Large Independent Sets and Low-Degree Independent Sets in
Planar Graphs in Linear Time

Therese C. Biedl *

July 12, 1999

Abstract

In this paper, we study the problem of finding large independent sets in planar graphs in

linear time. By modifying the traditional greedy-method, we show how to obtain an independent

set of size at least ;’—Sn in linear time. This falls short of the independent set of size %n, which

is known to exist by the 4-color theorem, but is an improvement over the %n bound of the

best known linear-time heuristic. We also study independent sets where vertices have bounded

degree, and obtain for D > 7 at least min{%n, 4?)—:?8”} independent vertices of degree < D in

linear time.

Keywords: independent set, planar graph, greedy algorithm, 4-color theorem, graph algorithms,
computational geometry

1 Introduction

It has been known for a number of years that any planar graph has a 4-coloring, i.e., one can
color the vertices with 4 colors such that the two endpoints of any edge have different colors
([AH77, AHKT77], see also [RSST97]). Many interesting corollaries follow from this result, among
them that every planar graph has an independent set (a set of vertices without edges between them)
of size at least %n. This bound is best-possible in the sense that there are planar graphs that have
only %n independent vertices.

The 4-coloring of a planar graph can be found in O(n?) time [RSST97], but the constant involved
in this algorithm is big. Thus, research has focused on how a large independent set might be found
in a planar graph without using the 4-color theorem.

Finding the independent set of maximum size is NP-complete, even for cubic planar graphs
[GJS76]. But for some applications, it suffices to find a guaranteed fraction cn of independent
vertices. Examples include the planar point location algorithm of Kirkpatrick [Kir83] and the re-
construction algorithm for Delauney triangulations of Snoeyink and van Kreveld [SvK97]. The
former algorithm, however, needs more than just an independent set; it needs a low-degree inde-
pendent set, i.e., an independent set where every vertex has degree at most D for some constant

*Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada,
biedl@uwaterloo.ca. Research partially supported by NSERC.

D. Any fraction cn of independent vertices is feasible, but the larger ¢, the quicker the algorithms,
as long as cn independent vertices can be computed in linear time. The challenge is therefore to
find cn independent vertices in a planar graph in O(n) time, and to achieve as big a constant ¢ as
possible.

1.1 Previous results

We can find %n independent vertices with the algorithm by Robertson et al. by computing the
4-coloring of the planar graph [RSST97]. But this takes O(n?) time with a big constant. A simpler
algorithm (which pre-dates the work by Robertson et al.) finds Zn independent vertices in O(n?)
time [CNS83].

Very little is known about how many independent vertices can be found in O(n) time. A simple
greedy-heuristic, which we review in Section 2.2, gives at least %n independent vertices. A slight
modification, which we review in Section 2.3, gives at least %n independent vertices. [This could
also be achieved with the linear-time 5-coloring algorithm for planar graphs [CNS81].]

With respect to low-degree independent sets, Kirkpatrick showed how to find at least in
independent vertices of degree < 12 with a very simple algorithm [Kir83]. This was improved to
%n independent vertices of degree < 13 [Ede88], then to %n vertices of degree < 9 [SvK97], and
finally to o= vertices of degree < 9 [Bel99].

1.2 Our results

In this paper, we give a linear-time algorithm to find a large independent set in a planar graph.
More precisely, we study a modification of the greedy-method that also uses vertex-contractions
and guarantees %n independent vertices. We improve this method by choosing the vertex to be
deleted or contracted in a particular fashion, which guarantees an independent set of size at least
%n ~ 0.217n. This is a significant increase from the ‘easy’ bound of 0.2n towards the best-possible
bound of 0.25n.

Our bound is obtained by assigning a variable to each possible reduction, and obtaining bounds
on the number of vertices and edges deleted with each reduction. This gives us constraints on the
variables, and the lower bound for the independent set is then obtained by minimizing the number

of independent vertices subject to these constraints.

With respect to low-degree independent sets, we show how to obtain min{;—Sn, 43—:61387).} in-
dependent vertices of degree < D for D > 7 in linear time. In particular, for D = 11, we get

%n > 24—1n independent vertices of degree < 10, thus a larger low-degree independent set than

previously known. Alternatively, for D = 9, we get %n independent vertices of degree < 8, which
improves on the bound on the degree while still having a sizable fraction of vertices in the inde-
pendent set. Our bound is best-possible for D = 8: we find %n independent vertices of degree < 7,
and we show that there exists a graph that has no more than in 4+ O(y/n) independent vertices of
degree < 7.

Our algorithm to find this low-degree independent set is based on the pre-processing idea pro-
posed in [Kir83]: delete all vertices of degree > D, and find an independent set in the remaining
graph. This pre-processing step simply adds another variable to our analysis, and the same method
of analysis yields the bound.

The paper is organized as follows. After giving definitions, we review in Section 2 the traditional
greedy-method and the greedy-method with contractions. In Section 3, we study ways to improve
the choice of the reduction vertex and obtain bounds on the number of vertices and edges deleted
in each type of reduction. This analysis yields in Section 4 that with the appropriate choice of the
reduction-vertex the greedy-method with contractions results in at least 25—3n independent vertices,
and, if we remove vertices of degree > D beforehand, at least min{%n, 43—:‘;871.} independent
vertices of degree < D. In Section 5 we study details of the implementation in linear time, and
conclude in Section 6. Two lengthy proofs are deferred to Appendix A and B.

2 Background

2.1 Definitions

Let G = (V, E) be a graph with n vertices and m edges. The degree of a vertex v, denoted deg(v),
is the number of incident edges of v. A multiple edge is an edge e = (v, w) such that there exists
another edge ¢/ = (v,w). A loop is an edge e = (v,v). A graph is called simple if it has neither
loops nor multiple edges. In this paper we assume that the given graph is simple. However, we will
sometimes destroy simplicity by creating multi-edges, which will consequently be deleted.

Graph G is called planar if it can be drawn in the plane without a crossing. In this paper all
graphs are assumed to be planar. A specific planar embedding of a planar graph is described by the
circular order of edges around each vertex and can be computed in linear time [HT74]. We assume
in the following without further mentioning that if G is a planar graph, then a planar embedding
of it has been computed and remains fixed. Also, any subgraph of G is assumed to have the planar
embedding that is induced by G.

In a planar graph, two edges e; = (v, w1), ea = (v, ws) are called clockwise consecutive at v if the
clockwise order of edges around v contains e; followed by es, and counter-clockwise consecutive at
v if eq, €1 are clockwise consecutive at v. Two vertices wy, ws are called consecutive neighbors of v
if they are both adjacent to v, and the edges (v, w;) and (v, ws) are clockwise or counter-clockwise
consecutive. An edge (w;, w;) is called a long edge of v if w; and w; are two neighbors of v that are
not consecutive. A set {wy,...,wy} is called a set of consecutive neighbors of v if, after suitable
renaming, w; and w;4; are consecutive neighbors of v for¢=1,...,k— 1.

A planar drawing of a graph splits the plane into pieces called faces; the unbounded face is
called the outer-face. A planar graph is called triangulated if every face is a triangle. Such a graph
is mazimal planar in the sense that the only edges that can be added without destroying planarity
are multiple edges and loops.

A separating triangle of a planar graph is a triangle T' = {vg, vy, v2} such that for some ¢ €
{0,1, 2} the edges (v;_1,v;) and (v;, v;4+1) are not clockwise consecutive, and for some j € {0, 1,2}
the edges (v;_1, v;) and (v;, v;4+1) are not counter-clockwise consecutive, where addition is modulo 3.
This is the same as to say that some neighbor of vy, v1,vs is “inside” T and some neighbor is
“outside” T in the planar drawing.

Two special graph classes will be used in this paper. The complete graph on n vertices, denoted
K,,, is the simple graph where any two distinct vertices are adjacent. It is known that Ky is not
planar. The complete bipartite graph on ni + ny vertices, denoted K, ., is the simple graph where
all of n; vertices are adjacent to all of n, different vertices. It is known that K3 3 is not planar.

Much is known about planar graphs. For example, every planar simple graph has at most 3n—6
edges, which implies that it has a vertex of degree at most 5. However, we need the following slight
strengthening of this result:

Lemma 1 Let G be a planar simple graph with at least 4 vertices, and let a, b, c be three vertices
of G. Then G contains a vertex v # a,b, c with deg(v) < 5.

Proof: Note that we may assume without loss of generality that G is triangulated, for if it is
not, then we can add edges until it is; this will only increase the degrees of vertices. Since G is a
triangulated simple graph and n > 4, ever vertex has degree at least 3. If all vertices v # a,b, ¢
had degree > 6, we would get

6n —12>2m =) deg(v) > 6(n—3)+3-3=6n-09,
veV

which is a contradiction. O

The following corollary will be crucial for our choice of reduction-vertex.

