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1 Introduction and Motivation

This report describes version 0.1 of the parser Stefy—a parser for natural
languages (NL), implemented in the programming language Java, and based
on the HPSG (Head-Driven Phrase Structure Grammar) model for NLs.

The parser is a part of a larger project to implement a natural language
processing (NLP) system for Internet information retrieval (IR). This IR
task requires Java applets capable of parsing a NL. More details regarding
this application are presented in [9].

HPSG. The HPSG formalism for NLP is a high-level unification approach,
suitable for studies in theoretical linguistics and strongly influenced by the
Prolog paradigm. As any other grammar formalism, it is used to describe
syntax of a NL; but, unlike other grammars, HPSG also provides a way
of describing semantics simultaneously. Additionally, HPSG is a very flex-
ible model, in which a large number of NL phenomena can be effectively
handled ([18]), and whose grammars are robust and can be relatively eas-
ily managed. For this reason, the HPSG model is attractive for lower-level,
practical applications, i.e., for the area of natural language engineering. More
details about the formalism and a precise definition of it, as used in Stefy,
are given in subsection 2.1.

Motivation behind Java parser. As mentioned above, this Java parser
will be used in Internet IR applications. Some work on developing HPSG
parsers in low-level programming languages has been done ([12]). However,
we are not aware of any reports about systems implemented in Java.

The additional reasons for using Java for this task include:

e Java supports dynamic class loading and object serialization, which are
important features necessary for our concept of distributed NLP,

e Java is a good prototyping language, compared to C++ for example,
and facilitates easy experimentation with various approaches, which
makes this shift in programming language paradigm less drastic and
easier to handle.
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1.1 Background

HPSG. The HPSG model was formulated in 1986. The main books on
the subject are Pollard and Sag 1994 [14] and Sag and Wasow 1999 [18].
Carpenter 1992 [1] gives a precise formal treatment of the formalism. Another
approach to the HPSG formalism is given by King 89 and 94 [10].

Parsers. The first HPSG chart parser was introduced by Proudian and Pol-
lard in 1985 [16]. The parser was implemented in Prolog. In 1990, Popowich
and Vogel described their HPSG chart parser [15], also developed in Prolog,
which had a better coverage of the developments in the HPSG formalism up
to that time. Probably, the best-known and the most widely used parser
today is the system ALE (Carpenter and Penn 1999 [3]), which is developed
in Prolog. The system LiLFeS (Makino et al. 1999 [12]) is an HPSG parser
implemented in a low-level language. In Carpenter 1999 [2], a chart parser for
probabilistic context-free grammars, implemented in Java, is described. The
LKB system (Copestake et al. 1999 [4]) is a grammar and lexicon development
environment developed in Lisp. It is designed for use with constraint-based
formalisms, more specifically for the use of typed feature structures, such as

the HPSG formalism.

Unification. Unification is a built-in feature in the programming language
Prolog, but it is not a part of Java. It is an essential notion in the HPSG
model, so it is implemented within the project Stefy in form of a Java package
called avm. The method of unification (at least in the modern sense) is
introduced by Robinson in 1965 [17]. Our unification algorithm is a variation
of the Huet’s algorithm (Huet 1976 [8]). Knight 1989 [11] gives a good survey
on the subject of unification. Malouf 1999 [13] treats some efliciency issues
regarding graph unification for parsing constraint-based grammars, which are
also relevant for the HPSG parsing.

2 Formalism

2.1 HPSG Formalism

The HPSG formalism is a relatively complex notion (compared to context-
free grammars, for example), and it can be approached in various ways. One



2.1 HPSG Formalism 3

of the choices that we have to make is the tradeoff between implementational
efficiency and efficacy of directly capturing of various linguistic rules. In this
section we present our definition of the HPSGs.

This definition is implementation-oriented, so it does not necessarily re-
flect an ideal way of defining HPSGs in a theoretical-linguistic sense. How-
ever, it 1s more suitable for our task than the existing formalism. The defini-
tion presented here is more compact, and provides for an easy implementation
in programming languages that do not include a built-in unification mecha-
nism. The formalism is not suitable for development of grammar and lexical
resources. Other systems, like ALE [3] and LKB [4], are more suitable for
this task. After a grammar or a lexicon is developed in one of those systems,
it 1s translated into a Java description and used in our system.

Before defining the crucial notion of the HPSG formalism—the head-
driven phrase structure grammar—we incrementally define several simpler
notions.

The HPSG formalism is based on the attribute-value matrices (AVM),
also called (typed) feature structures. The AVMs are recursive structures,
and an important question is whether we allow cycles in those structures;
e.g., can a proper part of a matrix be the matrix itself. Acyclic matrices
are simpler to describe theoretically. On the other hand, allowing cycles is
less expensive from the implementational point of view and they provide for
a more direct representations of some NL phenomena.! For this reason, we
choose to include cyclic matrices.

Example 1. Some examples of AVMs are given below:

[ employee
ID: JQP
NAME: John Q. Public
dept
DEPT: ID: D1
I NAME: Dept. of CS | |

'E.g., see [1]. For example, the sentence “This sentence is false.” requires a cyclic
structure for its semantic representation.
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This i1s an example of an AVM containing data about an employee—a typical
example from the database domain. The italic identifiers employee and dept
denote types, the strings typeset in the sans-serif font and followed by a
colon, e.g. ID, denote attributes, and the other strings, e.g ‘John Q. Public’,
are called atoms.

A list containing two atoms ‘a’ and ‘b’ i.e., (a,b), can be represented as

follows: ) )
nlist
HEAD: a
nlist
TAIL: HEAD: b
I TAIL:  [elist] | |

The important notion of structure sharing can be illustrated by the fol-

lowing AVM:

[ nlist 1
HEAD:
nlist
TAIL: HEAD:
I TAIL:  [list]

This AVM can be interpreted as a pattern that matches all lists having at
least two elements, and having the first two elements equal. The symbol
denotes an index, or a variable, and it is used to denote “identical” entities,
in a certain sense that will be explained later.

