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Abstract

One of the main goals of component-based software engineering (CBSE) is to enable automated assembly
of software components, thus bringing greater quality and reliability, reducing development and test times,
increasing productivity from multiple use of software components in the software development. A serious
impediment for component assembly is due to the fact that the design and architectural assumptions that a
reusable component makes about the structure of the application are in most cases implicit, lost or buried in
complex implementation structures. In this paper we present an evolutionary approach to support the creation
of reusable and changeable software architectures which focuses on the structural composition of components
at the design level. The architectural design information, captured by design patterns, is made explicit and
represented in a declarative way, being packaged into tangible artifacts as building block design components in
the development process. In this way, the declarative design component representations can be instantiated,
adapted, assembled, maintained, and implemented. Furthermore, we can also use these representations to
reason about properties related to the combination of design components. Our approach is illustrated through
a case study involving various design patterns.

Keywords: Design component, design process, design pattern, object-oriented design, Prolog, design reuse,
design transformation, software evolution.

1 Introduction

Component-based software engineering (CBSE) focuses on building software systems by assembling prefabri-
cated, configurable, and independently evolving building blocks [19] rather than implementing the entire system
from scratch. However, reusable and changeable software architectures, which are amenable to adaptation and
composition, are not obtained by a simple combination of component-based applications. A deep knowledge
about the domain and about the software design is a critical factor in the construction of such architectures.
The apparent lack of design information is one of the most significant barriers that software developers face to
reuse or change a component-based software system. Furthermore, the properties required to combine specific
components are normally buried in complex implementation structures. Therefore, it is essential for CBSE to
explore the combination and the collective behavior of components at the design and architectural levels.

Design patterns, proposed as a means to deal with this issue, capture successful software development design
practice within a particular context [12, 6, 8, 22]. They lead to a better understanding about the design as-
sumptions, trade-offs, and implications in a component’s implementation. They can be seen as building blocks
from which more reusable and changeable software designs can be built. If these building blocks, called design
components in [13], are treated as design artifacts the design information embedded in the patterns is not lost in
complex implementation structures. In this way, design patterns can be used in a more systematic approach to
component-based software development.
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the National Research Council of Brazil (CNPq), and Sybase Inc.



In this paper we present an evolutionary approach to software design composition. The approach is evolution-
ary because it uses evolutionary transformations, a mechanism to deal with the design changes to be supported
and managed throughout the development lifecycle. In our approach, design patterns are packaged into de-
sign components using a suitable declarative representation. Using this declarative representation, the design
components can be instantiated, adapted, altered, and assembled. Code can also be generated from the design
component representations through transformations. Furthermore, our approach also uses a declarative represen-
tation of the design component properties. Thus, the design can be checked for inter- or intra-design anomalies.
An inter-design anomaly occurs when a design component combination fails to meet some of its required com-
bination properties, while an intra-design anomaly occurs when a design component fails to satisfy one of its
internal properties. Finally, the above aspects of our approach are illustrated through a case study.

In the next Section we give a general overview of our approach. Section 3 addresses the issue of checking the
consistency of structural composition of design components. In Section 4 we present a case study to illustrate our
approach and show how our models help to detect interaction problems or inconsistencies when design components
are combined. Finally, Sections 5 and 6 present related work and our conclusions, respectively.

2 The Approach
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Figure 1: Evolutionary Design Process

Our approach uses a declarative structural representation of the design components and their properties that:

e allows design components to be reused by making the component descriptions available in a component
library;

o supports the detection of design component anomalies by providing mechanisms to reason about the indi-
vidual design components and their interactions;

e supports systematic change of the design component representations through evolutionary transformation
techniques. :

Figure 1 illustrates the&i@ characteristics of the development process that underlies our approach:

o The representation of design components in a declarative way using Prolog and the storage of these rep-
resentations in a Prolog database. These design component representations are general or abstract in the
sense that they capture good design practice in a domain-independent way;



e The support for the instantiation of the general declarative representations of the design components into
concrete domain-specific representations to provide reuse of good design practice;

e The support for the integration or combination of the concrete design components and the intra- and
inter-consistency checking about the component composition;

o The support for the evolution of the combined design component representations to incorporate new software
system requirements; .

o The design component representations in Prolog can be transformed into code templates by tools such as
Draco-PUC [16].

