Simplifying flow networks

Therese Biedl Brona Brejova Tomas Vinar *

March 1, 2000

Abstract

Maximum flow problems appear in many practical applications. In this paper,
we study how to simplify a given directed flow network by finding edges that can
be removed without changing the value of the maximum flow. We give a number of
approaches which are increasingly more complex and more time-consuming, but in
exchange they remove more and more edges from the network.

1 Background

The problem of finding a maximum flow in a network is widely studied in literature and
has many practical applications (see for example [AMO93]). In particular we are given a
network (G, s,t,c) where G = (V, E) is a directed graph with n vertices and m edges, s and
t are two vertices (called source and sink respectively) and ¢ : E — R* is a function that
defines capacities of the edges. The problem is to find a maximum flow from s to ¢ that
satisfies capacity constraints on the edges.

Some graphs contain vertices and edges that are not relevant to a maximum flow from
s to t. For example, vertices that are unreachable from s can be deleted from the graph
without changing the value of maximum flow. In this article we study how to detect such
useless vertices and edges.

Study of such a problem is motivated by two factors. First, some graphs may contain
a considerable amount of useless edges and by removing them we decrease the size of the
input for maximum flow algorithms. Also, the optimization of the network itself may be
sometimes desired.

Second, some maximum flow algorithms may require that the network does not contain
useless edges to achieve better time complexity. For example Weihe in [Wei97] presented an
algorithm for computing a maximum flow in a directed planar network in O(nlogn) time.
Weihe’s algorithm works only for a special subclass of planar graphs, and he claims that it
is possible to transform any planar graph to a graph from this subclass without changing
the value of a maximum flow. One step of this transformation is to remove what we call
s-or-t-useless edges (see Section 2). However no algorithm for finding such edges is described

*Department of Computer Science, University of Waterloo, {biedl,bbrejova,tvinar}@uwaterloo.ca

in [Wei97] and as far as we know this problem was not investigated before. We implemented
Weihe’s algorithm, and found in testing more than 20000 randomly generated graphs that it
seems to work even when not all s-or-t-useless edges have been removed (see [BV99]). This
however has not been proved formally.

In this paper, we study how to remove such s-or-t-useless edges, and more generally, any
edge that is not useful. The precise definition of a useful edge is as follows:

Definition 1 We call an edge e useful if for some assignment of capacities, every maximum
flow uses edge e. If e is not useful, then we call it useless.

Note in particular that the definition of a useful edge depends only on the structure of
the network and the placement of the source and sink, but not on the actual capacities in
the network. Thus, a change in capacities would not affect the usefulness of an edge.

The above definition of a useful edge is hard to verify. As a first step, we therefore develop
an equivalent definition which uses directed paths.!

Lemma 2 An edge e is useful if and only if there exists a simple path P from s to t that
uses e.

Proof: Assume first that there exists a simple path P from s to ¢ that uses e. Then let
the capacities of the network to be 1 for every edge on P and 0 on all other edges. Clearly,
the maximum flow in this network is 1, and any maximum flow must use the edges of path
P, hence e.

Conversely, assume that e is useful, thus there exists some assignment of capacities such
that e belongs to any maximum flow in the network. Let f be one such flow. By the Flow
Decomposition Theorem (see for example [AMO93, p. 80]) f can be decomposed into a set
of flows along simple paths from s to ¢ and flows along simple directed cycles. Let f’ be
the flow that consists of only the flows along paths; this flow has the same value as f and
therefore is also a maximum flow. So edge e is used by f’ and must belong to one of the
simple paths from s to ¢, which proves the claim. O

It would seem a natural approach to extend the definition of useful edges in a way that
takes capacities into account. However, such an extension is not straightforward. Let a
simple flow be a flow that can be decomposed into a set of flows along simple paths from
s to t (i.e., there are no directed cycles in its decomposition). A useful edge may be then
defined as an edge that belongs to at least one maximum simple flow. However, we will not
pursue this alternative definition.

The characterization of a useful edge in Lemma 2 can be used to give yet another char-
acterization.

Lemma 3 An edge e = (v,w) is useful if and only if there exist vertez-disjoint paths P
from s to v and P, from w to t.

'In this paper, we will never consider paths that are not directed, and will therefore drop “directed” from
now on.

Proof: Assume e is useful, thus there exists a simple path P from s to ¢ that uses e. We
can break this path into two paths by removing e from it, and these are the two desired
paths, which are vertex-disjoint because P is simple. Conversely, if we have the two paths
P, and P, then by adding e to them, we obtain a simple path from s to ¢ containing e. O

With this observation, we can show that the problem of finding useless edges is hard in
general. Namely, Fortune, Hopcroft and Wyllie showed that it is NP-hard to test, given
four distinct vertices si, s9,t1,% in a directed graph, whether there are two vertex-disjoint
simple paths connecting s; with ¢; and sy with t5, respectively [FHW80]. This, by the above
characterization, corresponds exactly to our problem, except that we need to add an edge
(t1, $2). Adding this edge cannot make the problem easier, because by vertex-disjointness
condition none of the desired paths could use this edge anyway. Hence, testing whether a
given edge is useful is NP-complete.