An example of a cyclic structure is the following:

[ employee
ID: NC
NAME: Nick Cercone
dept
ID: CS
DEPT: NAME: Dept. of CS
i CHAIR: |

It describes an employee, who is the chair of the department he belongs

to.
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Now, we can more formally introduce the notions illustrated above. Let
A; denote a finite set of attributes, let A denote an infinite enumerable set of
atoms, and let V' denote an infinite enumerable set of variables. We assume
that these sets are disjoint.

A set of types is a finite lattice:

Definition 1 (Lattice of types) A lattice of types is a non-empty finite
set T with a partial ordering <, such that for every pair t,u € T there is
a unique smallest element t V u that is greater than t and u, and there is a
unique largest element t A u that is smaller than t and u.

As a consequence, there exist the minimal and the mazimal element of
the set T', and they are denoted 1 and T.

We assume that the sets A¢, A, V', and T are disjoint.

The type L is specific in our application in sense that it is not considered
a “valid type;” rather, it is used to denote inconsistencies in unification
operations.

Example 2. A lattice of types can be represented by a diagram, e.g.

represents a lattice of types, where nlist V elist = list, elist ANt = 1, and
so on. Types nlist and elist can be used to represent non-empty and empty
lists, as already illustrated in the previous example.

The first step towards defining AVMs is the definition of a simpler kind
of AVM, which we call basic AVM.

Definition 2 (Basic AVM) A basic AVM over the set of attributes Ag, the
set of atoms A, the set of variables V', and the lattice of types T (or simply,
over Ay, A, V, and T ) is any atom, variable, or any tuple of the form

(¢, (ar,v1), (az2,v2), ..., (Gn,vn)),
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wheren >0,t € T\ {L}, a; € A, v; €V, and a; # a; for i # j. The set of
all basic AVMs over Ay, A, V, and T is denoted M 4, o v, or simply M.

We assume that the set of tuples defined in this way does not have any
elements in common with the sets Ay, A, V, or T.

A basic AVM that is a tuple (¢, (a1,v1), (az,v2),... ,(an,v,)) is denoted

t
ap V1

ay Vg

an Un

If the type is not explicitly denoted, the type T is assumed. For instance, []
represents the basic AVM: (T).

Definition 3 (System of equations) Given a set of basic AVMs M, a
system of equations (or a system for short) is any finite relation o C V x M.

Definition 4 (Satisfiable system) A system o is satisfiable if there exists
an equivalence relation = on M, such that ¢ C=, and for all m = ™' one

of the following holds:
. meVormeV,
2. m,m € Aandm=m, or
3. m = (t,(ar,v1),...,(an,v,)), M = (¥, (a},v]),...,(al,,v].)), a;,al €

Aq, vi,vi €V, a; = ay = v; = v}; and there is a type to € T\ { L} such
that for all basic AVMs m" = (", (a{,v]), ..., (al,, vl.)):

1> Y1 n''

m=m"=1t">+t,.

If o is a satisfiable system, then there exists the smallest equivalence
relation = with the above properties, and we denote it =,.
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Example 3. A simple example of an unsatisfiable system is:

{(vlv a)v (U27 b)? (Ulv UZ)}

where a and b are two distinct atoms.

Definition 5 (AVM) An AVM is any pair (v,0) of a distinguished vari-
able v and a satisfiable system o. The set of all AVMs is denoted Ma, avr,
or simply M.

Definition 6 (Domain of variables) For any basic AVM m, we define
the domain of variables of m, Dy(m), to be:

0, if m e A;
Dy(m) = { {m}, ifmevV;
{v1,...,on}, ifm= (¢ (ar,v1),...,(an,vn)).

For a system o, the domain of variables of o is

Dy(o)= U ({v}UD(m)).
(v,m) €
For any AVM m = (v, 0), we define the domain of variables of m, Dy(m),
to be:
Dy(m) ={v} U Dy(o).

Intuition behind the domain of variables is that a domain of variables
includes all variables that are part of an AVM. Two AVMs are “independent”
if their domains of variables are disjoint.

Since any system o is finite, Dy(m) is a finite set for any system or any

AVM. It is also finite for any basic AVM.

Example 4. A frequently used structure in HPSGs is a list. For instance,
(a1,as) is a list of two atoms aq,ay € A. Using the type hierarchy given
in the previous example, the list (a1, as) can be represented in the standard
HPSG notation as:

[ nlist

HEAD: a4
nlist

TAIL: | HEAD: ay
TAIL: [ elist |
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A list of three elements (a1, as, as) is represented as:

[ nlist
HEAD: a,
[ nlist 1
HEAD: a, ,
TAIL: nlist
TAIL: HEAD: a3
i i TAIL:  elist | | |

and so on.
According to Definition 5, the AVM representing the list (a1, a3) (on the
previous page) is a pair (v, 0), where

o = {(vi,(nlist,(HEAD,vy), (TAIL,v3))), (v2, ay),
(vs, (nlist, (HEAD, vy), (TAIL, v5)), (v4, a2), (vs, (elist))}.

The domain of variables of this AVM is Dy((vy,0)) = {v1, ve, vs, v, v5}.
If we want to emphasize the variable indices in the structure of AVM, we
can use the following representation:

[ nlist

HEAD: [Bla,

nlist

TAIL: HEAD: [4a,
TAIL:  [5] elist |

The indices of the form are used to denote variables v;,. However, we
commonly use variable indices only when necessary; i.e., to indicate structure
sharing.

