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Abstract An orthogonal drawing of a graph is an embedding of the graph in the rectangular grid,

with vertices represented by axis-aligned boxes, and edges represented by paths in the grid which only

possibly intersect at common endpoints. In this paper, we study three-dimensional orthogonal drawings

and provide lower bounds for three scenarios: (1) drawings where vertices have bounded aspect ratio,

(2) drawings where the surface of vertices is proportional to their degree, and (3) drawings without

any such restrictions. Then we show that these lower bounds are asymptotically optimal, by providing

constructions that match the lower bounds in all scenarios within an order of magnitude.

�
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1 Introduction

Graph drawing is a field with a wide range of applications, for example in network visualisation, data base

design and telecommunications. See the recent book [10] for an overview of techniques in graph drawing.

Orthogonal graph drawing, where edges are routed along a rectangular grid, is a popular drawing style

which is also appropriate for VLSI circuit layout.

In this paper we study three-dimensional orthogonal graph drawings. Such drawings have applica-

tion in three-dimensional VLSI; see [1,2,18,22,23]. We improve on previous results by generalising the

existing lower bounds on the volume, and by giving new constructions with smaller volume. In fact,

our upper and lower bounds are matching up to a constant factor, and hence asymptotically optimal. We

give lower bounds and constructions for three different drawing scenarios, achieving matching upper and

lower bounds in all of them. To state our results precisely, we first give formal definitions and notations.

The (three-dimensional) rectangular grid is the cubic lattice, consisting of grid points with integer

coordinates, together with the axis-parallel grid lines determined by these points. We use the word box

to mean a three-dimensional axis-parallel box with integral boundaries, i.e., a box
�

is a set of points

�������	�
���
�
�����������	���������������! "�$#%�'&(�*)�+�+
for some integers

�,�-�*�*�
,
�. /�*#%�'&(�*)�+

. At each grid

point in a box
�

that is extremal in some direction 0  1�$23#%�423&526)7+ , we say there is port on
�

in

direction 0 . One grid point can thus define up to six incidents ports. For each dimension
�8 9�$#%�'&(�*)�+

,

an
�
-line is a line parallel to the

�
-axis, an

�
-segment is a line-segment within an

�
-line, and an

�
-plane

is a plane perpendicular to the
�
-axis.

Let :<; �>=��*?@�
be a graph, which is allowed to have parallel edges but no self loops. We denote the

number of vertices of : by AB;DC = C , the number of edges of : by EF;DC ? C , and the maximum degree of

: by G � : � , or G if the graph in question is clear.
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An orthogonal (box-)drawing of : represents vertices by pairwise non-intersecting boxes. Hence

vertices are possibly degenerate, in the sense that they may be represented by a rectangle or even a line-

segment or a point. This is the approach taken in [5,8,26,27], but not in [21]. (Enlarging vertices to

remove this degeneracy increases the volume by a multiplicative constant.) An edge ���
 ?

is repre-

sented by a sequence of contiguous segments of grid lines possibly bent at grid points, between ports on

the boxes of � and � . The intermediate grid points along the path representing an edge do not intersect

the box of any vertex or any other edge route.

An orthogonal drawing with a particular shape of box representing every vertex, e.g. point, line-

segment, or cube, is called an orthogonal shape-drawing for each particular shape. Initial research in

orthogonal drawing was mostly concerned with point-drawings, see for example [9,11–13,21,25]. How-

ever, three-dimensional orthogonal point-drawings can only exist for graphs with maximum degree at

most six. Overcoming this restriction has motivated recent interest in orthogonal box-drawings [5,8,21,

26,27].

From now on, we use the term drawing to mean a three-dimensional orthogonal box-drawing. Fur-

thermore, the graph-theoretic terms ‘vertex’ and ‘edge’ also refer to their representation in a drawing.

The size of a vertex � in a drawing is denoted by
#9� � ���%&B� � ��� )@� � � , where for each

�% 9� #%��& �4)7+
,

� � � � is one more than the length of the side of (the box of) � parallel to the
�
-axis. Thus, if the boundaries

of � are
� � � � � and

� � � � � , then
� � � � ; � � � � ���9� � � � ���
	 . The number of ports of � is called its surface,

denoted by surface( � ). The number of grid points in a box is called its volume.

The smallest box enclosing a drawing is called the bounding box of the drawing. The volume of a

drawing is the volume of its bounding box. The volume and the maximum number of bends per edge

are the most commonly proposed measures for determining the aesthetic quality of a drawing. For box-

drawings the size and shape of a vertex with respect to its degree are also considered an important measure

of aesthetic quality. We use the following two measures for the shape of a vertex:
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Degree-restricted drawings: We say that a vertex � is strictly � -degree-restricted if

surface
� � ��� ��������� � � �

for some constant � . If there exists a constant � such that every vertex in a drawing is strictly � -degree-

restricted then we say the drawing is strictly � -degree-restricted.

For some drawing algorithms, the minimum � such that the drawings produced by the algorithm are

strictly � -degree-restricted does not necessarily reflect the asymptotic relationship between the surface

and the degree of the vertices. We therefore say that in a drawing, a vertex � is � -degree-restricted if

surface
� � ��� ��������� � � � �
	
� ����� � � � �
�

If for some constant � , every vertex � is � -degree-restricted, then the drawing is said to be ( � )-degree-

restricted. This definition enables us to compare the asymptotic behaviour of � for various algorithms.

Clearly, if a drawing is strictly degree-restricted then it is also degree-restricted. Conversely, it is

easily seen that the degree-restricted drawings produced by the algorithm presented in this paper (and

all known algorithms) are also strictly degree-restricted, thus for our purposes the two notions coincide.

However, one can contrive examples where this is not the case. It is necessary to distinguish the two

terms as the lower bound in Theorem 2 is for strictly degree-restricted drawings.

Aspect ratio: The aspect ratio of a vertex � is the ratio between its largest and smallest side, i.e.,

����� �$#9� � �'�'&%� � �4�4)	� � �'+�� ����� � #�� � �4��&%� � �'�*)@� � �'+��

In particular, a vertex with aspect ratio 1 is a cube. We say that a drawing has bounded aspect ratios if

there exists a constant
�

such that all vertices have aspect ratio at most
�
.

There is no inherent relationship between whether a drawing is degree-restricted or has bounded

aspect ratios. Previously, algorithms have been presented that give drawings that are degree-restricted,

but do not have bounded aspect ratios [5,26,27]. It is conceivable that a drawing could have bounded

aspect ratios, but not be degree-restricted (for example, by representing each vertex � with a ����� � � � �
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����� � � � � ����� � � � -box), though no algorithms to create such drawings have been presented, and as our

lower bound results show, no improvement in volume is possible by doing so.

