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Abstract
A flipturn on a polygon consists of reversing the order of segments inside a pocket of
the polygon, without changing lengths or slopes. Any n-link polygon can be convexified
by performing at most (n — 1)! flipturns. A very recent paper showed that in fact it is
convex after at most n(n —1)/2 flipturns. We give here a lower bound by constructing
a polygon such that if pockets are chosen in a bad way, at least (n — 2)2/4 flipturns
are needed to convexify the polygon.

1 Background

We assume familiarity with polygons and 2D geometry. Assume that P is a 2D polygon
that is not convex. A pocket of P is a set of contiguous links of P such that none of them is
on the convex hull of P, but the two endpoints of the pocket are on the convex hull of P.
Given a pocket, a flip of the pocket consists of reflecting the pocket along the line through
the two endpoints of the pocket. A flipturn consists of reversing the order of links in the

pocket. Thus, if Iy, ..., are the links of the pocket, and Iy, ..., [, are the remaining links
of the polygon, then the polygon that results from doing a flipturn to this pocket consists
of the links lg, lx_1,...,l1,lks1, lgs1, - - -, I, where none of the lengths or slopes of the links

change. See Figure 1 for an example.

Flipturns were mentioned for the first time in a paper by Griinbaum [Grii95]. He reports
that Joss and Shannon (unpublished) observed that any polygon is convexified after applying
at most (n — 1)! flipturns; this follows because every flipturn creates a different permutation
of the links, and no permutation can repeat. Also, Joss and Shannon conjectured that n?/4
flipturns suffice to convexify a polygon. Very recently, Ahn et al. proved that n(n — 1)/2
flipturns suffice to convexify any polygon, and in fact, if the polygon has only £ different
slopes, then k(n — 1)/2 flipturns suffice [ABC*00].

For related concept, and in particular the intricate history of flips (not flipturns) see
[Tou99.

In this note, we provide a lower bound on the number of flipturns needed to convexify a
polygon. More precisely, we construct a polygon such that if flipturns are chosen in a bad
sequence, at least (n — 2)2/4 flipturns are needed to convexify the polygon. The constructed
polygon however has links that are very long (exponentially long in n). We therefore give
another construction, which needs at least (n — 2)(n — 4)/8 flipturns if the flipturns are
chosen in a bad sequence, and where the link-lengths are polynomial in n.
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Figure 1: An example of a flipturn applied to pocket {li,ls,13,l4}. The convex hull is
indicated by a dashed line.

2 A polygon that needs many flipturns

The crucial idea to achieve a lower bound of ~ n?/4 flipturns is to construct a polygon where
convexifying equals sorting by slopes. We choose the slopes and the length of the links of the
polygon in such a way that any flipturn only exchanges two adjacent links of the polygon.
By starting the polygon in a suitably shuffled sequence of links, one can show that we need
roughly n?/4 flipturns.

More precisely, our polygon is defined for any integer £ > 1, and consists of 2k links
(which will encode the sequence of slopes to be sorted) as well as two additional links a and
b (which serve to complete the polygon). The first 2k links will be denoted (in clockwise
order) as Ik, lg—1, lk+1, le—2, - - -, lok—2, 1, log—1, lp. Link I, for j = 0,...,2k — 1, has slope j
and extends 27 units in z-direction, hence j2’ units in y-direction. Link a has a slightly
negative slope (say, —¢ for some ¢ > 0), and link b is vertical. This polygon is illustrated in
Figure 2.

The selection rule that leads to a “bad” sequence of flipturns is very simple: we always
flip the first pocket after link b (in clockwise order). As we will prove formally below, the
follow happens:

e In the first flipturn, we flip the pocket defined by I, ; and [, thus exchange [, and
le_1.

e In the next flipturn, we flip the pocket defined by l;_s and I, ;. In the next flipturn, we
flip the pocket defined by lx_ and l;. In the next flipturn, we flip the pocket defined
by lx_o and l;_;. Thus, we have three flips that deal with segment [;_».

e The next five flipturns all deal with segment [;_3. More precisely, these five flipturns
exchange [_3 (in this order) with lg o, lg11, Ik, lk—1, lp—o-

e This continues. More precisely, for i = 1,...,k we deal with segment [;_; during 27 — 1
flipturns, namely, one flipturn for each exchange with I ; 1,lc1i o2, e ivro, lpiv1-



Figure 2: The polygon for £ = 2, and the general construction (not to scale). Numbers
denote slopes.

e The total number of flipturns therefore is at least

k

Y (2i—1)=k*= (n—2)%/4.

i=1
Before we prove this claim, we need an observation regarding slopes.