Definition 7 (HPSG rule) If m € M and vq,... ,v, €V (n > 1), then
m — V1U2...0U,

1s an HPSG non-lexical rule.
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Let X2 be a distinguished subset of A, which we call alphabet, and its
elements are called letters or terminals. For any m € M and a € X,

m — a

1s an HPSG lexical rule.
Lezical and non-lexical HPSG rules are called HPSG rules.
We define the domain of variables for HPSG rules in the following way:

Dy(m — vivg...v,) = Dy(m) U {vy,02,... ,0,}

and

D,(m — a) = Dy,(m).

It f:V — V is a bijection, then a variable renaming defined by f is
a transformation that replaces each variable v with its image f(v). Let r
be a rule, let Dy(r) = D, and let D; be a finite set of variables such that
|D| = |Dq|. Then, we can always find a variable renaming such that after we
rename all variables in r, and obtain a new rule ry, Dy(r1) becomes D;.

Definition 8 (HPSG) An HPSG is any tuple (¥, A, A,V,T,S, P), where
Y is an alphabet, A¢ is a set of attributes, A is a set of atoms (¥ C A), V is
a set of variables, T is a lattice of types, S is the initial AVM (S € M), and
P is a finite set of HPSG rules.

Definition 9 (HPSG derivation and its domain of variables)

Let (¥, Ay, A,V,T, S, P) be an HPSG. The HPSG derivations have the form
m = «a, where m € M and o € (V UX)T, and they are defined recursively
in the following way:

1. If S = (v,0), then S = v is a derivation. The domain of variables of
this derivation is defined to be Dy(S = v) = Dy(S5).
2. If
e S1 = avf is a derivation, where v € V, S1 = (v1,0) € M, and
a,p e (VUD)*,

o my — vy is a rule in P, or is obtained from a rule in P by variable
renaming, where my = (vy,01); so that the variable domains of
S1 = avf and my — v are disjunct, and
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e Sy =(vi,0Uoy U(v,vq)) is an AVM,

then S; = a3 is a derwation. Its domain of variables is defined to be
D (Sy = ayp) = Dy(S1 = avB)U Dy(mq — 7).

We can illustrate the recursive step in the previous definition with the
following diagram:

|:> Vl[ouclu (v,v2)] = aVy§p

Example 5. Let

t
RPREF: «
SUFF: g

be a form of AVM, which we use to represent a list of atoms. The lists o and
are used to store a reversed prefix and corresponding (non-reversed) suffix of
the represented list. For instance, the list (a1, aq, as) can be represented in
the following ways:

t t
RPREF: () : RPREF: (a;) |,
SUFF (al,ag,a3> SUFF (ag,a3>
t t
RPREF: <CL2,CL1> 5 and RPREF: <CZ3,CL2,CZ1>
SUFF:  (as) SUFF: ()

We need two rules to derive one list representation from any other equivalent
representation: One rule to move an atom from a reversed prefix to the suffix,
and another rule to move an atom from a suffix to the reversed prefix. We
illustrate just one of the rules, since the other is analogous. First, using the
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standard HPSG notation, the rule can be represented as follows:

t t
nlist RPREF:
RPREF: [2] | HEAD: ~ [0 nlist
TAIL: [list] SUFF: HEAD:
| SUFF: [list] | i TAIL:

Now we can see how the rule is expressed according to Definition 7: It is
a rule m — vg, where m = (vy,0) is the AVM defined by the following
satisfiable system:

o= { (v1,(t,(RPREF,vy), (SUFF,v3))),

(v2, (nlist, (HEAD, vy), (TAIL, v5))),
(vs, (list)), (vs, (list)),

(ve, (¢, (RPREF,v5), (SUFF,v7)))

(vr, (

vy, (nlist, (HEAD, v4), (TAIL, v3)))}.

These two rules are used in the proof of Theorem 1.

Definition 10 (Language generated by HPSG)
Let (%, Ay, A, V,T, S, P) be an HPSG. The language generated by this gram-

mar is the set:
{w e ¥ : S = wis an HPSG derivation }.

The HPSG formalism does not give us any new class of languages. It is
equivalent to Turing machine, i.e., the following theorem holds:

Theorem 1 (Equivalence to Turing machines) The class of languages
generated by HPSGs is equal to the class of recursively enumerated languages.

Proof. First, we prove that each language generated by an HPSG is recur-
sively enumerable. By finding all HPSG derivations consisting of no more
than n steps given in Definition 9, and incrementally increasing n, we can
output all words of the language using a Turing machine. The only nontrivial
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routine is verification that a system of equations is satisfiable. We will see in
subsection 2.3 how it can be done effectively. This completes one direction
of the proof.

Second, we prove that any recursively enumerable language can be gener-
ated using an HPSG. It is known that any recursively enumerable language
can be generated by an unrestricted grammar in the Chomsky hierarchy (i.e.,
a type 0 grammar; e.g., see [7]). Hence, it is sufficient to show that any un-
restricted grammar can be simulated by an HPSG. Using the AVMs shown
in the previous examples, we simulate unrestricted-grammar derivations by
representing their sentential forms as lists of terminals and non-terminals.
Hence, we include all terminals and non-terminals of the unrestricted gram-
mar in the set of atoms of the HPSG. The sets of atoms, attributes, variables,
and the basic-AVM tuples may not be disjoint, but this problem can be easily
solved by renaming. If S is the start symbol of the unrestricted grammar,

then the initial AVM of the HPSG grammar is:

t
RPREF: ()
SUFF: (S)

The symbol () denotes the AVM [elist]. The rules from the previous example
are included, so symbols can be moved orderly from reversed prefix to suffix
and vice versa. For each unrestricted rule, for example ABC — XY, we
introduce an HPSG rule:

t t
RPREF: [I [list] — | RPREF:
SUFF: (A, B,C,[2 [list]) SUFF: (X,Y,[2)

In order to produce a word at the end of a derivation, for each terminal a of
the unrestricted grammar, we introduce the following three HPSG rules:

t t
RPREF: () —>[$£RM_ ] RPREF: ()
SUFF: (a, [1] [tist]) 1| SUFF:
t
1
RPREF: () —>[TERM:Q]

SUFF: ()
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t1 .
TERM: o | ¢

The last rule is the lexical rule. HPSG constructed in this way generates the
same language as the starting unrestricted grammar. |

2.2 Equivalent AVMs

Intuitively, the variables in AVMs are used to connect various parts, and this
connecting can be done in various ways for one conceptually unique AVM.

