Implementation of Some Triangular Data Fitting Schemes Using
Averaging To Get Continuity

Computer Science Department
University of Waterloo
Research Report CS-2000-10
ftp://cs-archive.uwaterloo.ca/cs-archive/CS-2000-10/

Stephen Mann
smann@cgl.uwaterloo.ca, http://www.cgl.uwaterloo.ca/~smann/

Abstract

In this paper, I describe the implementation details of some functional, triangular data fitting schemes.
The schemes in question use derivative information to find initial settings of control points, giving a C°,
piecewise polynomial surface with a high degree of polynomial precision. The interior control points are
then modified to increase the continuity between patches without decreasing the polynomial precision.
In implementing these schemes, I had to address several issues, including basis conversion for bivariate
functions, finding the weights of control points used to compute derivatives, and the construction of data
sets for testing. In addition, I developed and tested a new scheme that uses fewer derivatives than the
other schemes discussed in this paper.

1 Introduction

In an earlier technical report [7], I presented a method for creating patches that meet with C° continuity,
and a method for adjusting the control points of these patches to increase the continuity. The continuity
adjustment process has the property that if the original patches have degree p polynomial precision, then
the adjusted patches will also have degree p polynomial precision.

After writing that technical report, I implemented several of these schemes. This technical report
describes some of the interesting implementation details, which required extension of some known results
on basis conversion and finding weights of control points in derivative calculations. While the previous
technical report describes interpolants that create one polynomial patch per data triangle and three
polynomial patches per data triangle, this report only investigates the schemes that fit a single polynomial
patch per data triangle. I also introduce a new data fitting scheme that is a minor variation of the earlier
schemes, and I analyze the surfaces created by these schemes.

The basic problem these interpolants are solving is:

Given: A triangulation 7 of a region of the plane, with z-values and derivative values at the
data points.

Find: A piecewise polynomial surface that interpolates the data points and as many deriva-
tives as possible, with the patches meeting with as high of order of continuity as possible.

The goal in the “find” statement is a bit vague: what degree patches should we use? With what order of
continuity should they meet? The vagueness results from the trade-off that are possible: by increasing
degree, we can interpolate all the derivatives and have the patches meet with as high an order continuity
as desired.

The approach in this paper (and in the earlier technical report) is to use the derivative information
to obtain polynomial precision with as low of degree patch as possible. Once the degree is determined,
the maximum continuity with which the patches meet is also determined.

Implementation of Some Triangular Data Fitting Schemes

Figure 2: Adjusting the panels to meet C*.

2 Background and a New Scheme

In this section, I give some of the background material for this paper. I will give a minimal (indeed,
less than minimal) discussion of this material since it is mostly just reproduction of work in my earlier
technical report; for more details, the reader is referred to that report [[@]. Further, I will describe a new
data fitting scheme that is a variation on the other schemes discussed in this section.

2.1 Continuity

The continuity conditions for functional triangle Bézier patches are easily described in terms of the
control points. Here I will just describe the C° and C! conditions; higher order conditions can be found
elsewhere [i7], with a bit of discussion of C? conditions appearing in Section B.2 of this paper.

For two patches to meet with C° continuity, they must have identical control points along their shared
boundary. For the two patches to meet with C! continuity, adjacent panels of the control nets must be
coplanar. For example, as illustrated schematically in Figure [, the two patches must share boundary
control points. To meet with C! continuity, each of the three panels of four control points must be
coplanar.

The observation of Foley and Opitz [d] is that if two panels are not coplanar, we may make them
coplanar by extending each panel over the other and averaging (Figure f]). Mann later generalized this
averaging scheme to higher order continuity [7]. One advantage of using such an averaging scheme is
that if both patches have degree p polynomial precision before averaging, then they will continue to have
degree p polynomial precision after averaging. This is the idea of the three schemes discussed in the
remainder of this section.

2.2 Scheme 1

The first scheme initially sets all the control points using derivatives at the corner vertices. For example,
the left half of Figure B illustrates the derivatives needed at a vertex (i.e., we need the appropriate
derivatives for setting the circled vertices) and on the right illustrates the control points actually set
using these derivatives. The shaded vertices are set to the average value specified by the derivatives at
the corner points.

Stephen Mann, University of Waterloo Research Report CS-2000-10

Figure 4: Construction for second scheme illustrated for n = 5.

After setting the control points in this manner, adjacent patches meet with C° continuity. We then
apply the averaging scheme of Section B to increase the continuity between patches.

2.3 Scheme 2

The second scheme is similar to the first. However, instead of setting all the control points using
derivatives at the corner of the data triangle, we set the center control points using the derivatives at
the neighboring triangles. For example, Figure [illustrates the construction for quintics. The circled
control points are set using derivatives at the appropriate corner. To set the shaded control points, we
solve a system of linear equations using the derivatives at the neighboring corner. Each equation is an
evaluation of the Bézier patch or its derivatives at the domain vertex of an adjacent triangle. E.g., one
of the equations will be

Z P;jx B, (Do) = z(Do).

For quintics, there are two more equations for interpolating the partial derivatives at Dg. For symmetry
reasons, we compute three sets of these center control points (one for each neighboring triangle) and take
a weighted average of the results (see the earlier technical report for the averaging scheme []).

2.4 A New Scheme (Scheme 3)

The problem with the first of the schemes described in the previous two sections is that it requires a
large number of derivatives at the data points. The second scheme requires fewer derivatives at the data

Implementation of Some Triangular Data Fitting Schemes

Figure 5: Construction for new scheme illustrated to achieve C'* continuity.

points, but uses data at neighboring triangles (i.e., it is less “local”); later we will see that this use of
data at neighboring triangles results in poor surface quality.

