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Abstract

While discrepancy theory is normally only studied in the context of 2-colorings, we explore
the problem of k-coloring, for k > 2, a set of vertices to minimize imbalance among a family
of subsets of vertices. The imbalance is the maximum, over all subsets in the family, of the
largest difference between the size of any two color classes in that subset. The discrepancy
is the minimum possible imbalance. We show that the discrepancy is always at most 4d — 3,
where d (the “dimension”) is the maximum number of subsets containing a common vertex. For
2-colorings, the bound on the discrepancy is at most max{2d — 3,2}. Finally, we prove that
several restricted versions of computing the discrepancy are NP-complete.

1 Introduction

We begin with some basic notation and terminology. Let £ be a family of nonempty subsets of a
finite set P. We call the elements of P vertices and the elements of £ lines. A vertex v € P lies on
a line £ € L if v € £. We denote the number of vertices on a line £ by |£|.

One topic in the area of combinatorial discrepancy theory [AS92, Bec81, BT95, Spe99] is the
study of the minimum possible “imbalance” in a 2-coloring of the vertices. Formally, a 2-coloring is
a function x from the vertices in P to the two colors —1,+1. The imbalance of x is the maximum
difference between the size of the two color classes considered for every line, i.e., maxser | 3,0 x(v)].
The discrepancy is the minimum possible imbalance over all 2-colorings; to avoid confusion, we call
this standard notion the 2-color discrepancy.

In this paper we consider the following more general setting. A k-coloring of P is a mapping
from the vertices in P to the k colors 1,..., k. It is called c-balanced if for any line £ and any two
colors 7,7, 1 < 4,7 < k, we have

|#£{vertices on £ colored i} — #{vertices on £ colored j}| < c.

We call ¢ the imbalance of the coloring; it is a strong measure of additive error relative to the
uniform distribution. The k-color discrepancy of a family £ is the minimum possible imbalance
over all k-colorings.

Ideally, we would hope for perfectly balanced colorings, i.e., with imbalance 0, but a necessary
condition for the existence of a perfectly balanced coloring is that the number of vertices on each
line is a multiple of k. Otherwise, the best we can hope for is an almost-balanced coloring which is
a coloring with imbalance 1. In general, however, even this is not always possible.

Our work is strongly motivated by two previous results. In the context of 2-colorings, Beck
and Fiala [BF81] gave an upper bound of 2d — 1 on the discrepancy where the dimension d (also
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often called the mazimum degree) of a family £ is the maximum number of lines passing through
a common vertex.

On the other hand, Akiyama and Urrutia [AU90] studied k-colorings, for arbitrary k, for lines
that form a two-dimensional grid and vertices that are a subset of the intersections. In this geo-
metric setting (with d = 2), they showed that there is always an almost-balanced k-coloring. The
same result for 2-colorings can also be derived using the algorithm by Sima for table rounding
[Sim99] (where each grid point corresponds to a table entry of ;). Since finding a k-coloring of
points on lines that form a two-dimensional grid can be reformulated as finding an edge k-coloring
of a simple bipartite graph, a slightly weaker result follows from a theorem by Hilton and de
Werra [HW94] who showed that a 2-balanced edge k-coloring exists for any simple graph (not
just bipartite graphs). Akiyama and Urrutia also showed that not all configurations of points in
higher-dimensional grids have an almost-balanced k-coloring, but asked whether an O(1)-balanced
k-coloring might be possible for such grids.

In Section 2, we generalize the results of Beck and Fiala [BF81] and Akiyama and Urrutia
[AU90] to k-colorings of an arbitrary family of lines. In particular, we settle the open questions
posed by Akiyama and Urrutia within a constant factor. Specifically, our most general result states
that the k-color discrepancy is at most 4d — 3. Note that this bound is independent of the number
of colors.

We can tighten the bound by 1 in the case that the number of vertices on each line is a multiple
of k. For 2-colorings we can tighten the bound further to max{2d — 3, 2}, improving by an additive
constant the results of Beck and Fiala [BF81]. For d = 2, the bound of 2 is tight because the three
vertices of a triangle have no almost-balanced 2-coloring. And in the special case of 2-dimensional
geometric settings our proof can be strengthened to give the Akiyama and Urrutia result [AU90],
i.e., we can prove there is always an almost-balanced 2-coloring.