Corollary 2 Any planar simple graph G has a vertex v with deg(v) < 5 that does not belong to a
separating triangle.

Proof: The statement clearly holds if G has no separating triangle, so assume G has a separating
triangle Ty. Let G, be the subgraph inside T, i.e., the graph induced by the vertices of Ty and the
vertices inside Tj. Here, inside is defined with respect to the fixed planar embedding and outer-face,
and is the set of those vertices v ¢ T for which any path from v to a vertex on the outer-face
contains a vertex of Tp. Note that by definition of a separating triangle, there must be at least one
vertex inside Tj. Also, there is at least one vertex that is neither on Tj nor inside Tp, so G, has
fewer vertices than G.

If G1, has a separating triangle T}, take the subgraph G, inside T; and iterate. Since G, has
fewer vertices than Gr,, this process must stop, say G'7, has no separating triangle. By the above
lemma, pick a vertex v with deg(v) < 5 in G, that is not on T}, this vertex then does not belong
to a separating triangle. a

2.2 The traditional greedy-method

The greedy-method for finding an independent set works as follows: As long as the graph has
vertices, pick a vertex v of minimum degree, remove v and all its neighbors, compute an independent
set in the resulting graph, and add v to it. We will refer to the operation of deleting v and all its
neighbors as delete(v). Because every planar simple graph has a vertex of degree < 5, this method
yields an independent set of size at least %n.

2.3 Greedy with contractions

The greedy-method can be improved by replacing delete(v), if possible, with contract(v, w;, w;),
which works as follows (see Figure 1). Let w; and w; be two non-adjacent neighbors of v. Delete
v and all neighbors # w;,w; of v, and contract w; and w; into a new vertex w*. Also delete

all multiple edges that might arise from the contraction. Compute an independent set I in the
resulting graph. If w* does not belong to I, then add v to I; this yields an independent set. If w*
does belong to I, then remove it and add both w; and w; to I. Because w; and w; are not adjacent,
this yields an independent set.

Figure 1: The operations contract(v, w;, w;).

Operation contract(v, w;, w;) is better than delete(v) because it deletes only deg(v) vertices to
increase the size of the independent set by one. However, it can only be applied if two neighbors of
v are not adjacent. The crucial observation is now that for a planar graph, if deg(v) > 4, then some
pair of neighbors w;, w; is not adjacent, because otherwise we could complete v and its neighbors
to a planar K5.! So we can always apply contract(v, w;, w;) if deg(v) > 4.

Algorithm GREEDYWITHCONTRACTION thus works as follows: As long as the graph has
vertices, pick a vertex v of minimum degree. If deg(v) < 3, then apply delete(v), else apply
contract(v, w;, w;) for some suitable neighbors w;, w; of v. Compute an independent set in the re-
maining graph, and expand it as described above. Every iteration of GREEDY WITH CONTRACTION
deletes at most 5 vertices (by deg(v) < 5) and expands the independent set by one vertex, thus
GREEDY WITHCONTRACTION yields an independent set of size at least %n

[Remark: The greedy-algorithm is folklore. The author has not found an explicit description of
GREEDY WITHCONTRACTION, but all ideas for it are contained in [Alb76].]

3 Algorithm SMARTGREEDY

In this section, we study how to choose the reduction vertez, i.e, the next vertex v to be deleted
(followed possibly by contraction of two neighbors of v) such that algorithm GREEDY WITHCON-
TRACTION yields at least %n independent vertices. The crucial ingredient to our analysis lies in
determining not only how many vertices have been removed, but also in noting a lower bound on
the number of edges that have been removed. We need the following simple observations.

!By completing a set S to a planar K5, we mean that we can add edges without destroying planarity, specifically,
edges between consecutive neighbors, such that the resulting graph is planar and contains a K5 or a subdivision of
it. This is a contradiction.

Fact 3 If we delete vertices uy, ..., uy, then we delete at least deg(u1)+. ..+ deg(ur) — |{(ui, uj) €
E:i,5€{l,...,k}}| edges.

Proof: Every incident edge of uy, ..., uy is deleted, but an edge (u;, u;),¢,7 € {1,..., k} is counted
twice by deg(u1) + ...+ deg(ug). |

Fact 4 If we contract neighbors w;, w; of v and delete all other neighbors uy,...,u, of v, then we

delete at least deg(u1) + ...+ deg(ux) + 2 — [{(ui,u;) € E: 4,5 € {1,...,k}}| edges.

Proof: We delete ug,...,u; and v. Of the k + 2 edges incident to v, all but the two to w; and w;
have been counted in deg(u) + ...+ deg(ux) already, so v contributes only 2 units. |

In the following subsections, we study a variety of cases for the reduction of a vertex. Each
case will be called an z”-reduction for some strings o, 3. Later, we also use the variable z° to
denote the number of z?-reductions. For each case, we determine the number of deleted vertices
nP, and a lower bound m? on the number of edges deleted by this reduction. Finally we denote by
¥ how many independent vertices are added by this reduction (usually, i# =1, but we will have
one exception to this).

In all cases, assume that d is the minimum degree of the current graph, that v is a vertex of
degree d and that wy, ..., wy are the neighbors of v in clockwise order. Observe that deg(w;) > d
fori=1,...,d.

3.1 Vertices of degree < 2

If v has degree < 2, then delete v and its neighbors, thus d + 1 vertices. Since each neighbor w;
has degree > d, and since there are at most (d* — d)/2 edges between wy, ..., wy, this deletes at
least d? — (d* — d)/2 = (d? + d)/2 edges. For this z4-reduction (d < 2), we thus have the following
bounds:

zg-reduction: ig=1 mg=1 mg=0

zi-reduction: i1 =1 n1 =2 m; =1

zo-reduction: i9 =1 my =3 my =3

3.2 Vertices of degree 3

If the minimum degree in the graph is 3, then to make our algorithm produce many independent
vertices, we choose the reduction-vertex v as follows:

Algorithm PickDEG3VERTEX
If there exists a vertex v of degree 3 such that
two neighbors of v are not adjacent, or
delete(v) deletes at least 9 edges,
Then pick v as next reduction-vertex.
Else, pick an arbitrary vertex of degree 3 as next reduction-vertex.

We will explain in Section 5 how to implement algorithm P1cKkDEG3VERTEX efficiently.
To analyse this case, we distinguish by whether all pairs of neighbors of v are adjacent.

If, say, w; and ws are not adjacent, then apply contract(v, w1, w2). This deletes at least 3+2—0 =
5 edges by deg(ws) > 3, and removes three vertices (two by deletion and one by contraction). We
call this an z§-reduction, where “c” stands for “contract”.

If all neighbors of v are adjacent to each other, then we delete v and its neighbors, thus 4
vertices and at least 6 edges. We call this an zd-reduction, where “d” stands for “delete”.

We obtain the following values:

WRWO
Il
AL

z§-reduction : ¢
zd-reduction : i

Il
o o

m
m

wawo

3.3 Vertices of degree 4

If deg(v) = 4, then there are always two neighbors w;, w; that are not adjacent. Thus, we can
always perform contract(v, w;, w;). This deletes two neighbors of v, and at least 4 +4+2—-1=9
edges. We call this an z§-reduction.

In order to get a simple linear-time implementation, we introduce one exception: If Y77, deg(w;) >
27, then we call delete(v), which deletes 5 vertices and at least 27 — 5 = 22 edges. (See Section 5.2.3
for an explanation why.) We call this case an z3-reduction, and get the following values:

zg-reduction: i5=1 nj=4 mi=9
zd-reduction: ¢ =1 nd=5 mf=22

3.4 Vertices of degree 5

If deg(v) = 5, then there are always two neighbors w;, w; of v that are not adjacent, and we can
apply contract(v, w;, w;).

We want to avoid this case, called an z5-reduction, because it adds only one independent vertex
for 5 deleted vertices. To obtain good bounds on how often it can happen, we must have especially
high bounds on the number of deleted edges. To be able to do so, we must choose v and its
neighbors w; and w; carefully, for with a bad selection, we may delete as few as 14 edges.

The number of deleted edges during an zs-reduction is at least 17 — |{edges between deleted
neighbors of v}| by Fact 4. If we choose the contraction vertices non-consecutive, then only one
pair of deleted neighbors is consecutive, and therefore the number of deleted edges is at least 16 —
|{long edges between deleted neighbors of v}|. It will therefore be a good idea to use as reduction
vertex a vertex that does not have a long edge; this exists by Corollary 2 because a long edge of
v implies that v belongs to a separating triangle. The precise choice of v is detailed in the next
lemma, the lengthy proof of which is given in Appendix A.