It is worth mentioning that intuition and design experience also play an important role in this process as,
for example, in the selection of the general design components to be (re)used. In this sense, the information
about patterns as described in many pattern catalogues is very useful {12, 8]. Having provided an overview of the
evolutionary process, in the next sections we discuss this process in more detail (see Figure 1).

2.1 Representation

As the initial phase of our process, design components, such as design patterns, are represented in Prolog and
stored in a Prolog design repository. There are several advantages of using Prolog as our repository or knowledge
base. First, the representation of these components can be reused by instantiating the corresponding component
Prolog rules each time they are applied to produce a concrete domain-specific component representation. Second,
the properties and constraints of each design component can be described as Prolog rules, and these rules can
be used to check the intra- and inter-consistency of the design components and their composition, respectively.
Third, the addition and removal of structural facts about design components can be accomplished by using the
Prolog assert and retract clauses. Fourth, the transformation of the design component representations in Prolog to
code templates can be performed by a transformation tools such as Draco-PUC [16]. Fifth, the design component
representations can be recovered through the Prolog deductive facilities [14].

2.1.1 Object-oriented Design Primitives

Design components are represented in terms of object-oriented design primitives in a predicate-like format. Each
design primitive consists of two parts: name and argument. The “Name” contains the name of a feature or a
relationship in object-oriented design, such as class, inherit, etc. The “Argument” contains general information
about a feature or a relation such as the information on the participants of an inheritance relationship. In the
following we present the syntax and the meaning of the design primitives we use in this paper:

e class(C): C is a class.
e abstractclass(C): C is an abstract class.
e inherit(A, B): B is a subclass of A.

o attribute(C, A, V, T): V is the name of an attribute in class C with type T. T is optional. A describes the
access right of this attribute, i.e. public, private, or protected.

o staticattribute(C, A, V, T): The arguments of staticattribute are the same as the ones for attribute. The
only difference is that we are now defining a static data type.

e method(C, A, F, R, Py, T1, P>, T, ...): Fis a method of a class C. A describes the access right of this
method, i.e. it can be public, private, or protected. R describes the return type. If no return value is
required as in the case, for example, of constructors in C++, R can be the value “none”. The method’s
parameters and their types are Py, Ty, P2, T, ..., respectively, and this part is optional. The return type R
is also optional if the method has no parameters.



e staticmethod(C, A, F, R, Py, Ty, P2,T5, ...): The arguments of staticmethod are the same as the ones
for method. The only difference is that staticmethod defines a static method (such as a class method in
Smalltalk).

o return(C, F, V): Vis the return value of the method F in the class C.

e new(C4, F, C2, P): This predicate represents a pointer to the dynamic instantiation of class C; in the method
F of class Cy. P is the initial value of the class C5. P can contain zero or more parameters depending on
the number of parameters the constructor of the class C; has.

o assign(C, F, L, R): Right value R is assigned to left variable L in the method F of the class C.

e invoke(C, Cy, 0,04, P): A method Oy which belongs to the object O is invoked in the method Cy of the
class C, where P is the parameter of the method Of. P can contain zero or more parameters depending on
the number of parameters the method Oy has.

e condition(C, F, LC, OP, RC, T, F): This predicate describes the conditional or if-then-else statement used
by programming languages. It first compares LC and RC with compare operator OP. If the result is true,
T is executed. If it is false, F'is executed. The conditional statement belongs to method F of class C.

o element(Eq, Sy, E-, S», ...): E; is an element of set S1. E is an element of set Sz, and so on. When universal
quantification forall and element are used together, it enumerates set S1, Sa, ..., Sp simultaneously, i.e. the
first elements of all sets are enumerated first at the same time, then the second elements.

2.1.2 Pattern Primitive Operators

A higher level of abstraction is provided by introducing pattern primitive operators. Pattern primitive operators
are represented in terms of design primitive operators and they allow general object-oriented schemas such as
delegation, aggregation, and polymorphism to be defined. Pattern primitive operators can capture the sub-
patterns which occur frequently in the declarative representation of design patterns as design components. They
can also be used to change, transform, or make the pattern declarative representation evolve. This operator can
assist with the evolution of the pattern schema and also with the application of this pattern.
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Figure 2: Polymorphism