1.1 Lower bounds

For a graph : , denote by ����� � : �4� � � � the minimum volume, taken over all (orthogonal) drawings of :
that have aspect ratios at most

�
and are strictly

� � � -degree-restricted. Let ����� � A � E �*� � � � be the max-

imum, taken over all graphs : with A vertices and E edges, of ����� � : �4� � � � . Thus, ����� � A � E �4� � � � de-

scribes a volume bound within which we can draw all graphs with A vertices and E edges such that each

vertex � has aspect ratio at most
�

and surface at most � � ����� � � � .
The first lower bounds on the volume were due to Hagihara et al. [16]1. They show that, in the above

notation, ����� � A � E � 	 � 	$� ;�� � ����� � A G � � � A G �
	�� � A � ��
�� + � � In fact, in their construction the graphs are

G -regular, hence EF; �
� A G , which allows us to restate their result as

����� � A � E � 	 � 	 � ;�� � ��� ��� EBG � � E ��	�� � A � ��
������ �

In this paper, we show that:

– ����� � A � E ��� ���6� ;�� � E�� A �
– ����� � A � E �*� ��� � ;�� � E ��
 � � � � �
– ����� � A � E ��� � � � ;�� � E ��
�� � � �

We thus improve the results of [16] in three ways: Firstly, we remove the log-factor, to establish

����� � A � E � 	 � 	$� ;�� � E ��
 � �
as the lower bound. Secondly, we show that the result holds even if only one

of the conditions of having bounded aspect ratios and being strictly degree-restricted holds. Finally, we

also study the case when neither of these two conditions hold. The lower bound here appears weaker, but

as we prove by giving a construction later, it is asymptotically optimal.

1 This paper seems widely unknown in the graph drawing community.
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Our first result includes the lower bound of � � A � 
�� � for drawings of
���

established by Biedl et al. [8].

In fact, the proof of our lower bounds are based on techniques developed in this paper, generalised to

graphs with fewer edges.

1.2 Algorithms

A trade-off between the maximum number of bends per edge route and the bounding box volume is appar-

ent in algorithms for orthogonal graph drawing. Biedl et al. [8] construct drawings of
� �

with � � A � 
 � �
volume and three bends per edge, but these drawings are not degree-restricted. They also construct draw-

ings of
� �

with � � A � � volume and one bend per edge, but these drawings are degree-restricted only

for graphs where all vertices have degree � � A � . Recently, the first author showed that � � A � � volume is

required for
���

if only one bend per edge is allowed [4].

A drawing is said to be in general position if no two vertices are in a common grid plane. The

algorithm of Papakostas and Tollis [21] produces general position drawings with � � E � �
volume. This

bound has been improved to � � � A E � ��
�� � for cube-drawings and � � A � E � for line-segment-drawings in

general position by Biedl [5] and Wood [26].

The lifting half-edges technique developed by Biedl [5] generates drawings of simple graphs starting

with a two-dimensional general position drawing [7] (possibly with overlapping edges). The edge routes

are partitioned into sub-drawings each consisting of
#

-segments or
&

-segments. Each sub-drawing is

then assigned its own
)

-plane, vertices are extended to form lines passing through each layer, and vertical

segments are added to the edges in such a way to avoid crossings. Using this technique an improved

volume bound of � � A � G � is attained. At the cost of an increase in volume, cube-drawings can also be

produced in the lifting half-edges model.

The plane drawing technique consists of positioning vertices in the (
) ;�� )-plane, and then routing

edges above and possibly also below the (
) ;�� )-plane. The two algorithms presented in this paper use

the plane drawing technique. The first algorithm produces degree-restricted cube-drawings with � � E ��
�� �
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volume and at most six bends per edge. The technique used is a generalisation of the COMPACT algorithm

of Eades et al. [13] for point-drawings, and is an improvement on the algorithms of Hagihara et al. [16]

and Wood [27], who obtained upper bounds of � � � A G � ��
 � � and � � E � � � A � , respectively. Our second

algorithm produces box-drawings with � � E � A � volume and at most four bends per edge; these drawings

are not degree-restricted nor do the vertices have bounded aspect ratios 2.

Both upper bounds are therefore within an order of magnitude of the lower bound. We also present

refinements of both our algorithms with one less bend per edge, at the cost of an increase in the volume.

Table 1 summarises the known bounds for orthogonal graph drawing.

2 Lower Bounds

In this section we prove lower bounds on the volume of orthogonal graph drawings. Such lower bounds

were previously only known for drawings of the complete graph
� �

[8]. The crucial argument for
���

is

that between any two disjoint vertex sets of size � � A � in
� �

, there are � � A � � edges. To generalise this to

arbitrary graphs, we first exhibit graphs such that between any two disjoint vertex sets of size � � A � there

are � � E � edges. Then we use an argument similar to that in [8] to obtain lower bounds on the volume.

2.1 Graphs with large cuts

Suppose :5; � = �4?@�
is a graph and

� ����� =
are disjoint sets of vertices. Let � � � ��� � denote the number

of edges between
�

and
�

. For our lower bound proofs, we need graphs for which � � � ��� � is large under

some conditions on
�

and
�

, and we prove the existence of such graphs in the following lemma.

2 These results assume that �	��
 , which one would expect in most applications. If �
��
 , then the volume of

the drawings produced is ����
 
�� 	�� in both constructions.
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Table 1 The tradeoff between volume and the maximum number of bends in orthogonal graph drawings for various

aesthetic criteria. All lower bounds are proved in Theorem 2.

lower bound volume bends model graphs reference

bounded aspect ratio / degree-restricted

� ��� 
�� 	 � ��� ��
 � � 
�� 	 � 2 general position simple [5,26]

� ��� 
�� 	�� � ��
 ��� � � 2 lifting
�
	 -edges simple [5]

� ��� 
�� 	 � � ��� 	 �
5 plane layout multigraphs Thm. 4

� ��� 
�� 	�� � � ��
�� � 
�� 	 � 10 3 plane layout simple [16]

� ��� 
�� 	 � � ��� 
�� 	 �
6 plane layout multigraphs Thm. 3

no bounds on aspect ratio / degree-restricted

� ��� 
�� 	 � � ��
 	 � � 2 general position simple [5,26]

� ��� 
�� 	�� � ��
 	 � � 2 lifting
�
	 -edges simple [5]

� ��� 
�� 	 � � ��� 	 �
5 plane layout multigraphs Thm. 4

� ��� 
�� 	�� � ��� 
�� 	 �
6 plane layout multigraphs Thm. 3

no bounds on aspect ratio / not necessarily degree-restricted

� ��� � 
 � � ��
 
 � 1 lifting edges simple [8]

� ��� � 
 � ����
 � 
�� 	 �
1 book embedding multigraphs [28]

� ��� � 
 � � ��
�� � 	�� 3 lifting edges simple [8]

� ��� � 
 � � ��� 
 � 3 plane layout multigraphs Thm. 6

� ��� � 
 � ����� � 
 � 4 plane layout simple Thm. 5

Lemma 1 If
���;
	 are primes,

��� 	 � � ��
 , 	 � 	 � � ��
 , 	 
�
 �6��� 	 � 	 �
	 � ��� , then there exists a

simple A -vertex graph :�� � � ; �>=��*?@�
with the following properties:

– :�� � � is 0 -regular with 0 ; � � 	 .
3 Hagihara et al. [16] did not consider the number of bends per edge; we deduce the bound of 10 from their

construction.



Three-Dimensional Orthogonal Graph Drawing with Optimal Volume 9

– 	 � 	 � 	$� ���	� A � 	 � 	 � 	$� .
– For any disjoint sets

� �����5=
of vertices of : � � � with C � C C � C � A � ����� we have

� � � ��� � ��� � 0�A �

where
��� � � � � � ��	 is a constant.

Before proving this lemma, we need some background. For a graph : , denote by 

� : � the second

largest eigenvalue of its adjacency matrix. The following well-known inequality (see for example [3, pp.

119-125] and [24]) relates 

� : � to the cut property we are interested in.