A:a
B: b
can be represented in the following two equivalent ways:

(Ula {(vlv (Tv (Av U2>7 (Bv 1)3))), (U27 a)? (037 b)v (U47 Ul)})v

Example 6. The AVM

and

(Ulv {(Ulv (Tv (Av UZ)))v (U27 a)v (U37 b)v (U47 Ul)v (U47 (Tv (Bv 03)))})

(The variable vy is redundant in the first case.)

Let us formally define the equivalence relation:

Definition 11 (Equivalent systems and equivalent AVMs)

Two systems oy and oy are equivalent if for any other system o3, both systems

o1 U os and oy U o3 are either satisfiable or not satisfiable in the same time.
Two AVMs (v1,01) and (ve,02) are equivalent, if vi =,, vy and the sys-

tems oy and oy are equivalent.

Two consequences of the above definition are: any two unsatisfiable sys-
tems are equivalent, and any unsatisfiable system is not equivalent to any
satisfiable system.

We have defined the relation =, immediately after definition 4. If sat-
isfiable systems oy and oy are equivalent, then the relations =,, and =,,
are equal. Otherwise, if a pair (77;,72) belongs to one and not the other
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relation, then we can find two variables v; and vy such that vy #,, ve and
U1 %4, U2, and two distinct atoms a and b, and define:

03 = {(1)1, a)v (U27 b)v (vhml)v (U27m2)}

According to the above definition, the systems o; and o are not equivalent,
since exactly one of the systems o7 U 03 and o3 U o3 is satisfiable. Hence,
the definition of equivalent AVMs is symmetric, 1.e., v1 =4, vz if and only if
V] =4, Vg, for equivalent systems oy and o3.

These two relations (system equivalence and AVM equivalence) partition
the set of all systems and the set of all AVMs into equivalence classes. Note
that all unsatisfiable systems form one class in the set of systems. Each other
class of systems can be put in a pair with a distinguished variable, and such
a pair is assoclated with a class of AVMs. In the previous example, we saw
two equivalent AVMs. The former AVM does not “divide,” the matrix, and
we consider that to be a good property. The later AVM does divide the
matrix. We distinguish the former AVM, and call it a compact AVM. In
each equivalence class of AVMs, there is at least one compact AVM.

Definition 12 (Solved system and compact AVM)
A satisfiable system o is called a solved system if the following properties are
satisfied:

e o has the functional property, i.e., (v,y) Eo A(x,2) €0 =y =z,
e o is anti-reflezive, i.e., (x,x) € o for all x, and

o if ot is the transitive closure of o, then ot is antisymmetric; i.e., for

all variables vi and vy, (vi,v2) € ot and (v, v1) € o implies vy = vy
(i.e., implies a contradiction).

An AVM (v,0) is called a compact AVM if o is a solved system.

The compact AVMs are important, since they are easier to represent and
more efficient to use in our implementation.
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2.3 Unification Algorithm

The standard unification algorithm is reduced to the algorithm for verifying
that a system is satisfiable. The problem of unifying two AVMs m = (v, o)
and m; = (v, 0y) is reduced to verifying that the system oy = oUoU{(v, v1)}
is satisfiable. The result of the unification is the AVM (v, 03). The result
could be specified in other ways as well, e.g., (v1, 02), but the resulting AVMs
would be equivalent to (v,03). In the implementation, we prefer that the
result is in a compact form.

Algorithm IsSatisfiable is given for the problem: Is a system o satisfiable?
In addition to a Boolean output, the algorithm returns a solved system equiv-
alent to o if the system o is satisfiable. We use the well-known UNION-FIND
structure for representing disjoint sets (e.g., see [5]). POP and PUSH are the
standard stack operations used on o. The algorithm is based on the Huet’s
unification algorithm [8]. The basic idea is to keep all equivalent variables
(=,) in one set, and use an array f to associate each set representative, which
is a variable, with a basic AVM tuple or the NULL constant.

Algorithm: IsSatisfiable

Input: o input system
Output true or false Is o satisfiable?
O defined if o is satisfiable; solved and equivalent
system to o

1. For each v € D,(0) do MAKE-SET(v), f[v] + NULL
2. While ¢ # () do

3. (v,2) « POP(o)

4. If x € V then

5. i « f[FIND-SET(z)]

6. f, + f[FIND-SET(v)]

7. v  UNION(v, z)

8. flo] & f

9. Else

10. fiez

11. v < FIND-SET(v)

12. If fl[v] = f1 or f; = NULL then continue
13. Else If flv] = NULL then f[v] « fi
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14. Else If f; € A or f[v] € A then Return false
15. Else
16. Let flv] = (¢, (a1,v1),...,(an,v,)) and
fir= (tlv (allv Ui)? SR (a;,, U;,))
17. et At
18. If t” = 1 then Return false
19. {af,...;al,} —{ar,... ,a} U{d},...  al}
20. For each «! in {af,... ,al.} do
21. If a! = aj = a}, for some a; and aj, then
22. PUSH(o, (vj,v},))
23. vl v;
24. Else If a! = a; for some a; then v} < v;
25. Else (a! = aj, for some a}) v/ < v,
26. flo] (", (af, oY), ..., (aqu, vpn))
27.0, 0
28. For each v € D,(c) do
29. If FIND-SET(v) = v then PUSH(oy, (v, f[v]))
30. Else PUSH(o,, (v, FIND-SET(v)))

31. Return true

In order to determine the running-time complexity, we have to make
some assumptions about the size of the input. The input system o is a set
of ordered pairs of a variable and a basic AVM. The size of a basic AVM is
a constant if it is an atom or a variable, or it is proportional to the number
of pairs in it if it is a tuple; i.e., it is a + bn where a and b are constants, and
n 1s the size of the tuple. We assume that the size of one pair of a variable
and a basic AVM in o is the sum of the sizes of its components, and the size
of a system is the sum of the sizes of all such pairs.