As an example, a pattern primitive operator called abstract coupling or polymorph can be represented in Prolog
as follows:

polymorph(Interface, Imp, Binding, ConcreteImpSet, ImpOperation, Operation) :-
assert(abstractclass(Imp)),

assert(method(Imp, public, ImpOperation)),

forall(member(Concretelmp, ConcreteImpSet), assert(inherit(Imp, ConcretelImp)) ),
forall(member(ConcreteImp, ConcreteImpSet), assert(class(ConcreteImp)) ),



forall(member(ConcreteImp, ConcreteImpSet),
assert(method(ConcreteImp, public, ImpOperation))),
assert(abstractclass(Interface)),
assert(attribute(Interface, private, Binding, Imp)),
assert(method(Interface, public, Operation)),
assert(invoke(Interface,Operation,Binding,ImpOperation)).

extend_polymorph(Imp,NewConcreteImpSet,ImpOperation) :-
forall(member (ConcreteImp, NewConcreteImpSet),
assert(inherit(Imp, ConcretelImp)) ),
forall(member(ConcreteImp, NewConcreteImpSet),
assert(class(Concretelmp)) ),
forall(member(ConcreteImp, NewConcreteImpSet),
assert(method(ConcreteImp, public, ImpOperation))).

retract_polymorph(Imp,0ldConcreteImpSet,ImpOperation) :-
forall(member (ConcreteImp, 0ldConcreteImpSet),
retract(inherit(Imp, ConcreteImp)) ),
forall(member(ConcreteImp, OldConcreteImpSet),
retract(class(ConcreteImp)) ),
forall(member(ConcreteImp, OldConcreteImpSet),
retract(method(ConcreteImp,public,ImpOperation))).

These polymorph rules in Prolog represent the structure shown in Figure 2. The arguments of the polymorph
predicate denote the generic elements (e.g., class, attribute or method) of the design structure shown in Figure
2. For example, Interface and Imp are abstract classes. Binding represents an object reference which is a state
variable of the Interface class. ImpOperation and Operation are two important methods. ConcreteImpSet defines
a set of concrete classes which includes ConcreteImpA and ConcreteImpB. This representation contains more
information than the OMT representation, which can not, for example, represent an undetermined number of
classes. As a side note, this representation can also be seen as a possible solution to the impurity problem of
design patterns discussed in [15]. All the arguments will be instantiated by class and operation names and these
names result, of course, of specific domain knowledge. o

The operators assert and retract are the Prolog operators used to insert or remove certain facts into or from
Prolog database, respectively. The forall predicate represents the universal quantification operator. It can quantify
over a set of class names and add the corresponding facts about each class name into the Prolog database. For
instance, the Prolog rule

forall(member(ConcreteImp, ConcreteImpSet), assert(inherit(Imp, ConcreteImp))).

corresponds to the following first-order logic formula: YConcreteImp € ConcreteImpSet : inherit(Imp, ConcreteImp).
The non-determinism in polymorph leaves space for evolution, i.e., for adding or removing concrete classes which
inherit from the abstract class Imp. The addition or removal of one such class can be performed by the ez-
tend_polymorph or the retract_polymorph rules, respectively, which in turn assert and retract the corresponding
facts related to the insertion or removal of this concrete class.

Notice that the primitive operators represent basic constituents of an object-oriented design and that the
structural information related to design components, such as design patterns, can be represented by pattern
primitive operators and design primitive operators. For example, polymorph is used to represent the Bridge,
State and Strategy patterns as design components. Also, good design practices such as, for example, the Adapter
and the views-a patterns [5], can also be represented in a declarative way in Prolog using the design primitive
operators. In this way, the design of an object-oriented application can be assembled by combining the design
components stored in the Prolog database. In addition, the evolution (addition or removal of design components)
of a software system design can be achieved by applying specific Prolog rules.



2.1.3 The Bridge Pattern Structural Representation

The representation of the design component related to the structural design information encoded by the Bridge
pattern in Prolog is shown as follows and uses the polymorph pattern primitive as a design sub-component.
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Figure 3: Bridge Pattern

bridge(Abstraction,Implementor,Imp,RefinedAbstractionSet,
ConcreteImplementorSet,ImpOperation,Operation) :-
polymorph(Abstraction, Implementor, Imp,
ConcreteImplementorSet,ImpOperation,Operation),
forall(member (RefinedAbstraction,RefinedAbstractionSet),
assert(inherit(Abstraction,RefinedAbstraction))),
forall(member (RefinedAbstraction,RefinedAbstractionSet),
assert(class(RefinedAbstraction)) ).

extend_bridge_abstract(Abstraction,NewRefinedAbstraction):-
assert(inherit(Abstraction, NewRefinedAbstraction)),
assert(class(NewRefinedAbstraction)).

extend_bridge_imp(Implementor, NewConcreteImplementor, ImpOperation) :-
extend_polymorph(Implementor, NewConcreteImplementor, ImpOperation).

retract_bridge_abstract(Abstraction, 01dRefinedAbstraction):-
retract(inherit (Abstraction, OldRefinedAbstraction)),
retract(class(0ldRefinedAbstraction)).

retract_bridge_imp(Implementor, OldConcreteImplementor, ImpOperation) :-
retract_polymorph(Implementor, OldConcreteImplementor, ImpOperation).