Since the problem is NP-complete, we simplify it in two ways:

e Find edges that are clearly useless, without guaranteeing that all useless edges will be
found. In particular, in Section 2 we will give a number of conditions under which
an edge is useless. For each of them we give an algorithm how to find all such edges.
These algorithms are increasingly more complex.

e Restrict our attention to planar graphs without clockwise cycles. We present in Sec-
tion 3 an O(n) time algorithm to test whether a given edge is useless.

We conclude in Section 4 with open problems.

2 Finding some edges that are useless

As proved above, an edge (v, w) is useless if and only if there are two vertex-disjoint paths
P; from s to v and P; from w to t. Unfortunately, it is NP-complete to test whether an edge
is useless. We will therefore relax this characterization of “useless” in a variety of ways as
follows:

e We say that an edge e = (v,w) is s-reachable if there is a path from s to v, and
s-unreachable otherwise.

We say that an edge e = (v,w) is t-reachable if there is a path from w to t, and
t-unreachable otherwise.

e We say that an edge e = (v,w) is s-and-t-reachable if it is both s-reachable and -
reachable, and s-or-t-unreachable otherwise.

e We say that an edge e = (v,w) is s-useful if there is a simple path from s to w that
ends in e, and s-useless otherwise. (Note that if e is s-reachable, then there always
exists a path from s to w that ends in e, but it may not be simple because it may use
w twice.)

We say that an edge e = (v, w) is t-useful if there is a simple path from v to ¢ that
begins with e, and t-useless otherwise.

e We say that an edge e = (v, w) is s-and-t-useful if it is both s-useful and t-useful, and
s-or-t-useless otherwise.

Notice that each edge that is “useless” according to some of these definitions, is clearly
useless according to Definition 1. Unfortunately, even an s-and-t-useful edge is not necessarily
useful. In Figure 1, we give an example of an edge e that is useless, but that is both s-useful
and t-useful. One can easily verify that any paths P; from s to v and P; from w to ¢ must
CrOss.

We v

J |
t

S

Figure 1: Edge e is s-useful and ¢-useful, but useless.

We study for each of these concepts how to detect such edges in the following subsections.

2.1 s-reachable edges

Recall that an edge e = (v, w) is s-reachable if there exists a path from s to v. It is well-
known (see e.g. [AMO93, p. 73|) that such edges can be detected with a directed search
from s. If we reach vertex v during this traversal, then e is s-reachable, otherwise it is
s-unreachable. Thus, we can find all s-unreachable edges in O(m + n) time.

Once we have detected (and removed) s-unreachable edges, the graph is surely connected.
Hence from now on we will assume that the input graph is connected.

2.2 s-and-t-reachable edges

Testing whether an edge is t-reachable is as easy as testing whether it is s-reachable: all we
need to do is to perform a depth-first search, starting from ¢, in the reverse graph, i.e., the
graph with all edge-directions reversed.

However, the question arises whether removing ¢-unreachable edges could ever make
another edge s-unreachable, hence forcing us to start over. As we show now, this is not the
case:

Lemma 4 Let G be a network, let G' be the network that results from removing all s-
unreachable edges in G, and let G" be the network that results from removing all t-unreachable
edges in G'. Then all edges in G" are s-and-t-reachable.?

2This lemma might seem quite trivial. However, as we will see later, the equivalent statement does not
hold for s-and-t-useful edges, and hence this lemma is not completely obvious.

Proof: Let e = (v, w) be an edge in G”. Since e was not removed when computing G’ from
G, it was s-reachable in G. So in G there exists a path P; from s to v. All edges on Py also
belong to G’, because these edges are all s-reachable in G' by using path P;.

Since e was not removed when computing G” from G’, it was t-reachable in G'. So in
G’ there exists a path P, from w to t. All edges on P, also belong to G”, because these
edges are all t-reachable in G’ by using path P,. So P, belongs to G”, which means that e is
t-reachable in G”.

Let ' = (v',w’) be any edge in Ps. Since both P, and P; belong to G, we can combine
them with (v, w) to obtain a path from w’ to ¢ in G’. Therefore, €’ is t-reachable in G’, and
will also belong to G”. So P, belongs to G”, which means that e is s-reachable in G”. O

Hence, to obtain a graph for which all edges are s-and-t-reachable, we simply need to
run two depth-first-searches, one from s in the input graph, and one from ¢ in the reverse
graph. This takes O(m + n) time.

2.3 s-useful edges

Recall that an edge e is s-useful if there exists a simple path starting at s and using e, and
s-useless otherwise. Note that not every s-reachable edge (v, w) is s-useful, because it might
be that all paths from s to v must go through w. Figure 2 shows an example of an edge that
is s-reachable but s-useless.

Figure 2: Edge e is s-reachable and ¢-reachable, but s-useless and ¢-useless.

On the other hand, this is the only way that an s-reachable edge could be s-useless. More
precisely, an edge e = (v, w) is s-useful if and only if there is a path from s to v that does
not pass through w.

