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Abstract

In this paper, we study how to color crosses, i.e., pairs of rows and columns in a grid,
such that any two overlapping crosses have a different color. We show that this problem
can be solved by computing an edge-coloring in a bipartite graph. Using this result we
reduce significantly the time complexity and the volume bounds of algorithms for three-
dimensional orthogonal graph drawing that are based on the technique of Kolmogorov
and Barzdin.

1 Background

In this paper, we study how to color crosses and its application to three-dimensional orthog-
onal graph drawing.

Assume that we have a rectangular grid with R rows and and C columns. A cross is a
pair (r,c¢) of one row and one column. We say that two crosses (ry,¢;) and (rq, c2) overlap
if ry = ry or ¢; = ¢y or both. Given a collection C of crosses, a cross-coloring with k colors
is an assignment of integers {1,...,k} to the crosses such that any two crosses that overlap
have a different color.

We want to find a cross-coloring with few colors, and give two approaches for this problem.
The first, straightforward, approach converts this problem into a vertex-coloring in a conflict
graph, 1.e., a graph that expresses when two crosses must not have the same color. We
develop here a second approach which uses the geometric structure to convert the problem
into an edge-coloring problem of a bipartite graph. The second approach is superior in that
it uses the minimum number of colors (whereas the first approach only uses asymptotically
the optimal number of colors). Also, depending on the configuration of the crosses, the
second approach takes less time. We give these two approaches in Section 2.

Our interest in cross-coloring was motivated by three-dimensional orthogonal graph draw-
ing. In [KB67], Kolmogorov and Barzdin introduced a very effective technique that is the
basis for many subsequent algorithms for 3D orthogonal graph drawing [ESW96, ESW97,
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BTWO00]. As we will show, the problem to be solved can be expressed as a cross-coloring
problem. Using our second approach, rather than the traditional first approach, drastically
improves the time complexity of these algorithms from O(m?®/?) or higher to O(mlogm).
Since we use fewer colors, this also improves the volume bounds of these algorithms. We
explain orthogonal graph drawings and our improvements in Section 3.

2 Cross-coloring

From now on, assume that C is a collection of N crosses in a grid with R rows and C
columns; the collection is allowed to contain the same cross repeatedly. Let Aj, be the
maximum number of crosses that all have the same row, let A, be the maximum number of
crosses that all have the same column, and let A,, = max{A,, A,}. Clearly, no coloring of
C can have fewer than A,, colors, because if A,, crosses all have the same, say, row, then
these A,, crosses each must have a different color. We now give two approaches to coloring

C with O(A,,) colors.

2.1 Reduction to vertex-coloring

The first, straightforward, approach to cross-coloring is to express the problem as a vertex-
coloring problem in a conflict graph H defined as follows: The vertices of H are exactly the
crosses C. Two crosses (r1,¢1) and (r2, ¢2) are connected by an edge in H if and only if they
overlap. Clearly, any vertex-coloring of H gives a cross-coloring.

Assume that (r,c) is a cross. Then there are at most A, — 1 other crosses with row r
and at most A, — 1 other crosses with column ¢. Hence, the degree of (r,¢) in H is at most
Ap—14+ A, —1 < 2A,, — 2, and the maximum degree of H is at most 2A,, — 2. With
a simple greedy-method, we can find a vertex-coloring of H with 2A,, — 1 colors, hence a
cross-coloring with 2A,, — 1 colors.

The time to compute this cross-coloring is proportional to |V(H)|+ |E(H)|. The number
of vertices of H is N, but the number of edges of H might be as high as (2A,, —2)N/2 if every
row and every column is incident to exactly A,, crosses. Hence no better time complexity
than O(A,,N) can be guaranteed to find the cross-coloring.

2.2 Reduction to edge-coloring

Now we reduce the cross-coloring problem to an edge-coloring in a bipartite graph H' defined
as follows: H' has one vertex for every row r and one vertex for every column ¢, so |V(H')| =
R+ C. For every cross (r,c) we have one edge in H' that connects row r and column ¢; this
edge will also be denoted (r,c). If there is more than one cross (r,¢), then we repeatedly
connected r and ¢ in H', hence |[E(H')| = |C| = N.

Let r be a row. Then there are at most A, many crosses that use row r; so r has degree
< Ap in H'. Similarly any column has degree < A, in H', so the maximum degree in H’
is A,,. Since H' is bipartite, it has an edge-coloring with A,, colors. This edge-coloring
can be found in O(|E(H)|log(|V(H)|)) = O(Nlog(R + C)) time [CH82]. (Alternatively,
the edge-coloring could be found in O(A,,N) time [Sch98], or an edge-coloring with A, + 2



colors could be found in O(log(A,,)N) time [KR00]. Neither of these algorithms gives an
asymptotically better time complexity in our application below.)