Lemma 5 Let G be a planar graph with minimum degree 5. Then there exists a vertex v with
deg(v) = 5 and two non-adjacent non-consecutive neighbors w;, w; of v such that

1. contract(v, w;, w;) deletes at least 19 edges, or
2. the following three conditions, called Conditions (*), hold:

o contract(v, w;, w;) deletes at least 16 edges that are not multiple edges,

e after contract(v, w;, w;), there erists a vertez z with deg(z) < 4, and

o there ezxists at most one long edge of v with both endpoints # w;, w;, t.e., with both
endpoints among the deleted neighbors of v.

For future reference, we will also note how long it takes to compute this vertex, which follows
from analyzing all cases of the proof of Lemma 5; see Appendix A.

Lemma 6 Let G be a planar graph with minimum degree 5, and let verter u be given such that
deg(u) = 5 and u does not belong to a separating triangle. Then the verter v of Lemma 5 can be
found in O(1) time.

So if the minimum degree is 5, then there exists a reduction vertex such that one of two cases
happens. In the first case, we remove very many edges. In the second case, we obtain a vertex
of degree < 4 after the z5-reduction, thus the next reduction removes at most 4 vertices. Putting
both reductions together, we remove at most 9 vertices to obtain two independent vertices.

For the second case, we will show that if the second reduction is an z¢-reduction, then at least
25 edges are removed during both reductions together. To be able to show this bound, we must be
smart in the choice of neighbors to be contracted during the z5-reduction. The order of preference
among these pairs is indicated in the following algorithm.

Algorithm Pick CONTRACTIONPAIR

Let v be the reduction-vertex of degree 5 chosen as in Lemma 5.

Find a pair {w;, w;} of neighbors of v that is not consecutive, not adjacent, and highest with respect
to the following list of preferences (one of these cases is always possible by Lemma 5):

1. contract(v, w;, w;) would delete at least 19 edges.

2. contract(v, w;, w;) would satisfy Conditions (*) and create an z§-reduction, i.e., a vertex of
degree 3 for which not all neighbors are adjacent.

3. contract(v, w;, w;) would delete at least 17 edges and satisfy Conditions (*).

4. contract(v, w;, w;) would satisfy Conditions (*).

We will study in Section 5 how to implement this algorithm efficiently. Using this algorithm,
we can show the desired bound on the number of deleted edges; the proof of this lemma can be
found in Appendix B.

Lemma 7 Let the minimum degree be 5, let v be chosen as in Lemma 5, and let wi,ws be the
neighbors of v chosen with algorithm PICKCONTRACTIONPAIR. If contract(v, w1, ws) deletes k
edges and is followed by an z3-reduction at verter z, then delete(z) deletes at least 25 — k edges.

For an zs-reduction, we thus distinguish three cases. In the first case, denoted an zi°-reduction,
we delete at least 19 edges. In the second case, we do an zs-reduction followed by an z¢-reduction,
and both together delete at least 25 edges. We call the combination of an z5-reduction and an
z3-reduction an zq-reduction, which deletes 9 vertices, at least 25 edges, and adds 2 independent
vertices. Finally, we have the case that the z5-reduction deletes at least 16 edges and is followed by

a reduction that is not an z¢-reduction, and not an zs-reduction by Conditions (*). We call this
an zi%-reduction. We obtain the following bounds:

zi%reduction: =1 nl®=5 ml?=19
zibreduction: =1 ni®=5 ml®=16
zg-reduction: 49g=2 mng=9 mg=25

The definition of an z1%-reduction also tells us that
16 c c d
25" < zo+ 2z + 22+ 25+ 24 + 2y,

because every zi%-reduction must be followed by a reduction that is not an zd-reduction and not
an zs-reduction.

We denote the algorithm that chooses reduction vertices as explained in this section by SMART-
GREEDY. Details of the implementation of SMARTGREEDY are given in Section 5.

4 Analysis

In the previous section, we obtained the number nf of deleted vertices, the lower bound m? of
deleted edges, and the number #° of independent vertices added in an z?-reduction. In this section,
we use these bounds to obtain a good lower bound on the size of the independent set.
Initially we had n vertices. With an z-reduction, we remove n vertices. We end with no
vertices left, therefore
Z nPaf = n,

where the sum is over all possible cases. Initially we had m edges. With an z?-reduction, we
remove at least m? edges. We end with no edges left, therefore

ng:vg <m < 3n — 6,
where the sum is over all possible cases. We also had the inequality
16 c c d
25" < zo+ =z + 22+ 25+ 24 + Ty
Each zB-reduction increases the number of independent vertices by i, so the final number of

independent vertices is
HEDI 7S

where the sum is over all possible cases. To determine therefore the smallest possible independent
set that could be found with SMART GREEDY, we can minimize this last expression, subject to the
constraints above as well as 2 > 0. This yields the following linear program:

minimize @y +z; +zy +z§ —I—mg +z —}—mz —I—:E%G —I—m}f’ +2z9

s.t. zo +2z; +3z5 +325 —}—41:% +4z5 —|—5z2 —}—51:%6 —}—51:%9 4929 = n
2y +3z2 +52§ +62d +9z§ +222¢ +1621° +1921° +25z29 < 3n

+zo +z1 +zo 2 +a§ +zf —z}® > 0
:I:O,ml,mg,mg,mg,mi,mﬁ,m%G,még,mg > 0

[13

[Remark: we dropped the “—6” from the second constraint, because this makes solving the

problem easier, can only decrease the lower bound, and is irrevelant for suﬂiciently large n anyway.|

Solving this linear program to optimality, we obtain zd = 22—3n and zl° = 23—3n and all other
variables 0. [One can verify this by setting as dual variables (%, —41—6, E) and testing that both

primal and dual solution are feasible and yield the same value, hence they are both optimal. See
any textbook on linear programming, for example [Chv83], for details.]
5

The minimum possible size of an independent set found by SMARTGREEDY therefore is 2%;n.

Lemma 8 Let G be a planar graph. Then algorithm SMARTGREEDY computes an independent set
of size at least %n ~ 0.217n.

Thus our bound on the independent set is smaller than the bound of %n ~ 0.222n independent
vertices that can be found in O(n?) time without the 4-color theorem [CNS83], and the bound
of 1n = 0.25n independent vertices that can be found in O(n?) time with the 4-color theorem
[RSST97]. However, our independent set can be obtained in linear time, as we shown in the next
section. No better bound than %n is known for linear-time algorithms, and closing the gap to %n,
or at least to %n, remains an open problem.

4.1 Low-degree independent sets

In order to compute a low-degree independent set, i.e., an independent set where every vertex
has degree < D for some constant D, Kirkpatrick [Kir83] proposed the following simple strategy:
Delete all vertices of degree > D from the graph; this takes O(n) time. In what remains, find an
independent set; this is then a low-degree independent set. Kirkpatrick showed how for D = 12
and the greedy-algorithm, this gives at least 5 n independent vertices of degree at most 11.

We can improve this result by using algorlthm SMARTGREEDY and refining the analysis.
Namely, introduce a variable zp which denotes the number of vertices of degree > D in the graph.
The deletion of these zp vertices removes at least Dzp — (3zp — 6) > (D — 3)zp edges by Fact 3,
because the vertice of degree > D induce a planar graph with at most 3zp — 6 edges. If we treat
these deletions as just another type of reduction, this one not adding any independent vertices,
then we get the following linear program:

minimize zo +z1 +z2 +z§ —I—mg +z —I—:eﬁ —|—a:51;6 —I—:eég +2z9
s.t. zp +zo +2z1 +3z2 +325 —|—4mg +4zg —|—5mz —|—5m%6 —}—5:1:%9 4929 = n
(D - 3)zp +z1 +3z2 +52§ +623 492§ +2229 +162L° +1921° +25z9 < 3n
+zo +e1 42y +z§ +z§ +af —a:%G > 0
mD,mo,ml,a}2,m3,mg, m4,mg,m%6,m%9,mg > 0

Solving this linear program to optimality, we obtain the following results:

e For 7 < D < 13: z¢ = D=6 2p = —=%—n, and all other variables 0. Optimal dual

4D-18 D18
variables are (;2=3-, 51—, 0).
e For 13 < D < 15 2l = 43 ?Sn zp = 4D iD-1s™ and all other variables 0. Optimal dual

D— -1 D-13
variables are (e T)

10

e For D > 16: z¢ = 22—3n, zid = 23—371., and all other variable 0. Optimal dual variables are
(13

13 1 i)
460~ 467 46/°

Lemma 9 Let G be a planar graph. Then for D > 7, removing vertices of degree > D and applying
algorithm SMARTGREEDY gives at least min{;—3n, 4g—:ffsn} independent vertices of degree < D.