In Section 4 we show that a simpler divide-and-conquer algorithm (which is apparently known
in the field of discrepancy theory [Spe00] but has never been published to our knowledge) computes
k-colorings which are slightly less balanced than the colorings computed by the algorithm in Section
2. Both algorithms can be implemented efficiently in polynomial time.

Finally, in Section 5 we show that for k£ > 2 finding almost-balanced k-colorings is NP-complete
for line families of dimension at least max{3,k — 1}. For k£ = 2,3, this result even holds for the
special case of various geometric settings. We suspect that finding an almost-balanced k-coloring
is NP-complete for any & > 2 and d > 3.

2 The Balance Theorem

In this section we prove our main theorem which states that any set of vertices on a set of lines of
dimension d can be k-colored such that the imbalance on each line is bounded by a constant only
depending on the dimension d (and not on k, or on the number of vertices, or on the number of
lines).

Theorem 1 (Balance Theorem) Let d > 2 and k > 2. Let L be a set of lines of dimension d
containing a set of vertices P. Then P has a (4d — 3)-balanced k-coloring. The imbalance is at
most 4d — 4 for all lines with a multiple of k many vertices.

Proof. This proof is an adaptation of the proof given by Beck and Fiala [BF81] (see also [AS92,
Spe99]) for 2-colorings.

With each vertex v € P we associate k variables z,,1,..., 2, which will change in time. At
all times all z, ; lie in the closed interval [0, 1]. Initially, all @, ; are set to % If0 < z,; <1 then



z,; is called floating, so initially all variables are floating. If z,; = 0 or #, ; = 1 then 2z, ; is called
fized. Once a variable is fixed, it can never change again. Eventually, all variables will be fixed.

At that time, the variables define a k-coloring of the vertices: vertex v is colored with color 7 if
and only if z,; =1 and z, ; = 0 for j # . To ensure that there is exactly one ¢ with z,; = 1, we
require that at all times

k
Zwv,i =1 (Cv)
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for all vertices v. We call the equations C, color equations. A color equation is active if it contains
at least two floating variables; otherwise, it is inactive. Note that a color equation contains either
zero or at least two floating variables.

For each line ¢, we want to balance the colors. This can be expressed by k balance equations
Ep;,fori=1,... k:

Y zyi= 1] (Ers)
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A balance equation is active if it contains at least 2d floating variables; otherwise, it is inactive.

We can think of the color and balance equations as a system (LP) of linear equations in the
variables z, ;. Since we cannot always find an integer solution of (LP) (if a line £ contains a number
of vertices which is not a multiple of k then there can be no integer solution to the corresponding
balance equations), we only require at all times that all active equations are satisfied. We call
this subsystem of linear equations (LP,.). Since initially all variables are floating, (L P,.t) initially
consists of all balance equations with at least 2d variables.

Now suppose we have a solution of (LP,.) at a certain time. Let f be the number of floating
variables at this time. Each vertex is contained in at most d lines. Therefore, each variable is
contained in at most d balance equations. In particular, each floating variable is contained in at
most d active balance equations. On the other hand, each active balance equation contains at
least 2d floating variables, so the number of active balance equations is at most % Moreover, each
variable appears in exactly one color equation, whereas each active color equation contains at least
two floating variables. Therefore, the number of active color equations is at most % If (LPyet) is
underdetermined, with more variables than equations, then we can move along a line of solutions
of (LP,et) in Euclidean space. We do so until one of the floating variables reaches 0 or 1; then
we stop. This fixes at least one previously floating variable. We continue this procedure until all
of the z,; are fixed, or until (LP,.) is not underdetermined. This can only happen if each active
balance equation contains exactly 2d floating variables and each color equation contains exactly 2
floating variables. Therefore we can round the two floating variables in each color equation to 0
and 1, which changes the value of each balance equation by at most d (we call this the rounding
step). This yields an imbalance of at most 2d (which is less than 4d — 3 for d > 2) for the lines
corresponding to the active balance equations.

