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Abstract. We present a new online algorithm MR for non-preemptive
scheduling of jobs with known processing times on m identical machines
which beats the best previous algorithm for m > 64. For m — oo its

competitive ratio approaches 1+ 4/ % < 1.9201.

1 Introduction

Scheduling problems are of great practical interest. However, even some of the
simplest variants of the problem are not fully understood. In this paper, we
study the classical problem of scheduling jobs online on m identical machines
without preemption, i.e., the jobs arrive one at a time with known processing
times and must immediately be scheduled on one of the machines, without
knowledge of what jobs will come afterwards, or how many jobs are still to
come. The goal is to achieve a small makespan which is the total processing
time of all jobs scheduled on the most loaded machine. Since the jobs must
be scheduled online we cannot expect to achieve the minimum makespan
whose computation would require a priori knowledge of all jobs (even then
computing the minimum makespan is difficult, i.e., NP-hard [12]). The quality
of an online algorithm is therefore measured by how close it comes to that
optimum [4, 10]. It is said to be c-competitive if its makespan is at most ¢
times the optimal makespan for all possible job sequences.

Graham [14] showed some 30 years ago that the List algorithm which
always puts the next job on the least loaded machine is exactly (2 — %)—
competitive. Only much later were better algorithms designed. The first
improvement was a (2 — % — € )-competitive algorithm by Galambos and
Woeginger [11, 5], with ¢,, — 0 for m — oo. The first algorithm with com-
petitive ratio approaching a value strictly smaller than 2 for large m was a
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(2 — #)-competitive algorithm (for m > 70) by Bartal et al. [2]. Note that
2 — = ~ 1.986. Not much later Karger etal. [16] proposed the algorithm
CHASM, with competitive ratio somewhere between 1.9378 and 1.945. The
last improvement so far was Albers’ [1] 1.923-competitive algorithm M2.

On the other hand, the lower bound for the problem was raised in similarly
small steps: Faigle et al. [9] showed a lower bound of 1.707 for m > 4 for any
deterministic online algorithm. This was ’greatly’ improved by Bartal et al.
[3] who showed a lower bound of 1.837. In the next step Albers [1] raised the
bar to 1.852. And recently Gormley et al. [13] applied exhaustive computer
search to find a slight perturbation of Albers’ hard request sequence which
yields a lower bound of 1.85358.

Better bounds are known for a few special cases. For m = 2 and m = 3,
Faigle et al. [9] gave a lower bound of (2 — 1), i.e., List is optimal in these
cases. And for m = 4, Chen et al. [7] proposed a 1.733-competitive algorithm.
The best lower bound for randomized algorithms is —% ~ 1.58 for large m,
proved independently by Chen et al. [6] and Sgall [18], and Seiden [17] showed
that at least for m < 5 randomized algorithms can beat the best deterministic
lower bound. For scheduling with preemption the competitive ratio is exactly
—%7 for m — oo [8]. For more results on scheduling see the survey chapters in
the recent books [4, 10, 15].

In this paper we propose another small improvement on the upper bound
of the competitiveness of the online scheduling problem, decreasing it to

1+ Q/Hzﬂ < 1.9201 for m — oo. For m > 64 this beats the best previ-

ous bound of 1.923 [1]. Our new algorithm, called MR (the authors’ initials),
tries to schedule jobs either on the least loaded machine as long as its load
1s relatively low, or on a certain machine with medium-high load if it can

safely do this. This is explained in Section 2. In Sections 3 and 4 we establish
the competitiveness of MR. The proof is quite straightforward and relatively
simple (compared to proofs of previous algorithms). In particular, we give an
intuitive explanation for our choice of the crucial parameters of MR optimiz-
ing its performance. And contrary to the some of the recent papers [1, 16] we
even derive a closed formula for the competitive ratio c.

The proof for the competitiveness of MR builds on three elementary lower
bounds on the optimal makespan, namely the average total load, the size of
the largest job, and twice the size of the (m + 1)th largest job (inequalities
(C1)-(C3) in Section 3). The proofs for all previous algorithms use the same
set of bounds (except for the proof of Graham’s List algorithm which only
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needs (C1) and (C2)). We conjecture that better upper bounds are possible if
more lower bounds are added to this list (for example one involving the size
of the (2m + 1)th largest job), but currently we do not know how to do this.

