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Abstract

We consider the applicability (or terminating condition) of the g-analogue of Zeilberger’s algorithm
and give the complete solution to this problem for the case when the given g-hypergeometric term is a
rational function.

1 Preliminaries

The well-known Zeilberger’s algorithm [6, 12] is a useful tool for providing proof strategies for closed-form
identities and for deriving new identities. It is shown in [5, 7, 11] that Zeilberger’s algorithm can be carried
over to the g¢difference case (we name the algorithm hereafter as ¢Z.) As in the case of its difference
counterpart, g2 also has a wide range of applications [9].

Let ¢ be an indeterminate parameter. For a given function F(g",q*), denote by Qn,Qx the gshift
operators on ¢ and g*, resp., defined by Q, F(q",¢*) = F(¢"*1,¢*), Q1 F(¢", ¢*) = F(q", ¢**1).

Let F(q",q*) be a ghypergeometric term of ¢" and ¢*, i.e., the quotients F(g"t1,¢*)/F(q",¢*) and
F(q™,¢**1)/F(q™,¢*) belong to C(q)(q",¢"). For a given F(q",¢*), ¢Z tries to construct a ¢Z-pair (L, G)
consisting of a linear g¢-difference operator with coeflicients which are polynomials of ¢™ over C(q)

L=ay(¢")Q4 + -+ a1(q")Qp +ao(¢")Qy (1)
and a g¢hypergeometric term G(g", ¢*) such that

LF(¢",¢") = G(¢",¢**") — G(¢", ¢"). 2)

Note that a ¢Z-pair does not exist for every ¢hypergeometric term (see Example 1). The question for
what ¢-hypergeometric terms gZ-pairs do exist is not conclusively answered although a sufficient condition is
known. The “fundamental theorem” (see [6, 11]) states that a gZ-pair exists if F(q", ¢*) is a g-proper term,
i.e., it can be written in the form

Fla® k — Hs(cs;q)dsn‘f'bsk an?4+bnk+ck?+dk+en ok 3
(q 4 ) Hs(ws§Q)usn+vskq & ( )

where (¢;q)m = (1 — eq)(1 — ¢eq?)...(1 — cq™), as, bs, us, v are specific integers, ¢,,w, may depend on
parameters, ¢ is either a number or a parameter, and a, b, ¢, d, e are specific integers.
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In this paper we present the conclusive answer to the question of specifying the class of rational functions
F(g", ¢*) that have gZ-pairs or, equivalently, the class of rational functions which, when given as input, allow
gZ to terminate.

Note that the same problem for the difference case has been completely solved in [4]. In fact, after
establishing two properties of the decomposition problem for the g¢-difference case [2] in Section 2, we are
able to use the ideas as developed in [4] to derive an analogous theorem for the applicability of Zeilberger’s
algorithm to rational functions in the ¢difference case.

2 Indefinite summation of rational functions

In this section, we describe the decomposition problem for the ¢difference case [2], and prove a couple of
properties that will be needed in subsequent sections.

For a given F(q*) € C(q)(g*) in reduced form, an algorithm to solve the decomposition problem for the
g-difference case constructs R(q*), H(¢*) € C(q)(g*) such that

F(¢*) = (Qr — 1) R(¢") + H(¢") (4)

where the denominator of H(g*) has the lowest possible degree in ¢*.
By representing H(g*) in the reduced form

f(d*)
9(q%)

one can derive the following property: L

P1. If pi(g¥),p2(q¥) are factors of g(g*) irreducible over €(g), then there does not exist a non-zero
integer h such that p;(¢"**) = pa(q*).