Since the final values of the z, ; still satisfy all the color equations (but not necessarily all the
balance equations), we can read off a k-coloring of the vertices. We claim that this k-coloring is
(4d—3)-balanced. Consider any balance equation E,;. At the first time it becomes inactive we have

Yvet Toi = %', and at most 2d — 1 of the z,; are floating. Later, each of these floating variables

can change by less than 1 from that value to its final value. As such, |} -, 2,; — |k£|| < 2d—1 for
the final values of the z, ;. Hence the imbalance is bounded from above by 2 - (2d — 2) = 4d — 4 if
|| is a multiple of k, and 2 - (2d — 1) — 1 = 4d — 3 if |{| is not a multiple of k. O



3 2-Colorings
If we want to find balanced 2-colorings we can improve Theorem 1 by approximately a factor of 2.

Theorem 2 (2-Color Balance Theorem) Let d > 2. Let L be a set of lines of dimension d
containing a set of vertices P.

(a) If d = 2 then P has a 2-balanced 2-coloring.

(b) Ifd > 3 then P has a 2d — 3-balanced 2-coloring. If d > 4 then the imbalance is at most 2d —4
for all lines with an even number of vertices.

Proof. We adjust the proof of Theorem 1 in the following way. Since we try to find a 2-coloring we
have only two variables z, ; and z, , assigned to each vertex v. These two variables are related by
z,2 =1—z,1 by the color equation (C,). Since it is impossible that only one of the two variables
is floating, fixing one will automatically fix the other one. Therefore it is sufficient to consider only
one of the two variables, z, ; for example, by replacing z, 5 by 1 — 2, ; in all equations. When we
do this substitution for all variables z, 5 for all vertices v then for any line £ the balance equations
E; 1 and Ey 5 are identical. So we can remove all equations Ey s and only keep the equations Ej ;.

Since there are also no color equations left after the substitution we can strengthen the def-
inition of active balance equations. We say a balance equation is active if it contains at least d
floating variables. Then we proceed as in the proof of Theorem 1. Note that now (LP,.) is not
underdetermined if each active balance equation contains exactly d floating variables, yielding an
imbalance of at most d in the rounding step. This proves O

Part (a) also follows from the result of Hilton and Werra [HW94]. In the case of 2-dimensional
geometric settings as studied by Akiyama and Urrutia [AU90] our proof can be adapted to show
the existence of an almost-balanced 2-coloring (the rounding tep never happens in this case because
it can be shown that (LP,.) is always underdetermined, even if the number of equations equals
the number of variables). We note however that both mentioned previous works give the same
discrepancy bound for k-colorings for k& > 2, whereas we only obtain them for 2-colorings.

4 Alternative Approaches

We could try to modify the algorithm given in the proof of Theorem 1 as follows. Instead of
computing the colors of all vertices at the same time, we first identify all vertices which should be
colored with color 1, then we discard these vertices and identify all vertices which should be colored
with color 2, etc. In one step of this iteration, we therefore only need to associate one variable z,
to each vertex v. Finally, when all variables are fixed, the vertices v with z, = 1 belong to one
color class; we then iterate on the set of all vertices w with z,, = 0. In this approach we do not
need color equations, and we have just one balance equation (E;) for each line £:

Yoz =alt] (B,

vEL
where a = % A balance equation is active if it contains at least d + 1 floating variables. As before,
we conclude that at any time the system (LP,.;) of active balance equations is underdetermined,
so we can fix at least one floating variable. If all variables are fixed the number of variables with
value 1 must be in the open interval (a|f| — d, a|£| 4+ d) for every line £.



Iterating this procedure yields k color classes. Let e; be the smallest number such that each
color class has size in the interval (%' — €k, %' + er,) along each line £. It is easy to see that we have
the recurrence e; < max{d, % + er—1}, implying e, < d(1+ % + .+ ﬁ) This would give us
an imbalance of approximately 2d - In k.