2 The Algorithm

We assume that at each time step ¢ = 1,2,3,... a new job J* with processing
time p* (also called the size of the job) arrives which must be scheduled
online on one of m identical machines. The current schedule at time ¢ is an
assignment of the first ¢ jobs on the machines. The load of a machine at time
t 1s the sum of the sizes of the jobs assigned to it in the current schedule. We
assume that the machines are always ordered by non-increasing load, i.e., M}
is the machine with the highest load and M!, is the machine with the lowest
load, after J* was scheduled. The load of M} at time ¢ will be denoted by I,
for 1 < j < m. Thus, I! is the makespan of the current schedule at time ¢. At
time ¢ = 0, all machines have load 0. For j = 1,...,m let D; be the average
load of machines M, ..., M}, at time ¢, i.e.,

1 m
Dt=_——— . It
Toom—j+1 Zk
k=3
Let
Dt =Dt

be the average load of all machines at time ¢ (which is independent of the
current schedule).

Our new algorithm MR is parameterized by the competitive ratio ¢ we hope
to achieve. We show in the next section that MR works well if we choose

c>1+ % .

Let
1= "% -m-‘ -1

be a ‘magic’ number which will also be explained in the next section, and let
k=21 —m.

We call MR’s schedule flat at time ¢ if



20c—1) 4y
% — 3 ) Di+1 )
i.e., if before scheduling J* the load of the kth largest machine is not much
higher than the average load of the m —¢ smallest machines. Otherwise we call
it steep. We say J* is scheduled flatly (steeply) if MR’s schedule is flat (steep)
at time £.

As the worst case example for Graham’s List algorithm shows [14] one
should try to avoid situations were all machines have approximately the same
load. So we try to make flat schedules steeper again by scheduling new jobs

nt <

on some medium-loaded machine, if possible. All previous algorithms [11, 2,
16, 1] are based on this basic idea, however they differ in their definitions of
flatness and medium-loadedness.

Algorithm MR

Let p* be the size of the next job J* to be scheduled.
If the current schedule is steep or if p* +1:™' > ¢- D? then schedule
Jt on the smallest machine M!!, else schedule it on M}™".

Note that I!™" is the load of the ith largest machine prior to scheduling
Jt, and D! is the average load of all machines after scheduling J*.

Theorem 1 (Main theorem). The competitive ratio of MR approaches 1 +

V#<1'9201 for m — oo. O

The proof of this theorem is given in the next section.

3 Proof of the Main Theorem

Let



kE~0278-m,
and

e —

(=1 o1,

2¢—3

The following proof is done under the assumption that m — oo but it can
easily be adjusted to finite m, however at the cost of a slightly higher value of
¢ (Lemmas 8 and 9 are the critical ones). Note that we can therefore ignore
the rounding in the definition of :.

Consider an arbitrary sequence of jobs to be scheduled online. Let #f be the
number of jobs in this sequence. We may assume w.l.o.g. that MR’s makespan
is defined by the machine receiving the last job J . Let

!
a=p

be the size of Jt' and let b be the load of the machine which receives J* (not
including ptf). Then MR’s final makespan is a + b. Let

D = DY

be the final average load of all machines. Furthermore, let P,,.; be the size
of the (m + 1)th largest job in the sequence; if ¢/ < m then P, = 0.

We know the following three lower bounds for the optimal makespan (the
first two were introduced by Graham [14], the third seems to be first used by
Galambos and Woeginger [11]): D, a, and 2P,,;;. Thus, the following three

inequalities must hold for MR to fail to be c-competitive.

(Cl) a+b>c-D & a>c-D-b

(C2) a+b>c-a & a<

(C3) a+b>c 2P,

We assume from now that (C1) and (C2) hold. We will show that then
(C3) cannot hold, thus proving the Main Theorem. Since a + b < % - b by
(C2) it suffices to show that P, > d where
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Note that

% —
c—3 b
2(c—1)
and the schedule is flat at time # if

<t D
We call jobs of size at least d big. We prove P, 11 > d by showing that the
last job is big and that each machine receives at least one big job before the
last job arrives.

We call a machine full if its current load is at least b, half-full if its current
load is at least b — d but less than b, and half-empty if its current load is
less than b — d. Note that MR does not know whether a machine is full or
not before the end of the sequence. A filling job is a job scheduled on a non-
full machine which is full afterwards, i.e., the job fills the machine. Slightly
abusing this term, we also call the last job a filling job. In the following we
are only interested in filling jobs.