We can reduce the number of derivatives from what is required by the first of those schemes without
borrowing from the neighboring triangles with the following construction for a C* patch network:

1. Find the minimum number of derivatives needed to avoid solving the vertex consistency problem
(i.e., to get a C* join, you need degree 4k + 1 patches and 2k derivatives and position at the data
points).

2. Fit a degree | (3k + 2)/2] patch to this data using the scheme described in Section P22
3. Degree raise this patch to degree 4k + 1.

4. Reset the corner groups of control points using the derivative information at the corners.
5. Adjust to continuity C*.

Figure | illustrates this scheme for construction a C! join. On the left, we first construct a quartic patch
using the scheme described in Section E:3. Next, we degree raise this quartic patch to quintic, giving the
patch on the right. We then reset the circled control points to match the derivatives at the corners, and
finally we adjust the gray points to meet the neighboring patches with C'* continuity.

An obvious variation on this scheme is to start with a degree 4k 4+ 1 patch, set the corner control
points using the derivatives, then set the remaining interior control points by assuming that patch is a
degree raised patch (similar to Farin’s construction for the quadratic precision point of a cubic [3]) and
then adjusting for continuity. The generalization of Farin’s quadratic precision point to higher degree is
discussed in the next subsection.

2.5 Generalization of Farin’s Quadratic Precision Point

If we have position and derivatives at three points on a triangle, we can interpolate this data using a cubic
patch. However, the center control point will be left unset by the data at the corners of the triangle. One
simple setting is to place the center control point at the centroid of the triangle; this setting results in
a patch with linear precision. Farin found a different setting of the center control point, which achieves
quadratic precision [3]:

_1

1
P = 1 [P210 + P120 + Po12 + Po21 + Peo1 + P102} 6

[P:aoo + Poso + P003] .

The generalization of Farin’s idea is that if we have position and d-derivatives at the corners of a
triangle, we can interpolate this data with a degree 2d + 1 Bézier patch. This leaves a triangular block
of control points on the interior of the patch unset. Our goal is to find settings of these control points
such that the patch reproduces the highest degree polynomial completely specified by the derivative
information (degree |24 |).

For example, we can find the “quartic precision” settings of a the shaded control points of the quintic
patch appearing in Figure f. To find these points, first note that the derivatives completely specify (over
specify) a quartic patch. Now assume that our quintic is a degree raised version of a quartic. Rather
than constructing that quartic and degree raising to find settings for the shaded control point (as was
done in the previous section), we will find formulas for them.

Stephen Mann, University of Waterloo Research Report CS-2000-10

The three circled groups of quintic control points are set using the derivatives at the corners. This
leaves the three shaded control points unset. If we label the quintic control points P;j, and label the
quartic control points Q;;k, then the degree raising formulas for the shaded quintic points are

Py = (2Qi21 +2Q211 + Qa220) /5,
P = (2Q112 + Q202 + 2@211)/5,
Pi2a = (Q022 +2Q121 + 2Q121)/5-

However, we don’t want to express the quintic points in terms of the quartics. Instead we use the degree
raising formulas to relate all of the quartic and quintic control points, and solve to find expressions for
the unknown quintic control points in terms of the known quintic control points. Here I will derive the
formula for Ps12; the formulas for the other two points follow from symmetry.

We start by finding another quintic control point that is a weighted combination (in the degree raising
formula) of Q211:

P3;; = (3Q211 + Q301 + Q310)/5
= Q211 = (5P311 - Q301 — Q310)/3

Next, we find expressions for Q301 and Qs10:

Py1 = (4Q301 + Q400)/5
= Qs01 = (5Ps01— Qao0)/4
Pyo = (4Q310 + Q400)/5
= Q310 = (5Pso— Qao0)/4

Since we know Q400 = Ps00, we can now write a formula for Q211 in terms of the quintic control points:
Q211 = <5P311 — (5P401 — Psoo)/4 — (5P410 — Psoo)/4) /3

Performing a similar derivation for Qo22 and Q121 (the latter formula is just an index permutation of the
formula for Q211) and substituting, we find

P12 = % (Poos + Psoo) + %P:mo - %Pgm + %(P113 + P311) - %(PIOAL + Pao1 + Po1a + P410)-
The control points P21 and P22 have similar formulas.

Looking at the above process, we see that it works because as we solve for formulas for the Q;;x in
terms of the P;ji, the degree raising formulas are “pushing out” towards the corners of the patch, where
we know PnOO = Qn—100~

However, things are more complicated when we try to derive formulas for a septic patch (i.e., when
we have position and 3 derivatives at the corners). The problem is that the derivatives only specify a
quintic patch. We can derive formulas for most of the septic control points using the above process, but
the septic control points Ps22, Pasa, and Paos are related to the sextic control point Sa22, which is not
set by the derivative information and can not be eliminated from the equations without using a new
technique. At this point, we can work with the quintic patch, giving

Saos = (2Q122 +2Q212 + 2Q221)/6-

We now need to related through degree raising the quintic control points Q122, Q212, Q221 to the septic
control points, which is a straightforward task, albeit more complicated than deriving the relations when
degree raising by one degree.

In general, while Farin’s quartic precision point is useful, and the quintic precision points derived
above might be useful, for higher degree, it seems unlikely that the derivation of the formulas would
result in sufficient benefits over constructing the lower degree patch and explicitly degree raising.

Implementation of Some Triangular Data Fitting Schemes

Po
17 Y1
Po Pi
VA
PS Ps P}
A VAVA
P P} P P3

Figure 6: Degree raising triangle diagram.