With this observation, it is very simple to determine s-useless edges: for every vertex
w, remove w from the graph and perform a depth-first search from s. Afterwards we can
check for every edge e = (v, w) whether v is still reachable (and therefore whether edge e is
s-reachable in the original graph). This algorithm takes O(m) time per vertex, and hence
O(mn) time total.

We will improve on the time complexity of this simple algorithm, and present an algo-
rithm to find all s-useless edges in O(mlogn) time. To achieve this asymptotic bound, the
algorithm uses two data structures: interval trees and dynamic trees. We first briefly review
these two structures.

Interval trees An interval tree is a structure to store intervals whose end-points belong to
some fixed set X of n points. Interval trees are used frequently in computational geometry
and details of their implementation can be found for example in [PS85]. It is possible to do
the following operations in O(logn) time:

e Insert(a,b) inserts interval (a,b) to the tree where a,b € X, a < b.

e Delete(a,b) deletes interval (a,b) from the tree (assuming that interval (a,b) was
inserted before).

e Covered(z) returns true if there is an interval (a, b) in the tree with a < z < b.

Furthermore, an interval tree can be initialized in O(n) time as an empty tree.

Dynamic trees A dynamic tree stores a collection of vertex-disjoint rooted trees on a
fixed set of n vertices with weights on the edges. They were first introduced by Sleator and
Tarjan [ST83], and have many applications in graph algorithms. The following operations
are supported by dynamic trees in O(logn) time:3

e Link(u,v,z) inserts a new edge (u,v) with weight x. It is assumed that u was a root
before. Vertex v now becomes the parent of u.

e Change_value(u,z) changes the weight of the edge from u to its parent to be z. It is
assumed that v is not a root.

e Min_value(u) returns the minimum weight of an edge on the path from u to the root
of the tree containing u. It is assumed that v is not a root.

Furthermore, a dynamic tree consisting of n isolated vertices can be initialized in O(n) time.*

2.3.1 Overview of the algorithm

Our algorithm works by doing three traversals of the graph. The first traversal is simply a
depth-first search starting in s. Edges not examined during this search are s-unreachable,
hence s-useless, and can be removed immediately. We will not consider such edges in the
following.

Let T be the depth-first search tree computed in the first traversal. Let v{,vo,..., v, be
the vertices in the order in which they were discovered during the depth-first search. Let the
DFS-number num(v) be such that num(v;) = i.

A depth-first search of a directed graph divides the edges into the following categories.

e Tree edges are the edges included in the DFS-tree 7.
e Back edges are the edges leading from a vertex to an ancestor.

e Forward edges are the edges leading from a vertex to a descendant that is not a
child.

3Two versions of dynamic trees algorithms are presented in [ST83]; the simpler one achieving amortized
complexity O(logn) per operation is sufficient for our purposes.

4The data structures presented in [ST83] support many more operations than are needed in our algorithm.
Also, it is possible to modify our algorithm in such way that Change_value is not needed. However we were
not able to find a simpler structure supporting Link and Min_value operations in O(logn) time.

e Cross edges are the edges leading from a vertex to a vertex in a different subtree.

By properties of a depth-first search, such edges always lead to a vertex with a smaller
DFS-number.

See Figure 3 for an illustration.

Figure 3: Types of edges created by a directed depth-first search. Tree edges are solid. Edge
e1 is a back edge, e is a forward edge and e3 is a cross edge.

In the second traversal we compute for each vertex v a value detour(v), which roughly
describes from how far above v we can reach v without using vertices in the tree in between.
The precise definition is as follows:

Definition 5

o Ifu and v are two vertices, and u is an ancestor® of v in the DFS-tree, then denote
by T(u,v) the vertices in the path between u and v in the DFS-tree (excluding the
endpoints), and let T (u,v] be T (u,v) U {v}.

o Assume that verter u is an ancestor of verter v. A path from u to v will be called a
detour if it does not use any vertices in T (u,v). (We allow u = v, in case of which
any path from v to v is a detour.)

e For an edge e = (w,v), we denote by detour(e) the minimum value i for which there
exists a detour from v; to v that uses edge e as its last edge. (Note that a detour can
start only in a vertex v; that is an ancestor of v.)

e For a verter v, we denote by detour(v) the minimum value i for which there erists a
detour from v; to v. In particular therefore, detour(v) is the minimum of detour(e)
over all incoming edges e of v.

This definition is illustrated in Figure 4.
In the third traversal we finally compute for each edge whether it is s-useless or not. The
second and third traversal are non-trivial and will be explained in more detail below.

5A vertex v is considered to be an ancestor of itself.

Figure 4: Detours in a graph. The DFS-tree is shown with solid lines. Every edge e is
labeled by detour(e).