Lemma 2 Let :1; � =��*?@�
be a 0 -regular A -vertex graph with second largest eigenvalue 


� : � . Then, for

all disjoint sets
� ��� �1=

we have

� � � ��� � � 0�C � C C � C
A

�


� : ��� C � C C � C �

This lemma suggest to look for graphs : with small 

� : � . Fortunately, such graphs (called Ramanu-

jan graphs) have already been constructed.

Lemma 3 ([19,20]) If
� �; 	 are primes,

� � 	 � � ��
 , 	 � 	 � � ��
 , then there exists a simple A -vertex

graph : � � � ; � = �4?@�
with the following properties:

– : � � � is 0 -regular with 0 ; � � 	 .
– 	 � 	 � 	$� ���	� A � 	 � 	 � 	$� .
– 


� :�� � � � � � � 0 � 	 .
Remark. This second-largest eigenvalue is known to be asymptotically optimal, see [19].

Now we are in a position to prove Lemma 1.

Proof Given
�

and 	 , construct the graph : � � � ; � = �4?@�
as in Lemma 3. Let

� ��� � =
be two disjoint

sets of vertices of :�� � � with C � C C � C � A � ����� . From Lemma 2, we know that

� � � ��� � � 0�C � C�C � C
A

�


� :�� � � � � C � C C � C �
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By C � C C � C � A � ����� and 0 ; � � 	 � 	 
 � therefore



� : � � � � � C � C C � C � � � 0 � 	 � C � C C � C � � � C � C C � C � A� ��� �� �

� � 0 � � 	 
 �� ��� �� �
� 	 ��� � 	 
 � � 0�C � C�C � C � A �

Hence,

� � � ��� � � � 	 � 	 ��� � 	 
 � � � 0 C � C C � C � A �
	

��� � 	 � 	 � � � 	 
 � � 0�A �

which proves the claim for
� ; �

�	� � 	 � 	 ��� � 	 
 � ��
 � � � � � ��	 � . �


For future reference, we will call the constant
�

the Ramanujan-constant.

2.2 Lower bounds on the volume of drawings

We start by proving the lower bound for those graphs that satisfy the conditions of Lemma 1. The proof

is based on the technique developed in [8], which distinguishes three cases: either many vertices are

intersected by one grid line, or many vertices are intersected by one grid plane, or neither of these is

the case. Our approach is different in two ways: we use graphs with large cuts, rather than
� �

, and we

incorporate considerations of the aspect ratio and degree-restrictions.

Theorem 1 Let :<; � =��*?@�
be an 0 -regular simple graph with A ���

vertices such that for any disjoint

sets
� ��� �1=

with C � C C � C � A � ����� we have � � � ��� � � � � 0�A . Then

– ����� � : ��� ���6� � �
�
� ��
 � � 0 A ��
��

– ����� � : �*� ���6� � �
�
� ��
�� � � 0�A � ��
�� � � �

– ����� � : ��� � � � � �
�
� � � � 0�A � ��
�� � �

Proof Consider an orthogonal drawing of : in a grid of dimensions
# � & � )

.

Case 1: A line intersects many vertices

Assume that there exists a
)

-line that intersects at least
��� �� A�� vertices. Let � �

� � � � � ��� be the vertices

intersected by the
)

-line, listed in order of occurrence along the line. Let
)��

be a not necessarily integer
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)
-coordinate such that the (

) ; ) � )-plane intersects none of these
�

vertices and separates the first
� �� A��

of them from the remaining ones, of which there are at least
� �� A�� .

By assumption at least
� � 0�A edges connect these two groups. These edges cross the (

) ; )�� )-plane,

which thus must contain at least
� � 0�A points having integer

#
- and

&
-coordinates. Hence

# & � � � 0�A .

Since the
)

-line intersects at least
��� �� A�� � �

� A vertices, we have
) � �

� A ; thus
#%&!) � �

�
� � 0 A � �

�
�
� ��
�� � � 0�A � ��
�� by

� � 	
and 0 � A . This proves all claims.

Similarly, one proves all claims if any
#

-line or any
&

-line intersects at least
� � �� A�� vertices.

Case 2: No plane intersects many vertices

Assume that any
#

-plane,
&

-plane or
)

-plane intersects at most A � ��� �� A�� � 	 vertices. A vertex is

left of an (
# ; # � )-plane if all the points in its grid box have

#
-coordinates less than

# �
. The notion of

right of an (
# ; # � )-plane is analogous. As an (

# ; # � )-plane is swept from smaller to larger values

of
# �

, it intersects at most A � � � �� A�� � 	 vertices at any time by assumption.

During the sweep by the (
# ; # �

)-plane, an integer
#��

is encountered where, for the last time,

there at most
� �� A�� � 	 vertices left of the (

# ; #�� )-plane. Since the (
# ; #�� )-plane intersects at most

A � � � �� A�� � 	 vertices, there are at least
� �� A�� vertices right of the (

# ; #�� )-plane. All these vertices

also lie to the right of (
# ; #�� � �

� )-plane.

By definition of
#��

, the number of vertices that lie left of the (
# ; #�� � 	

)-plane is at least
� �� A � .

All these vertices also lie to the left of (
# ; #�� � �

� )-plane.

By assumption there are at least
� � 0�A edges between the vertices on the left and the vertices on the

right of the (
# ; #�� � �

� )-plane, thus
& ) � � � 0�A . Since the same argument holds for the other two

directions,
#%& ) ; � #%& � & ) � # ) � � � � 0�A � ��
�� , which proves all claims.

Case 3: A plane intersects many vertices

Assume now that none of the previous cases are true. Therefore any
#

-line,
&

-line or
)

-line in-

tersects at most
��� �� A�� � 	

vertices, but there exists, say, a (
) ; )��

)-plane that intersects at least

A � � � �� A�� �
� � �
� A vertices. As an (

# ; # �
)-plane is swept from smaller to larger values of

# �
,
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the
&

-line determined by the intersection of this (
# ; # �

)-plane with the (
) ; ) �

)-plane sweeps the

(
) ; ) � )-plane. At any time, this

&
-line intersects at most

��� �� A�� � 	 vertices by assumption.

During the sweep by the (
# ; # � )-plane, an integer

#��
is encountered where, for the last time, there

are at most
� �� A�� � � vertices left of the (

# ; #��
)-plane and intersecting the (

) ; ) �
)-plane. Since

the
&

-line determined by the intersection of the (
# ; #��

)-plane and the (
) ; ) �

)-plane intersects at

most
��� �� A�� � 	 vertices, and the (

) ; ) �
)-plane intersects at least A � � � �� A�� �
� vertices, at least

A � � � �� A�� � �
vertices intersect the (

) ; ) �
)-plane and lie right of the (

# ; #��
)-plane. All these

vertices, which we denote by
�

, also lie to the right of the (
# ; # � � �

� )-plane.

By definition of
#��

, the number of vertices that intersect the (
) ; )��

)-plane and that lie left of the

(
# ; # � � 	 )-plane is at least

� �� A�� � 	 . All these vertices, which we denote by
�

, also lie to the left of

the (
# ; #�� � �

� )-plane.

Note that C � C C � C � � A � � � �� A�� � � �*� � �� A�� � 	 � , and we claim that this is at least
�
� � A � . If A � � � � � �

then C � C C � C � � A � �� A � � ��� �� A � 	$� ; �
�	� A � � �� A � � � �

�	� A � (since A � �
). If A ��� � � � � for some

�
,
	����8� �

, then
� �� A�� ; �� � A � ������� and C � C C � C � � A � �� � A � ������� � � ��� � �� A � ������� � 	$� ;

�
�	� � A � � 
 � A � � � � � � �

�	� A � by A � �
and
�8� �

.