2.6 Degree Raising Triangle Diagram

Triangle diagrams can be used to illustrate many properties of Bézier and B-spline curves and surfaces.
The most common use is to illustrate the data flow of the de Casteljau evaluation. Here, I briefly note
that there is a form of a triangle diagram for degree raising. Unlike standard triangle diagrams [6], the
weights on the edges will not be related to an evaluation point in the domain. Instead, we will use the
degree raising weights.

Figure B shows a degree raising triangle digram for curves. In this figure, the super script of the
control points represents the degree. Note that this is a complete diagram, showing degree raising from
a constant function to a cubic function. More typically, we would start at an intermediate level and
work down. The benefits of such a diagram are less clear than they are for the de Casteljau data flow
diagram, although one use is to use the diagram to determine the weights for multiple degree raisings
(which could also have readily been computed analytically [R]).

A second idea would be to use the diagram to derive a simple degree reduction algorithm. For
example, using just the bottom two layers in the figure, if we start with P and want P?, we could set
Pg = P$ and P§ = P3. The diagram gives us two simple formulas for P:

PP =(P2+2P})/3 = P}= (3P —P2)/2
P} = (P?+2P?)/3 = P!= (3P} — P32

We could then average these two equations to get a symmetric formula for PZ.
This idea of a de Casteljau type diagram for degree raising extends to arbitrary dimension, although
the diagrams become complicated even for degree 3 due to the necessity of labeling all the edges.

3 Implementation

This section describes relevant implementation notes for the three data fitting schemes described in the
previous section. To implement these schemes, some extensions to previous work on basis conversion
and triangle diagrams was needed. These extensions are discussed in this section, along with other
implementation notes.

3.1 Subdivision To Convert From Monomial Basis To Bernstein Basis

The vertices of my data sets were tagged with mixed partial derivatives. I set the control points of
the Bézier patch to interpolate the derivatives by performing a change of basis on the derivative data,
converting from the monomial basis to the Bernstein basis. Once the data is in the Bernstein basis, we
can interpolate the mixed partials at the data points by just copying the coefficients.

Barry and Goldman give an algorithm for conversion from the monomial basis to the Bernstein
basis by using de Casteljau evaluations [B]. If we look at the domain and the blossom values, their
algorithm (for cubic curves) takes control points f(P, P, P), f(P, P,d), f(P,4,9), f(,0,0), performs a
de Casteljau evaluation at @, and extracts control point f(P, P, P), f(P,P,Q), f(P,Q,Q), f(Q,Q,Q)
from the de Casteljau evaluation triangle as illustrated in Figure [1.

Note that the Barry-Goldman monomial basis is a scaled form of the standard monomial basis, and
the partial derivatives need to be scaled to get them in the monomial basis; in particular, they use (f)tl

Stephen Mann, University of Waterloo Research Report CS-2000-10

f(QR.Q.Q)
fP.QQ) f(QQJ)

f(P,P,Q) f(P,Q,5) f(Q,3,9)

NN N

f(P,P,P) f(P,P,3) f(P.3.8) 1(.5,9)

Figure 7: Conversion from monomial to Bernstein basis.

f(B,B,B) f(C,C,C)
oy C

B f(o.0,0) f(o,0,0)

A 5 f(B,B,B)

f(AAA) f(5.5.5) f(ALAA)

Figure 8: Monomial and Bernstein bivariate domains.

for their scaled monomial basis. For our bivariate monomial basis, we will use

n! i g
Win—i— o ¥
The extension of the Barry-Goldman scheme to a bivariate domain is almost trivial: just evaluate
twice and you have the answer. However, for numerical reasons we may wish to select the order of the
evaluations, which in turn may require us to flip the control net. For example, suppose we have a cubic
with control points
f(Ua g, U)
f(Ao,0) [(6,0,0)
f(A,A0) F(Ad0) f(6.5,0)
J(AAA) F(AAS) [(A85) f(5,6,0),

where o and § are the domain partial derivative directions. To convert to the Bernstein basis with
domain AABC, we perform a de Casteljau evaluation at B, extract the face AABo, then perform a
second de Casteljau evaluation at C and extract the face over AABC. This process is illustrated in
Figure §. On the left of this figure is a digram of the domain, showing the partial derivative directions
and the desired triangular domain. In the middle is an illustration of the de Casteljau evaluation starting
from the monomial basis on the bottom, and evaluating at point B in the domain. The shaded face of this
pyramid is extracted, becoming the bottom face of the pyramid at the right of this diagram. A second
de Casteljau evaluation is performed at the point C, with the shaded face of this pyramid containing the
desired Bézier control points.

However, for stability reasons, we may wish to evaluate at C' first, and/or we may wish to extract
a different intermediate triangle. In particular, consider the case when B lies on the ray (A,c) and C
lies on the ray (A, —9) as illustrated in Figure J. If we first evaluate at B to eliminate §, the resulting
control net will be degenerate, leaving us unable to evaluate at C. A reordering of the evaluations avoids
this degeneracy, but may (as illustrated in the figure) result in a representation for triangle AACB that
requires a flip of the control points to get a parameterization over AABC.

Further, when B or C lie near one of the edges of the original domain, we need to be careful about
the evaluation order to avoid numerical stabilities. As a heuristic to decide on a reasonable evaluation
order, I express each of B and C relative to the frame A,§,0: B = A+bgd +bio and C = A+ cod + c10.
I then find the minimum in absolute value of bo, b1, co, c1, and use this to decide at which of B and C'
to evaluate (the one with the minimum coordinate), and which of § and o to replace first (e.g., if bo
is minimum, I evaluate at B first and eliminate §). This results in four cases in the code, one case for

Implementation of Some Triangular Data Fitting Schemes

f(B,B,B) f(C,C.C)

f(G ,010) f(B’B’B)

= 5
A fAAA) H5.5.5) fAAA) f(3,5,5)

Figure 9: Triangular domain for which alternative evaluation and a flip is required.

each order of evaluation of B, C and order of replacement of §,0. Two cases require flipping the control
points, although this “flip” could be written into the code for extracting the control points from the
de Casteljau pyramid.