Claim 1 Let 0 < 8 < a < 2k — 1 be two integers. If we attach segment l, to segment
lg, then the line through the free endpoints of these two segments has slope in the interval
(a—1,0).

Proof: Since we know the slopes and the lengths of these two segments, we can compute
the slope of the line easily; it is

2% + 328 B a2 8 4+ B
20426 2a-F ]
Clearly, this slope is strictly less than «, because 8 < a. Also observe that in order for this
slope to be strictly greater than o — 1, we must have

a2 P4 B>a20f =208 1.

This holds, because 2% > x — 1 for all x > 0. O

To prove what flipturns are happening, we analyze the state of the polygon after each
flipturn. In essence, the sequence of links [; is split into two parts: the first part (which
contains lg_;i1,..., k-1 for some suitable value of ) is sorted by slope, while the second
part (which contains lo, ..., lx_;_1 and lgy, ..., lox_1) is left as it was originally. Link I _; is
somewhere in the first part, and in fact, “walks” from after the last of these links (Ix4;_1) to
before the first of these links (Ix_;,1) with each flipturn. This is illustrated in Figure 3. The
precise statement is as follows:
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Figure 3: Link l;_; “walks” from after link l,; 1 (before j = 0) to before l;_; 1 (after
Jj = 2i — 2) with 2i — 1 flipturns. In the middle figure (which describes the configuration of
the lemma) we also indicate the convex hull with dashed segments.

Claim 2 Assume we have done | flipturns, 0 < | < k%. Let i > 1 be the mazimal integer
such that (1 —1)? <1, and let j =1 — (i — 1)%. Then the polygon has the following form:

lo—ivty —ivos - s lppizj—oy  lepijtolo—is  lkwiegs ooy bopioy logit,

lotisle—i1,  leyiprsle—im2, ooy lop—o,li,  logp—1,lo, a,b.

Proof: We prove this claim by induction on /. Assume first that [ = 0, so we have not
done any flipturn yet. For [ = 0 we have + = 1 and 5 = 0. The claim states that the polygon
has the form

Iy lk—1, lk+1, le—2, .. s log—2, 11, log—1, 1o, @, b,

which is exactly the initial configuration of the polygon.

Now assume that the claim holds after we have done [ > 0 flipturns. For any segment
s that does not have infinite slope, define p;(s) to be the left endpoint of s and p,(s) to be
the right endpoint of s. We claim that the convex hull of the polygon after doing the /th
flipturn consists of the following line segments:

Uemit1y le—it2s - o betimje2,  Pillktimjm1)Pr(lk—i)s  lktizgs - - s lotiz2, ki1,

Pi(lksi)pr (lk—ic1),  Dilleriz)pr(l—iz2), <o, Dilloag—2)pr (1), Di(lok—1)pr(lo), @, b.

See also the middle picture of Figure 3. By Claim 1 the slopes of these line segments are
k—itl,k—i+2,... k+i—j—2, € (k+i—j—2,k+i—j—1), k+i—j, ..., k+i—2,k+i—1,

€ (k+i—1,k+i), € (k+i,k+i+1), ..., €(2k—3,2k-2), € (2k—2,2k—1), —¢,o00.

Thus, the slopes are strictly increasing (except for segments a and b) and these segments
form a convex polygon.



It follows that the clockwise first pocket after link b is the pocket formed by links {41
and [_;. Doing a flipturn on this pocket will exchange the order of the two links.

Now,if j <2i—2,thenl'=1+1=(i—-1?+j+1<(i—1)2+2i—2+1=4¢*is not
a perfect square. Thus we have ' =i and j' = j' + 1 (where primed numbers denote the
number for ' =1+ 1). One verifies easily that the new order of links around the polygon is
exactly as stated, because all that has happened is that link [,_; has moved one link further
towards link b.

If j = 2i—2, then k+i—j+1 = k—i+1, thus after the (I41)st flipturn, link l;_; is the first
link after b. But also, if j = 2i—2, we have I’ = [+1 = (i—1)?+j+1 = (i—1)24+2i—2+1 = 42,
thus i’ =i+ 1 and j* = 0. Again one verifies that the new order of links around the polygon
is exactly as stated. O

In particular, this claim implies that after < k? flipturns the predecessor of [; is some [;
with j > 0, and therefore [y and its predecessor form a pocket. Hence the polygon is not
convex until at least k? flipturns have been done. By k = (n — 2)/2, we have the following
theorem:

Theorem 3 There exists a polygon with n links such that for some bad selection of flipturns,
we need at least (n — 2)?/4 flipturns to convezify the polygon.