By assumption there are at least
� � 0�A edges between

�
and

�
, thus

& ) � � � 0�A . Apply exactly

the same argument in the
&

-direction to obtain
# ) ��� � 0�A .

Now we obtain the three lower bounds as follows:

– The (
) ; ) �

)-plane intersects at least
�
� A vertices, thus

#%& � �
� A . This implies

#%& ) ;
� #%& � & ) � # ) ��� �

� A � � � � 0�A ��� ; � �
�
� � 0�A ��
�� , which proves the first lower bound.

– Assume that every vertex has aspect ratio at most
�

(
� � 	

). In particular therefore,
)@� � �	� � #9� � �

and
)@� � �	� � &B� � � for every vertex � . Since the surface of � is at least ����� � � � , we have ����� � � �@�

��� #�� � �>& � � � � &B� � � )@� � ��� #9� � � )@� � � �3� � � #9� � � & � � � .
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Thus, every vertex � that intersects the (
) ; )��

)-plane has
#9� � � &%� � � � ����� � � � ����� ;10 ����� . Since

the (
) ; ) �

)-plane intersects at least
�
� A vertices, and these intersections are disjoint, there must be

at least
�
� A � 0 ����� grid points in the (

) ; ) � )-plane, hence
#%& � �

� � 0�A � � .
Therefore

#%&!) ; � #%& � & ) � # ) � � �
� � 0 A ��� � � � � 0�A � � ; �

�
� � � 0�A � ��
�� � � � , which proves

the second lower bound.

– Assume that the surface of every vertex � is at most � � ����� � � � ; � 0 ( � � 	
), which in particular

implies that
)@� � � � � 0 � 
 . Define

)
� ; ) � � � 0 � 
 and

)�� ; ) � � � 0 � 
 . We say that a point

is inside if its
)

-coordinate � satisfies
)
�
�
�
�.)��

, and outside otherwise. Note that all vertices

in
�

and
�

cross the (
) ; ) �

)-plane, hence they can cross neither the (
) ; )

� )-plane nor the

(
) ; ) � )-plane, and all ports of all vertices in

�
and

�
are inside.

Define
#�� ; #���� �

� ; we have shown above that at least
� � 0 A edges cross the (

# ; #�� )-plane. Of

these, at least
� � 0�A �9& � � 0 ��� edges cross the (

# ; #	� )-plane at an outside point, because there

are at most
& � � 0 ��� inside points with integer

&
- and

)
-coordinate on the (

# ; #�� )-plane.

Each of these
� � 0�A � & � � 0 ��� edges starts at a vertex in

�
(therefore at an inside point), crosses

the (
# ; #��

)-plane at an outside point, and ends at a vertex in
�

(therefore at an inside point).

This implies that each edge crosses either the (
) ; ) � )-plane or the (

) ; )��
)-plane at least twice.

These two planes together therefore must have at least
��� � � 0�A � & ��� 0 ��� � points with integral

#
-

and
&

-coordinate, therefore
# & � � � 0�A � & ��� 0 ��� . Applying the exact same argument in the

&
-direction, we obtain

#%& � � � 0�A �9# ��� 0 ��� , so
# & ��� � 0�A � ����� �$#%�'&!+ � 0 ��� .

If ����� �$#%�'&!+@� � A � � , then this implies
#%& � � � 0�A ��� , therefore

#%& ) ; � #%& � & ) � # ) �

� �
�
� � 0�A � � � � 0�A � � ; �


 � �
��
 � � � 0�A � ��
�� . If

# � � A � � and
& � � A � � , then

#%& � � � A � � � � � ,
and

#%& ) ; � #%& � & ) � # ) � � � � � � A � � � � � � � � � 0 A � � ; � � � 0�A � � � � � � � � 0�A � ��
�� � � by

0 � A . Either way, the third claim is proved.

�
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Using this theorem, we construct the lower bound for arbitrary values of E and A , as long as both are

large enough. Before proving this, we need a result that shows that primes
� 	 � � ��
 are frequent.

Lemma 4 There exist constants
� � �

and � � � � such that for all � � � � , the interval
� �� � � ��� contains

a prime number
�

with
� � 	 � � ��
 .

Proof Denote by � � � � � � � the number of primes
�"� � that satisfy

��� 	 � � ��
 . A famous theorem by

de la Vallée Poussin establishes that

� � � � � � � ; � � 	� � 
 � � �	�� ���
	 �

where
�

is Euler’s function, in particular
� � 
 � ; � . See for example [15] for a proof.

Let � � � � � � � � be constants such that � � � � � and

� � � �	�� ��� � � � � � � � � � � � � �	�� ���
for all � � � � . Let

� ; � � � � � � . If � � � � � is so big that also
	�� � � ��� � �� 	�� � � � � and � ��	�� �
� � � � � � for

all � � � � , then

� � � � � � � � � � � � � 	� � 	 � � � �	�� �
� � � � ���� ��� �	�� � � �� � � 	�� ��� � � � �	�� �
� � �
� � � �
�� 	�� ��� � 	

� � � �	�� ��� � 	 �
hence there is at least one prime number

� 	 � � ��
 between
�� � and � . �


To establish this lower bound, we prove that for sufficiently large A and sufficiently large E there

exist a graph : with A vertices and E edges that has an induced subgraph : � that satisfies the conditions

of Theorem 1. Moreover, : � is asymptotically as big as : , i.e., : � has � � A � vertices and � � E � edges. : �

is also 0 � -regular, and vertices in : � have degree � � 0 � � in : . The precise conditions are as follows:

Lemma 5 Let A � ����� � ��� � � � � � � � + and E � ����� � �� � 	 
�
�� � � 	 � A � � � �� � A + , where
� � �

and � � � �
are the constants of Lemma 4. Then there exists a simple graph : with A vertices and E edges that has

a 0 � -regular subgraph : � with A � vertices and E � edges such that
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– : � satisfies the conditions of Theorem 1.

– A � A � � A � � � � .
– E � E � ; 0 � A ����� � E ��� 
 � � .
– Every vertex of : � has degree at most

� � � 0 � in : .

Proof The proof splits into two cases, depending on the size of E . If E is big enough, then : � can be a

complete graph; if E is small, then we use a Ramanujan graph for : � . In both cases, we “pad” : � with

additional vertices and edges to achieve the desired number of vertices and edges.

Case 1: E � A � ��� 
 � � . In this case, let : � be the complete graph on A � ; � A � � � � � � 	 vertices.

Clearly : � as a complete graph satisfies the conditions of Theorem 1. Also, A � � � � � 	 � A � �

A � � � � � �	� A . : � has E � ; � ���
��� edges, which is not too many edges since E � � � A ��� � ���@�<� A � � � � �

� � � ��� ;DA � � 	 � � � � � A � 
 � � � � � A � ��� 
 � � � E by A � ��� � �
. Also, E � ; � � �

� � � � A � � � � � � ��� ;
	 ��� 
 � � � A � ��� � 	 ��� 
 � � � E by E � � �

� � .

To obtain : , add A � A � vertices to : � , and add E � E � arbitrary edges such that the resulting graph

is simple; this is possible since E � � �
� � . The maximum degree of : is

� A �
	 . : � is 0 � -regular with

0 � ;1A � � 	 � A � � � � , hence the degree (in : ) of any vertex in : � is at most A � 	3� A � � � � 0 � .