3.2 Continuity Adjustment

The continuity adjustment scheme is straight-forward and simple to implement. The hardest part is
extracting the correct control points. This task is simplified by constructing neighbor patches so that a
specified edge is the shared edge, and by rotating the center patch so that a specified edge is the shared
edge.

One note, however: the continuity adjustment in the earlier technical report “pushes” values from two
adjacent patches over a common boundary, averages, and “pushes” the averaged values back to get the
desired point. For example, to average to get C? continuity (assuming we already have ct continuity),
suppose we start with values

f(A,A), f(A, B), f(B, B), f(A,C), f(B,C), f(C,C)

and
9(A, A),9(A, B),g(B, B),g(A, D),g(B, D), g(D, D),

with f(A4,A) = g(A, A), f(A,B) = g(A, B), f(B,B) = g(B, B) and appropriate relations between the
other values to have C* continuity. The scheme described in my earlier technical report computes f(C, D)
and g(C, D), averages, and then uses this average to compute new values for f(A, A) and g(D, D) to get
C? continuity.

In my implementation, I found it easier to “push” the values of one patch over the other patch and
average. This alternative scheme does not require pushing values back. Working from the same example,
I compute f(D, D) and g(C, C), and then compute

(f(D,D) +g9(D, D)) /2,
(f(C,C)+g(C,0)) /2.

The control points for f(C, C) and g(D, D) are then set to the values f*(C,C) and g* (D, D) respectively.
Both approaches are illustrated in Figure [[J.

9" (D, D)
(. c)

3.3 Implementation Notes for the First Scheme

This scheme is straight-forward to implement. There are three parts to the implementation: the conver-
sion from monomial to Bernstein basis (discussed in Section B.), the continuity adjustments (discussed
in Section B.9), and the averaging of control points. This last step is the only step not already discussed,
and the only difficulty occurs if we don’t first rotate the center patch, which results in different edges of
the patch requiring different indices to extract and average the control points.

3.4 Implementation Notes for the Second Scheme

The second scheme is more difficult to implement. The parts required to implement this scheme are the
conversion from monomial to Bernstein basis (discussed in Section B.1), the interpolation of neighboring
data, the continuity adjustments (discussed in Section B-3), and averaging of control points.

Stephen Mann, University of Waterloo Research Report CS-2000-10 9

g(C,D)
f(C,D)
f(C,C)
f(D,D)
f*(D,D)
g(D,D)

Figure 10: Top row, left: C? condition. Top row, middle, right: C? adjustment. Bottom row: alternative
C? adjustment.

(1—&’R@\t (1) 1:ii
f(P,RR) f(QRR) /

NN (12/ \(12/ \
(-1 f(P'P’R)t (1—t)f(P,Q‘Rt) (1—t)f(Q,Q'F\:) (-1 (-1 (-0
A ACIAN YA VACAY

f(P,P,P) f(P,P.Q) fP.RQ) fRQQ

Figure 11: de Casteljau evaluation of a curve and the construction of the Bernstein polynomials.

The most difficult part of this scheme is the interpolation of the neighboring data. This step requires
you to set up and solve a system of linear equations. This was my approach, and I used lapack [l] to
solve the system of equations. The difficulty is in finding the coefficients for the matrix of equations.

Each equation is an evaluation of a Bézier patch (or derivatives of the Bézier patch) at the corner
of a neighboring patch. Some of the Bézier coefficients are known and some are unknown. What we
are looking for is the coefficients of both the known and unknown control points. For the equation
representing the evaluation of the Bézier patch, we know the coefficients are the Bernstein polynomials.
However, when an equation represents a derivative of the Bézier patch, the equations become more
complicated.

In the curve case, we can compute the Bernstein polynomials using the reverse triangle diagram as
shown in Figure [0. To compute control point weights for the derivative equation, we could try working
from the derivatives formula of a Bézier curve:

i Pa — PYBI (1),

What we are after are the coefficients of the P;. Rewriting, we find that the coefficient C; of P; is

—nBJ~(t) i=0
Ci=1{ nB'"|(t) i=n
nB'(t) —nBl'(t) otherwise

However, these equations are more complex for higher derivatives, and for surfaces, the equations are still
more complex for mixed partial derivatives (with the main problem being special cases for the corners
and edges).

Fortunately there is a simpler way. Taking my cue from the triangle diagram for Bézier curves and
the Bernstein polynomials (Figure [[T), I used the parameter value for computing the first layers of the
triangle diagram, and then used the weights of the derivative directions directions for the remaining layers.
This is illustrated for both curves and surface in Figure [4. Note that in the downward de Casteljau
diagram, I have reordered the weights on the edges from the upward triangle diagram; the order has no

10 Implementation of Some Triangular Data Fitting Schemes

f(RR 3) = F'(R) 1=B§

e 'S
- (1 () (@ ()
T NS VNN,

R=(19P+ 1Q 7N NN / \/ N / \

3=Q-P f(P,P,P) f(P,P,Q) f(P.QQ) f(QQ.Q
f(SSV) 1=B§
P R

0 f(PP.9 fRRS
S= pP+qQ+rR
v = aP+bQ+cR f(P,P,P) (RRR)

f(P,P,Q) f(QRR)
#P,0,0 L"HQQR

f(Q,Q,.Q)

Figure 12: de Casteljau evaluation of the derivative and the construction of the weights of the control points.

effect on the result. For multiple derivatives, we apply the derivative weights at multiple levels in the
pyramid, and for mixed partials, we apply the weights for each direction at as many levels as we take
each derivative.