If the last job J t! were scheduled on Mff_l then by definition of MR

b—d=

a—l—b:ptf—l—lff_lgc-th:c-D,

contradicting (C1). Therefore J* is scheduled on the smallest machine Mg_l.
In particular, all machines have load at least b before J t! is scheduled. There-
fore, there are exactly m + 1 filling jobs, and we prove that each of them is
big. Note that any filling job scheduled on a half-empty machine is big. (C1)
and (C2) together imply

b>(c—1)-D
justifying the name ‘half-full’ for machines with load at least b—d > (¢— %) -D.
Lemma 2. The last job is scheduled flatly.

Proof. Assume the schedule is steep at time . Then

2(c—1)

e 20l pe
>2(C_1)-b
- 2¢—3

and therefore
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a contradiction. O

For j =1,...,m+1 let t; be the time the jth filling job arrives. And for
j=1,....,mlet

D;=D;"

be the average load of machines M;j_l, .. .,Mf,{_l (which are exactly the
non-full machines at that time) just prior to filling the jth machine. Clearly,
Di+1 S S Dm < D.

From Lemma 2 we conclude that there is a minimal index s < m such
that Jts+t, Jts+2 Jim+1 are scheduled flatly. If s < 4 then we choose s = 1.

Lemma3. Jtet1, Jtetz Jim+1 gre big.

Proof. Consider one of these jobs at time ¢. Since machine M} ™' is already
full, J* can only be filling if it is scheduled on M!~!. If this machine is half-
empty then J* must be big to fill it. If it is half-full then D* = D if t = t7,

or

>z’-lf_1—|—b—|—(m—z'—1)-(b—d)

Dt
m

if t < tf because the first + machines have load at least I{~!, one machine just

becomes full, and all other machines are half-full; if £ = ¢/ then all machines

have load at least b. But MR will only schedule J* on the smallest machine if
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:cb_m_THcd_b
=2(c—12-d+ (4c—2c*—1)-d
=d.

The second inequality holds because fn—l —1~0.22>0and I{™" > b. O

Note that in the proof of the lemma in the worst case I{™" = b and then
our choice of 7 = % -m — 1 1s the smallest possible to prove the claim.
The next lemma shows that Ji+1, Jt+2 . Jtm are scheduled on half-empty
machines. This will imply in Lemma 5 that the first s filling jobs are also big.
Since the proof of Lemma 4 is more involved we give it later in Section 4.

Lemma4. D;;y <b—d. And if s > 1 then D, < b—d.
Proof. See Section 4. O
Lemmab. J', J%2, ... J% are big.

Proof. We show that all these jobs are scheduled on a half-empty machine.
Hence they must be big. Let v = max{i + 1, s}.

If s > 4 then Jt+1, Jt+2 . J% are scheduled on the smallest machine
because they are filling jobs. But that machine is half~empty just before time
t, by Lemma 4, so it is half-empty at any time before ¢,.

For j =k +1,...,¢, the schedule is steep at time ¢; because

Lt >0
_ 2(c—1) (b d)
2¢—3
(L4) 2(c — 1)
2%—3 Dita
2(6 — ]_) ) Dtj_l




Hence Ji+1, Jt+2 . J% are also scheduled on the smallest machine.
This also implies lt’“ < lfiﬁl << lfrznr: Z') lli. For j =1,...,k, J% is

either scheduled on Mi’ or on Mni . But

. L4
BN <ITH <1< <t < Dy Dy

and hence J%, J%, ..., J% are scheduled on a half-empty machine. O

This concludes the proof of the Main Theorem.

4 Proof of Lemma4

Let a = %. We first consider the case s = 1.

We assume D;,; > b— d and show that this would imply that all the jobs
Jt+1 . Jtm together already have a higher load than is possible. Therefore
the assumption must be wrong. For j =1,....m — ¢ let

Wj:a'(czl_zﬁ_l) ) (1+ )_l—l'%'

We derive the contradiction by first showing that w; - D is a lower bound
for D%+i i.e., the average load after scheduling J*+i, and then showing that
Wi > 1.

Since s = 4, Jt+1, ..., J' are scheduled flatly but are not scheduled on
machine M; (they are filling jobs). The following observation follows directly
from the definition of MR.

Observation 6. Let V' be the current load of M;, let p be the size of the
next job J, and let w - D be the average load before scheduling J for some
w < 1. If the current schedule is flat and J cannot be scheduled on M; then
p>cwD =V, O

We even have the stronger bound p > ¢ - (wD + ) — b which would

improve the lower bound on p by a factor of ==, but under the assumption

m — oo this factor equals 1.