Case 2: E � A � ��� 
 � � . In this case, : � will be a Ramanujan-graph :�� � � for some carefully chosen

primes
�

and 	 .

Let 	 � ; �
�
� � �

�
� �� , which implies that 	 � � 	 � �
	$� ; A ��� , 	 ��� � A ��� � 	 and 	 � � � A ��� �� � . Find a prime 	 with 	 � 	 � � ��
 such that

�� 	 �!� 	 � 	 � ; this exists by Lemma 4. Note that

	 � 	 �
	$�3� 	 � � 	 � �
	 � ;DA ��� . Also, since A � ��� � �
we have

� A ���8� A � � � � and
	!� A � � � � , hence

� A ��� � 	 � A � 
 � � and 	 � 	 � 	$� � 	 � � 	 � � 	 � � � � � � � 	 � � A ��� � � � � � A ��� � 	 � � A � 
 � � .
Let

� � ; � E � 	 � 	 � 	 � � 	
; since E � �� � 	 
�
�� � � 	$� A and 	 � 	 � 	 � � A ��� this implies that

� � � 	 
�
�� � . Find a prime
�

with
� � 	 � � ��
 such that

�� � � �9�8��� � ; this exists by Lemma 4. We have
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� � �� � � � �� 	 
�
 � � � 	 
�
 . Also, by E � A � ��� 
 � � and 	 � 	 � 	$� � A � 
 � � we have

�8�9� � � � A �� 
 � �
	

	 � 	 � 	$�
� 	 � 	 � 	 �
A � 
 � � 	 �

; 	 � 	 � 	$�� �

Let : � be the graph :�� � � for primes
�

and 	 as defined in Lemma 1 and suppose it has A � vertices and

E � edges. By Lemma 1 : � satisfies the conditions of Theorem 1. Also,

A � A � � 	 � 	 � 	 � � A � �
	
� 	 � 	 � 	 � � A� � � �

By definition : � is 0 � -regular with 0 � ; � � 	3��� � � 	 , thus E � satisfies

E � ;
	

� ��� � 	 � A � �
	
� ��� � � 	$� 	 � 	 � 	$� ;5E �

and

E � ;
	
� � � � 	 � A � �

	
� � � � � �����

	
� 	 � 	 � 	$� �

	
� � E �

Create : by adding A � A � vertices to : � . Since E � A � ��� 
 � � we have
� E � A � ����� �.� A ��� � 	$� � �

� A � 	 � 	 � 	 � � 	$� � � � A � A � � 	$� � , hence E � � � � � �
� � and we can add E � E � edges between the A � A �

added vertices in such a way that : is simple. Note that no incident edges were added to any vertex in

: � ; in particular the degree of vertices in : � remains 0 � . This proves the claim in both cases. �


Now we use these graphs to prove the lower bounds for almost any value of A and E .

Lemma 6 Let
� � 	

be the Ramanujan-constant and let
� � �

and � � be the constants of Lemma 4.

Then for any A � ����� � ��� � � � � � � � + and E � ����� � �� � 	 
�
�� � � 	 � A � � � �� � A + , there exists a graph : with

A vertices and E edges such that:

– ����� � : ��� ���6� � � ����� � � 
 � � � � � ��
�� � E�� A
– ����� � : �*� ���6� � � � ��� � � � � � � � � ��
�� � E ��
 � � � �
– ����� � : ��� � � � � � ����� � 	 
�
 ���$� � � � � E ��
�� � �
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Proof Let : be the graph of Lemma 5. Any drawing of : contains a drawing of : � , and thus has volume

at least
�
�
� ��
�� 0 � � A � � ��
�� by Theorem 1. Using the known bounds on A � and E � from Lemma 5, we obtain

a lower bound on the volume of at least

	

� �
��
 � � � E � � � A � �

�
� �

��
�� � E ��� 
 � � � � A � � � � ; � ����� � � 
 � � � � � ��
�� � E � A �

which proves the first claim.

If the drawing of : has aspect ratios at most
�
, then so does the drawing of : � , which thus has volume

at least
�
�
� ��
�� � 0 � A � � ��
�� � � � , which is at least

	
� �

��
�� � � � E � � ��
�� � � � � � � ��� � � ��
 � � � E ��� 
 � � � ��
�� � � � ; � � ��� � � � � � � � � ��
�� � E ��
 � � � � �

this proves the second claim.

If the drawing of : is strictly
� � � -degree-restricted, then every vertex in : � has surface at most

� 0 � � � � � � 0 � . Thus the drawing of : � is strictly
� � � � � � -degree-restricted, and has volume at least

�
�
� � � 0 � A � � ��
�� � � � � � , which is at least

	 ��� 
 � � � � � � � � E � � ��
�� � � � � ��� 	 � � � � � � � � E ��� 
 � � � ��
�� � � ; � ����� � 	 
�
 � � � � � � � E ��
�� � ���

this proves the third claim. �


From Lemma 6 we can conclude the main result of this section.

Theorem 2 We have the following lower bounds:

– ����� � A � E ��� ���6� ;�� � E�� A �
– ����� � A � E �*� ��� � ;�� � E ��
 � � � � �
– ����� � A � E ��� � � � ;�� � E ��
�� � � �
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3 Constructions

In the following, we give two constructions. The first creates degree-restricted cube-drawings with asymp-

totically optimal volume. The second creates drawings without restrictions on vertex boxes; again the

drawings produced have asymptotically optimal volume.

3.1 Cube-drawings

In the following algorithm for producing orthogonal drawings, each vertex � is initially represented by a

square of size � � � ����� � � �'� � � � � ����� � � �'� in the (
) ; � )-plane. (The algorithm by Hagihara et al. [16]

is similar in spirit, but uses squares of size � � � G � for each vertex, hence resulting in a drawing with

� � � A G � ��
 � � volume.) Edges are then routed either above or below the (
) ; � )-plane in a similar manner

to the COMPACT point-drawing algorithm of Eades et al. [13]. Finally, the vertices are extended in the

)
-dimension to form cubes.

Algorithm OPTIMAL VOLUME CUBE-DRAWING

Input: graph :1; � =��*?@�
.

Output: orthogonal drawing of : .

1. Initially represent each vertex �
 "=

by a square
� � with side length

� � � � ����� � � � ��� � � 	�� .

2. Position the squares
� � � � �  "=@+ in the (

) ;�� )-plane with the square-packing algorithm of Kleit-

man and Krieger [17]. Note that squares may touch, and since all squares have even side length, we

may assume that all corners of the squares have even coordinates.

3. For each vertex �
 6=

, remove the top two rows from
� � and the two rightmost columns from

� � .

Vertices are now disjoint; see Fig. 1.
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Fig. 1 Positioning the vertices with a square-packing.

4. Pair the odd degree vertices in : , and add an edge between the paired vertices. All vertices now

have even degree. Orient the edges of : and alternately label the edges ‘+’ and ‘
�

’ by following an

Eulerian tour of : . Remove the added edges.

5. Assign each edge ���
 ?

labelled ‘+’ unique
) �

ports at � and � both with an even
#

-coordinate

and an even
&

-coordinate.

6. Construct a graph
� ; � =�� �*?����

with vertex set
=��

corresponding to the edges of : labelled ‘+’.

For oriented edges ���
� ���  ? , add the edge

� ��� � ��� + to
?��

if the port assigned to ��� at � is in the

same column as the port assigned to ��� at � , or the port assigned to ��� at � is in the same row as the

port assigned to ��� at � .