Given that we know how to compute the weights of the control points when computing derivatives,
the question of which derivatives to use remains. I used the triangle directions at the vertex at which we
evaluate; e.g., for the case illustrated in Figure @im I used domain directions Vo — Dy and Vi — Dy.

3.5 Implementation Notes for Third Scheme

Having implemented schemes 1 and 2, scheme 3 was easy to implement. Basically, use the initial fitter
for scheme 1, degree raise, then use code similar to the initial fitter for scheme 2 to reset the corner
values, and finally call the continuity adjustment. While not the most efficient implementation, this was
sufficient for testing.

3.6 Rotate Patch

One of the difficulties in implementing these schemes is that the continuity conditions have to be applied
to all three boundaries of the patch. When I implemented scheme 1, I implemented this as cases, requiring
a different permutation of the indices for each edge. When I started to implement scheme 2, I realized
that the permutations would be even worse (primarily for the averaging step), and decided to instead
rotate the patch so that I could always use the same indices. This rotation greatly simplified my code.

4 Results

I ran several tests on the three schemes. The initial tests were to verify the code was working correctly;
for these I used constant and linear data sets since I could check intermediate values and easily tell if
they were correct. I then tested for polynomial precision and convergence, and then looked at isophote
plots, shaded images, and Gaussian curvature plots.

Stephen Mann, University of Waterloo Research Report CS-2000-10

Method 1 Method 2 Method 3
f n=3 n=5 n=6 1n=9 | n=3 n=5 n n=>5

Ne

z=2x Vv v v v

z=ay? — 2Py —ay? -2’ —y—2

z=a 4+ 2%y —xyl+r—y—1 Vv v v v
\é v

L

z=20 2y + 2%y — 2ty ¥+ + 1
z:x6—y6+x3y3—x2y2—|—m—y
z=a+a* -y v +y+2

L

SO
<L

Table 1: Test functions. A ‘/’ means the method reproduced f.

4.1 Polynomial Precision

As a first test, I checked for polynomial reproduction. In particular, I used the functions listed in Table fil.fl
For this table, I sampled the known function for position and derivatives on a 5 X 5 grid, giving a 3 x 3
region of non-boundary patches to which the interpolants were fit. Each patch of the interpolant was
sampled on a ‘10 x 10’ grid (since the patches are triangular, it is really half a grid) and the z-values of
the patch samples were compared to the z-values of the known function. The patches were fit over the
[-0.5,0.5] x [—0.5,0.5] square, with the boundary patches extending outside this region.

As a further test, the patches were fit to polynomial data without adjusting for continuity, then
sampled for position and normal. The resulting triangulation has multiple triangles meeting at each
sample point. At sample points on the interior of the patches, the normals will all be equal; at sample
points on the boundary of patches, the normals will be equal if the patch meets its neighbor with C!
or higher continuity. Thus, I checked the normals for each position to verify that they were equal, since
when schemes 1 and 2 fit degree n patches to degree n data (and when scheme 3 fits degree n + 1 patches
to degree n data), then all constructed patches should reproduce the polynomial and the normals at a
sampled point should match.

The results of these tests matched the theory: all the schemes had the level of polynomial precision
and continuity that was expected. Further, the exercise was useful as a means of further debugging and
verifying my code.

4.2 Convergence

As a second test, I empirically checked the polynomial convergence. Theoretically, if the interpolant
has certain derivative properties, and if it has degree d precision, then it should have an error term of
O(hd“), where h is the distance between samples of the function. As a first test, I ran my methods on
the Franke function, sampling over the [0, 1] square, with samples spacings of .2, .1, .05, and .025. The
result of these tests appear in Table J. When halving the interval size, we should reduce the error by a
factor of 2471, However, we see from the table that the numbers are not quite that good. Since the ratios
appear to get better for denser samplings, it is likely that there is an initial effect, since the big—O error
does not hold if the known function is sampled too sparsely to catch all its features. Denser samplings
might show the results we want, but for this data set, the higher degree interpolants are running out of
floating point precision.

As a second test of convergence, I ran the schemes without increasing the continuity (i.e., I checked
the convergence of the C° surfaces created). The results appear in Table f§. Interestingly, most of
the schemes have identical precision with and without the continuity adjustments (up to six digits of
precision). The exception was scheme 2. For degree 5, the C° version of scheme 2 has slightly better
precision than the continuity increased versions. This is the expected behavior. However, for degree 9,
the continuity adjust version of scheme 2 has better precision than the C° version. I have no explanation
for this behavior.

Looking at both raw numbers and convergence rates, scheme 1 appears to be better than scheme 2.
This is expected, since the data used in setting the center control points is more local for scheme 1 than
it is for scheme 2.

1 Additional tests were run on other data sets, including z = z* —y2 +zy+z+y+1, 2z =y2, 2 =2% 2 =y®, 2 =29, 2 = 9,

but not all schemes were tested on these additional data sets.