2.3.2 The second traversal

We compute detours by scanning vertices in reverse DFS-order. Let us assume that we
already know detour(v;) for all j > num(v) and we want to compute detour(v). In particular
therefore, we want to compute detour(e) for all incoming edges e of v. We distinguish cases
by the type of e:

e ¢ = (w,v) is a tree edge or a forward edge. We must have detour(e) < num(w),
because e itself is a path from w to v, and w is an ancestor of v. On the other hand, for
any ancestor v; of v with ¢ < num(w), any path from v; to v using e must use vertex
w which belongs to T'(v;, v). Hence, detour(e) = num(w).

e ¢ = (w,v) is a cross edge or a back edge. We give the formula for computing
detour(e) in the following lemma.

Lemma 6 Let e = (w,v) be a cross edge or a back edge, and let a be the nearest common
ancestor of v and w (a = v if e is a back edge). Then

detour(e) = min detour(u). (1)
u€eT (a,w]
Proof: Let d = minyep(a,uw) detour(u). Since e is a cross edge or a back edge, w is not
an ancestor of v, so a # w and T(a,w] contains at least one vertex. In particular, T'(a, w]
contains a child z of a, which has detour(z) < num(a); therefore d < detour(z) < num(a).

Let u be a vertex in T'(a, w] that achieves the minimum in Equation (1), so there exists
a detour from vy to u. By d < num(a), vertex vy is an ancestor not only of u, but also of
a, and therefore also of v. We can obtain a detour P from vy to v using e as follows: start
with the detour () from v,y to u, then follow tree-edges from u to w, and finally follow edge
e. See the left picture of Figure 5.

We claim that @ — {vg} does not contain a vertex b with num(b) < num(u). Assume to
the contrary that @@ — {vg} contains such vertex and let b be the last such vertex on path
@ — {va}. Let (b,1') be the next edge in @, so num(b’) > num(u). By num(u) > num(b),
this implies that (b,0') is a tree edge or a forward edge, and in particular ¢’ is a descendant
of b.

Since b is a descendant of b, all vertices z with num(b) < num(z) < num(b') are also
descendants of b. In particular therefore u is a descendant of b and b is an ancestor of u. But
b cannot belong to T (vg4, u), because @ is a detour from vy to u. It also cannot be a proper
ancestor of v,, because otherwise the path () restricted from b to v would be a better detour
than @. Finally by assumption b # vg4, so we have a contradiction.

This claim shows that none of T'(vg,v) can belong to @ (all vertices in T'(vg,v) have
DFS-number smaller than num(u)), so P is indeed a detour for e and detour(e) < d.

On the other hand, let detour(e) = num(x). Observe that T'(a,w] U (w,v) is a detour
from a to v since w is not an ancestor of v; in particular therefore num(z) < num(a).
If num(xz) = num(a), then by num(a) > d we have detour(e) > d as desired; so assume
num(z) < num(a). Let P be the detour from z to v that ends with edge e = (w,v). Then
P' = P — {v} avoids all vertices in T'(x,a] C T(z,v]. Let y be the first vertex of P’ in
T'(a,w]; this must exist since w € P’. Then P’ defines a path from x to y that avoids all
vertices in T'(z,y) = T(z,a] UT(a,y). In particular therefore detour(y) < num(z), and
d < detour(y) < detour(e) as desired. See the right picture of Figure 5. O

Figure 5: Computation of detour(e) for a cross edge. The case of a back edge is similar.

Using this lemma, we can compute the detour-values during the second traversal. We
use dynamic trees, which we first initialize to a set of n isolated vertices, and then insert the
tree edges, with weight oco. This takes O(nlogn) time.

Now we process the vertices in reverse DFS-order (i.e., from v, to v;). During this
computation, we will change the weight of the edges. More precisely, after v;, j > 1, has
been processed, we will set the weight of the edge connecting v; to its parent to have weight
detour(v;).

To compute detour(v;), we compute detour(e) for all incoming edges e of v; and take the
minimum. We compute detour(e) for e = (w, v;) as follows: If e is tree edge or forward edge
then simply detour(e) = num(w). Otherwise, we need to compute

detour(e) = min detour(u),
uw€T (a,w)
where a is the least common ancestor of v and w. Note that by the properties of a depth-
first search we have num(a) < num(v;) = i and num(u) > num(v;) = i for all u € T'(a, w).
Therefore all edges in T'(s,a) have weight oo, while all edges in T'(a, w) reflect the detour-
values. Thus min,ep(q,] detour(u) is the same as the minimum along the path from w to s.
In particular, we need not compute the least common ancestor to find the detour-value, but
can find it with one call to Min_Value. Hence we can determine detour(e) in O(logn) time,

9

Figure 6: Example of the second traversal. The figure shows the values of the tree edges
stored in dynamic trees structure at the time of processing node v3. Note that Min_Value(v;)
returns 1 (as a minimum of 0o, 2, 1) and therefore for edge e = (v7, v3) we have detour(e) =1
and this will be also value of detour(vs).

and detour(v;) in O(deg(v;)logn) time. Finally, we need to update the weight of the edge
from v; to its parent, which takes O(logn) time.

Altogether we need O(n) time for initialization of dynamic trees structure, O(nlogn)
time for initially inserting tree edges with infinite weight, and O(deg(v) logn) time for each
vertex v. Altogether, this traversal therefore takes O(mlogn) time.