Proof : Let [[;_; »;?(¢*) be the complete factorization of g(g*) over W Assume there exist factors

H(q") = . f(d¥), g(d*) € C(q)[a"], ged(£(d¥),9(d")) = 1,

p1(q*), p2(q*) irreducible over C(q) and a non-zero integer h such that p;(¢"+*) = pa(g*). Without loss of
generality we can assume that h > 0. Rewrite H(¢"*) as

fl(q ) f2(q%) k
Pl (@) B (@) T () 5)
where Hy(¢) = YL, fi(a°)/p0"(d"), £i(a") € Co)la"]
Let r1(g*) = fa(g~ %) /p]? (¢"~1**). Then
ky _ 1 f(d") falg™ %) k
H(q )_ (Qk 1) 1( )+ 71((]’“) + p’zz(qh_l_}_k) +H1(q )

By continuing this process, we obtain the relation:

h k —h+k
> [

H) =@ =1 z:lm T (qqk)) * z;qu(qk) ), wher ©)
ri(q¥) = f2(a%) 1<i<h.

)
This shows that we are able to extract a rational part from H(g*) and the degree of the denominator of
the remaining part is less than that of g(¢*). Contradiction. a



On the other hand, let us consider F(g¥) to be rational summable, i.e., the term H(g*) in (4) vanishes.
Suppose that F(g*) is a proper function, and does not have a pole at zero, then b(¢*) has the following
property: L

P2. If p;(¢*) is a monic factor of b(g*) irreducible over an algebraic closure C(q), then there exist an
irreducible factor pa(g*) of b(¢*) and a non-zero integer h such that

¢ "p1(d"**) = p2(d").
Proof : Consider the partial fraction decomposition of F(¢g¥) w.r.t. the complete factorization of b(g*) over
Clg):
m_ i Bi:
k i oY
i=1j5=1 (q - a’)
Define a; ~ a; iff a; = ¢'a; where [ is an integer. ~ is an equivalence relation on the set {a1,...,am}.

For each equivalence class, let o; be the largest element in the sense that for all elements a; in the same
class, a; = ¢'a; where [ is a non-positive integer. It is shown in [2] that

s 1;
F(¢") = ZZMM(Qk)m’ M;j € C(q)[Qx],s < m.

When F(q*) is rational summable, the operators M;;(Qx) can be written in the form

MZ](Qk) = L’](Qk)(Qk - 1)7 1= 17"'737j - 17---7li7Lij € C(Q)[Qk] (8)

Note that the right hand side of (8) is of order at least 1. As a consequence, each equivalence class has at least
2 elements. Let p1(¢*) = (¢* — @1) be any monic irreducible factor of g(g*) over C(q), where a; uniquely
belongs to the equivalence class represented by «;, 1 < ¢ < s. If a1 # «;, then there exists a negative integer
h such that a; = ¢"a;, and hence there exists an irreducible factor p2(g*) = (¢* — ;) such that

k —h

p2(d*) = (¢* — ¢ "ar) = ¢7"

b1 (qh+k)-

If @1 = «, let o be the order of M;;(Q%), A be the minimum positive integer such that the coeflicient Q3 in

M;; is a non-zero element of C(q). Let h = o0 — A. Then there exists an «, in the equivalence class represented
by a; such that pa(¢*) = (¢* — a2) = (¢* — ¢~ ") = ¢~ "p1(¢"TF). O

3 ¢Z on sum of rational functions
The following Lemma is a generalization of the g-analogue of Lemma 1, Section 2 in [4]:

Lemma 1 Suppose there exist qZ-pairs for Fi, Fa, ..., Fy € C(q)(q", q*). Then there exists a qZ-pair for
F=31F.

Proof : Except for replacing the shift operator by the g¢-shift operator, the proof is exactly the same as
that for Lemma 1, Section 2 in [4] for the case when m = 2. The generalization can be easily obtained by
induction. a



4 Criterion for the existence of a ¢Z-pair for a rational function

The goal of this section is to present a criterion for a given rational function F(g", ¢*) to have a gZ-pair. For
F(q",q*) € C(q)(q", ¢*), denote F(q";¢") as an element of C(g)(¢")(¢*) (sometimes, when fitting, as an ele-
ment of the ring C(q)(¢")[¢*]). We also consider polynomials of ¢* whose coefficients are algebraic functions
of ¢", i.e. they are elements of the ring C(q)(g")[¢*]. Denote these polynomials by p1(g”; ¢*), p2(¢™; ¢*), and
S0 on.

Lemma 2 Let F(q",q*) be a polynomial in ¢*, i.c., F(q",q*) € C(q)(¢")[¢*]. Then there exists a qZ-pair
for F.