The main purpose of the Bridge pattern is to separate the abstraction from its implementation so that they
can vary independently. Its OMT diagram is shown in Figure 3.

Since Bridge pattern allows extensions of both the refined abstractions and the concrete implementations, there
are two rules related to extend_bridge and two rules related to retract_bridge.

We also provide another example of a Prolog design component representation, which we call the views-a
operator [9, 5], in Appendix A. In [10], we have provided the design component representations of all design
patterns in [12].

2.2 Instantiation

When a designer chooses a design pattern to solve a particular application problem during the actual design,
he or she can save this design decision as facts in the Prolog database by applying the rules that correspond to the
design pattern and using as parameters the domain specific names required by the application. In this way, the
Prolog facts which represent the structural constituents of that design pattern component will be saved in Prolog
database. This process is similar to the instantiation of classes in object-oriented programming language, but, in



our case, a particular application of the design pattern is being created. Unlike in the case of classes, however,
design component instantiation does not involve only structural and behavioral design component information,
but also requires documentation to be adjusted and extended to fit the context at hand.

There are four major tasks during instantiation. First, to improve readability and understandability, the generic
element names (e.g. classes, attributes, or methods) are replaced by application domain names or domain-specific
vocabulary. Each design pattern component encapsulates general design practice that is independent on the
application domain. The instantiation of a design pattern component applications leads to domain-dependent
designs. This replacement or renaming is achieved by instantiating the arguments of the corresponding design
component Prolog rule.

Second, according to the application requirements, a number of concrete components are created. The struc-
tural solution provided by design patterns often involves an undefined number of concrete classes, which depends
on the application. This undefined character is due to the fact that design patterns are domain-indenpent abstract
design solutions. We capture this design pattern characteristic by using sets of elements in Prolog. The arguments
in the Prolog rules, which represent design pattern components can be single elements or sets of elements, i.e.
one argument may represent a set of elements. Arguments related to sets of elements, when instantiated, assume
the value of a fixed number of elements.

Third, design component elements are added as Prolog facts to the design component knowledge base. In
the representation of the design pattern component, there is a collection of assert statements associated with a
Prolog rule. The application of the Prolog rule will automatically lead to insertion of the selected facts into the
database through these assert statements. Through argument instantiation discussed in previous two tasks, the
free variables of the inserted facts are unified with domain-related names.

Fourth, a design pattern component can be extended or retracted if it does not violate the constraints of the
component. It is important to have, in the documentation of the design pattern, information about the evolution
of the patterns. We also provide rules in Prolog about the evolution of design pattern components. These rules
and constraints restrict the addition and removal of elements to avoid undesired interactions among components
of a single design pattern. However, these rules do not preclude interactions among different design patterns. We
will discuss this issue in Section 3.

2.3 Integration

Integration stands for the assembly of design components into a software system. When a design pattern
component is added into Prolog database, this pattern is automatically integrated with all patterns previously
stored in the database as long as there is no naming conflict. However, some other issues need to be considered
during the integration phase. First, some classes/objects may play different roles when they are the common
parts of two different design patterns. We have to make sure that the generic elements in these common parts are
instantiated with the same names in the different corresponding Prolog rules. Second, the integration of two or
more design patterns may cause undesired interactions among them because they share classes. Some properties
or constraints of a design pattern may not hold after integration. In this case, integration is not allowed because
of these constraint violations.

2.4 Evolution

Evolution is the activity of adding or removing design elements in existing design. It can happen before or
after integration. The addition and removal of system parts should not violate the constraints and properties of
design patterns. In the representation of design pattern applications, we provide Prolog rules on extending and
retracting design patterns.

Another way of extending an existing design component is through views-a operators. As shown in the case
study in Section 4.2, a views-a operator can add extra functionality to an existing design, thus making it evolve.