2.3.3 The third traversal

In the third traversal, we determine for each edge e = (v, w) whether it is s-useful. If e is a
tree edge, a forward edge or a cross edge, then the path from s to v in tree T followed by e is
simple and e is s-useful. Thus we only consider back edges, and need the following lemma.

Lemma 7 Let e = (v,w) be a back edge. Then e is s-useful if and only if for some u €
T (w,v] we have detour(u) < num(w).

Proof: Assume first that there is a vertex u € T'(w,v| with d = detour(u) < num(w).
Then the detour P from v, to u does not use w € T'(vg,u). Let P’ be the path that consists
of following tree edges from s to v,, then P, and then tree edges from u to v. This path
does not use w, hence there exists a simple path from s to v that does not use w, and e is
s-useful.

Conversely, assume that e is s-useful, hence there exists a path P from s to v that does
not use w. Let u be the first vertex on P that belongs to T'(w, v] (it might be v), and let vy
be the last vertex before v on P that is an ancestor of u (it might be s). Then vy ¢ T'(w, v]
(by definition of u), and vy # w (because w ¢ P), so vy is an ancestor of w. Also, the part
of P from v, to u does not use any ancestor of u, and in particular no vertex of 7'(v4, u), so
is a detour for u. We conclude that detour(u) < d < num(w). O

To actually determine the s-useful edges, we use interval trees, where the endpoints of
intervals are in {1,2,...,n}. We perform yet another depth-first search (with exactly the
same order of visiting vertices). When reaching vertex v, the interval tree contains intervals
of the form (detour(u), num(u)) for all ancestors u of v. We add interval (detour(v), num(v))
into the tree. When we retreat from v, we delete (detour(v), num(v)) from the interval tree.
This takes O(logn) time per vertex.

Assume now we are currently processing vertex v. For each back edge (v, w) we want to
check whether there is a vertex x € T(w,v] with detour(z) < num(w). But this is the case

10

if and only if detour(z) < num(w) < num(z) and z is an ancestor of v. But the interval
(detour(x), num(z)) is stored in the interval tree for all ancestors of v; thus edge e = (v, w)
is s-useful if and only if Covered(num(w)) returns true. This takes O(logn) time per back
edge, and hence O(mlogn) time total.

Theorem 8 All s-useless edges can be found in O(mlogn) time.

The complete algorithm is given in Figure 7.

Main Program
1. Compute the DFS-tree T' and DFS-numbers

2. Initialize a dynamic trees structure DT with the set of vertices {v1,va,..., v}
For each e = (v,w) € T do
DT.Link(w, v, c0)
For vy, vp—1, ..., v1 do
Compute_detour(v;)
DT.Change_value(v;, detour(v;))

3. Initialize an interval tree IT with set of endpoints {1,2,...,n}
Visit(s)
procedure Compute_detour(v) procedure Visit(v)
detour(v) + oo IT.Insert(detour(v), num(v))
For each edge e = (w,v) do For each edge e = (v,w) do
If e is a tree edge or a forward edge then If e is a tree edge then
detour(e) < num(w) Visit(w)
If e is a back edge or a cross edge then If e is a back edge then
detour(e) «— DT.Min_value(w) If IT.Covered (num(w)) = false then
detour(v) + min(detour(v), detour(e)) Mark e as useless

IT.Delete(detour(v), num(v))

Figure 7: Pseudocode of algorithm for finding s-useless edges in O(mlogn) time

2.4 s-and-t-useful edges

Recall that an edge e is s-or-t-useless if it is s-useless or t-useless. In the previous section
we have shown how to find all s-useless edges in O(mlogn) time. The algorithm can be
adapted easily to find all t-useless edges, simply by reversing the direction of all edges in the
graph and using vertex ¢ instead of s. Therefore the following lemma holds.

Lemma 9 All s-or-t-useless edges of a graph can be found in O(mlogn) time.

Surprisingly so, this lemma does not solve the problem how to obtain a graph without s-
or-t-useless edges. As shown in Figure 8, removing all s-or-t-useless edges from graph G may
introduce new s-or-t-useless edges. More precisely, removing t-useless edges may introduce
new s-useless edges and vice versa.

To obtain a graph without s-or-t-useless edges we therefore need to repeat the procedure
of detecting and removing s-or-t-useless edges until no such edges are found. The question

11

€1 €2

Figure 8: Edge e; is s-and-t-useful, but edge e, is t-useless. After removing ey, edge e;
becomes s-useless.

arises how many iterations are needed. Clearly, each iteration removes at least one edge,
which gives O(m) iterations and O(m?logn) time. Unfortunately, Q(n) iterations may also
be needed. Figure 9 shows a graph with 3k + 2 vertices and 7k — 1 edges that requires 2k
iterations. Each iteration removes one edge.

Figure 9: Construction of a graph with 3k + 2 vertices and 7k — 1 edges that requires 2k
iterations. (a) The graph for £ = 3. (b) The graph for higher £ can be obtained by
repeatedly replacing the shaded triangle with the depicted subgraph.