Proof : Let F(q";q*) be represented as
Fg":1¢") =) ai(q")(¢")", aild") € Cg)(q")- (9)

For each term F; = a;(g )( ) 1
such that L; F;(¢", ¢*) = (Qr — 1)Gil(q
coefficient ag(g") of F' exists.

Let ao(q") = a01(¢")/ao2(q") where ao1(g"), a02(q") € C(g)[g"]. Set
Lo = ao2(¢" 1) ao01(¢")Qn — a01(¢" T )ao2(q").

We have Loag(¢") = 0 = (Qr — 1)Go(g") for all Go(¢™) € €C(q)(¢™). Hence, there exists a ¢Z-pair (Lo, Go)
such that Loao(q™) = (Qx — 1)Go. a

< ¢ < min (9), there exists a ¢Z-pair (L;, G;) = (1, a; (q”)(qk)i/(qi—l))
nogk). By Lemma 1 a gZ-pair for F exists iff a gZ-pair for the trailing

Now let F(g";¢") be an element from € (¢)(¢", ¢*). One can then extract the polynomial part p(¢”; ¢*) €
C(q)(¢"™)[¢"] from F such that
F(q";:4") = p(a":4") + F*(¢";4")
where F*(qn; %) is a proper rational function. By Lemmas 1 and 2, F has a gZ-pair iff there exists a ¢Z-pair
for F*(q"; q*).
By applying to F*(¢"; ¢*) an algorithm to solve the decomposition problem [2], we can represent F*(¢";¢")
in the form

F*(¢";4") = (Qx — 1)S(a":¢") + T(a"; ¢"),
where S, T € C(q)(¢")(¢"*) are such that the denominator of T'(¢"; ¢*) has the minimal possible degree w.r.t.
q*. For (Qr — 1)S(q", ¢*) we have a ¢Z-pair

(1,S(a", d%)).

By Lemma 1 a gZ-pair for F* exists iff there exists a gZ-pair for T(¢", ¢¥), which can be represented in the
reduced form

T(" ") = % (10)

where f(¢",¢%),9(q", ¢") € C(q)[q", ¢*].

Lemma 3 Let a rational function T(q";q*) of the form (10) be such that g(q";q*) has property P1. Let
L € C(q)[g™, Qn] be such that LT(q";q") is of the form

LT(¢";:4") = V(¢";¢") = alg’;¢) (11)



where a(q™; q%), b(q"; ") are relatively prime elements of C(q)[q", ¢"*], and b(q"; ¢*) has property P2. Then
for any monic factor u(q"™; %) of the polynomial g(q"; ¢*) irreducible over C(q)(q"™) there ewists an irreducible
factor v(q"; q*) ofg(q”; q*) (it is possible that u(q"; ¢*) = v(q™;¢%)) and j,h € Z, j > 0, such that u(q"; ¢*) =
g "v(¢"V;q b

Proof : Note that properties P1 and P2 described in Section (2) are the g-analogue of properties P1 and
P2 in [4]. Consequently, a proof of this Lemma can be directly obtained from the proof of Lemma 2, Section
3 in [4] by simply replacing the shift operator by the g¢-shift operator. a

Lemma 4 Let a rational function T(q";q*) of the form (10) be such that g(q";q*) has property P1. Let
L € C(q)[q", Qn] be such that LT(q";q") is c *) is of the form (11) and b(q",q"*) has property P2. Then all monic
factors of g(q™; q*) irreducible over C(q)(q") are of the form

¢" —v¢™ c€Q,ye€Clg). (12)
Proof : Note that the direction of this proof is the same as that used for Lemma 3 in [4]. Take any factor
p1(q"™;q%) of g(g™; ¢*) irreducible over C(q)(¢"). By Lemma 3 there exist ji, h; € Z, j; > 0, such that

n+ji.

sqh ),

pi(a";q") = a " palg
where pa(q™;¢¥) is a factor of g(g"; ¢*) irreducible over W We can therefore construct a sequence
pi(a";q"), p2(q":4"), pa(d"; ¢%), - -
of factors of g(g"; ¢*) irreducible over W such that for any [ > 1,
pi(a";q") = a7 " pia (@ M), G e € Z, i > 0.