To get an imbalance independent of k, we can use divide-and-conquer instead of the iteration
just described. If k is even we do one iteration step with a set to 1/2, i.e., we search for a 2-coloring;
we then recursively (k/2)-color the vertices of color 1 and (k/2)-color the remaining vertices. If

k-1,

is odd we do one iteration step with o set to “5;-; we then recursively (k —1)/2-color the vertices of

color 1 and (k+1)/2-color the remaining vertices. We now have the following recurrence on the error
d d

bound ej: for k even, e < % + ep/2; for k odd, e, < max{m +ew-1)/2 Gz T €(kt1)/2}-
This implies that e, = O(d), so the total imbalance after the recursion will be O(d).

The explicit bound on e, is somewhat difficult to characterize, but it is strictly greater than
4d — 1 for sufficiently large k& not equal to a power of two. For k = 27, the bound converges to
4d — 1 from below. Hence, for most values of k, the bound obtained here is worse than the bound
obtained in Theorem 1.

However, note that the bound arising from this proof will adapt to any theorems proved about
balanced 2-colorings. For example, it was conjectured that there always exists an O(\/E)—balanced
2-coloring [AS92, BT95]. If this were proved it would immediately imply the existence of an O(+/d)-

balanced k-coloring.

5 NP-Completeness Results

Akiyama and Urrutia [AU90] showed that every set of points on the 2-dimensional rectangular
gridhas an almost-balanced k-coloring for £ > 2, and there is an efficient algorithm to compute
such a coloring. They also gave an example of points on a 3-dimensional grid that do not admit
an almost-balanced coloring. We strengthen this result by showing that testing whether a set of
vertices has an almost-balanced 2-coloring is NP-complete for line families of dimension d > 3.

Theorem 3 Letd > 3. Let L be a set of lines of dimension d containing a set of vertices P. Then
the problem to decide whether P has an almost-balanced 2-coloring is NP-complete.

Proof. Clearly, the problem is in NP, because given a 2-coloring, one can verify in polynomial time
whether it is almost-balanced. In the following, we will therefore only show that the problem is
NP-hard by reduction from NOT-ALL-EQUAL 3sAT which is known to be NP-hard [Sch78]. The
problem NOT-ALL-EQUAL 3SAT is the following: Given n Boolean variables z4, . . ., ,, and m clauses
€1,...,¢m which each contain exactly three literals (i.e., variables or their negative), determine
whether there exists an assignment of Boolean values to the variables such that for each clause at
least one literal is true and at least one literal is false.

Assume an instance S of NOT-ALL-EQUAL 3SAT is given. We want to construct a set of vertices
P and a family £ of lines containing the vertices P such that P can be almost-balanced 2-colored if
and only if S has a solution. For ease of description, we will assume that the two colors are red and
blue. For each clause c;, we will have one line /; that contains three vertices, one for each literal
in ¢;. The lines corresponding to different clauses use different vertices. In any almost-balanced
coloring of P at least one of the vertices on any line must be red and at least one of the vertices
must be blue.

Now, by adding additional lines and vertices, we will ensure that two vertices representing the
same literal must have the same color, and two vertices representing a literal and its negation,



respectively, must have different color. Let z be a literal. Let p1, ps, ..., p2s+1 be the vertices corre-
sponding to the s occurrences of z in S, and let pasi2, P2sta, - - ., P2r be the vertices corresponding
to the ¢ occurrences of Z in S. Let ps; be a set of new vertices, for j = 1,...,s, and let py;4; be
a set of new vertices, for j = s+ 1,...,t — 1. We create new lines ¢;, for ¢ = 1,...,2t — 1, where
{; contains exactly the vertices p; and p;11. Since these two vertices must be colored differently in
any almost-balanced 2-coloring, the colors of the vertices p1,ps, ..., P2s; P2s+1,P2s5+2, - - -, P2t—1, P2t
must alternate. In particular, all vertices representing # must have the same color, and all vertices
representing Z must have the other color.