3 Reasoning Properties

In this section, we will address the issue of checking the consistency of the representations of the structural
design component. We assume an existing object-oriented software system design represented in the OMT or
UML notations. Informally, the composition of design components can be achieved by “merging” the graphic
representation of each design component. However, there may be inconsistencies among these components.
Consistency checking is not an easy task when the graphic notations are used. It requires intuition and experience.
The consistency checking is also hard due to the informal notations. On the other hand, representing design
components in formal logic notation allows us to describe the properties and constraints of each design component
in a precise way and, thus, to automatically check whether a component does not satisfy some properties after it
is combined with other components.

There are many reasons to check the consistency of the interactions of a design component assembly. For
example, when two components are combined, they may overlap with each other, i.e. they may share some parts.
The part that they are sharing can play one role in one component, but another role in the other component.
This situation may lead to an inconsistent combination. In addition, an existing design may be modified and
gradually evolve. This may lead to a situation in which the new design no longer conforms to the properties that
its design components must preserve. The manual discovery of the inconsistency in design can be a difficult job
without a formalism or tool support. The design component representations in Prolog allow us to take advantage
of the deductive facilities of Prolog to automatically find the inconsistencies. In the next section, we provide a
case study to illustrate this process.

4 Case Study

In this section, we provide a case study to illustrate the application of our approach and the discovery of
inconsistencies when design components are assembled.

4.1 System Sort

The case study is a simplified variant of a case study presented in [23] which deals with a general-purpose
system sort. This application sorts lines of text from standard input and writes the results to standard output. A
line is a sequence of characters terminated by a newline. The size of sort files is limited within the main memory.
Different sort algorithms, e.g. quick sort, insertion sort, etc., can be chosen at run-time or configured before the
system is running. The result will be printed in the order specified by the user. The design of this application is
shown in Figure 4 and contains five design patterns: Adapter, Bridge, Factory Method, Iterator, and Strategy.

To address the requirement allowing an interchangeable sorting algorithm, the Strategy pattern was selected
to encapsulate the different sorting algorithms, e.g., quick sort, insert sort, selection sort, and etc. In this case,
we only deal with comparison-based algorithms. Therefore, all algorithms need a function to compare pairs of
elements which can be characters, numbers, file folders, etc. The Bridge pattern captures this abstraction since
it decouples the abstraction (comparison) from its implementation (character comparison, number comparison,
and folder comparison) so that they can vary independently. The Factory Method pattern defines an interface
for creating objects, but lets subclasses (Char, Num, Folder) decide which class to instantiate. The Iterator
pattern is used to print all sorted elements without exposing its underlying representation. If we have a library
containing functions such as, for example, the insert sort, we can reuse some functions required in this design.
Since the interface of the insert sort method may not be compatible with the interface of SortStrategy method in
the Algorithm class, we can use the Adapter pattern to adapt the interface.

In [10], we have provided the design component representations in Prolog of the five design patterns previously
mentioned. According to the design process shown in Figure 1, we can instantiate each of five design pattern
components using the domain knowledge of the system sort in the Prolog database. As represented in Section 2.1,
the Bridge pattern structure can be instantiated as bridge(algorithm, implementor, imp, {quick, insert}, {char,
num, folder}, compareImp, compare) in Prolog. Other patterns can be instantiated in a similar way. Therefore,
the integration of these five design pattern components can be achieved by instantiating the corresponding Prolog
rules and each design pattern component will be stored in the knowledge base as Prolog facts.
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Figure 4: System Sort

From the graphic design representation shown in Figure 4, it is hard to know whether all the properties of
each design component are satisfied after the five design components are assembled. It is also not easy to analyze
whether there are undesired interactions among design patterns used in this case by just reading the informal
design descriptions and the OMT diagrams. In the following, we will show how our formalization allows us to
reason about the properties of each design pattern component and find some undesired interactions among the
design pattern components in this example.

As shown in the top-left of Figure 4, the application of the Strategy design pattern includes the Sort, Algorithm,
Quick, Insert, Selection classes and the application of Bridge pattern involves the Algorithm, Quick, Insert,
Selection, Implementor, Char, Num, Folder classes. In this case, the Algorithm class and its descendants are
overlapping parts of these two design pattern components. The Algorithm class plays the role of Strategy in the
Strategy pattern and it plays the role of Abstraction in the Bridge pattern. The Insert class is also an overlapping
part of the Strategy pattern, the Bridge pattern and the Adapter pattern. The Insert class plays the role of one
ConcreteStrategy in the Strategy pattern, the role of one RefinedAbstraction in the Bridge pattern and the role
of an Adapter in the Adapter pattern.