For D = 8, we find %n independent vertices of degree < 7. This is best-possible, because as we
show now, there exists a graph Gs(N) with only n + O(,/n) independent vertices of degree < 7.
Specifically, Gg(N), which is defined only for N divisible by 6, is the N x N-grid with diagonals
where every 6th face contains a K4, connected in such a way that all vertices of the grid except the
boundary vertices have degree 8. See Figure 2.

The N x N-grid with diagonals has (N + 1)? vertices and 2N? interior faces, therefore Gg(N)
has (N +1)%+ 4% = IN? 4+ O(N) vertices. Since all but the O(N) boundary vertices of the grid
have degree 8, and since only one vertex from each K4 can belong to an independent set, Gg(N)
has at most 2%’2 + O(N) = in 4 O(y/n) independent vertices of degree < 7.

For D =7, we find %n independent vertices of degree < 6. This is close to optimality, because
as we show now, there exists a graph G7(N) that has only [%| independent vertices of degree < 6.
Specifically, G7(0) is K4. For N > 1, G7(N) is an icosahedron where 3 faces contain a K4 and one
face contains G7(N — 1), connected in such a way that all vertices of the icosahedron have degree 7.
See Figure 2.

By induction, one shows easily that G7(N) has 24N + 4 vertices. Since each vertex of the
outermost icosahedron of G7(N) (N > 0) has degree 7, and only one vertex of each K4 can be in
an independent set, the maximum number I(N) of independent vertices of degree < 6 in G7(N)
satisfies the recurrence relation I(N) = I(N — 1) 4 3, which together with I(0) = 1 shows that

G7(N) has only 3N + 1 = [%] independent vertices of degree < 6.

Figure 2: Graphs Gg(6) and G7(2). For the latter, faces of the icosahedron that contain a K4 or
G7(1) are shaded.

11

5 Implementation

The objective of this section is to show that SMARTGREEDY can be implemented in O(n) time.?

The crucial observation is as follows: It is easy to find a vertex of minimum degree in amortized
constant time. All we therefore have to worry about is how to find the special vertices that are
needed if the minimum degree is 3 or 5. Here the following observation helps: If deg(v) = 3,5, and
the neighbors of v have very high degrees, then we can always use v as reduction-vertex, because
this will delete sufficiently many edges. If the neighbors of v have not very high degrees, then we
can do all the tests needed to determine the correct reduction vertex in O(1) time.

Another important ingredient is to choose the neighbors for the contraction (if applicable) such
that the number ¢, of edges that are incident to contracted vertices is proportional to the number
d,;, of deleted edges. This will help to show an O(n)-time bound without having to use advanced
data structures to do the union of edge lists.

5.1 Storing vertices

We store the vertices in 9 buckets named By, By, By, Bs, BY, B4, Bs, Bt and Bg. Every vertex
belongs to exactly one bucket and knows to which bucket it belongs. The assignment of vertices to
buckets obeys the following rules throughout the algorithm:

e For d < b5, any vertex in bucket By has degree d.
e Any vertex in bucket Bg has degree > 6.

e Any vertex v in bucket B has deg(v) = 3. Furthermore, any pair of neighbors of v is
adjacent, and delete(v) would delete < 8 edges; in particular therefore all neighbors of v have
degree < 5.

e Any vertex v in bucket B{ has deg(v

) = 5. Furthermore, v belongs to a separating triangle,
and all neighbors of v have degree < 9.

Initially, we put all vertices into By, B1, Bs, B3, B4, Bs and Bg according to their degrees. We
assume that each vertex v keeps an integer d(v) indicating its degree; then this can be done in
linear time. Buckets BJ and B are initially empty and will be filled whenever we find a vertex
that fits the description, see Sections 5.2.2 and 5.2.4. Changes to d(v) and to the assignment of
vertices to buckets may be necessary if we delete edges or contract vertices; this will be described
in Section 5.3.1 and 5.3.3.

5.2 Choosing a reduction vertex

In this section, we show how to choose the reduction vertex v and, if applicable, two neighbors
w;, w; of v for the contraction in O(d,, + d,,) time, where d,, and d,, is the number of deleted
vertices and edges, respectively. We do not include the time to actually do the reduction; this is
the topic of the next subsection.

To choose a reduction vertex, we consider the buckets By, By, By, Bs, B, By, Bs (in this order),
and take a vertex v from the first bucket that is not empty. By Corollary 2, one of these buckets

2The emphasis is on that the algorithm can be implemented in O(n) time, but we make no attempts to optimize the
constant hidden in the O-notation, which could be much improved with a more careful analysis and implementation.

12

is not empty. If deg(v) < 2, then we apply delete(v). To find v, we thus spent O(1) = O(d,,) time.
In the other cases, handle v as follows.

5.2.1 A vertex v in Bs.

We start by computing the sum s of the degrees of the neighbors of v. If s > 12, then we call
delete(v), this will delete at least 9 edges and therefore complies with Algorithm PIcKkDEG3VERTEX.
If s <11, then test in O(11) = O(1) time whether the neighbors of v form a triangle.

If some neighbors w;, w; of v are not adjacent, then perform contract(v, w;, w;). At least 5 edges
are deleted, therefore by s < 11 at most 6 edges are incident to w; or w;, and ¢,, <6 <10 < 2d,,,.

If the neighbors of v form a triangle, then put v into B (by s < 11 at most 8 edges would be
deleted during an z4-reduction at v). The O(1) time spent in this case will be counted as overhead
to the operation that removes v again from Bg‘l; this is either a deletion or a contraction.

5.2.2 A vertex v in BY.

No vertex is in Bs (because we would have taken this first), so no z§-reduction and no zg-reduction
deleting at least 9 edges is possible. Therefore call delete(v); this complies with algorithm Pick-
DEG3VERTEX.

5.2.3 A vertex v in Bs.

Denote by w1, ..., ws the neighbors of v. If =7 ; deg(w;) < 26, then we apply contract(v, w;, w;)
with a pair of neighbors of v that is not adjacent. By 4 < deg(w;) <26—-3-4=14fori=1,2,3,4,
such a pair can be found in O(1) time. This deletes d,,, > 9 edges; therefore at most 26 — 9 = 17 <
2d,,, edges are incident to a contracted vertex.

If S°F , deg(w;) > 27, then we apply delete(v). We could have applied a contraction as well,
however, we then cannot show ¢,, < 2d,,. Since we need this bound to be able to show that all
contractions can be done in O(n) total time, we prefer the deletion.

[Remark: If a slight time-increase seems insignificant relative to finding more independent
vertices, then one should in this case do contract(v) with suitable neighbors, and for the contraction,
merge the smaller edge list into the larger one. This then works in O(nlogn) total time.]

5.2.4 A vertex in Bs.

This is the most complicated case, because the reduction vertex must be chosen according to
Lemma 5, and the neighbors for the contraction must be chosen according to algorithm Pick CoN-
TRACTIONPAIR.

As a first step, we only determine the vertex v for the contraction, not the pair of neighbors
used for the contraction. Let u be a vertex in Bjy, and let z, ..., z5 be its neighbors in clockwise
order, named such that deg(zs) > deg(z;) for ¢ = 1,2,3,4. If deg(z5) > 10, then set v = u. If
deg(zs) < 9 (and therefore s = 3°7_, deg(z;) < 45), then we are free to do any operation that takes
O(s) = O(1) time.

We start by determining whether u belongs to a separating triangle; this can be done in O(s)
time by testing all pairs of neighbors of u for being adjacent and if so, whether the edges of the

13

triangle through u are all clockwise consecutive or all counter-clockwise consecutive. If u belongs
to a separating triangle, then we put u into Bf. The O(1) time to determine this will again be
counted as overhead to the operation that removes u from BE.

If v does not belong to a separating triangle, then we find the vertex v of Lemma 5 in O(1)
time by Lemma 6.

Once the vertex v for the reduction is chosen, we now have to find the right pair of neighbors
for the reduction. Let wy,...,ws be the neighbors of v in clockwise order, named such that
deg(ws) > deg(w;), 1 =1,2,3,4.

If deg(ws) < 9, then s = 37 ; deg(w;) < 45. In this case, to choose the neighbors for contraction
according to algorithm P1IcKCONTRACTIONPAIR, we simply try for the 5 non-consecutive pairs of
neighbors whether they are not adjacent, and if so, what the results of the contraction would be.
This can be done in O(5s) = O(1) time.