7. Determine a proper vertex-colouring of
�

using the sequential greedy algorithm (with colours

� 	 � � � � � � � G � � � �
	 + ). For each vertex of
�

coloured 	 corresponding to an edge ��� in
?

, set

the height 
 � ��� ��� 	 .

8. For each oriented edge ���
 ?

labelled ‘+’, construct an edge route for ��� as follows. Suppose the

ports on � and � assigned to � � have coordinates
� � �@� � �3� � � and

� � �	� � �
� � � , respectively. Route

the edge � � with one of the following four or six bend routes, as illustrated in Fig. 2.
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– ��������� :
� � � � � �
� � �	� � � � � � �
� � 
 � ��� � �
� � � � � 	 � � �
� � 
 � � � � ���

� � � � 	 � � �
� � 
 � � � � ��� � � � � � � � � 
 � ��� � �
� � � �@� � �
� � � ; � � �@� � �
� � �

– ���
����� :
� � � � � �
� � �	� � � � � � �
� � 
 � ��� � � 	$�	� � � � � � � � 	 � � 
 � ��� � �
	 �	�

� � � � � � � 	 � � 
 � � � � � 	$�
� � � � � � � � � 
 � � � � � 	$�
� � � � � � � � � � ; � � � � � � � � �

– � ������ � and � ������ � :
� � � � � � � � ��� � � � � � � � � 
 � � � � �	� � � � � 	 � � � � � 
 � � � � �	�

� � � � 	 � � � � 	 � � 
 � ��� � �
� � � � � 	 � � � � 	 � � 
 � ��� � � 	$�
�
� � �	� � � � 	 � � 
 � � � � � 	$�	� � � � � � �
� � 
 � ��� � � 	 �
� � � �	� � � � � �

�

��
�

�

�

����� �����

�  

�!��� �  ��"$#

%

�!��� �&%'�

Fig. 2 Routing edges above the ( (*),+ )-plane.

9. Repeat Steps 5 - 8 for the edges labelled ‘
�

’ assigning
) � ports and constructing edge routes below

the (
) ; � )-plane in an analogous manner.

10. So that each vertex is enlarged into a cube, insert enough
)

-planes at
) ; � , extend the side of each

vertex parallel to the
)

-axis, and possibly lengthen incident edges labelled ‘
�

’.
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Theorem 3 The algorithm OPTIMAL VOLUME CUBE-DRAWING determines a 12-degree-

restricted cube-drawing of any loopless graph : in � � E ��
 � �
time, with � � E ��
�� �

volume (assuming

E � A ), and at most six bends per edge route.

Proof After Step 3 the square
� � has side length

� � � � ����� � � � ��� � � 	�� � � . Since the corners of the

square have even coordinates, the number of
) �

ports on
� � with even

#
- and

&
-coordinates is at least

� � � ����� � � � ��� � � 	 �
�
� � ����� � � � ��� � � 	
�

At most
� ����� � � � ��� � � 	

edges incident to � are labelled ‘+’. (In fact, all vertices � , except the starting

vertex in the Eulerian tour, have at most
� ����� � � � ��� � incident edges labelled ‘+’.) Similarly, at most

� ����� � � � ��� � �
	 edges incident to � are labelled ‘-’. Thus there are enough ports on � .

If a unit-length edge segment intersects another edge route then so does one of the adjacent non-

unit-length edge segments. Therefore, to show that the drawing is crossing-free, we need only show

that non-unit-length edge segments do not intersect, and consider only such segments in the follow-

ing. Vertical segments cannot intersect because ports are assigned to unique edges.
#

-segments have

odd
)

-coordinate and
&

-segments have even
)

-coordinate, thus an
#

-segment cannot intersect a
&

-

segment. A vertical segment has even
#

- and
&

-coordinate, an
#

-segment has odd
&

-coordinate, and a

&
-segment has odd

#
-coordinate, hence a vertical segment cannot intersect a

#
-segment or

&
-segment.

Two
&

-segments can only intersect if they overlap. Since edge routes originating in the same column

have different heights, two
&

-segments cannot intersect. Similarly, two
#

-segments can only intersect if

originating in the same row, and in this case they have different heights, thus they cannot intersect. Hence

no two edge routes can intersect.

The total area of the squares
� � � � �  9=@+ (before Step 3) is�

�
� � � � � ����� � � � ��� � � 	 � � � � �

�
� � ����� � � � � 
 � ��� ����� � � � � � � � 	 � � �

which is


 E � �
�
A � �

�
� ����� � � ��� �
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By the Cauchy-Schwarz inequality,
� � � ����� � � � � � � A E . Since we assume that E � A it follows

that A � � A E and the total area of squares is therefore 
 E � � � � A E � .
The algorithm of [17] packs squares with a total area of 1 in a

��� � � � � � -rectangle. Thus the squares

� � � � �  =@+ can be packed in a rectangle with size�

�� E � � � � � A E � � 
 � � 	 � � � � � E � � � � A E � � 
 � � � �

Hence the maximum degree of
�

is

G � � �8�
� 

� �

��� � � 	 � E � �
� � A E � � 
 � � �

A greedy vertex-colouring of
�

requires at most G � � � � 	 colours, thus the height of the drawing above

the
� ) ; � � -plane, and the height below the vertices, is at most� �

� �
� 
 � � 	 � E � �

� � A E � � 
 � � �

The height of the vertices is ��� � � �
� � � ����� � � � � 	 � ��� � � � � G � : ��� � � 	 �8� � � E � � � 	 � , and

thus the height of the drawing is at most� 	 �
� �

�
	 � � 	 � E � �

� � A E � � 
 � � �

The bounding box is therefore at most�

 � E � � � � � A E � � 
 � � 	 � � � � � E � �

� � A E � � 
 � ��� �
� � 	 �

� �
�
	 � � 	 � E � �

� � A E � � 
 � � 	 �

A simple calculation establishes that the bounding box volume is at most� 	 
�

� �

�
	 � � � �� � E ��
 � � � � E � A E � � 
 � � � 	 
�
 E ��
�� � � � E � A E � � 
 � � ; � � E ��
�� � �

The time-consuming stage of the algorithm is the vertex colouring of
�

. This can be computed in

� � C ?�� C � ; � � C = � C G � � � � ; � � E�� E � ; � � E ��
�� �
time. The surface of a vertex � is

� � � � � � ����� � � � � 	$� ��� � � � � 	 � � ����� � � � � � � � ����� � � � � �

Thus each vertex is 12-degree-restricted. By construction, there are at most six bends per edge route. �




Three-Dimensional Orthogonal Graph Drawing with Optimal Volume 23

Very recently Biedl and Chan [6] developed a technique based on edge-colouring a certain bipartite

graph to more efficiently implement Steps 6 and 7 of Algorithm OPTIMAL VOLUME CUBE-DRAWING.

With this technique, the time complexity reduces to � � E 	�� � E � , and the volume of the produced draw-

ings decreases to

 � � E ��
�� � � � E � A E � � 
 � � .

If we remove the middle segment from each 6-bend edge route and route each edge with unique

height, then the overall height is � � E � and we obtain the following result.

Theorem 4 Every loopless graph has a 12-degree-restricted cube-drawing, which can be computed in

� � E � time, with � � E � �
volume, and at most five bends per edge route.

3.2 Drawings with unbounded aspect ratio

We now show how to create drawings of a simple graph that have volume � � E � A � , which is optimal.

The vertices have unbounded aspect ratio and are not necessarily degree-restricted.