Let us analyze the effects of having a design component assembly in which classes assuming different roles in
different design pattern components are shared. The main purpose of the Strategy pattern is to encapsulate a
family of algorithms and to let the algorithm vary independently of the clients that use it. Therefore, it requires
every ConcreteStrategy class to overwrite the SortStrategy method. This knowledge can be captured in Prolog
as a first constraint related to the Strategy pattern: rulel(Algorithm, SortStrategy) :- inherit(Algorithm, Child),
method(Child, public, SortStrategy).

The Bridge pattern decouples the abstraction (Compare method in the Algorithm class) from its implementation
(CompareImp method in the Implementor class). Therefore, the SortStrategy method uses the Compare method to
compare pairs of elements without concern about which kinds of elements are compared. This second constraint
is a rule related to the Bridge pattern: rule2(Algorithm, SortStrategy, Compare) :- inherit(Algorithm, Child),
method(Child, public, SortStrategy), invoke(Child, SortStrategy, Child, Compare). There is no inconsistency
when we add these two rules to our design knowledge base.

The Adapter pattern adapts the incompatible interface of the InsertSort method in Library with the SortStrat-
egy method in the Algorithm. Therefore, the Insert class (which has the role of an Adapter) must inherit from the
Algorithm class (which has the role of a Target) and delegate to the Library class (which has the role of an Adaptee).
This third constraint is expressed by the rule: rule3(Algorithm, Insert, SortStrategy, Library):- inherit(Algorithm,
Insert), method(Insert, public, SortStrategy), attribute(Library, public, lib, Library), invoke(Insert, SortStrategy,
lib, InsertSort).

In the context of Prolog, when we ask whether our system sort design satisfies all three rules, the Prolog answer



is no. This means that there are undesired interactions among these three design pattern components. When
we apply both rule! and ruled no conflict is reported. However, when we try both rule2 and rule8, there is an
undesired inconsistency. Thus, the consistency property checking results show us that the composition of the
Bridge pattern and Adapter pattern do not satisfy both rule2 and rules. It happens that after they are combined,
neither Bridge pattern nor Adapter pattern preserve the properties they must preserve.

Before we apply Adapter pattern, both rulel and rule? are satisfied. But, when we apply the Adapter pattern
to reuse a library function, the integration of the Adapter pattern and the Bridge pattern violates the constraints
of Bridge pattern which separates the abstraction from its implementations and lets them vary independently. For
example, if we want to add another type of implementation, e.g. string comparison, for the abstraction of compare,
we have to worry about the insert sort since the library insert function may not support the implementation of
string comparison. As we have discussed in section 2, one of the important qualities of good reusable designs is
the ability to evolve. However, when we plug-in the Adapter pattern it impedes the well-behaved evolution of
the Bridge pattern.

In our approach, the evolution of design pattern application becomes as simple as adding a series of Prolog
facts by applying Prolog rules for extending a design pattern component. The Prolog representations of the
design pattern components also contain rules about how to extend and remove some system parts without losing
the properties of the design pattern. For example, in Section 2.1 we have included extension and removal rules
in the Prolog representation of Bridge pattern design component. If we want to extend the Bridge pattern
component to include the implementation of string comparison, we can simply apply the corresponding Prolog
rule: eztend_bridge_imp(implementor, string, compareImp). Of course, the Factory Method pattern component
also needs to be extended since it may be inconsistent with Bridge pattern. This inconsistency can also be checked
by our approach.

4.2 Add Views-a Operator

In the previous section, we have demonstrated how to extend the case study through the evolution of design
patterns. Let us now introduce another way of making the system evolve during the software maintenance phase.

In Figure 4, an external iterator pattern was applied to print out the sort results without exposing internal
structure. The print method in Sort class can be implemented in C++ as follows:

Sort::print(Array *array) {
Arraylterator<Array*> i = array->Create();
for (i.First(); 'i.IsDone(); i.Next())

{ i.CurrentIterm()->print(); }

The print method in Array class simply prints out the current element. If we the printout in a special format,
such as one with an index at the beginning of each element and a semicolon at the end, we need to modify either
the print method in the Sort class or the print method in the Array class. However, in this case, we need to know
both of the implementations of the print methods in the two classes. This violates the encapsulation of these
classes. In addition, this solution is not a flexible one because we may want other types of printout format.