We conjecture that O(n) iterations always suffice, but this remains an open problem.
One would expect that in practice the number of iterations would be small, and hence this
algorithm would terminate quickly. Another open problem is to develop an algorithm to find
at once, without iterations, all edges that need to be removed to obtain a graph without
s-or-t-useless edges.

3 Finding useless edges in planar graphs

Recall that an edge e = (v, w) is useful if there are vertex-disjoint paths P; from s to v and
P, from w to t. As mentioned in the introduction, it is NP-complete to test whether a given
edge is useful in a general graph. By a result of Schrijver [Sch94| the problem is solvable
in polynomial time in planar graphs. More precisely, Schrijver showed that the problem of
finding k disjoint paths between k given pairs of sources and sinks in a planar directed graph
is solvable in polynomial time. However, he did not study the precise time complexity of his
algorithm, which seems to be high.

12

It should also be noted that if all sources and sinks of the k£ paths to be connected are on
one face, then the problem can be solved in O(n) time [RWW96]. However, in our problem
the vertices s, v and t need not have any faces in common. Hence, none of the previous
algorithms is applicable.

We present an algorithm finding in O(n?) time all useless edges in a planar graph. Our
algorithm assumes that a fixed planar embedding is given such that ¢ is on the outerface and
the graph contains no clockwise cycles. Not all planar graphs have such an embedding, but
after fixing arbitrary planar embedding with ¢ on the outerface it is possible, in O(nlogn)
time, to modify graph so that maximum flow is not changed and all clockwise cycles are
removed (see [KNK93|). Therefore in general our algorithm finds for any planar graph a
planar graph with the same maximum flow not containing useless edges.®

This algorithm is unfortunately too slow to be relevant for maximum flow problems.
Removing all useless edges takes O(n?) time, while a maximum flow problem can be solved
in subquadratic time for planar graphs.” Still we believe that the problem is interesting
enough in its own right to be worth studying.

The following notation will be useful later: Assume that P = wy,...,wy is a path. We
denote by Plw;,w;| (i < j) the sub-path of P between vertices w; and w;. We denote by
P(w;,w;) (¢ < j) the sub-path of P between vertices w; and w; excluding the endpoints.
Note that this sub-path might consist of just one edge (if i = j — 1).

The crucial ingredient to our algorithm is the following observation, which holds even if
the graph is not planar.

Lemma 10 Let e = (v,w) be an edge, let Py be a simple path from s to v and let P; be a
simple path from w to t. If P, and P; have vertices in common, then there exists a simple
directed cycle C that contains e such that some vertex x € C' belongs to both P; and P;.

Proof: Let z be the last vertex on P, that also belongs to P;, this exists by assumption.
We claim that C' = Pz, v] U (v, w) U Pyw, z] is the desired cycle. Clearly, C contains e and
x. It is directed, because P; is directed towards v and P, is directed away from w. Finally,
it is simple, because x was chosen as the last vertex of P, that also belongs to P;. O

We will use the contrapositive of this observation: Assume that we have paths P, and
P,, and they do not have a common vertex on any directed cycle containing e. Then P, and
P, are vertex-disjoint.

Unfortunately, edge e may belong to many different directed cycles. But here is where
planarity helps: we will show that we have to check only one directed cycle containing e,
which is in some sense the “biggest” cycle containing e. To define this cycle, we use the
concept of a right-first search: perform a depth-first search, and when choosing the next
outgoing edge for the next step, take the counter-clockwise next edge after the edge from
which we arrived.

6This is useful for flow algorithms that require input not containing useless edges or that might be
simplified if it is known that such edges do not exist. One example of such algorithm is Weihe’s algorithm
[Wei97] that finds maximum flow in O(nlogn) time, provided that the input graph is planar and fulfills
three more assumptions, one of which is that it does not contain s-or-t-useless edges.

"See for example O(n®/2logn) algorithm by Johnson and Venkatesan [JV82].

13

Definition 11 The rightmost cycle containing edge e = (v, w) is obtained as follows: per-
form a right-first search starting at w with the first outgoing edge (in counter-clockwise order)
after e, and stop when we reach v for the first time. The rightmost cycle is then the path in
the DFS-tree from w to v, together with edge e.

Observe that the rightmost cycle containing e might not be defined. This happens if and
only if there exists no directed cycle containing e. However, in this case by Lemma 10 edge
e is useful if and only if it is s-and-t-reachable, which can be tested easily. So we assume for
the remainder that the rightmost cycle C is well-defined, and it must be counter-clockwise
because by assumption there are no clockwise cycles in the graph.

Enumerate C, starting at w, as w = ¢, ¢9,...,cx = v. Cycle C defines a closed Jordan
curve, and as such has an inside and an outside. We say that a vertex is inside (outside) C' if
it does not belong to C and is inside (outside) the Jordan curve defined by C. The following
observation will be helpful later:

Lemma 12 For any 1 <1 < j <k, any simple path P from c; to c; must either contain a
vertex # ¢;,¢; in C or P(c;, c;) must be inside C.