Lemma?7. D% >w;-D forj=1,...,m—i.
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Proof. For y =1,...,m — 1 let
, Dti+i
We prove by induction on j that w; > w;.

The proof of Lemma 3 shows that J%+! cannot have size smaller than d,
and the smallest size is only possible if the first ¢+ machines are just at the
border between half-full and full prior to scheduling J%+!, i.e., li“rl_l =...=
[f+t=t — . After scheduling J%+!' we have ¢ + 1 machines of size at least b

and m — ¢ — 1 machines of average size at least b — d. Therefore

s (i+1)~a+(m—i—1)~22(§:?) e

W
= m
o . (2¢—3)m+i+1
- 2(c—1)m
- «a c—=1  m—i—-1 1 + o
- c 2(c—1)m
= W1 .

tig;—1
7

For j > 1, if we assume that [ = b = aD then Observation 6 implies

“j = Wi+ g
(0¢) 4
> w]_l —I— Cw]1_7ll—06
= wia-(1+3) -2
= o (= -gsn) ) e k) -

But is the assumption lfiﬂ_l = b justified? Observation 6 seems to imply
that the lower bound on the size of the next job is smaller if the load on
machine M; is higher. However, if we want to take advantage of that, i.e.,
decrease the lower bound on the next job by some ¢ > 0 then we must first
increase the load of M; to at least b+ € (at some time prior to time #;1; — 1),
so the net effect of that action does not lead to a smaller average load than

the lower bound obtained with our assumption. O
Lemma8. w,,_; > 1.

Proof. a > ¢ — 1 implies
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Wyp—g = O+ <C—1 . 270—_11_)71n> . (1 + i)m_i_l n a

C m c

5e—2c% 1 1_Be=2e?-1)
=a <c 2(c—1) ) 1—|—m —I_c
2¢2+1—4c.m

(2(c—1)2=(2?+1-40))-(1+ &) °© +2(c—1)
2c

2
625 +1—4c_2

:1+ 2¢

For the last equality we used our assumption m — oo which implies

1+ &)™ = ¢¢. Therefore, w,, ; > 1if ¢ > 1 + 4/ 1n2 O
(1+:3) , > !

This concludes the proof of the case s = ¢ for m — oo. For given finite m
we can easily compute ¢ such that the lemma holds. For example, if m = 64
then we can choose 1 = 40, k = 16, and ¢ = 1.9229 < 1.923 which is the best

previous bound [1] (Lemma 9 below is also true with these parameters).

Some tedious analysis shows that if ¢ = 1 4 # then the proof of

5¢—2c%—1
(o4

Lemma 8 works only for ¢ = -m — 1. If ¢ 1s chosen bigger then there

is some interval around this value of ¢+ which works fine, and if ¢ is chosen
smaller then no value of ¢ works.

We now consider the case s > 7. We assume D, > b — d and derive the
same contradiction as in the previous case.

Lemma9. D% > w, ;- D.
Proof. Prior to scheduling J* we have

(s—l—i)-b—l—(m—s—l—l)-(b—d)‘

m —1

Dt >

Since J* is scheduled steeply we have

2(c—1
lz:s—l 2 ;z - 3) . Dfi__]_l

and therefore
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Dt >k-lfj—l—I—(s—k)-b—l—(m—s)-(b—d)
D =

D
ko=l (1) b st 1) (o) +(m—k)-b—(m—s)-d

2¢—3 m—1

mD
:%.(ﬁ;z:;).(1_2(6"1—1)3(;;))%_;6_%) |

We call this term FE,. If seen as a function of s then for m — oo

Bu= 2o (13 )

m 2¢c — 3
k
- 1
@ <+<2c—3>-m>
>1.33-a

<1.09-a,

ie., E, > wy,_;. Further we have E;;; = w; = w;y11_;. Since E, is linearly
growing in s and w,_; is exponentially growing in s we can conclude that
E,>w,_jfors=i+1,...,m. O

Now we can just proceed as in the proof of Lemma 7 proving D's+i >
ws_ipj D for 3 =0,...,m—s. Note that the steepness condition only affects
the load of the first k largest machines which never become the ¢th largest ma-
chine in the worst case scenario (with minimal load increases) of the proof of
Lemma 7. Therefore the assumption about the size of the ¢th largest machine
in that proof is still justified. This concludes the proof of Lemma 4.
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