Since g(¢"; ¢*) has only a finite number of irreducible factors, there exists an irreducible factor p(¢”; ¢*) such
that for some 1 < a < B, and for J = jo +---+jg—1, H = ha +---+ hg_1 we have

pald";¢") = p(¢";¢") = ¢ Fp(" ;") = ¢ Fpp(a"; 6" (13)
with J > 0. Note that p(g”;¢*) is linear in ¢* because the coefficient fields € (q)(g") is algebraically closed.
One can suppose p(¢"; ¢*) to be monic. Let p(¢™;¢*) = ¢* — p(¢"™), where p(g") is an algebraic function of
q", then from (13) we have

J
"tiq

¢ — (") =¢* — a7 Fp("),

which leads to

v(g") = q_mHgo(q"+mJ) forallm e Z.
Let h be a non-negative integer such that ¢ does not have a pole at ¢". (Since the number of poles is finite,
such an h exists.) Setting n = h, we have

—mH h+mJ)‘

o(d") =a ™ op(q

Setting ¢(¢") = 4" = const € C(q), we obtain
o(g"*™7) = 4'¢™F for all m € Z.

Therefore,
(q") =y¢" 7, where y =g 7,
and p(q™;¢*) = ¢* — ¢ %”, i.e., a factor of the form (12).
For J' =751+ -+ ja_1, H =hy +---+ hy_1, we have

p(g™;d")=a "p (q”“ gt tH ) -

This implies that p;(¢"; ¢*) is of the form (12). a

qk



Theorem 1 (Criterion for the existence of a qZ-pair for a rational function.) Let F(q",¢*) € C(q)(¢", q%)
be such that

F(¢",q") = (Qx — 1)S(¢",¢") + T(¢", ¢"), (14)
S(q™,q*), T(q™, ¢*) € C(q)(¢",q"), and the denominator g(q™,q*) of T(q",q"*) is such that deg g(q™, q*)
has the minimal possible value. Then a qZ-pair for F(q",q*) exists iff

!](qnaqk) = ag"™” H(qk - ’Yiqcm)v a €Q.vi,a € (D(q)va €Z. (15)

i

Proof: The factor ¢*” in g(g", ¢*) can be moved to the numerator of T'(g", ¢*), and the necessity of the
theorem follows from Lemma 4. Since (Qr — 1)S(g", ¢*) has a ¢Z-pair, the sufficient condition is proven if
we can show that T'(g", ¢*) also has a ¢Z-pair.

Let
fla".q") _ fla™,q%)
g(qn’ qk) aqan H?:l ( — v H_“)

H,
Each factor ¢* — 4,¢ 7+ " in the denominator can be written as

T(¢",¢") = i € Clq), Hi, J: € Z,J; > 0.

u(q™, q%)
v(q", q%)’
where
Js—1
2wim
u(q", ¢*) = ¢7F — 7" v(g", ) = ] (qk —e T yq T ”) :
m=1
Hence

(¢ ¢") = = Sla" k)‘“_lﬁ_“” (16)

Hu:l(J _’Y “qf )Hyméll % JkH”)
where Jy,J, > 0,H, > 0,H, < 0,74,% € C(q), f*(¢",¢*) € C(q)[¢",q"]. Note that each factor of the
denominator of T'(¢" k) can be written in the form

(Cs;Q)asn+bsk dk
BACAL AL LU LELEp
(ws; Q)usn+vsk

where the assumptions on the parameters are the same as in (3). Additionally, f*(¢",¢*) € C(q)[¢",q"].
Hence T(q",q*) is a sum of gproper terms. By using the “fundamental theorem” and Lemma 1, we can
conclude that there exists a ¢Z-pair for T(g", ¢*). O

Example 1 Let

By _
F(qnaq ) - qzk T (1 +qm _q2n)qk _ an _q2n'
In this example, the rational function S(g”, ¢*) in (14) vanishes. The denominator of T'(¢g", ¢*) can be written
in the form