If deg(ws) > 10, then we find the contraction pair by testing whether w; and w3 are adjacent.
If not, then {w;,ws} is the contraction pair, else {wy, w4} is the contraction pair. (We cannot
have both edges (w;,ws) and (w2, ws) by planarity.) Either way we delete wj, and therefore
dp > deg(ws) +5+54+2—3 > 19 edges, so this complies with algorithm P1IcKk CONTRACTIONPAIR.
To find the contraction pair, we spent O(deg(w;)) = O(deg(ws)) = O(d,,) time. We contract two
vertices of {wy, ws, w3, ws}, and because none of their degrees exceeds deg(ws), we have at most
2 deg(ws) < 2d,, edges that are incident to a contracted vertex.

5.3 Performing the reduction

In this section, we show how to perform the reduction in time O(d,, + d,, + ¢;), where d,, is the
number of deleted vertices, d,, is the number of deleted edges, and ¢,, is the number of edges
incident to a vertex that was contracted with another vertex.

5.3.1 Deleting an edge

Every time we delete an edge, we have to update the data structure, because degrees may change
and separating triangles may be deleted, hence the assignment of vertices to buckets must be
changed. Let (vg,v1) be the edge to be deleted, and denote by dy and d; the degrees of vy and v,
before the deletion. For ¢ = 0,1, we do the following:

o If d; < 6, then remove v; from its current bucket and put it into By, _;.

e If d; < 5, then test for the at most five neighbors z of v; whether = belongs to Bf. If so,
then now the conditions for # may have change; rather than testing whether they did indeed
change, we simply put z to Bs. Since v; has at most 5 neighbors, this takes O(1) time total.

e If d; < 9, then test for the at most nine neighbors z of v; whether z belongs to Bf. If so, then
put z into Bj. Since v; has at most 9 neighbors, this takes O(1) time total.

e Decrease d(v;) by one.

All operations together take O(1) time.

14

5.3.2 delete(v)
We perform delete(v) in O(d,, + d,,,) time as follows:

e Determine the neighbors wy, ..., wg of v.
e For k=1,...,d, delete all incident edges of wy as described above.

e Remove v, wy, ..., wq from bucket By.

5.3.3 contract(v, w;, w;)

Every time we perform contract(v; w;, w;), we have to update the data structure, because degrees
may change, and hence the assignment of vertices to buckets must be changed. Denote by d; and
d; the degrees of w; and w; before the contraction. We perform contract(v; w;, w;) as follows:

e Determine the neighbors wy, ..., wg of v.

o Delete all incident edges of v and of wy, # w;, w;, k=1,...,d.

e Remove v and wy, # w;,w;, k =1,...,d, from bucket By.

o For k =1,j,if d, <9, then test for the at most nine neighbors z of wy whether z belongs to
B¢ or to B. If so, then put into Bs or Bs, respectively. Since wy, has at most 9 neighbors,
this takes O(1) time total.

e Add the incident edges of w; to the edge list of w;. By keeping track where the edges (w;, v)
and (w;, v) were in the edge lists of w; and w; (where v is the reduction vertex) we can unify
the lists while maintaining the planar embedding in O(d; + d;) = O(c;,) time.

e Test for multiple edges in O(c,,) time, and delete any multiple edge as described above.

e Remove w; from its bucket.

e Remove w; from its current bucket and put it into Brnin{6.d;+d;}-

o Set d(wz) = d(wj) =d; + d;.

5.4 Putting everything together

We have shown in the previous subsections that selecting the right vertex for the reduction, selecting
the right neighbors for the contraction (if applicable), and doing deletions and contractions can be
done in O(d,, + ¢ + dy,) time, where d,, is the number of deleted vertices, d,, is the number of
deleted edges and ¢, is the number of edges incident to a contracted vertex. We have also shown
¢m < 2d,, in all cases, thus the time is O(d,, + d,,). Since we never add new vertices or edges, this
means that all reductions together take O(n + m) = O(n) time.

Also note that throughout the algorithm the contents of the buckets obey the conditions outlined
in Section 5.1. This is because with any change of the degree of a vertex v, we move v to the correct
bucket, and also move all neighbors z to the correct bucket if ¢ € B or z € B. No other vertices
can be affected by a degree-change at v. We conclude:

Theorem 10 For any planar graph G, we can find at least %n independent vertices in O(n) time.

Theorem 11 For any planar graph G and D > 7, we can find at least min{25—3n, 43—:?871,} indepen-
dent vertices of degree < D in O(n) time.

15

6 Conclusion

In this paper, we studied algorithms for finding independent sets in planar graphs. The traditional
greedy method finds %n independent vertices. A variation of the greedy method that contracts
vertices if possible finds %n independent vertices. As our main result, if we choose the reduction
vertices and the vertices to be contracted wisely, this greedy-method will in fact always yield %n
independent vertices. Our variant of the greedy-method can be implemented in O(n) time.

Using the same algorithm after deleting all vertices of degree > D for D > 7, we obtain
min{%n, 43—:?87).} independent vertices of degree < D in linear time. This has applications for
some algorithms in computational geometry [Kir83, SvK97]. Our bound is best-possible for D = 8.

The foremost remaining open problem is to find a heuristic that works in o(n?) time and finds
an independent set of size %n, or at least > %n, in a planar graph. Is it possible to modify the
choice of the reduction vertex suitably to achieve this goal, or must we use an algorithm that is not
based upon some kind of greedy-strategy?

In particular, we conjecture that if we always choose a vertex of minimum degree such that
reducing it deletes the maximum possible number of edges, then the independent set obtained has
size in, or something close to it. Is this true, and how can this be shown?

Along the same lines, can the bounds m? be raised, possibly after splitting some cases into
more subcases, as done for zs-reductions? This would, depending on which bound is raised, also
increase the bound on the independent set. For example, if we could raise mi® to 20, this would
increase the bound on the independent set to %n ~ 0.218n. Can we raise any of the bounds, and
how can this be shown?

Acknowledgments

The author would like to thank Erik Demaine, Anna Lubiw, lan Munro, and Jason Schattman
for useful discussions, and Patrice Belleville for kindly sharing his manuscript. Parts of this paper
were written while the author was at McGill University, and parts while visiting RUTCOR, Rutgers
University. The author is grateful for access to CPLEX through RUTCOR, which helped solving

the linear programs.

References

[AH77] K. Appel and W. Haken. Every planar map is four colorable. I. Discharging. Illinois J.
Math., 21(3):429-490, 1977.

[AHK77] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. II. Reducibility.
Illinois J. Math., 21(3):491-567, 1977.

[AIb76] M. Albertson. A lower bound for the independence number of a planar graph. J. Comb.
Theory (B), 20:84-93, 1976.

[Bel99] P. Belleville. On an algorithm to find independent sets in planar graphs, 1999.
Manuscript.

16

[Chv83]
[CNS81]

[CNS83]

[Ede88]
[GIST6]

[HT74]

[Kir83]

[RSST97]

[SvK97]

V. Chvatal. Linear programming. W. H. Freeman and Company, New York, 1983.

N. Chiba, T. Nishizeki, and N. Saito. A linear 5-coloring algorithm of planar graphs. J.
Algorithms, 2:317-327, 1981.

N. Chiba, T. Nishizeki, and N. Saito. An algorithm for finding a large independent set
in planar graphs. Networks, 13:247-252, 1983.

H. Edelsbrunner. Algorithms in combinatorial geometry. Springer-Verlag, 1988.

M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoretical Computer Science, 1:237-267, 1976.

J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of the Association
for Computing Machinery, 21(4):549-568, October 1974.

D. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. on Computing, 12:28-35,
1983.

N. Robertson, D. Sanders, P. Seymour, and R. Thomas. The four-colour theorem. J.
Combin. Theory Ser. B, 70(1):2-44, 1997.

J. Snoeyink and M. van Kreveld. Linear-time reconstruction of Delauney triangulations
with applications. In R. Burkhard and G. Woeginger, editors, Proceedings European
Symposium on Algorithms, volume 1284 of Lecture Notes in Computer Science, pages
459-471. Springer-Verlag, 1997.

A Proof of Lemma 5

In this section, we prove Lemma 5 and 6, combined into one lemma as follows.

Lemma 12 Let G be a planar graph with minimum degree 5. Then there erists a verter v with
deg(v) = 5 and two non-adjacent non-consecutive neighbors w;, w; of v such that

1. contract(v, w;, w;) deletes at least 19 edges, or

2. the following three conditions, called Conditions (*), hold:

o contract(v, w;, w;) deletes at least 16 edges that are not multiple edges,

o after contract(v, w;, w;), there erists a vertezx z with deg(z) < 4, and

o there ezxists at most one long edge of v with both endpoints # w;, w;, t.e., with both

endpoints among the deleted neighbors of v.