Now, if two crosses (r1,¢1) and (ra, ¢2) overlap, then they have (say) the same row r; = ry,
and hence the corresponding edges (r1,¢1) and (rz,¢2) in H' have a common endpoint at
r1 = ry. Hence the two crosses obtain a different color in the edge-coloring, and the edge-
coloring yields a cross-coloring.

Theorem 1 Let C be a collection of N crosses in a grid with R rows and C columns. Then
a cross-coloring of C with the minimum number of colors can be found in O(N log(R + C))
time.

3 Improving 3D orthogonal graph drawing algorithms

We now show how faster better cross-coloring can be used to improve those 3D orthogonal
graph drawing algorithms that are based on the technique by Kolmogorov and Barzdin. We
first explain this technique, then show how it relates to cross-coloring, and finally study
improvements for specific algorithms.

3.1 A technique for 3D orthogonal graph drawings

In [KB67], Kolmogorov and Barzdin introduced a very effective technique for 3D orthogonal
graph drawing, which is the basis for many 3D orthogonal graph drawing algorithms [ESW96,
ESWO97, BTW00]. We refer to these papers for motivation and complete definitions regarding
orthogonal graph drawing, and review here only the necessary terms. In a 3D orthogonal
graph drawing, edges are routed along the grid lines of an underlying rectangular grid. Also,
edge routes should be disjoint except possibly at common endpoints.

The technique of Kolmogorov and Barzdin consists of defining an edge route that depends
only on the begin point, end point, and the height assigned to the edge. More precisely:

o All edges are directed from one endpoint to the other.

e For any directed edge e = vw, assign a two-dimensional grid point (z.(v),y(v)) for v
and a two-dimensional grid point (z.(w),y(w)) for w.

e For any directed edge vw, assign a height h(vw).
e The direction, grid points and height determine the route of the edge.

The particular method of choosing directions, grid points and edge route varies from al-
gorithm to algorithm and is irrelevant for our observations below; we refer to the original
papers for details. In all cases, it can be shown that the edge routes are disjoint (except
possibly at endpoints) as long as the following two rules hold for any two directed edges
e1 = viw; and ey = vaws:

® Yo (V1) 7 Yeo (v2) o1 A(v1w1) # h(vaws).
o 1. (wy) # e, (w2) or h(viwy) # h(vawy).



3.2 Application of cross-coloring

When using the technique of Kolmogorov and Barzdin, one must find a height for each
edge, given the information on the grid points, such that the above two conditions hold.
Kolmogorov and Barzdin [KB67] left unspecified how to do this. Eades, Stirk and Whitesides
[ESW96] proposed to this with a vertex-coloring in a conflict graph, which is the approach
taken in subsequent papers [ESW97, BTWO00] as well. This step turns out to be the bottle-
neck in the time complexity of the orthogonal graph drawing algorithms, since it is super-
linear, while all other steps are linear.

We now show how to reduce finding suitable heights to cross-coloring. The approach of
[ESWI6] corresponds to our first approach with vertex-coloring. As we will see, using the
second approach — edge-coloring — to find the cross-coloring and hence the heights improves
the time complexity and volume bounds of the above algorithms.

So assume that for every directed edge e = vw we have grid points (z.(v),y.(v)) and
(ze(w), ye(w)) assigned. Define a cross for every directed edge e = vw, which consists of the
row with y-coordinate y.(v) and the column with z-coordinate z.(w). Assume that we have
a cross-coloring of these crosses; we want to show that the cross-coloring then indicates a
suitable assignment of heights to edges.

If e; = vjw; and ey = vyw, are two directed edges with y., (v1) = ye,(v2), then the two
crosses assigned to these two edges have the same row. Hence these two crosses have different
colors, which implies that h(viw;) # h(vews). Similarly, if z., (wy) = x.,(ws), then the two
crosses have the same column, hence different colors, and h(viw;) # h(vaws). So this is a
suitable assignment of heights for the directed edges.

Note that for every edge we have exactly one cross; hence finding the cross-coloring takes
O(mlog(R + C)) time, where m is the number of edges in the graph and R and C are the
number of rows and columns, respectively, that contain a grid point assigned to one edge.
In particular, this time complexity is independent of the number A,, of edges that start in
a common row or end in a common column. For the orthogonal graph drawing algorithms
below, this is an improvement of the time complexity, since log(R + C) < A,,.

3.3 Improvements of specific algorithms

Now we study the effect of our observation onto various 3D orthogonal graph drawing algo-
rithms.