(¢" —*")(d" + 4" + 1),
and hence does not satisfy the criterion. We ran the program gsumrecursion [5] which is a Maple imple-
mentation of ¢Z on F(q", ¢*). Not realizing that no ¢Z-pair exists, the program tried to compute one, and

returned the inconclusive answer “Found no recursion of order smaller than 6”.
Example 2 Let

Fi(q" ") = =



¢ —q" L1
qk+qn+1 q3k_qn'
for F; and S(q",q¢*) = (¢* — ¢")/(¢* + ¢" + 1) for F». The denominators of
are the same for F; and F5, and can be written in the form

Fy(q", ") = (Qx — 1)

In this example, S(q", ¢*) =
the rational function T'(¢", ¢

n 1 3i\ » 1 3\ .
3k _n_ (k_ % k L Voe z k L Vo 1.

Therefore ¢Z is applicable to both. In terms of time and space requirements, it takes gqsumrecursion
0.340 seconds and 1345764 bytes to compute a gZ-pair for Fy(q", ¢*) as opposed to 1295.260 seconds and
4266058620 bytes for the case of F2(g™, ¢*). ! This leads to a possibly good improvement in the implementa-
tion of ¢Z : one first applies the decomposition problem to F(g", ¢*), and then computes a ¢Z-pair (L, G) for
T(q™,q*). Since (1, S(¢", ¢%)) is a ¢Z-pair for (Qr —1)S(¢", ¢"), a ¢Z-pair for F(q", ¢*) is (L, LS(q", ¢*) +G).

0
")

5 How to use the criterion

First we consider the question of how to recognize if a given polynomial can be written in some desired
forms.

Lemma 5 A monic irreducible polynomial p(q™, ¢*) € C(q,q")[q*] has the form (12) iff
¢“*) = ¢°p(a", ¢"). (17)

Proof : If p(q”, ¢*) has the form (12) then (17) evidently holds. Conversely, if (17) holds, then

p(a"t,

p(a" ™, ¢"™) = ¢™p(q", ¢*), m € IN. (18)

Let p(q",qk) =q* - e(q"), ¢(¢") € C(q,q"). Equality (18) gives
(@) = ¢™p(¢"), m e N. (19)

By using the similar argument as that used in the proof of Lemma 4, Section 4, we obtain the relation

e(@") = A¢™, A€ C(q).
Consequently,
plg";q") = ¢ — A"
By setting vy = — A, we get what was claimed. a

Lemma 6 A monic polynomial f(q";q%) € C(q,q")[q"] can be written in the form

(¢" + 714 (@" +v247") ... (6" +74a°™), ¢ € Q. 71,74 € C(qg) (20)

iff .
F@* 6" ) = af(q",d"), a € C(q). (21)

LAll the reported timings were obtained on 400Mhz, 1Gb RAM, SUN SPARC SOLARIS.




Proof: If f(¢";¢") has the form (20) then f(g"*1,¢"**+¢) = ¢°¢f(¢", ¢*). Therefore, (21) holds. Conversely,
if (21) holds, then
Flg"*™, ¢" ™) = a™f(¢",q"), m e . (22)
Let
fla";d") = (@" = e1(a") ... (@" = pald"), a(a"),..-,pala") € Cla,q").

Consider any irreducible factor p;(¢";q*) = ¢* — i(g") of f(g";q¢*). From (22) there exists an integer
J, 1 <7 <d, such that

(@ —@ild") =d" —q7 ™ 9,(¢"*™)

?

or equivalently,
—mc

ei(q") = a ™ pi(q" ™).

Again by using the similar argument as that used in the proof of Lemma 4, one obtains the relation

i(q") = aig”", a; € C(q).
This means
pi(d"d") =" — g™, 1<i<d.
By setting v; = —ay, we get what was claimed. a
Let w(q™, ¢*) € C(q)[¢", ¢"], and ¢ € Q. Denote by A, the transformation

n+1

" =", ¢ =t

Let to(q", ¢*) = ged(A.w, w). Define the sequence of computation
ti(q", q%) = ged(Acti—1,ti—1), i=1,2,... (23)

where the termination condition in (23) takes place when deg« ti(¢", q*) = degge ti—1(q", q*), i.e., the degree
w.r.t. ¢* stops decreasing. (Note that the number of gcd computation in (23) is guaranteed to be finite.) Set
we(q", q%) = ti_ 1(q ,@%). The following Lemma gives us a possibility to find deg g« we(q", q k) for all c € Q
such that w.(¢", ¢*) # 1.