The following algorithm initially represents vertices by points or line segments in the (
) ; � )-plane,

and edges are routed above this plane. The vertices are then extended in the
)

-dimension to form lines

or rectangles.

Algorithm OPTIMAL VOLUME BOX-DRAWING

Input: simple graph :1; � =��*?@�
.

Output: orthogonal drawing of : .

1. Let
� ; � � A�� , and define

=������ ; � �  "=<� ����� � � � � 
 E � � + and
=��
	���
�
 ; =��3=������

.

Define
? �����

to be the set of edges with both endpoints in
= �����

,
?���� � to be the set of edges with exactly

one endpoint in
= �����

, and
? �
	���
�


to be edges with both endpoints in
= ��	���
�


.
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2. Let
= � � � ; � � �

� � � �'� � 
 + . For each vertex � �  "= ����� , define
� � � � � ; � ����� � � � � � � 
 E � , and initially

represent � � by the line segment with endpoints at�
�
� � ��
���

�

� � � � �4� � �-� � � and

�
�

� ��
���

�

� � � � � � 	 � � � � � � � �

Note that � � has
� � � � � � � grid points with an even

#
-coordinate.

3. Add extra vertices of degree 0 to
= ��	���
�


so that
=���	���
�


has exactly
� �

vertices (simply to ease the

description). Let
= ��	���
�
 ; � � � � � � � � � � � � �'� ��� � � � � sorted by non-increasing degree. For each original

vertex � �  = �
	���
�
 , � ��� � � � � 	
, initially represent � � by the point

� ��� 	 ��� � � � � � � � ��� � � � ,
where

� ; 	 � ���
for the unique pair 	 �	� with � � 	 �	� � � � 	

. See Fig. 3.

� �

��


� �

� � �

� � �
� � �

� � � �

� � � � � � � �
Fig. 3 Placing points and segments of vertices. Vertices � ��
 � 	�
 � 
 belong to ������� .

4. Orient each edge in
? ��� � from the endpoint in

=������
to the other endpoint. Orient all edges in

? �
	���
�


arbitrarily.

5. For each oriented edge � ; ���  ? � � � , assign to � a
) �

-port at � with even coordinates, such that at

most
� 
 E � � � edges are assigned to any

) �
-port of any vertex in

= � � �
. Assign the unique

) �
-port

at � to � . For each edge � ; ���  ? �
	���
�
 , assign to � the unique
) �

-ports at � and � .
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6. Construct a graph
� ; �>= � �*? � �

with vertex set
= �

corresponding to the edges of
? ��� � � ? �
	���
�
 .

For oriented edges � �
� ���  ?�� � � � ? ��	���
�
 , add the edge

� ��� � ��� + to
? �

if the port assigned to � �

at � is in the same column as the port assigned to ��� at � , or the port assigned to ��� at � is in the

same row as the port assigned to ��� at � .

7. Determine a proper vertex-colouring of
�

using the sequential greedy algorithm (with colours

� 	 � � � � � � � G � � � �
	 + ). For each vertex of
�

coloured 	 corresponding to an edge ���
 ? ��� � �

? �
	���
�

, set the height 
 � � � � � 	 .

8. For each oriented edge ���
 �? � � � � ? �
	���
�
 construct an edge route for ��� exactly as described in

Step 8 Algorithm OPTIMAL VOLUME CUBE-DRAWING.

9. Construct edge routes for edges in
? �����

by copying the 2-bend layout of the complete graph developed

in [8]. More precisely, recall that C = ����� C ; � . It is possible to partition the edges of the complete graph

� 

, and therefore

? �����
, into

�
matchings � � � � � � � � �'� � 


such that if the edges
� � � � � � � , 	 � �

, and

� � � � ��� � , � ��� are in the same matching, and (say) 	 � � , then 	 � � ��� � �
or 	 � � �

�
���

. If

the edge
� � � � � � � with 	 � �

belongs to matching � � , and if the leftmost points of �
�

and � � have

coordinates
� � � � � �-� � � and

� � � � � �-� � � , respectively, then route
� � � � � � � as:

� � � � � �-� � ��� � � � � � �-� ���	� � � � � � ��� � � � � 	 � ��� � � ���
�
� � � � ��� � � � � � 	 � ��� � � ����� � � � � � �-� ���	� � � � � � � � � �

10. Enlarge points/lines representing vertices into lines/rectangles by extending their sides parallel to the

)
-axis from the minimum to the maximum

)
-coordinate of the drawing. For each edge ���

 ?
, clip

the segment of ��� incident to � if it is contained in the box representing � (and similarly at � ); see

Fig. 4.

To analyse the size of the resulting drawing, we need a bound on the maximum degree of
�

.

Lemma 7 The maximum degree of
�

in the algorithm OPTIMAL VOLUME BOX-DRAWING is at most

	 � E � � � 	
.
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�

��

���

���

���

��	

��


���

��


Fig. 4 A selection of edge routes in Algorithm OPTIMAL VOLUME BOX-DRAWING; � � , � 	 and � 
 belong to � ��� � ,

��� and � � belong to ������� , and ��� and ��� belongs to �������! " .

Proof Let ��� be an arbitrary oriented edge in
? � � � � ? �
	���
�
 . Any neighbour of ��� in

�
must have a port

in the same column as � or in the same row as � . Thus we want to study the number of edges that have a

port in a specific row/column.

Assume that ���  ?�� � � . By the direction of edges, we know that �  9= � � � and �  9= �
	���
�
 . If � � is

a neighbour of ��� in
�

, because � and � have ports in the same row
�
, then row

�
contains vertices in

=���	���
�

, and therefore this is not the row with

&
-coordinate

� �
. If ���  ? �
	���
�
 , then both ports must be

in a row that does not have
&

-coordinate
���

because both endpoints are in
= ��	���
�


. Hence no edge in
�

is added because of the row with
&

-coordinate
���

, which we can therefore ignore for considerations of

the maximum degree of
�

.

Also, notice that by the way we assign ports to edges, there are at most
� 
 E � � � edges in

? ��� �

assigned to the same
) �

-port of a vertex in
= �����

(i.e., to a
) �

-port with
&

-coordinate
���

). To obtain a
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bound on the maximum degree, we thus need a bound on the number of edges in
�

resulting from a
) �

-

port with non-negative
&

-coordinate. For future reference, let a proper row/column be the intersection of

a row/column with the first quadrant, i.e., with the range of non-negative
#

- and
&

-coordinates.

Claim: For any proper row and any proper column, there are at most
� E � � edges that use a

) �
-port in

that row/column.

We prove this by showing that the sum of the degrees of vertices placed in any one proper row/column

is at most 6m/N. Define for 	�; � � � � �'� � � 	
the 	 th diagonal to be the grid-points

�-� ��� 	 � ��� � � �
� � � � ���@� � ; � � � � �'� � � 	 +

. In Step 3, vertices in
= ��	���
�


are positioned, in order of non-increasing

degree, in the � th diagonal from bottom to top, then in the
	
st diagonal from bottom to top, and so on.

This implies the following properties for each 	 , � � 	 � � � 	
:

– The vertex with largest degree in the 	 th diagonal is at
� � 	 � � � , while the vertex with the smallest

degree in this diagonal is at
� ��� 	 � � � 	 � � � � � � � ��� � � 	 � �

.