The algorithm in [ESW96] With this algorithm, Eades, Stirk and Whitesides find a
3D orthogonal drawing of any n-vertex graph with maximum degree 6 where vertices are
represented by points. This algorithm uses the technique of Kolmogorov and Barzdin. Since
they used the first approach (based on a vertex-coloring), the time to find these drawings
is O(m?/?), which is O(n*?) by m < 3n. Using edge-coloring instead, the time complexity
reduces to O(nlogn). This also decreases the number of different heights needed, and
therefore the volume bounds of the drawing. We will not study this in detail, since the
volume bound of this algorithm has been improved with the next algorithm.

The Compact-drawing Algorithm [ESW97] With this algorithm, Eades, Symvonis
and Whitesides find a 3D orthogonal drawing of any graph with maximum degree 6 where



vertices are represented by points. This algorithm uses the technique of Kolmogorov and
Barzdin. The Z-dimension (i.e., the extend in the Z-direction) of their drawing is 4K + 1,
where K is the number of different heights in one coloring step.

The authors used an assignment of heights obtained through a vertex-coloring, and hence
have K’ < 2A,, — 1. With A,, < [\/n], their Z-dimension hence is < 8[/n] — 3.

Using edge-coloring to obtain heights, we can improve the bound to K < A,,, hence the
Z-dimension is < 4[y/n]+1. This reduces the overall volume bound from 60n3/2 —|—0(n3/2) to
301%/% 4 o(n®/?). Tt also reduces the bound on the maximum edge length from 16[/n] — 10
units to 12[y/n] — 6 units.

Finally, since there are O(1/n) rows and columns, the time to find this drawing decreases
from O(n?*/?) to O(nlogn). The revised version of Theorem 2 of [ESW97] hence appears as
follows:

Theorem 2 Every n-vertex mazimum degree 6 graph G has a three-dimensional orthogonal
grid drawing with the following characteristics:

(1) at most 7 bends per edge route,
(it) 12[\/n] — 6 mazimum edge length, and

(111) a bounding box of dimensions (3[\/n] +2) x 5[/n] x (4[+/n] +1).

Moreover, the drawing can be obtained in O(nlogn) time.

The algorithm OpTiMAL VOLUME CUBE-DRAWING [BTWO00] With this algorithm,
Biedl, Thiele and Wood find a 3D orthogonal drawing of any graph with n vertices and
m edges where vertices are represented by cubes. This algorithm uses the technique of
Kolmogorov and Barzdin. The Z-dimension of their drawing is 4K + V2m + o(ﬁ), where
K is the number of different heights in one coloring step.

The authors used an assignment of heights obtained through a vertex-coloring, and hence
have K < A, + A, — 1. With A, <4/v/3- vm +o(y/m) and Ay, < 22 - Vm + o(/m), the
Z-dimension hence is at most (16/\/§ + 9\/§)ﬁ + o(y/m).

Using edge-coloring to obtain heights, we can improve the bound to K < max{A,, A} <
2v/2\/m 4 o(\/m), hence the Z-dimension is < 9v/2v/m + o(y/m). This reduces the overall
volume from =~ 143m3/2 + 0(m3/2) to ~ 83m>/2 + 0(m3/2).

Finally, since there are O(y/m) rows and columns, the time to find this drawing decreases
from O(m??) to O(mlogm). The revised version of Theorem 3 of [BTWO00] hence appears
as follows:

Theorem 3 There exists an algorithm to determine a 12-degree-restricted orthogonal cube-
drawing of any loopless graph G in O(mlogm) time, with ~ 83m3/% + o(m>/?) bounding bozx
volume and at most siz bends per edge route.

The algorithm OPTIMAL VOLUME BOX-DRAWING [BTWO00] With this algorithm, Biedl,
Thiele and Wood find a 3D orthogonal drawing of any graph with n vertices and m edges



where vertices are represented by boxes of arbitrary aspect ratios. This algorithm uses the
technique by Kolmogorov and Barzdin. The Z-dimension of their drawing is 2K + 1, where
K is the number of different heights in one coloring step.

The authors used an assignment of heights obtained through a vertex-coloring, and hence
have K < A, + A, —1. With A, < 10m/[v/n] and A, < 6m/[\/n], the Z-dimension hence
is at most 32m/[y/n] — 1.

Using edge-coloring to obtain heights, we can improve the bound to K < max{A,, A} <
10m/[y/n], hence the Z-dimension is < 20m/[/n| + 1. This reduces the overall volume
from 144m+/n + o(m+/n) to 90m+/n + o(m+/n).

Finally, since there are O(1/n) rows and columns, the time to find this drawing decreases
from O(m?/y/n) to O(mlogn). The revised version of Theorem 5 of [BTWO00] hence appears

as follows:

Theorem 4 There exists an algorithm to determine an orthogonal drawing of any simple
graph G in O(mlogn) time, with 90m+/n + o(m+/n) bounding box volume and at most four
bends per edge route.
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