Moreover, if a vertez u is given such that deg(u) = 5 and u does not belong to a separating triangle,
then the vertez v can be found in O(1) time.

17

Proof: Let u be a vertex of degree 5 that does not belong to a separating triangle (cf. Corollary 2),
so © has no long edge. Let z,..., 25 be the neighbors of u in clockwise order. Because u has no
long edge, any adjacent neighbors of u are also consecutive, and we are free to pick w;, w; as any
non-consecutive neighbors of u as long as we delete 19 edges or satisfy Conditions (*).

We distinguish three cases.

1. There are three non-consecutive neighbors z,, 2,2, of u such that deg(z,) + deg(zg) +
deg(z,) > 18. (Note that since u has 5 neighbors and every vertex knows its degree, we
can test for the existence of this case in O(1) time.)

In this case, let v = u and let w; and w; be the two neighbors # z,, 23, 2, of u. Vertices w;
and w; are not consecutive (because otherwise z,, zg, z, would be consecutive), thus we can
perform contract(u, w;, w;), which deletes u and z,, z3 and z,. Since at most two of z,, 23, z,
are consecutive, there is at most one edge between z,, 23, zy. Hence the number of deleted
edges is at least 18 + 2 — 1 = 19 by Fact 4.

2. Two neighbors of u, say z; and z; (k # 1), are non-adjacent and have degree 5. (Note that
this condition can be tested in O(1) time, because for any pair of neighbors of u that have
degree 5 we can test in O(5) = O(1) time whether they are adjacent.)

Let y1,...,ys be the neighbors # u of z;, enumerated in clockwise order starting after u.
Note that (u,y2), (u,ys) € E, because either edge would be a long edge for z;, and therefore
in a separating triangle, but u does not belong to a separating triangle.

Z4
zZ3
zZ5
U
Z2
Z1
1
Y4
Y2
Y3

Figure 3: The case that « has two non-consecutive neighbors of degree 5.

We distinguish subcases, which can be tested in O(1) time:

(a) deg(yz) = 5 or deg(ys) = 5: In this case, set v = u, w; = 2z and w; = 25. Doing
contract(v, w;, w;) deletes at least 16 edges, because u has no long edge. This does not
delete or contract either of y, and ys, because these two vertices are not neighbors of
u. Since this deletes z;, one of y, or y3 now has degree < 4. Since u has no long edge,

Conditions (*) hold.

(b) deg(y2) > 6,deg(ys) > 6: In this case, set v = z;. One of the edges (y1,ys) and (y2, ¥a)
cannot exist, otherwise we could complete {z1,y1,y2,ys, ys} to a planar K5. We will
only study (y1,ys) ¢ E, the other case is similar.

18

Set w; = y1, w; = y3. Thelong edge (u, y2) of v does not exist, therefore contract(v, w;, w;)
deletes at least deg(yz) +deg(ys) +deg(v)+2—2> 6+ 545 = 16 edges. This does not
delete or contract zp because z; and z; are not adjacent; so the degree of z; is now < 4
because u has been deleted. Since (u,y2) ¢ E, there is at most one long edge between
deleted neighbors of v, so Conditions (*) hold.

3. Otherwise: If we have neither three non-consecutive neighbors whose degrees sum to at least
18, nor two non-adjacent neighbors of degree 5, then we can say a lot about the structure of
the vicinity of v. We illustrate the situation in Figure 4 and explain it below.

oNvA

Y2

Figure 4: The case that there are neither three non-consecutive neighbors whose degree sum to at
least 18, nor two non-adjacent neighbors of degree 5. Little italicized numbers denote the degree.

Of the b neighbors z1, ..., z5 of u, there must be at least two neighbors of degree 5, because
otherwise we would have three non-consecutive neighbors of degree > 6 and would be in case
(1). On the other hand, at most two neighbors can have degree 5; otherwise, two of them
would not be adjacent since u does not have a long edge, and we would be in case (2). So
there are exactly two neighbors of degree 5, and they must be adjacent, because otherwise
we could be in case (2). Because u does not have a long edge, these two neighbors must be
consecutive, and after suitable renaming, we may assume that z; and z5 have degree 5, while
29, 23, 24 have degree > 6. None of z,, z3, z4 can have degree > 7, because otherwise we could
find three non-consecutive neighbors the degrees of which sum to at least 74+ 6+ 5 = 18 and
we are in case (1). So zs, z3, 24 all have degree 6.

We distinguish subcases:

(a) For some k € {1,...,4}, the edge (2, zk+1) does not exist. (This can be tested in
O(X 42, deg(z)) = O(1) time.)
In this case, set v = u, w; = 231 and w; = 242, where we define zyp = 25 and 2¢ = 21.
At least two of the deleted vertices have degree 6 by k # 5. Since u has no long edge,
and since (z, zx+1) € F, this deletes 54+ 6+ 6 + 2 — 0 = 19 edges.

(b) The edges (21, 22), (22, 23), (23, 24), (24, 25) exist. Note that edge (21, z5) also exists (oth-
erwise we would be in case (2)). By deg(z;) = 5, there are only two neighbors of z;

that are # u, 24, 2z5. Let y; and y» be these two neighbors of z;, enumerated in clockwise
order after z5. Note that they must appear between z5 and z; in the clockwise order of

19

neighbors of z;, and that neither of them can be adjacent to u, because u is not in a
separating triangle. Again we have two subcases, which can be tested in O(1) time.

i. deg(y1) = b or deg(y2) = 5: In this case, set v = u, w; = z3 and w; = z5. Doing
contract(v, w;, w;) deletes at least 16 edges, because there is no long edge of w. This
does not delete or contract either of y; and y-, because they are not neighbors of u.
Since z; is deleted, one of y; or y; now has degree < 4. Since u has no long edge,
Conditions (*) hold.

ii. deg(y1) > 6,deg(y2) > 6: In this case, set v = 2z;. One of the edges (yi1,22) and
(y2, z5) cannot exist, otherwise we could complete {z1, y1, y2, 22, 25} to a planar K.
We will only study (y1,22) ¢ E, the other case is similar.

Set w; = y1, w; = z2. The edge (u,ys) does not exist, therefore contract(v, w;, w;)
deletes at least deg(ys) + deg(zs) + deg(u) +2 —2 > 6+ 5+ 5 = 16 edges. This
deletes u and z5, both of which are neighbors of z4. This does not delete or contract
z4, because z4 # 2z, 25, u by definition, and z4 # y1, y» because z4 is adjacent to u
while y; and y, are not. Therefore, we have deleted at least two neighbors of z4 and
now deg(zs) < 4. Since (u,ys) € E, there is at most one long edge between deleted
neighbors of v, so Conditions (*) hold. o

B Proof of Lemma 7
In this section, we prove Lemma 7, which states the following.

Lemma 13 Let the minimum degree be b, let v be chosen as in Lemma 5, and let wy, w3 be the
neighbors of v chosen with algorithm PICKCONTRACTIONPAIR. If contract(v,w:,ws) deletes k
edges and is followed by an z3-reduction at z, then delete(z) deletes at least 25 — k edges.

Proof: Let R; be the z5-reduction at v and let Ry be the mg—reduction at z. We know that R;
deletes at least 16 edges, so we are done if R, deletes at least 9 edges. We also know that R, deletes
at least 6 edges, so we are done if R; deletes at least 19 edges. Therefore for the remainder of this
proof we assume that R; deletes at most 18 edges and R, deletes at most 8 edges.

Let the neighbors of v be wy, ..., ws in clockwise order. Let the neighbors of z that remain
after R; be yi1,y2,ys, not necessarily in clockwise order (we want to be free to rename them
to achieve other properties later). Note that {z,y1,y2,ys} induces a K4, otherwise by algorithm
P1ckDEG3VERTEX we would have done an z§-reduction instead of the zg-reduction R, that deletes
at most 8 edges.

To simplify notation, we denote by deg,(z) and deg,(z) the degree of a vertex z before and
after R;. Note that degy(z) > 5 and deg,(z) > 3 for all vertices z. Also note deg,(z) = 3.

The proof splits into two major cases, depending on whether the vertex w* that results from
Ry, i.e., from contracting the two neighbors of v, is one of the vertices deleted during Rs.

1. The contracted vertex w™ is not # or a neighbor of z.

The proof in this case is outlined as follows: First show that R, deletes at least 8 edges, so we
are done unless R; deletes exactly 16 edges. Then show that there exists a pair of neighbors

20

of v the contraction of which would delete at least 17 edges and satisfy Conditions (*). By
Algorithm P1cKCONTRACTIONPAIR and because no z§-reduction happened, we picked this
or a better pair, so we deleted at least 25 edges total.