Lemma 7 Let w(q™,q¢*) € Clq", ¢*]. Let to(q", ¢*) = ged(Acw,w). Then w.(q",q") is the mazimal factor
of to(q™, q*) of the form

s

[I(* = vg™), v ecCla). (24)

i=1

Proof: Lemma 5 allows one to remove all reducible factors which are not of the form (12) from #o(q", ¢*).
Lemma 6 guarantees that w.(g",¢*) can be written in the form (20). O

The following theorem shows how to use the criterion for an arbitrary rational function.

Theorem 2 Let g(q",q*) € C[q“,qk],dequ g(q“,qk) > 0. Egtract from g(q",q*) the mazmimal factors

v1(q™) € C(q)[g"], v2(q*) € (D( )[g*]- Set w(q™, q*) = g(q", ¢*)/(v1(g™)va(q¥)). Let co,-..,cm be all rational
values of ¢ such that w.(q",q*) # 1. Set §; = = degx we, (g n g*). Then w(q™,q*) can be represented as the
product of polynomials of the form

k+v¢™, c€Q\{0},v€C(q), (25)

iff
do+ -+ Im :dequ w(qnaqk)‘ (26)



Proof: If w(q",q*) can be represented as the product of polynomials of the form (25) then (26) holds
since the w.,(q¢", ¢*), ..., w., (¢", ¢*) are pairwise relatively prime. If (26) holds, then any irreducible factor
p(q", ¢*) of w(g", ¢*) divides one of the w,,(¢", ¢*), ..., w., (¢, ¢*). This implies that p(¢", ¢*) is of the form
(25). ]

Now for a given F(q",q¢*) € C(q)(q", ¢*), rewrite F in the form (14) where

n k
Tl qt) = Z0)

is in reduced form. Extract from g(¢", ¢*) the maximal factor v1(¢") € C(q)[g"], v2(¢*) € C(q)[g*]. We know
that v;(g*) can be written as the product of factors of the form

7" — 7,7 € C(q).

As for v1(¢™), if it cannot be written in the form ¢*",a € Z, we can conclude that ¢Z is not applicable to
F(q",q*). Set

9(¢", d")
v1(g")va(g¥)
It remains to investigate whether w(g"; ¢*) can be decomposed into factors of the form (25). Let w’ be an
element from C(q)[¢%, ¢, ¢*] obtained from w by substituting k by k + = and n by n + 1. Let

w(g";q") =

S(q";q") = Resultant . (w,w'), S(¢°;¢") € C(q)[¢",q"]-

Find all rational values of z such that S = 0, i.e., w and w’ have a non-trivial common factor. To attain this
goal, consider S as a polynomial in ¢" with coefficients which are polynomials of ¢”. Let G(¢”) be the ged
of all these coefficients. Now we need to find all values of z € Q \ {0} such that G(¢”) = 0. (An algorithm
for this is given in the following paragraph.) Let zo, ..., Zm be the set of all non-zero rational numbers such
that G(¢®) = 0,0 < ¢ < m. We now apply Lemma 7 to find co,...,cq from the set {zo,...,zn} such that
degg-we(q", q*) #0. Set 6; = deg g« we,(q", g*). To check whether the criterion holds, it is sufficient to check
if relation (26) is satisfied.
Now on the search for =z, ..., Z,, suppose we have an equation of the form

am(@)X™ + -+ a1(q)X +ao(g) =0 (27)