The loop 2-26 is repeated O(n) times, where n is the size of the input (not
to be confused with n in the algorithm). This is because in each iteration
of the loop one pair is popped out of o (step 3). On the other side, new
pairs are pushed in step 22, but each such push reduces the total size of all
basic AVMs by one, because two pairs (a;,v;) and (a,v},) are replaced by
one pair (a?,v!). Hence, there can be at most O(n) pushes.

The loop 28-30 is repeated O(n) times, as well.

There is a finite number of attributes in an HPSG, i.e., a constant number
of attributes, so the number of iterations in loop 20-25 is O(1) (within the
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Figure 1: Chart example

outside loop).

The amortized complexity of the operations FIND-SET and UNION is
O(m-a(m)) for m operations, where a(m) is the very slowly-growing inverse
of Ackermann’s function [5].

Hence the complexity of our algorithm is O(n - a(n)), or O(na - a(na)) if
a is the number of attributes.

2.4 Parsing Algorithm

The parsing problem in HPSGs is finding all AVMs m such that m = w is an
HPSG derivation, given a word w € ¥*. We use a chart parsing algorithm.

All chart parsing algorithms are based on a table called chart, or a well-
formed substring table. A chart contains all complete or incomplete con-
stituents parsed so far. The constituents are physically connected, i.e., they
are substrings of the sentence, and the chart provides an easy access to all
constituents starting or ending at a certain position. Use of a chart improves
the parser performance in terms of time and space: Time spent on parsing
components is reused, and space occupied by the components is reused by
including daughters in a mother just by their references. An example of a
chart is given in figure 1.

In a typical chart parsing algorithm, a chart is filled from left to right and
the procedure is expectation-driven; i.e., we know that the start symbol is
the parsing goal, and using the rules we direct our search in that direction. In
the parsing process, we use the dotted rules (as in the Earley’s algorithm [6]),

e.g.:
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NP — THE - ADJ N.

There are several issues that have to be handled differently in the HPSG
chart parsing than it i1s typically done:

Space is not reused. Time is reused, but we do not reuse the space in
the HPSG chart parsing. Let us consider the following HPSG rule:

phrase phrase

S HEAD:[ ] HEAD:[

noun

verb
AGR:

AGR:

If we apply this rule to two entries, we can represent the result in the
following way:

Obviously, entries NP and VP are not independent any more, and they
cannot freely participate in other parent constituents. For this reason, we
cannot include daughters in their mother simply by referring to them, we
have to clone the daughters and then include them in the new mother entry.
Fortunately, we do not have to include complete daughter components in a
mother entry; instead, we propagate only some information.

Island parsing instead of left-to-right expectation-driven parsing.
The island parsing is used instead of the left-to-right expectation-driven pars-
ing. In island parsing, component recognition starts from each word in the
sentence and proceeds in both directions. The process could be described
in the following way: Each word in the sentence becomes an active entity
having a goal of creating connected components according to given rules, in
which it will play the head role. For HPSG rules that do not have a head, we
can choose a dummy head, the left-most daughter being the best candidate.
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The above short description is related to an implementational idea based
on creating an active agent for each word in the sentence. It may be ques-
tionable whether we can call such entities agents, but in any case they are
objects with their own thread of execution and the goal of creating as large
as possible syntactic components in which they play the head role. This idea
leads to a highly parallelizable parsing algorithm with many relatively inde-
pendent threads. On a machine with a large number of processors, this might
be an efficient approach; however, in our environment the thread manage-
ment overhead prevails the effect of parallelization, so a serialized version is
implemented. The implemented algorithm can easily be turned into a hybrid
version as well.

In general, the island parsing is more robust than the left-to-right parsing,
and even when a sentence is not fully parsed, the island approach leaves more
partial results in the chart to work with. In particular, there are two main
advantages of the island parsing when applied to HPSGs:

o efficiency reasons

The head is typically more restrictive than other components in an
HPSG rule. For this reason, it is likely that more options will be

pruned right at the beginning if we start to unify daughters from the
head.

e natural extension of the HPSG concept

Starting to parse from the head follows the intuition behind the HPSG
formalism. This makes the grammar easier to maintain, and the parser
is more likely to behave as a grammar designer would expect it.

After this introductory discussion, we can present the parsing algorithm.
We use two charts in the algorithm: a passive chart, and an active chart.
The passive chart contains the completed components, which we call passive
chart entries, and the active chart contains equivalents of dotted rules—
uncompleted components called active chart entries. Unlike dotted rules, an
active chart entry contains two dots denoting the left and the right bound
of the island; i.e., the part that is parsed and instantiated so far. An active
chart entry can expand to the left or to the right by instantiating one more
daughter and moving the dot in the respective direction, unless it is complete
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on that side. If an active entry is complete on the left side, we call it left-
complete, and if it is complete on the right side, we call it right-complete.
When the dots reach both ends of the rule, the active chart entry is completed
and it is moved to the passive chart. In the above process, we memorize all
intermediate active chart entries by applying a version of unify-and-clone
operation.

An example of the parsing process is given in Figure 2. The passive chart
entries are represented by rounded rectangles, and the active chart entries
have arrow-like shapes. An arrow indicates an incomplete side of an active
entry.