– The last vertex in the 	 th diagonal (i.e., the vertex at
� ��� 	 � � � 	$� � � � � � � ��� � � 	$� �

) has degree

no larger than the first vertex in the
� 	 � 	$� th diagonal (i.e., the vertex at

� ��� 	 � 	$�4� � � ).

For any proper row/column, define the degree-sum as the sum of the degrees of the vertices placed in

this row/column. Denote the degree-sum of the row with
&

-coordinate
� 	 by

� � 	 � .
Notice that each proper column and each proper row contains exactly one vertex from each diagonal,

and no other vertices. Thus the degree-sum of each proper row/column can be at most the sum of the

maximal degrees in each diagonal, and is at least the sum of the minimal degrees in each diagonal. By

the first observation above, we know that the degree-sum of each proper row/column is at most
� � � � and

at least
� � � � 	$�

.

Also, by the second observation above, we know that
� � � ��� � � � � 	$� � G�� 	���
�
 , where G�� 	���
�


is the maximum degree among all vertices in
= ��	���
�


, in particular G � 	���
�
 � 
 E � � by the definition of

= ��	���
�

. This follows, because each entry in

� � � � is the first entry in some diagonal, and can be upper-
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bounded by the last entry in the previous diagonal. The only exception is the first entry in the � th diagonal,

which has degree G � 	���
�
 .
Now we can estimate

� E � �
� ���������
	�	 ����� � � � ;

� � ��
��� � � � 	 � � � � � � � � 	 � � � � � � � � � � G � 	���
�
 �

and therefore
� � � ��� � E � � � G � 	���
�
 ��� E � � . Since the degree-sum of each proper row/column is at

most
� � � � , the claim follows.

So any vertex in
�

(which corresponds to an edge in
? � � � � ?���	���
�


) has at most
� E � � � 	 neighbours

that use a
) �

-port in the same row, and at most
� E � � � 	 � � 
 E � � � neighbours that use a

) �
-port in

the same column, hence the maximum degree of
�

is at most
	 � E � � � 	

. �


Theorem 5 The algorithm OPTIMAL VOLUME BOX-DRAWING determines a drawing of any simple

graph : in � � E � � � A � time, with � � E � A � volume, and at most four bends per edge route.

Proof First, we show that no edges overlap or intersect. Exactly as in Theorem 3, one shows that if two

edges in
? � � � � ? �
	���
�
 have different ports at both endpoints, then the edges neither overlap nor cross.

The same holds for any two edges in
? �����

as discussed in [8]. No edge of
? �����

can overlap or intersect

an edge in
?�� � � � ? ��	���
�
 , because they are separated by the (

& ; � )-plane.

If two edges ��� and ��� have a common port at one endpoint, say at � ; � , then the edges do overlap,

but only at the segment incident to � ; � , which is parallel to the
)

-axis. This segment will be clipped

when extending the vertices in Step 10; hence there is no overlap in the final drawing.

Since
=���	���
�


contains at most A � � �
vertices, the vertices in

=��
	���
�

can be placed in a

� � � � �
-

rectangle. Since ����� � � � � 
 E � � for all vertices �
 "= �����

, we have

C =������ C � �
� ����
���� ����� � � � �
 E

� �
� �

and �
� ����
���� � � � � ; �

� ����
���� � ����� � � � �

 E � � �

� ����
���� ����� � � � �
 E
� C =������ C � � �
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thus the maximum
#

-coordinate of a vertex in
= �����

is
� �

, and we need at most
� � #

-planes.

By C =������ C � � ���
, the edges in

?������
have

&
-coordinate

� � � � � � � ��� �
	$� ��� � , hence we need at

most
�� � � � &

-planes.

In Step 5, a vertex �
 "= �����

has at most ����� � � � incident edges that need a
) �

-port in � , and there are

� � � �() � -ports at � with even coordinates. Thus, we can assign edges to ports such that each port has at

most
� ����� � � � � � � � � � � � 
 E � � � edges assigned to it. Hence there are enough ports for the edges.

A greedy vertex colouring of
�

requires at most G � � � � 	 � 	 � E � � colours, thus to route the

edges in
?�� � � � ? �
	���
�
 , we need at most

� � 	 � E � � )
-planes. To route the edges in

? �����
, we need at

most C = ����� C � � ��� )
-planes. Since E � A , we have

��� E � � � � ���
, and the height of the drawing

above the
) ; � plane is at most

��� E � � . The bounding box therefore has volume at most
� � �%� �� � �

� � � ��� E � � ; 	 
�
 E � � � � E � ; 	 
�
 E � A � � � E � ; � � E�� A � .
The time-consuming stage of the algorithm is the vertex colouring of

�
. This can be computed in

� � C ? � C � ; � � C = � C G � � � � ; � � E � E � � � ; � � E � � � A � time.

Originally, there are at most six bends per edge route, and at most four bends per edge route for edges

in
= �����

. During the clipping step, the first and last segment of each edge gets clipped, hence every edge

has at most four bends. �


The technique of Biedl and Chan [6] works for Steps 6 and 7 of Algorithm OPTIMAL VOLUME

BOX-DRAWING as well, reducing the time complexity to � � E 	�� � A � , and decreasing the volume of the

produced drawings to


	 ��E � A � � � E � .

Note that we required : to be simple; this is necessary for the routing of the edges in
? �����

. It is not

hard to show that if each edge in
? � � �

has multiplicity
� �

, then all edges in
? �����

can be routed with

� � � )
-planes. Thus, as long as EF;�� � � A � , the drawing still has � � E � A � volume.

We can decrease the number of bends per edge to three if we allow an increase in volume. In fact,

the construction greatly simplifies, since there is now no need for
? �����

. Place all A vertices as points in
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a
� � � � �

-grid. Assign to each edge a unique height, and route each edge as before, but omitting the

middle segment. The height is then E , and the width and depth are both
� �

.

Theorem 6 Every loopless graph has a drawing, which can be computed in � � E � time, with � � EBA �

volume, and three bends per edge route.

This algorithm is particularly appropriate for multilayer VLSI as there are no vertical edge segments

or ‘cross-cuts’; see [2].

4 Conclusions and open problems

In this paper, we provided matching upper and lower bounds for the volume of three-dimensional orthog-

onal box-drawings, under various restrictions on the shape of vertex boxes.

In particular, we showed that any algorithm to create three-dimensional orthogonal drawings that have

bounded aspect ratios or are degree-restricted cannot do better than � � E ��
�� �
volume. Then we gave an

algorithm that matches this bound, i.e., constructs three-dimensional degree-restricted orthogonal cube-

drawings with � � E ��
 � �
volume.

If there are no restrictions on the drawing, then we showed that no algorithm can do better than

� � E�� A � volume. We gave a second algorithm that matches this bound, i.e., constructs three-dimensional

orthogonal drawings with � � E � A � volume.

Thus, no more order-of-magnitude improvements are possible for the volume of drawings. We do see

room for improvement with respect to the number of bends per edge. In particular, (a) does every graph

have a 5-bend degree-restricted cube-drawing with � � E ��
�� �
volume, and (b) does every graph have a

3-bend drawing with � � E � A � volume? Note that
� �

does have a � � A � 
�� � ; � � E�� A � volume 3-bend

drawing [8].

Table 1 suggests a trade-off between the number of bends per edge and the bounding box volume.

Can such a trade-off be proved? What are lower bounds for drawings where edges are allowed to have at
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most
�

bends per edge, for
� ; 	 � � � � � �

? (Note that some graphs do not have a drawing without bends

[8,14], and lower bounds for drawings with one bend per edge were given in [4].)
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