To achieve black-box reuse of the existing design of this case, we attach a views-a operator to the Array class.
This operator can dynamically add operations to print some information before and after the printout of each
sorted element.

As shown in Figure 5, the Surrogate class will be attached to the Array class in Figure 4 and assume its identity.
The views-a operator can be added into the design knowledge base by applying the Prolog rule in appendix
A as follows: views-a(view, concreteViewl, array, object, print, printStart, printEnd). In this way, different
printout formats can be achieved by implementing printStart and printEnd operations in different Concrete View
classes without touching the original design and implementation. For example, we can implement the printStart
method in ConcreteViewl class by printing the index of current element, and implement the printEnd method
in ConcreteViewl class by printing a semicolon. Different printing formats can be combined easily by adding
new Concrete View classes and implementing the corresponding printStart and printEnd methods. The addition
and removal of new Concrete View classes can be performed by applying corresponding Prolog rules as shown in
Appendix A.
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5 Related Work

In previous related work, we have created a formal approach to architectural/design patterns [1, 3]. We have
also formally described applications or instances of the patterns and related these applications to (evolutionary)
transformations that can be performed in the design phase in a generative way [2, 10]. We have also worked on
views [9, 4] and viewpoints as an evolutionary approach to software maintenance [5]. In particular, this result
helped us to define a viewpoint-based approach to software system evolution. Further, we have worked on the
formal definition of components and their combination [17]. We have also used a higher order logic and its
mechanization to check properties about component-based software architectures of user interfaces [3].

As related work, Keller et. al. [13] described a methodical approach to design composition which was illustrated
as a process within a four-dimensional design space. Although our approach is also in the area of software
composition, it focuses on the evolutionary, declarative, formal, transformational and property-based aspects of
design composition.

Earlier work by Pal [21] investigated the law-governed support for realizing design patterns. The author
defined some rules and constraints of design patterns. However, in his work the property checking is performed at
implementation level. The author did not discuss the interactions among different design patterns when they were
integrated together. Other work on tool support for object-oriented patterns [11] also discussed the constraints of
patterns. However, they worked on single pattern constraints at implementation level too. Our work emphasizes
the interactions among different patterns when they are integrated. The formalizing design patterns [3, 18] can
also be seen are related work. We are currently interested in the property checking at design level. Sullivan [25]
used Z language to describe the properties of Component Object Model (COM) and discover the inconsistency
of COM architecture standard and the mediator style.

In contrast with our previous works on programming understanding [1], software maintenance [5], design
assessment [2], system evolution [17], the emphasis of the work described in this paper is on software component
reuse at design level. Good design practices are represented as Prolog rules in a database. These good design
practices can be reused by instantiation with application domain knowledge. The evolution of the existing design
composed by design patterns is restricted by constraints represented in Prolog.

6 Conclusion

In this paper, we have presented an evolutionary approach to design-oriented software composition. The
approach focuses on design components, i.e., components that capture architectural design information about the
software system. The approach has several advantages. First, it allows design patterns to be represented in a
declarative way, thus packaged in tangible design components. Second, our approach provides mechanisms that
allow these design components to be reused to form the software application: instantiation, adaptation, assembly,
alteration, and generation.

In a general way, the results of this research can impact organizations that are struggling to produce large
and complex component-based systems and applications. It is critical for these organizations to have explicit
(tangible) component descriptions at the design level instead of having the design and assembly information
hidden in complex implementation structures.

We are proposing a more formal approach as current methods for analyzing architectural descriptions are
typically ad-hoc, manual efforts with associated high production and maintenance costs. Thus, providing meth-
ods to represent and transform design components should assist in minimizing the lack of architectural design
information, and the costs of reusing those components. We are convinced that better ways to represent and
change design components within the component-based software development approach will significantly improve
software engineering efforts.

We have used first-order logic to represent the design components. We have investigated several choices such
as Z [24], PVS [20] and Prolog [7]. The syntax of Z is very close to first-order logic representation. However,
there is not still enough support for verification in Z. PVS contains theorem prover, which supports automatic
reasoning, but it is too large and complex. Prolog supports automatic reasoning and it is compact and easy to
learn. The choice of Prolog was compatible with our decision to apply formal methods in a lightweight way to
design component assembly.
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Our approach has several advantages from the perspective of evolutionary software transformations: (i) it allows
for automation (to take care of low-level editing details and to allow changes to be succinctly directed and reliably
performed); (ii) it facilitates separation of concerns throughout the development process (the construction of the
declarative design component, its instantiation, assembly, adaptation, and code generation are treated as separate
activities). (iii) a record of transformation steps preserves the history of how high-level requirements are developed
into lower-level specification and how particular combinations take place. This also provides traceability. (iv) the
transformation record can be undone and replayed, permitting the exploration of different design choices. (v)
design components can be implemented also through transformations.