Passive chart entries and active chart entries are AVMs with some ad-
ditional bookkeeping data, such as E.from and E.to fields used to record
the span of an entry in the chart. The following algorithm is used to add a
passive chart entry to the passive chart:

Algorithm: AddPassiveEntry(E)

Input: E a passive entry

1. add F to the passive chart

2. For each rule R in the grammar do

3. Attempt to unify E with the head of R

4. If the unification was successful then

5 get unified and cloned version of R

6 If R is complete then AddPassiveEntry(R)
7 Else add R to the active chart

There is not a procedure for adding an active entry (line 7), since we
simply add the entry to the chart without any additional operations.
The main parsing algorithm is:

Algorithm: Parse

Input: sentence the input sentence
Output: AVMs a set of AVMs representing complete parses of
the sentence

1. For each lexeme L of sentence do
2. ‘For each AVM FE corresponding to L in the lexicon do
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Passive chart

Active chart

Passive chart

Active chart

Passive chart

Active chart

Passive chart

What | companies| merged | last | week
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Step1l| wh ][ noun verb ][ adj ][ noun
N I\ Wy,
noun verb noun
verb
r Y N N
Step 2| wh I noun verb Iadj [ noun
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Step 3| wh I noun verb Iadj [ noun
N N < A
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noun verb
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verb I noun
- <
‘ [ verb
A
-
verb ]
.
noun verb noun
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r N
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> 3
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N X
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> 3
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Active chart

Figure 2: An example of chart parsing
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3. ‘ ‘ AddPassiveEntry(E)

4. While any entries are added to the charts do

3. For each active entry E do

6. If E is not left-complete then

7. For each passive entry L ending at E.from do

8. If NotDone(E, L) then

9. create new entry F; by left-expanding E with L
10. If E is successfully created then

11. If £, is complete then AddPassiveEntry(E,)
12. ‘Else add F, to the active chart

13. If E is not right-complete then

14. For each passive entry R starting at E.to do

15. If NotDone(E, R) then

16. create new entry F; by right-expanding F with R
17. If E, is successfully created then

18. If £, is complete then AddPassiveEntry(E,)
19. Else add F; to the active chart

20. Return all passive entries spanning the whole sentence

The parsing starts by tagging (lines 1-3); i.e., by creating one or more
passive chart entries for each recognized lexeme.? The entries are extracted
from the lexicon. If a lexeme is ambiguous, then all passive entries corre-
sponding to it are added to the chart.

In lines 8 and 15, we use the operation NotDone. This operation is used
to keep a record of entry pairs already used in expanding. Only the entries
that are not previously used for the operation (i.e., that are “not done”) are
used.

3 Implementation

In this section, we discuss the important implementational issues.
In Java language, classes are organized into modules called packages.
There are two packages in the parser Stefy:

avm package: used to implement AVMs, type lattices, atoms, variables, at-
tributes, and supporting operations including unification; and

2A lexeme may consist of several words, so we can have overlapping lexemes.
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hpsg package: used to implement HPSG rules, lexicons, grammars, princi-
ples, and the parser.

In the design of code, the emphasis is put on the code efficiency.
We first discuss some general implementation issues, and then a summary
descriptions of the two packages are given in the following subsections.

3.1 Grammar development versus parser usage

For most of the classes in these two packages, there are two different ways in
which they are used:

1. In the first usage, which we call debug and develop (DD), we want to
be able to construct grammars and AVMs in a flexible way with a lot
of functionality, but without much consideration for neither time nor
space efficiency.

2. In the second usage, which we call run time (RT), we care about ef-
ficiency and we do not need as much functionality as in the previous
mode. For example, it is assumed that the lexicon AVMs and the gram-
mar rules are already built, and they are just retrieved and used in the
parsing process by applying the operation of unification only.

This division is related to the notions of debug and release software con-
figurations. However, in this case we do not consider the debug and release
versions of the packages only, but also the debug and release versions of an
NLP grammar that a package user develops.

The code used for RT is also included in the DD part. On the other side,
we want the code used exclusively in DD to be clearly separated from RT,
so that the RT part can be executed without access to the DD part.

For example, the TypeLattice class belongs to the DD part of the code,
while the Type class is in the RT part. Sometimes, we want to have two
versions of the same class that separate those two functionalities. As an
example, the class Type 1s RT, while the class TypeX is DD. Adding 'X’ in
the name of class used for DD is the convention used throughout the code.

It would be natural to separate the DD and RT parts into two separate
Java modules. However, it is not done since the classes in DD frequently
need additional access rights in the RT part, which are provided only to the
code in the same package.
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3.2 Package avm

The package avm implements AVMs in Java, with necessary data structures,
including: atoms, type lattices, attributes, and variables. Among other op-
erations, the operation of AVM unification is implemented. This package is
separated from the hpsg package, since AVMs and unification can be used
independently in many applications, other than HPSG parsing.

BasicAVM (RT). The abstract class BasicAVM is the superclass of classes
Atom, Variable, and BasicAVMTuple. It is defined according to Definition 2.

Atom (RT). The class Atom is subclass of BasicAVM. It implements an
atom. Each atom is associated with a string. The atoms representing equal
strings are the same (as pointers), so they are easily and efficiently compared.

AtomSet (RT). The class AtomSet implements a set of atoms. It provides
functions for adding atoms to the set, and for retrieving them by name.

AttributeSet (DD). The class AttributeSet implements a set of attributes.
It provides methods for managing an attribute set. There is no class At-
tribute, since attributes are not directly represented in an AVM. When
attributes are added to the attribute set, they are assigned an integer key
(starting from 0), which is not changed afterwards.

BasicAVMTuple (RT). The class BasicAVMTuple implements a basic
AVM tuple. It contains the tuple type, and an array of variables. The
attributes are not represented explicitly for efficiency reasons. Each attribute
is represented by its key, which is an index of the value of that attribute in
the variable array (after possibly adding an offset).