12 Implementation of Some Triangular Data Fitting Schemes
Method | Theory | 0.2 0.1 0.05 0.025
ml, d3 16 | 0.041201 0.00986012 (4.18) 0.000866224 (11.4) 5.89684e-05 (14.7)
d5 64 | 0.0288368 0.0011683 (24.7) 2.82327e-05 (41.4) 4.9238e-07 (57.3)
d6 128 | 0.0125883 0.000152819 (82.4) 1.19468e-06 (128) 9.66577e-09 (124)
d9 1024 | 0.00351799 7.17813e-06 (490) 1.33345e-08 (538) 1.51709e-11 (879)
m2, d3 16 | 0.0426704 0.0117674 (3.63) 0.00108287 (10.9) 7.4514e-05 (14.5)
d5 64 | 0.0288692 0.0014494 (19.9) 2.90774e-05 (49.8) 4.9238e-07 (59.1)
d9 1024 | 0.00358552 5.97093e-05 (60) 1.34982e-07 (442) 1.75238e-10 (770)
m3, d5 32 | 0.0288368 0.00128509 (22.4) 4.37087e-05 (29.4) 1.18989e-06 (36.7)

Table 2: Convergence rates on Franke function. Numbers in parentheses are ratio of previous to current

column and should match the value in the “Theory” column.

Method | Theory | 0.2 0.1 0.05 0.025

ml, d5 64 | 0.0288368 0.0011683 (24.7) 2.82327e-05 (41.4) 4.9238e-07 (57.3)
d6 128 | 0.0125883 0.000152819 (82) 1.19468e-06 (128) 9.66577e-09 (123)
d9 1024 | 0.00351799 7.17813e-06 (490) 1.33345e-08 (538) 1.51709e-11 (879)

m2, d5 64 | 0.0288368 0.0011683 (24.7) 2.82327e-05 (41.4) 4.9238e-07 (57.3)
d9 1024 | 0.00504409 7.25655e-05 (69.5) 1.64821e-07 (440) 2.1413e-10 (770)

m3, d5 32 | 0.0288368 0.00128509 (22.4) 4.37087e-05 (29.4) 1.18989e-06 (36.7)

Table 3: Convergence rates on Franke function. Numbers in parentheses are ratio of previous to current

column and should match the value in the “Theory’

)

column.

The problem with using my samplings of the Franke function as test data sets for convergence is that
the multiple peaks/valleys of this data set mean that the asymptotic behavior does not occur until locally
most areas appear as a single peak or valley. However, with samplings this dense, the error is already
small, and we run out of floating point precision before the asymptotic convergence can be observed.

As a better test of convergence, I sampled the function

2(x,y) = sin(rx/2 + 7 /4) sin(wy/2 + 7/4) (1)

over the [0, 1] square. This function is between 0.5 and 1 in this region, and since it is a single peak we
should be able to observe the asymptotic behavior earlier than with the Franke function. Further, since
the values of this function over this region are close to 1, the absolute error is approximately the relative
error, and we can readily tell when we have run out of floating point precision.

Table f] shows the results of fitting my interpolants to samplings of this function. From this table,
we see that the convergence rates are almost exactly as predicted, with a few expectations. First, going
from interval size 1 to 0.5 we have slightly worse behavior, suggesting that the interval size of 1 is too
large to observe the asymptotic behavior. Second, the degree 9 interpolants are performing worse than
expected, especially scheme 2. However, the values for degree 9 interpolants are reasonably close to the
prediction (the last values are extremely poor, but this is due to loss of numerical precision).

The other surprise is scheme 3, which performed far better than expected. It is unclear from this single
data set if the scheme was converging more rapidly because it hadn’t reached its asymptotic behavior,
or if it actually has better convergence properties than might otherwise be expected.

In short, the convergence test for this second function (Equation [[[) strongly supports the theoretically
predicted error terms.

4.3 Shaded Images

I next generated some isophote plots of a 5 x 5 sampling of the Franke function, and shaded images of
the surfaces fit to an 8 x 8 sampling of the Franke function. I used a denser sampling of the Franke
function for the shaded images, since the primary goal of the isophote plots was to analyze the changes
in the surface as the continuity was increased, which was more easily observed for sparser samplings of
the Franke function. The shaded images were for evaluating the shape of the constructed surfaces, which
for lower degrees required denser samplings to obtain reasonable looking surfaces.

Stephen Mann, University of Waterloo Research Report CS-2000-10 13

Method | Theory | 1 0.5 0.25 0.125 0.0625

ml, d3 16 | 0.10455 0.0074179 (14.1) _ 0.00047831 (15.5) 3.0128¢-05 (15.9) 1.8866e-06 (15.9)
ds 64 | 0.0087873 0.00015189 (57.9) 2.4334e-06 (62.4) 3.8259¢-08 (63.6) 5.9872e-10 (63.9)
d6 128 | 0.00039143 3.7182¢-06 (105) 3.2361e-08 (115) 2.5920e-10 (125) 2.0372e-12 (127)
d9 1024 | 1.0777e-05 1.1297e-08 (953) 1.1228e-11 (1006) 1.1213e-14 (1001) 2.7756e-15 (4)

m2, d3 16 | 0.11291 0.0081842 (13.8) 0.00053368 (15.3) 3.3711e-05 (15.8) 2.1125e-06 (16)
d5 64 | 0.0089772 0.00015189 (59.1) 2.4334e-06 (62.4) 3.8259¢-08 (63.6) 5.9872e-10 (63.9)
d9 1024 | 6.1818e-05 7.4456e-08 (830) 7.6825e-11 (969) 2.6013e-13 (295) 2.8099e-13 (0.926)

m3, d5 32 | 0.0087873 0.00015543 (56.5) 2.5967e-06 (59.8) 4.9931e-08(52.0) 1.2119e-09 (41.2)

Table 4: Convergence rates on sin(xy) function. Numbers in parentheses are ratio of previous to current
column and should match the value in the “Theory” column.

Scheme 1

Scheme 2

Figure 13: Degree 9 polynomials fit to Franke function. Rows: C°, C*!, and C?.