This construction can be done in polynomial time. Note that each vertex is contained in at most
three lines. Hence we have constructed a set £ of dimension 3 (which could also be considered to
be of any dimension d > 3). Following the construction, one immediately verifies that there exists
an almost-balanced 2-coloring for this construction if and only if the instance S of NOT-ALL-EQUAL
3sAT has a solution. O

5.1 Geometric Settings

We just showed that the problem of finding an almost-balanced coloring is NP-complete for line
families of dimension at least three. Now we want to strengthen this result to hold in geometric
settings as well. In other words, we want to ensure that the vertices (called points in a geometric
setting) are placed on grid-lines in dimension D, of which at most d intersect in one point. We
show that the problem for the following geometric settings is also NP-complete:

e Finding an almost-balanced 2-coloring of points in the 2-dimensional rectangular grid with
one set of diagonals,i.e., D =2,d=3, k= 2.

e Finding an almost-balanced 2-coloring of points in the 3-dimensional rectangular grid, i.e.,

D=3,d=3,k=2.

e Finding an almost-balanced 3-coloring of points in the 2-dimensional rectangular grid with
one set of diagonals,ie., D =2,d=3, k=3.

We suspect that finding an almost-balanced k-coloring is NP-complete in all geometric settings
with d > 3, but leave this as an open problem.

5.1.1 NP-Completeness for 2-Colorings

Assume an instance S of NOT-ALL-EQUAL 3SAT is given. We want to construct an instance S’ of
an almost-balanced 2-coloring problem on a grid such that S’ has a solution if and only if .S does.
The principal idea is the same as for the previous proof. As before for each clause c;, we will
have one grid line ¢; that contains three points, one for each literal in c;. In any almost-balanced
coloring at least one of these points must be red and at least one of these points must be blue.

To ensure that all points representing the same literal have the same color, we need to add more
points than before in a geometric setting. More precisely, for each variable z;, we will have one
point p; which can be freely colored with either red or blue. Point p; will have the same color as a
literal z;, and the opposite color as a literal z;.

We give the construction first for D = 2 and d = 3, i.e., for the rectangular grid with one set of
diagonals. As before, let s (t) be the number of times that z; (Z;) appears in a clause. We represent
z; by points that are arranged in a staircase with s+¢ many steps. At the first s steps, we duplicate
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Figure 1: Placing points for one variable z;. In this example, s = 3 and t = 2.

the left point one unit away in the diagonal, and at the ¢ remaining steps, we duplicate the right
point one unit away in the diagonal. The topmost point of the staircase is p;. See Figure 1.

Assume that we have an almost-balanced 2-coloring of this configuration, and that p; is colored
red. Then, assuming that no other points are added in the rows and columns containing the steps,
one can argue that any left point of a step must be red and any right point of a step must be blue.

If p is the point in the diagonal of p;, then p. must be blue because p; is red. At some point
later, we will place exactly one more point p! in the row of p.. This point then has to be red
because p; is blue. Hence, point p! has the same color as p; in any almost-balanced coloring, and
can be used to represent literal z; in some clause.

Let ¢; be one of the right points of a step that have another point ¢ in their diagonal. Then g;
must be blue, so ¢ must be red. At some point later, we will place exactly one more point ¢, in
the row of ¢;. This point then has to be blue because ¢ is red. Hence, point ¢’ has the opposite
color as p; in any almost-balanced coloring, and can be used to represent literal Z; in some clause.

We now have s rows to add a point for literal z;, and ¢ rows to add a point for literal Z;.

We combine these constructions for z4, ..., z, in such a way that no two points for two different
variables share a grid line. For example, this can be done by placing them along the other diagonal,
as illustrated in Figure 2.

Figure 2: Placing all variables.

Finally, we add points in m extra columns, one for each clause. If ¢ is the column for clause
c;, then for each literal [ of ¢; we put a point into one of the rows that correspond to this literal.
Furthermore, we choose the row in such a way that for each row there is exactly one point in one
of the columns for the clauses.

Also, care must be taken that the columns for the clauses are far enough apart such that no
two points in two different columns could possibly be on one diagonal. This can be achieved by
spacing the columns at least 6m + 1 units aparts. See Figure 3.
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Figure 3: Adding columns for the clauses. For readability the figure is not to scale.

Following the construction, one immediately verifies that there exists an almost-balanced col-
oring for this construction if and only if the instance of NOT-ALL-EQUAL 3SAT has a solution. This
proves the following theorem.