The actual implementation is somewhat more efficient than a direct ap-
proach. A part of future work is finding out experimentally if an implemen-
tation with sorted lists would be more efficient.

For DD operations, we use the class BasicAVMTupleX.
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BasicAVMTupleX (DD). This class is used to manipulate basic AVM
tuples in the DD phase. The operations include creating AVM tuples, and
setting types by type name.

Type (RT). The class Type implements an instance of type. It is imple-
mented as a bit array (by extending the standard java.util.BitSet class).
The type bot is represented by the set of zero-bits (false values), while the
type top is represented by the set of one-bits (true values). All types are of
the same bit size. Each non-bot type is associated with one bit, and the bit
set associated with a type has true values for bits corresponding to all its
subtypes (except bot). Therefore, any two types are unified by doing bitwise
operation AND on their bit sets.
This implementation relies on the claim

for any two types t1,t, € T. If t < ¢t; Aty, then t < ¢; and ¢t < ¢, since
t1 Aty <ty and t3 Aty < ty. In the other direction, if ¢+ < ¢; and ¢ < ¢, then
t < t1 Aty by the definition of the operation A (Definition 1). This proves
the above claim.

Since it is used only in RT, the class Type does not contain information
about type names. For mapping between type names and their representa-
tions, we use TypeLattice.

TypeX (DD). The class TypeX is used within TypeLattice. A type lattice
is built in the DD phase. All functionality needed in this phase, local to an
individual type, and not needed in the RT phase is implemented in this class.
This functionality includes: finding the type name and retrieving information
about direct parents of a type.

TypeLattice (DD). The class TypeLattice implements a lattice of types.
It provides operations for defining new types, finding type names, building
the type lattice, etc.

A type lattice has to be completed before we can to use it to create AVMs.
When we add new types, we do not maintain all necessary information needed
for the lattice of types. We only maintain type names, the total number of
types, and some subtype relations. We do not maintain all subtype relations,
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but all of them can be obtained by a transitive closure of the existing ones.
In order to bring a TypeLattice instance to a consistent state, the algorithm
Normalize is applied. The preconditions of the algorithm Normalize are:

1. all types are included and assigned some id numbers, and

2. the reflexive and transitive closure of all included subtype relations is
a partial order (there are no cycles).

The algorithm post-conditions are:

1. only direct subtype links (which cannot be inferred by transitive clo-
sure) remain memorized,

2. bit sets are properly set, i.e., the bit set of each type has to indicate all
types that are subtypes of this type, and

3. the type id numbers have to be assigned in a topological-sort order
except for the type bot; more precisely, bot.id = —1, top.id = 0, and
for all other types t; and t,, t; supertype of ¢y implies ¢y.id < t,.id.
The number t.id denotes the index of the bit in a bit set corresponding
to the type t.

The following algorithm is used:

Algorithm: Normalize(T')

Input: T type lattice satisfying preconditions
Output: T normalized type lattice (i.e., satisfying the post-
conditions

1. do topological sort of the lattice (top is the first element)
remove bot and assign bot.id + —1
3. assign id numbers in order, set appropriate bits in bit sets,
and set bits resulting from stored subtype relations,
4. do transitive closure using an algorithm based on
Floyd-Warshall algorithm ([5] p.563) and remove subtype relations
which are not direct.
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Variable (RT). The class Variable extends the class BasicAVM. Its basic
function is to be a reference to another BasicAVM through the field p. Vari-
ables are used to form UNION-FIND structures (e.g., see [5]) that represent
disjoint sets of unified variables. The representative of a set is a variable,
whose value of p may be null, or a basic AVM that is not a variable.

Beside p, a variable contains some other auxiliary fields: rank, newp,
newrank, status, and next; and some static fields. The field rank is used
for efficient operations on the UNION-FIND structures. The usage of other
fields is described below.

There are various ways how two AVMs can be unified. When we attempt
to unify two AVMs, a question is: What happens when unification fails?
One expensive solution to the problem is to clone both AVMs, and attempt
to unify the clones. If the unification succeeds, return the unified clone,
otherwise fail and keep the original AVMs. Another cheaper approach, which
is used here, is to record any changes; and, if unification fails, recover the old
state, otherwise commit the changes. Additionally, this approach is efficiently
used in an important kind of unification—the unifyAndClone method.

During unification, we change values of newp and newrank, instead of p
and rank. Additionally, each changed variable is added to the static list of
changed variables using the field next for linking. After failed or successful
unification, it is now easy to recover or commit the variable states: we simply
go through the list of changed variables and update fields.

In the unify-and-clone operation, or non-destructive unification, we want
both results, the old and the new structure, after unification. The first phase
is attempting to unify two AVMs. If the unification fails, we recover the old
state and the procedure is finished. If the unification succeeds, we perform
two additional operations: duplicate and separate.

In the operation duplicate, we make a depth-first search of the AVM
graph, and for each node we create a shallow clone.

In the operation separate, a new depth-first search is done, in which we
separate the old and the new structure.

Both depth-first searches run in linear time, so the total unification time
remains to be O(n-«a(n)). The field status is used for the depth-first searches
(this field is sometimes called color).
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VariableX (DD). The VariableX class is used to separate DD functional-
ity from the class Variable. It provides methods for building AVMs, printing
AV Ms, ete.

DD (DD). DD is a generic class used for various DD tasks. It imports
and frequently uses the standard java.lang.reflect package.

ErrorHandler (RT). The class used to handle errors and exceptions dur-
ing run time. The only type of errors that currently exists are fatal errors.

ErrorHandlerX (DD). This class is similar to ErrorHandler, except that
it prints out more details about an error. The class ErrorHandlerX extends
the class ErrorHandler.

3.3 Package hpsg

The package hpsg uses package avm and, on top of it, defines HPSG rules,
charts, grammars, and lexicons. The parsing algorithm is implemented as a
Grammar method.