So assume that w* is neither # nor a neighbor of . In this case, the K4 induced by
{z,y1, Y2, ys} existed already before R;, and none of these vertices is incident to v. Therefore,
v and its neighbors must be inside one face F of this K4. One vertex of {z, y1, y2, y3}, say s,
does not belong to F', and therefore is not incident to any vertex deleted during R;, which
implies deg,(ys) = deg;(ys) > 5. As a consequence, R, deletes at least 8 = 3+3+5— 3 edges.
So we are done unless R; deletes exactly 16 edges and R, deletes exactly 8 edges, which we
assume for the remainder of this case.

By deg,(y3) > 5, we must have deg,(y1) = deg,(y2) = 3 and deg,(y3s) = 5, because R deletes
deg,(y1) +deg,(y2) +deg,(ys) — 3 = 8 edges. For easier notation, denote yy = , then we can
rewrite this as deg,(y;) = 3 for i = 0,1, 2. Observe that the z3-reduction at z deletes exactly
the same vertices and edges as an zd-reduction at y; or y,, hence we are free to exchange
Yo, Y1, Yo as desired.

For = 0,1, 2, since deg,(y;) > 5 and deg,(y;) = 3, at least two incident edges of y; must have
been deleted during R;. Because R; deleted exactly 16 edges, no multiple edges have been
deleted (note the first condition in (*)), which means that each of yo, y1, y2 must be incident
to at least two of the deleted vertices ws, w4, ws. Denote W = {w,, w4, ws} and denote by
N(y;) the set of neighbors of y; in W, 4=0,1, 2.

We want to show that (after suitable renaming) the configuration is as shown in Figure 6,
and do this in the following series of observations:

(a) [N(yi)| > 2 for ©« = 0,1,2, because at least two incident edges of y; must be deleted
during the z5-reduction.

(b) It is not possible that |N(yo) NN (y1) NN (y2)| > 2, for otherwise we would have a planar
K5 in N(yo)U{yo, 1, Y2}, using the path through v to connect the vertices in N(yo). See
Figure 5(a). Therefore by |N(yo)| > 2 there exists an element in N(y,) that does not
belong both to N(y;) and N(y2); after possible exchange of y; and y, we may assume
N(yo) — N(y1) # 0.

(c) It is not possible that N(y;) C N(y2), because otherwise we would have a planar K33
in (N(y1) U {yo}) U {y1,y2, v}, using the path yo — w — v to connect v and yo, where
w € N(yo) — N(y1) # 0. See Figure 5(b). Therefore N(y;) — N(y2) # 0.

(d) It is not possible that N(y2) C N(yo), because otherwise we would have a planar K33
in (N(y2) U{w1}) U {yo,y2, v}, using the path y; — w — v to connect v and y;, where
w € N(y1) — N(y2) # 0. Therefore N(y2) — N(yo) # 0.

(e) |[N(y:)| = 2 for ¢ = 0,1,2. For we know already |N(y;)| > 2. If |[N(y)| > 3, then
N(y;) = W, which means that N(y;_1) C N(y;) (addition modulo 3), which was shown
impossible above. Therefore, degy(y;) = deg,(y:) + |N(y;)| =5 for i = 0,1, 2.

(f) Since no two N(y;) coincide, but each has 2 vertices and is contained in W which has 3
vertices, for each pair of vertices in W there is exactly one y; which is incident to both.

21

1 2!

(a) (b)

Figure 5: The case where the contracted vertex is not a neighbor of z. We illustrate Observations
1b and lc. Vertices in W are shown white. For a vertex y; (¢ = 0,1, 2) we do not necessarily show
all edges to neighbors in W, but only those that are relevant to construct a planar K5 or Ks 3.

After possible renaming of yg, y1, y2 therefore yg is incident to ws, wy, 1 is incident to
wyg, ws and y, is incident to ws, wo. See Figure 6.

e
Yo

Y1
Figure 6: The configuration if the contracted vertex is not a neighbor of z.

By Conditions (*), we know that there is at most one long edge between deleted neighbors
of v, i.e., at most one of the edges (w2, w4) and (wy, ws) exists. Assume that (wq, ws) ¢ E,
the other case is similar. Note that we cannot have an edge (w;, ws), because these were the
contracted vertices. We also cannot have an edge (w1, w4), because otherwise we could could
complete {w;, ws, w4, ws, v} to a planar Ky using y, to connect w, and ws.

Therefore, if we performed contract(v, ws, ws), no long edge would be deleted. This implies
that at least 16 edges are deleted. But in fact, at least 17 edges are deleted, because this
contraction causes a multiple edge from the contracted vertex to y», and therefore another
edge deletion. Because we delete an incident edge of y, and deg;(y2) = 5, we now have a
vertex of degree 4.

This proves Conditions (*), so we have found a pair of vertices the contraction of which deletes
at least 17 edges and satisfies Conditions (*) as desired.

22

2. The contracted vertex w* is = or a neighbor of z.

Since R, deletes at most 8 edges, one neighbor of z, say y;, must have degree 3 during R..
Note that the exact same vertices and edges are deleted whether we call it an z3-reduction
at z or an zd-reduction at y;. Therefore, after possible exchange of and y;, we can assume
that w* is a neighbor of z, say ys.

The proof in this case is outlined as follows. As a first part, show that there exists a pair
of non-adjacent non-consecutive neighbors of v the contraction of which deletes at least 17
edges and satisfies Conditions (*). By algorithm P1cKk CONTRACTIONPAIR, therefore at least
17 edges were deleted during the zs-reduction, because no z§-reduction followed. So we are
done if the zg-reduction deletes at least 8 edges. As second part, show that if the z¢-reduction
deletes at most 7 edges, then there exists a pair of neighbors the contraction of which satisfies
Conditions (*) and creates an z§-reduction. By algorithm PICK CONTRACTIONPAIR, therefore
at least 19 edges were deleted during the z5-reduction, because no z§-reduction followed. This
proves the lemma because the zd-reduction deletes at least 6 edges.

As in the previous case, our argument will rely on the fact that many of the vertices involved
in the zg-reduction must be adjacent to the neighbors of v, because some of their incident
edges have been deleted during the z5-reduction. More precisely, let z € {z,y1,y2}. At least
degy(2z) — deg,(z) incident edges of z have been deleted during R;. Because z is incident to
the contracted vertex ys, it must have been incident to one of w;, w3, the vertices that were
contracted, and this edge has not been deleted. Therefore, z € {z,y;,y2} is incident to at
least degy(z) — deg,(z) + 1 vertices in wy, ..., ws.

Denote W = {wy, ..., ws} and let N(z) be the neighbors of z in W for z € {z, y1, y2}; then
by the above |N(z)| = 14 degy(z) — deg,(z). Since deg,(z) = 3, this implies |N(z)| > 3.
Assume the naming of y; and y, is such that |[N(y1)| > |N(y2)|, and if |[N(y1)| = |N(y2)l,
then [N (z) U N(y1)| > [N (z) U N (y2)|-

Part I: Show that the z5-reduction deleted at least 17 edges.

We make a series of observations, which leads us to understand the structure of the vicinity
of v better.

(a) We must have |N(y1)| > 2, for otherwise |N(y2)| < |N(y1)| < 1 by choice of y;, which
implies deg,(y1) > b and deg,(y2) > 5, and Ry deletes at least 3+ 5+ 5 — 3 = 10 edges.
(b) If IN(y1)| = 2, then |N(y2)| = 2. For if |[N(y1)| = 2 and |N(y2)| < 1, then deg,(y1) > 4,
deg,(y2) > 5, and R, deletes at least 9 edges.
(c) We cannot have N(y;) C N(z), for this leads to a contradiction in all cases:
i. If [IN(y1)| > 3, then N(y;) C N(z) implies a planar K33 in N(y1) U {y1,z,v}. See
Figure 7(a).
ii. If IN(y1)| = 2, then |N(y2)| = 2 by the previous observation; furthermore the choice

of y; tells that N(y;) C N(z) implies N(y2) C N(z). This leads to a contradiction
in both the following cases:

A. If N(y1) = N(y2), then we have a planar K5 in N(y1) U {2, y1,y2}, using the
path through v to connect the vertices in N(y;). See Figure 7(b).

23

B. If N(y1) # N(y2), then |(N(y1) UN(y2)) N N(z)| > 3, and we have a planar K33
in (N(y1) U N(y2)) U {2, 91, v}, connecting y; to the vertex w € N(y2) — N(y1)
using y; — y2 — w. See Figure 7(c).