Proof: Let P be a path between two vertices ¢;, ¢; with ¢ < j. Let (¢;,) be the first edge
after ¢; on P. If z € C then the lemma certainly holds, so assume z ¢ C and study the
counter-clockwise order of edges around ¢;. If this order is (¢; 1, ¢), (¢, cit1), (¢, x), then
(¢i, x) is inside C because C' is counter-clockwise. If P ever reaches the outside of C, then
by planarity it must contain some other vertex of C, which proves the claim. See the left
picture of Figure 10.

If the order is (¢;—1,¢), (¢, @), (¢i, Cit1), then during the right-first search, we explored
(¢i, x) before exploring (c¢;, ¢;+1). Because we did not use (¢;, x) for C, this means that there

is no path from x to w not using any of ¢y, ..., ¢;. Hence, path P[z, ¢;] must contain one of
ci,...,¢c;, and by simplicity of P, it must be one of c;,...,c;_1. This proves the claim. See
the right picture of Figure 10. O

v =Cp w=c1 v =cCp w = 1

Figure 10: A path from ¢; to ¢;, ¢ < 7 must either be inside C' or contain other vertices of C'

We may assume that s has no incoming and ¢ has no outgoing edges (no such edge belongs
to a simple path from s to ¢ and therefore they are all useless and can be ignored). Therefore

14

s,t ¢ C. On the other hand, both v and w belong to C. Hence, for any path from s to v
there exists a first vertex z # s on C; we mark vertex = as an entrance. Similarly, for any
path from w to ¢ there exists a last vertex y # ¢ on C'; we mark y as an exit.

We show now that we can determine whether e is useful from the markings as entrances
and exits on C alone.

Lemma 13 If there is an exit ¢; and an entrance ¢; with 1 <1 < j <k, then e is useful.

Proof: Let P be a path from s to v that marked c; as an entrance and let P/ be a
path from w to t that marked ¢; as exit. Let Py = Pl[s,c;] U {¢j,...,cx = v} and let
P, ={w=oc,...,c;} UPc,t]. Clearly, these are paths from s to v and from w to ¢; we
only need to show that they are vertex-disjoint.

By definition of entrance and exit, Pl[s,¢;) and P/(c;,t] contain no vertices of C, so
they are vertex-disjoint with {c;,..., ¢} and {ci,..., ¢}, respectively. Also, by ¢ < j paths
{c1,...,ci} and {cj, ..., cx} are vertex-disjoint. So all we really need to show is that P/(c;, t]
and P![s,c;) are vertex-disjoint.

Assume to the contrary that they have vertices in common, and let x be the first vertex
of P/(c;,t] that also belongs to Pl[s,c;). See Figure 11. Let P* = P/(c;,z] U Pi[z,c;). Then
P* is simple by choice of z. Also, it connects ¢; and ¢;, 7 < j, and it does not contain vertices
of C'. Hence, P* and in particular therefore z is inside C' by Lemma 12. But, vertex ¢ is
outside C' because vertex t belongs to the outer-face and ¢ ¢ C. Hence P/[z,t| connects a
vertex inside C' with a vertex outside C' without containing vertices of (', a contradiction to
planarity. O

v w

Figure 11: The remainders of the paths from s and to ¢ are vertex-disjoint by planarity.
Path P, is marked with solid, path P, is marked with dashed lines.

Now we show the reverse direction.

Lemma 14 Let jyq, be mazimal such that c;,,, s an entrance, and let tp;, be minimal
such that c; . s an exit. If jmar < tmin, then e is useless.

Proof: Assume to the contrary that e is useful, and let P, and P; be the vertex-disjoint
paths from s to v and from w to ¢, respectively. Let c;« be the entrance defined by P;, and
let ¢;« be the exit defined by P;. By assumption and vertex-disjointness, we have j* < ¢*.

15

Path P, must use ¢; = w, so by vertex-disjointness ¢; ¢ P;. Let j > 1 be minimal such
that ¢; € Py; we have 1 < 7 < 7% <",

Path P; uses the vertices ¢; and c¢;«, but not ¢; € P by vertex-disjointness. Hence path
P, cannot “walk along” C to get from ¢; to ¢;» by 1 < 7 < ¢*, but must leave C somewhere
and then get back to it. Let cg be the first vertex of P, that belongs to C' and satisfies j < 3,
and let ¢, be the last vertex before cz (i.e., of Pi(v,cs)) that belongs to C. See Figure 12.
By definition of 5 we have 1 < o < j < 3, and by definition of o path P;(c,, cs) contains no
vertices of C.

Path P, uses the vertices ¢; and ¢; = v, but not cg. Hence path P cannot “walk along”
C to get from ¢; to ¢, by j < B < k, but must leave C' somewhere and then get back to it at
a vertex that is not between c, and cg. Let c5 be the first vertex of P, after ¢; that belongs
to C with 0 ¢ [a, §]. Actually, we know that 6 > 3, because by o < j and definition of j
Py contains no vertex ¢; with [< . Let ¢, be the last vertex of P(s, c;) that belongs to C.
See Figure 12. By definition of § we have o < v < 3, and by definition of y path Ps(c,, ¢s)
contains no vertices of C.