14

Implementation of Some Triangular Data Fitting Schemes

Figure [[3 shows isophote plots of degree nine surfaces fit using schemes 1 and 2 to a sparse sampling
of the Franke function. The Franke function was sampled on a 5 x 5 grid; patches were fit to the inner
3 x 3 grid of samples, creating a total of eight patches. The left column shows the first scheme; the
right column shows the second scheme. The first row was computed using no continuity adjustments;
the second row had just C' adjustments; the third row had both C' and C? adjustments.

The point of this figure is to show the effects of the continuity adjustments. In the top row, we
see the expected discontinuities in the isophotes; in the second row, the isophotes are C°, with the C!
discontinuity being minor except in a few spots (in particular, the upper left of scheme 1). Curiously, the
isophotes of the second scheme suggest it has created a better surface, but shaded images show exactly
the opposite is true. Finally, note that while the last row shows an improvement in scheme 1, there are
only small differences between the C* and C? surfaces for the second scheme.

To get a better feel for surface quality, I generated shaded images and curvature plots of surfaces fit
to data sampled from the Franke function. Figure [[4 shows a top view of the surfaces constructed by
schemes 1 and 2 for degrees 3, 5, and 9 and for scheme 1, degree 6. In this figure, we can clearly see the
C° discontinuities of the degree three interpolants. Figure [[J offers a second view of these surfaces. From
this picture, we can see that for degree 5, scheme 1 produces better surfaces than scheme 2. Curvature
plots of both of these degree 5 surfaces are shown in Figure [[§, where we can see that the surface produced
by scheme 2 has far more artifacts than the surface constructed by scheme 1.

Although not apparent in Figure [[4 and [[3, the degree nine surface produced by scheme 1 is of better
quality than the degree nine surface produced by scheme 2. However, the shape artifacts in the degree
nine surface produced by scheme 2 are subtle, and shaded images showing these artifacts do not reproduce
well in print. To better see the artifacts in the degree nine surfaces, I made Gaussian curvature plots
of the surfaces, shown in Figure and Figure [[4. In these figures, red is positive Gaussian curvature,
green zero Gaussian curvature, and blue is negative Gaussian curvature. Although some of the artifacts
in these figures are sampling artifacts, we can see more variation in the surfaces constructed by scheme 2
than those constructed by scheme 1.

The curvature plot of the degree 9 surface created by scheme 1 is interesting in that the curvature is
very good expect in one spot. I suspect this artifact occurs because the sampling in this region is low
relative to the curvature in the region. Additionally, it is interesting to note that although the degree 5
surface constructed by scheme 1 is only C!, the Gaussian curvature plot indicates that it is close to being
Cc2.

Figure [[§ compares scheme 3 to schemes 1 and 2 on a sampling of the Franke data set with all three
schemes constructing degree 5 surfaces. Scheme 3, on the right of the figure, clearly constructed a better
surface than scheme 2 (in the middle), but it is not as good of quality as the surface constructed by
scheme 1 (on the left). While it is not surprising that scheme 1 did a better job than scheme 3 (since
scheme 1 uses more derivatives than scheme 3 and has higher polynomial precision than scheme 3), it is a
bit surprising that scheme 3 did better than scheme 2, since scheme 2 reproduces fifth degree polynomials
while scheme 3 only reproduces fourth degree polynomials. In fact, the quality of scheme 2 is poor enough
that I at first suspected that I had misimplemented it, but since it has the predicted polynomial precision
I decided after checking the code that the poor quality is probably due to the non-locality of the data.

5 Conclusions

The purpose of this technical report was to report on the implementation of several data fitting schemes
devised to test averaging as a means of achieving continuity between two patches without losing polyno-
mial precision. The continuity construction itself worked as predicted: the desired level of continuity was
achieved without losing polynomial precision. Further, the continuity scheme was easy to implement.

The implementation of the data fitting schemes devised to test the continuity scheme proved more
interesting than the continuity itself. In particular, scheme 2 performed worse than expected, and appears
to perform worse than the scheme 3 (the new data fitting scheme described in this paper). Further, to
implement these schemes, I had to derive extensions to previous results, in particular a bivariate change of
basis scheme, and a method for computing the weights of control points used to compute the derivatives
of a triangular Bézier patch. I also looked at extending the idea of Farin’s quadratic precision point,
although such an extension is probably not worth considering for higher degree than quartic precision
for quintic patches.

As a final note, while the averaging construction for obtaining continuity has only been applied here
for triangular Bézier patches, the idea is easily extended to curves, and in turn, to tensor product Bézier

Stephen Mann, University of Waterloo Research Report CS-2000-10 15

Figure 14: Surfaces fit to Franke function. Top row: scheme 1. Bottom row: scheme 2. Columns are for
degrees 3,5,6, and 9.

Figure 15: Surfaces fit to Franke function. Top row: scheme 1. Bottom row: scheme 2. Columns are for
degrees 3,5,6, and 9.

16 Implementation of Some Triangular Data Fitting Schemes

Figure 16: Curvature plots of surfaces fit to Franke function. Top row: scheme 1. Bottom row: scheme 2.
Columns are for degrees 3,5, and 9.

Figure 17: Curvature plots of surfaces fit to Franke function. Left: scheme 1, degree 9. Right: scheme 2,
degree 9.

Stephen Mann, University of Waterloo Research Report CS-2000-10

17

Figure 18: Surfaces fit to Franke function using the degree 5 interpolate for scheme 1, 2, and 3.