Rule (RT). The class Rule implements an HPSG rule. It is a subclass of
the class avm.Variable, and it also implements the interface Registerable,
which is described below.

A rule i1s a variable that describes the left-hand side of an HPSG rule.
Additionally, a rule contains an array of variables representing rule daughters,
and the head index field.

For efficiency and simplicity reasons, rules are used as passive and active
entries in the charts, so additional fields for storing the entry and island
boundaries are defined.

RuleX (DD). Similarly to VariableX, the RuleX class contains functional-
ity used for creating and maintaining the Rule instances, which is not needed
at run-time. The superclass of RuleX is VariableX.
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Registerable interface (RT). The interface Registerable defines only one
method prototype: id(), which returns a String identifier that uniquely
identifies an object.

Register (RT). The class Register and the interface Registerable are used
to implement the method NotDone described in the parsing algorithm.

RegisterX (DD). The RegisterX class separates exclusive DD function-
ality from the Register class.

Chart (RT). Both charts used in the parsing algorithm, the passive and
active chart, are instances of the class Chart. It provides method for effi-
ciently adding and accessing chart entries; i.e., instances of Rule.

ChartX (DD). The ChartX class separates exclusive DD functionality
from the Chart class.

Lexicon (RT). The Lexicon class provides a generic lexicon class. New
lexicons can be defined by extending this class.

Grammar (RT). Similarly to Lexicon, the Grammar class provides a
generic grammar class. A package user can provide new grammars by ex-
tending this class.

4 Discussion

The HPSG formalism is usually based on the theory of typed feature struc-
tures described in Carpenter 1992 [1]. The definition presented here provides
for an easy implementation in programming languages that do not include a
built-in unification mechanism. Additionally, we also provide an explicit and
efficient unification algorithm for AVMs. The presented formalism is very
compact and concise.

In the second part of the paper, we describe an implementation of Java
parser for HPSGs based on the formalism presented in the first part.



30 REFERENCES

A drawback of this implementation is that it is not suitable for develop-
ment of the grammar and lexical resources. Other systems, like ALE [3] and
LKB [4], are more appropriate for this task. After a grammar or a lexicon
is developed in one of those systems, it is translated into a Java description
and used in our system.

5 Conclusion

In this paper, we have presented a new precise and compact description of
the HPSG formalism, which is very suitable for implementation of HPSG
parsers in low-level languages.

It is proven that the grammar defines the set of recursively enumerable
languages.

A Java parser for HPSG, called Stefy, is implemented using this formal-
ism. It represents an important step towards applying HPSG formalism in
the area of distributed NLP and answer extraction. A detailed documenta-
tion of the implemented parser is included.

References

[1] Bob Carpenter. The Logic of Typed Feature Structures with Appli-
cations to Unification-based Grammars, Logic Programming and Con-
straint Resolution, volume 32 of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, New York, 1992.

[2] Bob Carpenter. Probabilistic word graph parser: Java source & docu-
mentation, 1999. http://www.colloquial.com/carp/Parser/.

[3] Bob Carpenter and Gerald Penn. ALE, the attribute logic engine, user’s
guide. WWW, May 1999.
http://www.sfs.nphil.uni-tuebingen.de/ gpenn/ale.html.

[4] Ann Copestake. The (new) LKB system, Version 5.2, October 1999.
http://www-csli.stanford.edu/ aac/lkb.html .

[5] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-
duction to Algorithms. The MIT Press, 1989.



REFERENCES 31

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J. Earley. An efficient context-free parsing algorithm. Communications

of the ACM, 13(2):94-102, February 1970.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 1979.

G. Huet. Résolution d’equations dans les langages d’ordre 1,2, ... w.
These de Doctorat d’Etat, Université de Paris 7 (France), 1976.

Vlado Keselj. Java parser for HPSGs: Why and how. In Nick Cer-
cone, Kiyoshi Kogure, and Kanlaya Naruedomkul, editors, Proceedings
of the Conference Pacific Association for Computational Linguistics,
PACLING’99, pages 288-294, Waterloo, Ontario, Canada, August 1999.
http://www.cs.uwaterloo.ca/ vkeselj/papers/pacling99.http.

Paul King. An expanded logical formalism for Head-Driven Phrase
Structure Grammar. Arbeitspapiere des stb 340, University of Ttibingen,
1994.

Kevin Knight. Unification: a multidisciplinary survey. ACM computing
surveys, March 1989, 21(1):93-124, 1989.

Takaki Makino, Minory Yoshida, Kentaro Torisawa, and Jun’ichi Tsu-
jii. LiLFeS—towards a practical HPSG parser. In Proceedings of the
COLING-ACL 98, Montreal, pages 807-811, 1998.

Rob Malouf and John Carroll. Efficient graph unification for parsing
constraint-based grammars. Paper presented at the Computer Science
Department, Duke University, 1999.
http://hpsg.stanford.edu/rob/papers/duke-slides.ps.gz.

Carl J. Pollard and Ivan A. Sag. Head-Driven Phrase Structure Gram-
mar. University of Chicago Press, Chicago, 1994.

Fred Popowich and Carl Vogel. Chart parsing head-driven phrase struc-
ture grammar. Technical Report CSS-IS TR 90-01, Simon Fraser Uni-
versity, 1990.

Derek Proudian and Carl J. Pollard. Parsing head-driven phrase struc-
ture grammar. In Proceedings of the Twenty-Third Annual Meeting of
the ACL, pages 167-171, Chicago, IL, 1985. ACL.



32 REFERENCES

[17] J. A. Robinson. A machine-oriented logic based on the resolution prin-

ciple. Journal of the ACM, 12(1):23-41, January 1965.

[18] Ivan A. Sag and Thomas Wasow. Syntactic Theory: A Formal Intro-
duction. CSLI Publications, Stanford, 1999.



