

// allocate and name parameters
SmExpr nC = new SmShaderDeclareColor(3,"C");
SmExpr nL = new SmShaderDeclareVector(3,"L");
SmExpr nT = new SmShaderDeclareTangent(3,"T");
SmExpr nN = new SmShaderDeclareNormal(3,"N");

// Compute surface coordinates using macro
SmExpr nseq = HalfDiffSurfaceCoords(nN,nT,nL);
SmExpr nvsc = new SmSubShader(SM_VERTEX,nseq);
SmExpr nvp = new SmIndex(nseq,0);
SmExpr nvq = new SmIndex(nseq,1);

// Compute BRDF
SmExpr na = new SmShaderLookup(a,nvp);
SmExpr nb = new SmShaderLookup(b,nvq);
SmExpr nalpha = new SmShaderColor3dv(aAB);
SmExpr nab = new SmShaderMult(na,nb);
SmExpr nAB = new SmShaderMult(nalpha,nab);
SmExpr nbeta1 = new SmShaderColor3dv(bC);
SmExpr nbeta2 = new SmShaderColor3dv(bD);
SmExpr ngamma = new SmShaderColor3dv(aCD);
SmExpr nc = new SmShaderLookup(c,nvp);
SmExpr nd = new SmShaderLookup(d,nvq);
SmExpr nalpha = new SmShaderColor3dv(aAB);
SmExpr nbeta1c = new SmShaderAdd(nc,nbeta1);
SmExpr nbeta1d = new SmShaderAdd(nd,nbeta2);
SmExpr ncd = new SmShaderMult(nbeta1c,nbeta1d);
SmExpr nCD = new SmShaderMult(ncd,ngamma);
SmExpr nf = new SmShaderAdd(nAB,nCD);

// Compute irradiance and multiply by BRDF
SmExpr nz = new SmShaderParam1d(0);
SmExpr ndot = new SmShaderDot(nL,nN);
SmExpr nmax = new SmShaderMax(ndot,nz);
SmExpr nC = new SmShaderGetColor(C);
SmExpr ne = new SmShaderMult(nC,nmax);
SmExpr nve = new SmSubShader(SM_VERTEX,ne);

SmExpr nfe = new SmShaderMult(nf,nve);

// Traverse and compile DAG
SmShaderCompile(nfe);

// Set color
smSetColor();

} SmEndShader();

Figure 13:The shader DAG can be expressed using a data structure
built up object by object. The SmShaderCompile function pro-
pogates subshader information, then traverses the DAG and emits
the appropriate shader instructions for each node. We assume that
submacros have been redefined to take and return DAGs.

/** Local reflectance model using two-term separable BRDF approximation.
* Builds up DAG as a C++ data structure, but uses smart pointers and
* constructor functions. Also assumes a namespace to reduce the
* length of names.
*/
SMshader sepbrdf = beginshader();
{

// allocate and name parameters
Expr C = declarecolor(3);
Expr L = declarevector(3);
Expr T = declaretangent(3);
Expr N = declarenormal(3);

// Compute surface coordinates using macro
Expr sc = subshader(VERTEX,

HalfDiffSurfaceCoords(N, L, T)
);

// Access elements of returned sequence
Expr nvp = index(sc,0);
Expr nvq = index(sc,1);

// Compute BRDF
Expr f = add(

mult(
mult(lookup(a,nvp),lookup(b,nvq)),
color3dv(aBC)

),
mult(

mult(
add(lookup(c,nvp),color3dv(bC)),
add(lookup(d,nvq),color3dv(bD))

),
color3dv(aCD)

)
);

// Compute irradiance and multiply by BRDF
Expr e = subshader(VERTEX,

mult(
C,
max(

dot(L,N),
param1d(0.0)

)
)

);

// Multiply irradiance by BRDF
Expr fe = mult(f,e);

// Traverse and compile DAG
fe->compile();

// Set color
setcolor();

} endshader();

Figure 14: Functional specification of shader using constructor
functions. A C++ namespace can be used to make the names of
the constructor functions less verbose without polluting the global
namespace.

// wrap constants and texture identifiers
// (would really do when defined)
Color<CONST> alpha(3,aBC), beta1(3,bC), beta2(3,bD), gamma(3,aCD);
Texture A(a), B(b), C(c), D(d);

/** Local reflectance model using two-term separable BRDF approximation.
* Builds up DAG as a C++ data structure, but uses smart pointers,
* constructor functions, and operator overloading.
*/
Shader sepbrdf = beginshader();
{

// allocate and name parameters
Color C(3);
Vector L;
Tangent T;
Normal N;

// Compute surface coordinates using macro
Expr<VERTEX> p, q;
HalfDiffSurfaceCoords(p,q,N,L,T);

// Compute BRDF
Expr f = alpha*A[p]*B[q]

+ gamma*(C[p]+beta1)*(D[q]+beta2);

// Compute irradiance and multiply by BRDF
Expr<VERTEX> e = C*max((L|N),0.0));
Expr fe = f*e;

// traverse and compile DAG
fe->compile();

// Set output fragment color
setcolor();

} endshader();

Figure 15: Functional specification of shader using constructor
functions that are bound to overloaded operators. Operators act
on operator trees (shader expressions), not data. There are several
templated subclasses of smart pointers to handle declarations, sub-
shaders, etc. The declarations shown at the top would usually be
handled at the point of definition, i.e. when you define a texture ob-
ject you would also use the C++ library and so would get a smart
pointer rather than an identifier anyways.

	Introduction
	Goals and Assumptions
	Outline
	Conventions and Further Information

	Prior Art
	Advanced Rendering Effects
	Shading Languages

	Accelerator Architectures
	Specifying Geometry
	Binding Parameters
	Parameter Types and Transformation
	Specifying Parameters
	Parameter Stack Control

	Texture Objects
	Shader Specification
	Definition
	Activating Shaders
	Deleting Shaders
	Saving and Restoring Precompiled Shaders
	Executing Shaders
	Shader Programming Calls
	Parameter Declaration and Access
	Register Allocation
	Stack Manipulation
	Component Manipulation
	Constants
	Environment Access
	Buffer Access
	Texture Lookup
	Arithmetic Operations
	Transformations and Matrices
	Geometric Operations
	Standard Mathematical Functions
	Noise
	Discontinuities
	Discarding Fragments
	Indicating Results

	Subshaders
	Precision Management

	Fragments and Rasterization
	Device Coordinates
	Near and Far Clips
	Viewport Mapping
	Projection and View Volume
	Depth Representation
	Depth Tests
	User-Defined Clipping

	Implementation
	Base Software Implementation
	Multipass Fragment Shaders
	Single-Pass Fragment Shaders
	General Observations
	Multithreaded SIMD Processor
	Reconfigurable Computing
	Stream Processor

	Metaprogramming Techniques
	Macros
	Textual Infix Expressions
	Textual Shading Languages
	Object-oriented Toolkits

	Omitted Features
	Future Work
	Conclusions