18 Implementation of Some Triangular Data Fitting Schemes

dfunc := proc(f,fn) local fdx, fdy, fdxdx, fdxdy, fdydy, ...;
dprint(¢ £¢,f,fn);
fdx := unapply(diff(f(x,y),x),x,y);
dprint (¢ fdx‘¢,fdx,fn);
fdy := unapply(diff(f(x,y),y),x,¥);
dprint (¢ fdy‘,fdy,fn);
fdxdx := unapply(diff(f(x,y),x,x),x,y);
dprint (¢ fdxdx‘,fdxdx,fn);
fdxdy := unapply(diff (f(x,y),x,y),X,y);
dprint(‘ fdxdy‘,fdxdy,fn);
fdydy := unapply(diff(f(x,y),y,y),X%,y);
dprint (¢ fdydy‘,fdydy,fn);

writeline(fn, ‘double (*partials[]) (double, double) = {°);
writeline(fn,¢ f, fdx, fdy, fdxdx, fdxdy, fdydy, ‘);

writeline(fn,‘ 0.};9);
end;

Figure 19: Maple routine to generate derivative functions.

surfaces. In the latter case, we would want (as we did for triangles) enough derivatives at the data points
to consistently set enough mixed partial derivatives for the continuity adjustments we are applying to
the patches.

A Using Maple to create data sets

To develop and test these schemes, I had to generate a variety of data sets. Initially, I used simple data
sets (constant, linear), since it was easy to test if the code was computing the correct values for these data
sets. Later, I needed data sets that had up to 6th order mixed partials. To facilitate the construction of
these data sets, I wrote a C program that takes an array of C functions for the derivatives and creates a
data mesh. The data mesh is sampled on a uniform grid; while a more complex sampling would perhaps
better indicate how the schemes would perform on “real” data, my primary goals for these tests were
merely to check (a) the polynomial reproduction and (b) the convergence rate. For these purposes, a
uniform sampling was sufficient.

To generate the array of C functions for the derivatives, I wrote a Maple routine that takes the
function to be sampled and generates C routines for the function and all the mixed partials up to 6th
order. Part of the code for this routine appears in Figure [[J; the calling sequence for generating the C
routines for the Franke function appears in Figure Q.

This Maple routine generates a C file that should be linked with another C routine (fmesh.c) and
the surface fitting library routines [6]. fmesh takes several parameters that allow you to select the region
and density of the sampling of the function.

A few notes:

e | was using Maple V, release 4. In this version of Maple, the back-quote is the string delimiter
character, and a space character is often needed at the start of the string to avoid an automatic
conversion of the string to a variable. In more recent versions Maple, the double-quote is the string
delimiter, and an initial space is unneeded.

e The dprint routine was a routine I wrote that checks handle constant functions; using the unapply
command, constant functions are automatically converted to the constant, which won’t be printed
correctly. Although there are other ways to create constant functions, writing the dprint routine
was the most obvious way for me to handle the problem.

Stephen Mann, University of Waterloo Research Report CS-2000-10

>

vV V V V

f := (x,y) > 3./4.xexp(-(8Q(9*x-2) + SQ(9*y-2))/4.)
+ 3./4.%exp(-SQ(9*x+1)/49. - SQ(9*y+1)/10.)
+ 1./2.%xexp(-(SQ(9*x-7) + SQ(9*y-3))/4.)
- 1./5.%exp(-SQ(9*x-4) - SQ(9*y-7));

SQ =

X->x"2;

readlib(C);
read (ffunc) ;
dfunc(f,’f1.c’);

Figure 20: Maple sequence to generate C derivative routines for the Franke function.

References

(1]

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, third edition, 1999.

Phillip J. Barry and Ronald N. Goldman. Algorithms for progressive curves. In R Goldman and
T Lyche, editors, Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces, pages
11-63. STAM, 1993.

Gerald Farin. Smooth interpolation to scattered 3d data. In R.E. Barnhill and W. Bohm, editors,
Surfaces in CAGD, pages 43-63. North-Holland, 1983.

Thomas A. Foley and Karsten Opitz. Hybrid cubic bézier triangle patches. In T Lyche and L Schu-
maker, editors, Mathematical Methods for Computer Aided Geometric Design II, pages pp 275-286.
Academic Press, 1992.

Ronald Goldman and Phillip Barry. Wonderful triangle: A simple, unified, algorithmic approach
to chnge of basis procedures in computer aided geometric design. In T. Lyche and L. Schumaker,
editors, Mathematical Methods in Computer Aided Geometric Design II, pages 297-320. Academic
Press, 1992.

Michael Lounsbery, Stephen Mann, Charles Loop, David Meyers, James Painter, Tony DeRose,

and Kenneth Sloan. A testbed for the comparison of parametric surface mehtods. In SPIE/SPSE
Symposium on FElectronic Imaging Science and Technology, Santa Clara, CA., 1990.

Stephen Mann. Triangular interpolants to scattered data with high degree polynomial pre-
cision. Technical Report CS-2000-01, University of Waterloo, January 2000. Available as
ftp://cs-archive.uwaterloo.ca/cs-archive/CS-2000-01/.

Stephen Mann and Wayne Liu. An analysis of polynomial composition algo-
rithms. Technical Report CS-95-24, University of Waterloo, 1995. Available as
ftp://cs-archive.uwaterloo.ca/cs-archive/CS-95-24/.

19

	Introduction
	Background and a New Scheme
	Continuity
	Scheme 1
	Scheme 2
	A New Scheme (Scheme 3)
	Generalization of Farin's Quadratic Precision Point
	Degree Raising Triangle Diagram

	Implementation
	Subdivision To Convert From Monomial Basis To Bernstein Basis
	Continuity Adjustment
	Implementation Notes for the First Scheme
	Implementation Notes for the Second Scheme
	Implementation Notes for Third Scheme
	Rotate Patch

	Results
	Polynomial Precision
	Convergence
	Shaded Images

	Conclusions
	Using Maple to create data sets