The approach, discussed in this paper, focuses on structural property preservation and evolution of design
composition. We will address behavior properties in the future. Although not all patterns concentrate on
structural information, we can also, in principle, use an extension of the approach we have describe in this paper
to study the combination of design pattern components which are more behavior than structure-oriented. We are
also interested in the effects of the non-functional properties in design component assembly.

A The Views-a Operator

A views-a operator [5], defined as a pattern, was derived from our previous research in Abstract Design View
(ADVs) [9]. The views-a pattern is used to compose a new viewpoint with an existing design. It requires several
steps. First, the relevant methods in the classes of the viewpoint are divided into predecessors and successors.
The views-a pattern is then used to connect the classes in the views to the corresponding classes in the existing
system. The views-a pattern model has the structure shown in Figure 5.

View
Operation() Surrogate->Operationl( ) - —
Operation1Start( ) or :" o in vi
R ->Operation! Start( )
OperationlEnd( ) Object->Operation|
for each o in views
# 0->Operationl End( )
Concrete View 1 Concrete View 2 Surrogate Object
Operation] Start( ) OperationlStart() |g Attach‘(Vlew) i Operationl( )
Operation1End( ) Operation]1End( ) Operation1()
Calls to Calls to Calls to
view1->Operation] view2->Operation| object->Operation]

Figure 5: Design model for views-a operator

The model works as follows. An object is replaced by a surrogate object, which has the same interface. All
views to that object are subclasses of View class, which also has the same interface. Each model of a view is
divided into two parts, a Start method and an End method. An Attach method in the surrogate allows views to
connect to an object dynamically.

When a method is called, it is executed by the surrogate. If it is called in any of the views, the superclass
delegates execution to the surrogate. The surrogate calls the appropriate Start method from each view, and then
the method in the object, and finally the End method from each view. The description of the views-a pattern in
Prolog is as follows:

views_a(View, ConcreteViewSet, Surrogate, Object,
Operationl, OperationiStart, OperationiEnd) :-

assert(abstractclass(View)),
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assert(attribute(View,private,surrogate,Surrogate)),
assert(method(View,public,Operationi)),
assert(invoke(View,Operationi,surrogate,Operationl)),
assert(method(View,public,OperationiStart)),
assert(method(View,public,OperationiEnd)),

forall(element(ConcreteView,ConcreteViewSet),
assert(class(ConcreteView)),
assert(inherit(View,ConcreteView)),
assert(method(ConcreteView,public,OperationiStart)),
assert(method(ConcreteView,public,OperationiEnd))

)

assert(class(Surrogate)),
assert(attribute(Surrogate,private,object,Object)),
assert(attribute(Surrogate,private,observer,List)),
assert(method(Surrogate,public,Attach,none,v,View)),
assert(invoke(Surrogate,Attach,observer,append,v)),
assert(method(Surrogate,public,Operationi)),
forall(element(o, observer),
assert(invoke(Surrogate,Operationi,o,OperationiStart))),
assert(invoke(Surrogate,Operationi,object,Operationi)),
forall(element(o, observer),
assert(invoke(Surrogate,Operationi,o,OperationiEnd))),

assert(class(Object)),
assert(method(Object, public, Operationi)),

assert(abstractclass(List)),
assert(method(List, public, append)),
assert(method(List, public, remove)).

extend_view(View, NewConcreteView, OperationiStart, OperationiEnd) :-
assert(class(NewConcreteView)),

assert(inherit(View, NewConcreteView)),
assert(method(NewConcreteView,public,OperationiStart)),
assert(method (NewConcreteView,public,OperationiEnd)).

retract_view(View, OldConcreteView, OperationiStart, OperationiEnd) :-
assert(class(0ldConcreteView)),

assert(inherit(View, OldConcreteView)),
assert(method(0ldConcreteView,public,OperationiStart)),
assert(method (0ldConcreteView,public,OperationiEnd)).
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