where a;(q) € Clq],0 < ¢ < m. We would like to find all values of X that satisfy (27) where X is of the form
X =¢%,z € Q\{0}. One solution is to generate a finite set of candidates for z. Then substitute each element
of the set into (27) and check for equality. One way is to consider any monomial ¢/ of a,,(g). There must
exist a monomial ¢’ in one of the polynomials @,_1(q), - - -, ao(q), say ad(q), such that ¢/¢°™ = ¢'¢®¢, i.e.,
j+mz =+ zd. (Otherwise ¢/¢™® does not vanish.) By examining all monomials in am_1(q), - - -, a0(q), we
generate a set of candidates for z. Since each monomial of a;(g),0 < i < m generates a set of candidates for
z, one can choose a set of monomials as generators of different candidate sets, and then take the intersection
of these sets. Note that any solution X = ¢ of (27) is an algebraic function of ¢ whose Puiseux series (a
fraction power series) has only one term. Using equation (27) for this series we can find the value of the

exponent z by Newton’s polygon [10]. This describes another way to generate a set of candidates for z.

6 Implementation

We now show a Maple implementation of the criterion on T'(g", ¢*) in (14). Let N = ¢", K = ¢*. The main
procedure, is_qZ_applicable, has the following calling sequence



is qZ_applicable(TNK,N,K,q);

where T_NK is a rational function in N and K. If each irreducible factor over C(g)(N) of the denominator of
T_NK can be written in the form K —yN°® or, equivalently, ¢* — y¢**,c € Q,v € W, the procedure returns
true; otherwise it returns false.

Note that infolevel is used to illustrate the main steps of the program.
Example 3 Consider the rational function

T(N,K) =

q
K2(q?K5 — ?K3N — (®NK? + ¢3N2 — 3K5 + 3K®N + 3¢NK? — 3gN?)’

T(N, K) satisfies the criterion since its denominator can be written as
(4>~ 3)K*(K — N3)(K + N7)(K —q5N5)(K + 1(1 - 37i)¢g5 N3)(K + 1(1 + 334)¢5N3).

>infolevel[is_qZ_applicable] := 3:

>T := q/K~2/(q"2*¥K"5-q~2*K"~3*N-q "~ 3*N*K"2+q "~ 3*N"2-3*K "5+3*K"~ 3*N+3*q*N*K " 2-3*q*N"2) ;
>is_qZ_applicable(T,N,K,q);

"extract from g(N,K) the maximal factor v(K)"

"result: v(K) = K*2x(q~2-3)"

"set w(N,K) = g(N,K)/v(X)"

"result: w(N,K) = g*N*#K 2-gq*N~2-K~5+K"~3*N"

"set w’(N,K,x) = w(N*q,K*x)"

"result: w’ (N,K,x) = q 2+#N*K"2*x"2-q " 3*N"2-K"5*x"5+K~3%x " 3*q*N"

"Find all values of x of the form q"b, b rational "

"such that w and w’ have a non-trivial common factor"

"The set of candidates for b is: {1/2, 1/3, 2/5, 3/7, 3/8, 4/11, 5/13}"
"Substitution done. The solution is {1/2, 1/3}"

"degree checking: 5 = 57"

"applicable!"

true

Example 4 Consider the rational function

1
T(N,K) = .
(N, K) K2N+ K3+ K?-N?2-NK-N

T(N, K) does not satisfy the criterion since its denominator can be written as
(K —N3)(K +N?)(N+K +1).

>T := 1/(K~2*N+K"3+K"2-N"2-N*K-N) ;

1
T:=
K2N + K3+ K2—-N2_NK-N

>is_qZ_applicable(T,N,K,q);

"extract from g(N,K) the maximal factor v(K)"
"result: v(K) = 1"

"set w(N,K) = g(N,K)/v(K)"

"result: w(N,K) = K 2#N+K~3+K~2-N"2-N*K-N"
"set w’(N,K,x) = w(N*q,K*x)"
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"result: w’ (N,K,x) = K 2%x 2+N*q+K"3*x"3+K"2*x"2-N"2%q~2-N*q*K*x-N*q"
"Find all values of x of the form q°b, b rational "

"such that w and w’ have a non-trivial common factor"

"The set of candidates for b is: {1/2}""

"Substitution done. The solution is {1/2}"

"degree checking: 2 = 37"

"not applicable!"

false
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