3 A smaller polygon that needs many flipturns

The above polygon that needs ~ n?/4 flipturns has one major drawback: the link lengths are
exponential in the number of links. Thus, if we disallow scaling (for example by demanding
that all vertices of the polygon are placed on grid-points), then the polygon has exponentially
big z-coordinates and y-coordinates. Thus in order to store this polygon, one needs Q(n)
bits per link and Q(n?) bits total.

To overcome this problem, we now give another construction of a polygon that needs
many flipturns. This polygon needs only ~ n?/8 flipturns, but in exchange, the link-lengths
are at most quadratic in the number of links. Hence the polygon has polynomially big
z-coordinates and y-coordinates.

The idea for this construction is exactly the same as for the previous polygon. However,
we now make half of the links have slope 0 and length 1; one can then show that it suffices
to make the other links shorter.

More precisely, the second polygon is defined for any integer £ > 1, and consists of 2k + 2
links. The first 2k links will be denoted (in clockwise order) as Iy, s1,la, S2, - - ., lg, sk Link [,
for j =1,...,k, has slope j and extends j units in z-direction, hence 52 units in y-direction.
Link s;, for j = 1,...,k, is horizontal and has length 1. The last two links a and b are as
before, i.e., link a has a slightly negative slope —e¢ and link b is vertical. This polygon is
illustrated in Figure 4.

We prove first the equivalent of Claim 1.

Claim 4 Let 0 < o, 8 < k be two integers. If we attach segment l, to segment sg, then the
line through the free endpoints of these two segments has slope in the interval (o — 1, ).



A

Figure 4: The construction of a smaller polygon that needs many flipturns for £ = 5. We
also show the polygon after four flipturns have been executed, and indicate its convex hull
with dashed lines.

Proof: Since we know the slopes and the lengths of these two segments, we can compute
the slope of the line easily; it is o®/(« + 1), which is clearly < o and > a — 1. O

The equivalent of Claim 2 is as follows:

Claim 5 Assume we have done | flipturns, 0 < 1 < k(k —1)/2. Let i > 1 be the mazimal
integer such that i(i—1)/2 <1, and let j = 1 —i(i—1)/2. Then the polygon has the following
form:

81,82,...,Si_l,ll,ZQ,...,li_j_l, li_]',si, lz’—j—l—l,---:li; li+1,Si+1,li+2,Si+2,...,lk,Sk;,(L, b.

Proof: The proof is near identical to the proof of Claim 2. For [ = 0, we have ¢ = 1 and
j = 0, and the desired configuration is exactly the original configuration. Assume we have
finished [ > 0 flipturns and the configuration is as desired. Using Claim 4, it follows that the
first pocket after b is /;_;, s;, and the next flipturn will exchange /;,_; and s;. Distinguishing
cases by j <i—1 and j =4 — 1, one obtains the result. Details are left to the reader. O

Thus, this polygon cannot be convex before we have done at least k(k — 1)/2 flipturns,
because otherwise s and its predecessor form a pocket. By k = (n — 2)/2, this implies the
following theorem:



Theorem 6 There exists a polygon with n links such that for some bad selection of flipturns,
we need at least (n — 2)(n — 4)/8 flipturns to convezify the polygon. Furthermore, all link-
lengths are polynomial in n.

4 Conclusion

In this note, we have given two constructions of polygons to provide a lower bound on the
number of flipturns needed to convexify a polygon. The first construction needs — with a
bad sequence of flipturns — at least ~ n?/4 flipturns, while the second construction needs —
with a bad sequence of flipturns — at least ~ n?/8 flipturns and has polynomial link-length.

Unfortunately, both constructed polygons can be convexified with only O(n) flipturns
if a good sequence of flipturns is chosen. This leaves the obvious open problem: given a
polygon, is there always a sequence of O(n) flipturns that convexifies the polygon?

Another interesting question is whether we could restrict link-lengths to be constant?
That is, is there a polygon that needs Q(n?) flipturns, and such that, if all vertices are
placed on grid-points, the link-lengths are constant?

References

[ABC*00] H.-K. Ahn, P. Bose, J. Czyzowicz, N. Hanusse, E. Kranakis, and P. Morin. Flip-
ping your lid. Unpublished Manuscript, 2000.

[Grii95] B. Griinbaum. How to convexify a polygon. Geombinatorics, 5:24-30, 1995.

[Tou99]  G. Toussaint. The Erdos-Nagy theorem and its ramifications. In Canadian Con-
verence on Computational Geometry, 1999. See also http://www.cs.ubc.ca/
conferences/CCCG/elec_proc/elecproc.html.