Therefore N(y;) — N(z) # 0, and |N(y1) U N(z)| > 4.

KAl K hn

T T T

(a) (b) (c)

Figure 7: The case where the contracted vertex is a neighbor of and the zj5-reduction deletes
16 edges. We illustrate Observations 2(c)i, 2(c)iiA, and 2(c)iiB. Vertices in W are shown white.
We do not necessarily show all edges to neighbors in W for z, y1, y2, but only those edges that are
relevant to construct a planar K5 or Ks 3.

(d) We have |N(z)| < 4, for otherwise N(z) = W and therefore N(y;) C N(z), which
contradicts the previous observation. In particular therefore deg(z) = deg,(2)+|N (z)|—
1<3+4-1=6.

Enumerate 4 vertices in N(z) U N(y;) in clockwise order around v as w;, , w;,, wi,, w;, such
that w;,,w;,, w;, are adjacent to z and w;, is adjacent to y;; this exists by Observation 2c

and by |N(z)| > 3.

Figure 8: On the left, the configuration that we conclude to exist if the contracted vertex is a
neighbor of z and the z5-reduction deletes 16 edges. On the right, we show G’, the graph resulting
from some contractions and possibly adding edges (shown dotted).

24

Claim: Operation contract(v, w;,, w;,) deletes at least 17 edges and satisfies Conditions (*).
For the purpose of proving this claim, we will modify the graph by contracting vertices and
adding edges while preserving planarity. First add all edges between consecutive neighbors
of v if not present yet; this preserves planarity. Let w, be the one neighbor of v that is
not in {w;, , w;,, w;,, w;, }; this vertex is consecutive to one of w;,, w;,. Contract w, into the
vertex out of w;, and w;, to which it is consecutive; this preserves planarity because they are
adjacent. Finally, contract z and y; to a new vertex z*; this preserves planarity because z
and y; are adjacent.

Let G’ be the graph that is now induced by {v, z*, w;,, w;,, w;,, w;, }. Because each w;; is
adjacent to v, to one of z and y;, and consecutive neighbors of v are adjacent, this graph
is triangulated (indeed, it is known as the octahedron). Therefore we cannot add another
edge to G’ without destroying planarity. This implies that there is no edge between w;, and
w;, in G', and therefore also not in the original graph. So w;, and w;, are non-adjacent and
non-consecutive.

By planarity there is no edge between w;, and w;, in G'. Therefore in the original graph there
was no long edge of v between vertices w;,, w;,, w,, because such an edge would have been
contracted into an edge (w;,,w;,) in G’. Therefore there exists no long edge between deleted
neighbors, which implies that contract(v, w;,, w;,) deletes at least 16 edges. But in fact, at
deletes at least 17 edges, because the contraction causes a multiple edge to z, which is also
deleted, but was not counted before. Also, we delete two incident edges of z (the multiple
edge and the edge to w;,), hence by deg;(z) < 6 vertex now has degree at most 4. Therefore
the contraction satisfies Conditions (*), which proves the claim.

This shows that we could have deleted 17 edges with the right choice of neighbors for con-
traction. By algorithm PICKCONTRACTIONPAIR, and because no z§-reduction happened, we
did indeed delete at least 17 edges during R;, which proves the first part. So the lemma is
true unless R, deletes at most 7 edges, which we assume for the remainder of this proof.

Part II: Show that the z5-reduction deleted at least 19 edges.

The crucial ingredient to show this claim is that R deletes at most 7 edges, which we
concluded above. Again we make a series of observations, which leads us to understand the
structure of the vicinity of v better.

() IN(y)| > 3. For if |[N(y2)| < |N(32)| < 2, then deg, (1) > 4, degy(y2) > 4, and R,
deletes at least 3+ 4+ 4 — 3 = 8 edges.

(f) |N(y2)| > 2. Forif |[N(y2)| < 1, then deg,(y2) > 5, and R, deletes at least 3+3+5—-3 =8
edges.

(8) |IN(z) " N(y1)| > 3 is impossible, because otherwise we have a planar K33 in (N(z) N
N(y1)) U{v, 2,91} (see Figure 7(a) for an illustration).

(h) N(z) C N(y1) or N(y1) C N (=) is impossible, because otherwise |[N(z) N N(y1)| > 3 by
|N(z)| > 3 and |N(y1)| > 3. Therefore N(2) — N(y1) # 0 and N(y;) — N(z) # 0.

(1) |N(y2) N N(y1)| > 2 is impossible, because otherwise we have a planar K33 in (N (y2) N
N(y1)) U {z} U {y1,y2, v}, using the path ¢ — w — v where w € N(z) — N(y1) # 0. See
Figure 9(a).

25

(3) |N(y2) " N(z)| > 2 is impossible, because otherwise we have a planar K33 in (N(y2) N
N(z))U{y1} U{=,y2, v}, using the path y; — w — v where w € N(y;) — N(z) # 0.

(k) N(y2) € N(z) N N(y1) is impossible, because by |N(yz)| > 2 this would contradict
Observations 2i and 2j. Therefore N (ys) — (N(z) N N(y1)) # 0.

(1) |[N(z) N N(y1)| > 2 is impossible, because otherwise we have a planar K33 in (N(z)N
N(y1))U{y2}U{z, y1,v}, using the path y, —w—v, where w € N(y2) - (N (z)NN (y1)) # 0.
See Figure 9(b).

Y2 n

T Y2
(a) (b)

Figure 9: The case where the contracted vertex is a neighbor of z and the zj5-reduction deletes
17 edges. We illustrate Observations 2i and 2l. Vertices in W are shown white. For a vertex y;
(¢=0,1,2) we do not necessarily show all edges to neighbors in W, but only those that are relevant
to construct a planar K5 or Ks 3.

(m) We have 5 = [W] > [N(2) U N(y:) U N(g)| > [N(2)] + [N (3)| + [N ()] — IN()
N(y1)| = |N(y2) N N(z)| — |N(y2) N N(y1)|, which by Observation 2i,2j and 21 is at least
|IN(2)|+|N(y1)|+ |N(y2)| —3 > 3+ 3+ 2 — 3= 5. Therefore equality holds everywhere,
which implies the following:

i. [N(2)| =3, |N(y1)| =3 and |N(y2)| = 2.
ii. N(z) U N(y1) U N(y2) = W, so every vertex w;, ¢ = 1,...,5 is incident to one of
L,Y1,Y2-
iii. deg,(y2) = degy(y2) +1—[N(y2)| 25+1-2=4.
iv. degy(z) = deg,(z) -1+ |N(2)|=3-1+3=5.

(n) All neighbors of z are contained in {wy, ..., ws, y1, Y2}, because [N (z)| = 3, z is adjacent
to y1 and ys, and degy(z) = 5.

(o) degy(y2) = 5, for it cannot be less, and if it were more, then deg,(y2) > 6—|N(y2)|+1 > 5,
so Rs would delete at least 8 edges.

Claim: v has no long edges.
For the purpose of proving this claim, we will modify the graph by contracting vertices and
adding edges while preserving planarity. First add all edges between consecutive neighbors of

26

v if not present yet; this preserves planarity. Then contract the vertices z, y; and y; into z*;
this preserves planarity because they are adjacent. The resulting subgraph G’ induced by z*,
v and the neighbors wy, ..., ws of v is triangulated because each w;, ¢ = 1,...,5 is incident
to one of z, y;, y» as shown above. So there cannot be any edge between two non-consecutive
neighbors of v. This proves the claim.

Since N(y3) = 2, there are two non-consecutive neighbors w; and w; of v that are not adjacent
to ys.

Claim: Operation contract(v, w;, w;) satisfies Conditions (*) and creates an z§-reduction.
Note first that we can indeed contract w; and w;, because they are not consecutive, and
therefore not adjacent by the previous claim. Because v has no long edges, this deletes at
least 16 edges. Moreover, we delete the two vertices in N(y2). By degy(y2) = 5, y2 has
degree 3 after this reduction. Let z be a neighbor of y, that is not in {ws,...,ws, 2,y1};
this exists because |N(y2)| = 2, but degy(y2) = 5. Then z is not adjacent to z, because
all neighbors of z are in {wy,...,ws,z,y1}. Therefore, the neighbors z and z of y, are not
adjacent, and we have created an z§-reduction.

This shows that we could have created an z§-reduction with the right choice of neighbors for
contraction. By algorithm PICKCONTRACTIONPAIR, and because no z§-reduction happened,
we did deleted at least 19 edges during R;, which proves the lemma because R, deletes at
least 6 edges.

27