Theorem 4 The problem of finding an almost-balanced 2-coloring in a two-dimensional rectangular
grid with one set of diagonals is NP-complete. O

The construction for 2-colorings of points in the three-dimensional rectangular grid is identical.
The only change is that Figure 3 should now be interpreted as a three-dimensional picture, with
two planes depth. All points for clauses are added in the second (deeper) of these planes. Thus,
we obtain:

Theorem 5 The problem of finding an almost-balanced 2-coloring in a three-dimensional rectan-
gular grid is NP-complete. O

Note one interesting feature: we “barely” use the third dimension, because we actually only use
two parallel planes. Nevertheless, having two instead of one plane makes the problem NP-complete.

5.1.2 NP-Completeness for 3-Colorings

Now we show that the problem does not become easier if we allow one more color. More precisely,
the problem of finding an almost-balanced 3-coloring in a two-dimensional rectangular grid with
one set of diagonals is also NP-complete.

We use almost the same reduction as in the previous section. The main difference is that having
two points per grid line is not sufficient because this does not enforce any color. Therefore, for every
grid line that contains two points in the above construction, we will add a third point. By adding
even more points, we force these third points all to have the same color, say white. Hence, the two
original points have exactly as much color choice as before, which means that the same reduction
applies. For each column of a clause (which are the only grid lines containing three points) we add
one point that also must be white. The remaining three points in such a column must all be red
or blue (because their row contains now two more points, one of which is forced to be white), so as
before, we must have at least one red and at least one blue point per column for a clause.

The precise addition of points works as follows. Assume that in the above construction, we have
v grid lines that are vertical or diagonal and contain at least two points, and we have h horizontal
grid lines that contain exactly two points.



Imagine placing v vertical diamonds, one attached to each other. See the left picture in Figure 4.
Assume we have an almost-balanced 3-coloring of this construction. Let p be a tip of one diamond.
The two points at the middle of this diamond both share a grid line with p, and because every grid
line contains at most three points, they must have different colors from p. But then the other tip
of the same color, which also shares grid lines with these points, must have the same color as p.
Hence, all the tips of all diamonds have the same color.

Now add h horizontal diamonds, scaled such that they do not share any grid lines with the
vertical diamonds, except at the attachment point. Again this construction has an almost-balanced
3-coloring, and all tips of all diamonds have the same color. See Figure 4.

w

Figure 4: The construction of a color splitter. We show here v = 3 and h = 2, though normally
these numbers would be bigger.

Assume that all tips of diamonds are colored white. In this construction, which we call a color
splitter, there are then v rows and A columns that contain exactly one red and one blue point.
These rows/columns are indicated with dashed lines in Figure 4. Hence, if we place a third point
in these rows/columns, then that point must be colored white.

All that remains to do is to place the color splitter in such a way that all these extra points can
at the same time be in some grid line of the original construction. This can be done as follows:

Start with the construction of the previous section. Extend all lines that contain at least two
points infinitely. Place the color splitter such that it is below and to the right of any of the
intersection points of these infinite lines. Now, for every horizontal infinite line from the original
construction, choose one of the A columns of the color splitter, and place a point at their intersection.
Similarly, for any vertical infinite line or any diagonal infinite line of the original construction, choose
one of the v rows of the color splitter and place a point at their intersection. See Figure 5.

All these added points must be white. Hence, any of the grid lines of the original construction
that contained two points before now must color these two points with red and blue. Hence, adding
the third color does not give us any additional freedom, and the problem remains NP-complete.

Theorem 6 The problem of finding an almost-balanced 3-coloring in a two-dimensional rectangular
grid with one set of diagonals is NP-complete. O



color-splitter

Figure 5: Combining the construction for the 2-coloring with a color splitter.

We leave as an open problem whether finding an almost-balanced coloring is NP-hard for k£ > 4
colors on a rectangular grid with one set of diagonals. We would expect that the answer to this
problem is yes, at least if we also increase d (the number of grid lines that are allowed to cross in
one point). Observe that it would be enough to find a color splitter for &£ > 4 colors; if this exists,
then the problem becomes NP-hard for k colors with a similar technique as in the previous section.
We note however, that the construction of the color-splitter can be generalized to non-geometric
settings with d > max{3, k — 1} so we have NP-completeness for these cases as well.
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