N ,” ------ Te-a
tot f NG >
rom s = A
\\ Y
e
¢
C
é
.
» € 'S =
V= Ck w =7 V= cCk w =7

Figure 12: Illustration of the definition of i*, j*, j, a, 5,7 and §. Path P; has solid, path P;
has dashed lines. We intentionally omitted s, as to show the independence of this proof with
regards to whether s is inside or outside C.

Now C U Py[cq, cg] U Ps[c,, c5] forms a subdivision of Ky by a < v < 8 < 6. But by
Lemma 12, P;(cq,) and Ps(c,, c5) are both inside C because they contain no other vertex
of C. Therefore, C is the outer-face of this subdivided K,, which implies that K, is outer-
planar. This is a contradiction. O

Hence, if we are given a planar network with ¢ on the outer-face and without clockwise
cycles, then to find out whether e = (v, w) is useful, we proceed as follows:

e Perform a right-first search from w, starting with the counter-clockwise first outgoing
edge after e.

16

e When reaching v, stop and compute the rightmost cycle C.

e Perform a depth-first search from s. Every time a vertex on C is reached, mark it as
entrance and retreat.

e Perform a depth-first search from ¢ in the reversed graph. Every time a vertex on C' is
reached, mark it as exit and retreat.

e Scan the vertices of C' in counter-clockwise order. If we find an exit strictly before an
entrance, then e is useful, otherwise it is useless.

Clearly, this algorithm takes O(m) = O(n) time.

Theorem 15 Testing whether e is useless in a planar graph with t on the outerface and
without clockwise cycles can be done in O(n) time.

4 Conclusion

In this paper, we studied how to simplify flow networks by detecting and deleting edges that
are useless, i.e., that can be deleted without changing the maximum flow. Detecting all such
edges is NP-complete. We first studied how to detect at least some useless edges. More
precisely, we defined when an edge is s-useless, and showed how to find all s-useless edges
in O(mlogn) time. This improves on the simpler technique of removing all s-unreachable
edges (which can be found in O(m) time), because not all s-useless edges are s-unreachable.

We also studied other types of useless edges, in particular s-and-t-useless edges, and
useless edges in planar graphs without clockwise cycles. While for both types we give algo-
rithms to find such edges in polynomial time (more precisely, O(m?logn) and O(n?)), these
results are not completely satisfactory, because one would want to find such edges in time
less than what is needed to compute a maximum flow per se. Thus, we leave the following
open problems:

e We gave an example of a graph where computing s-or-t-useless edges takes €(n) rounds,
hence our technique cannot be better than O(mn logn) time, which is too slow. Is there
a “direct” approach to detect a subgraph without s-or-t-useless edges that has the same
maximum flow?

e Can our insight into the structure of useless edges in planar graphs be used to detect
all useless edges in a planar graph in time O(nlogn) or even O(n)?

e Currently, our algorithm for useless edges in planar graphs works only if the planar
graph has no clockwise cycles. While all clockwise cycles of a planar graph can be
removed without changing the maximum flow, it would be more satisfactory to have
an algorithm that does not rely on there being none. Does such an algorithm exist?

Finally, studying how to detect edges that are useless under a given set of capacities
remains an open problem.

17

References

[AMO93]

[BV99)

[FHWS0]

[JV82)

[KNK93]

[PS85]

[RWWO6]

[Sch94]

[ST83]

[Wei97]

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms and Applications. Prentice Hall, 1993.

Brona Brejovd and Tomas Vinatr. Weihe’s algorithm for maximum flow in planar
graph (project report), Fall 1999. University of Waterloo, Course CS760K.

Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph homeo-
morphism problem. Theoretical Computer Science, 10(2):111-121, February 1980.

Donald B. Johnson and Shankar M. Venkatesan. Using divide and conquer to find
flows in directed planar networks in O(n*?2logn) time. In Proceedings of the 20th
Annual Allerton Conference on Communication, Control, and Computing, pages
898-905, University of Illinois, Urbana-Champaign, 1982.

Samir Khuller, Joseph Naor, and Philip Klein. The lattice structure of flow in
planar graphs. SIAM Journal on Discrete Mathematics, 6(3):477-490, August
1993.

Franco P. Preparata and Micheal I. Shamos. Computational Geometry: An In-
troduction. Springer—Verlag, 1985.

Heike Ripphausen-Lipa, Dorothea Wagner, and Karsten Weihe. Linear-time al-
gorithms for disjoint two-face paths problems in planar graphs. International
Journal of Foundations of Computer Science, 7(2):95-110, June 1996.

Alexander Schrijver. Finding k£ disjoint paths in a directed planar graph. SIAM
Journal of Computing, 23(4):780-788, August 1994.

Daniel D. Sleator and Robert E. Tarjan. A data structure for dynamic trees.
Journal of Computer and System Sciences, 26(3):362-391, June 1983.

Karsten Weihe. Maximum (s, t)-flows in planar networks in O(|V|log|V]) time.
Journal of Computer and System Sciences, 55(3):454-475, December 1997.

18

