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Abstract

Let ¥ be a finite alphabet, and let A : ¥* — 3* be a morphism on the free monoid.
We give new proofs of the characterization of the finite and one-sided infinite fixed
points of h, i.e., those words w for which h(w) = w. We also estimate the size of the
minimal non-empty finite fixed point.

1 Introduction and Definitions

Let ¥ be a finite alphabet, and let A : ¥* — ¥* be a morphism on the free monoid, i.e.,
a map satisfying h(zy) = h(z)h(y) for all z,y € ¥*. Head [4] and Head and Lando [5]
characterized the finite and one-sided infinite fized points of h, i.e., those words w for which
h(w) = w. In this paper we give new proofs for these facts (our Theorems 3 and 5), which
are more “fixed point” in flavor than previous ones. (We cover the case of two-sided infinite
words in a later paper [8].) We also deduce some new consequences.

We first introduce some notation, some of which is standard and can be found in [6].
For single letters, that is, elements of 3, we use the lower case letters a,b,c,d. For finite
words, we use the lower case letters u, v, w, z,y, z. For infinite words, we use bold-face letters
t,u,v,w.x,y,z. Welet e denote the empty word. If w € ¥*, then by |w| we mean the length
of, or number of symbols in w. If S is a set, then by Card S we mean the number of elements
of §. We say = € ¥* is a subword of y € ¥* if there exist words w, z € ¥* such that y = wzz.
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If h(a) # e for all a € X, then h is non-erasing. If there exists an integer j > 1 such that
hi(a) = €, then the letter a is said to be mortal. The set of mortal letters associated with a
morphism A is denoted by Mj. The mortality exponent of a morphism A is defined to be the
least integer ¢t > 0 such that h*(a) = € for all a € Mj,. Note that My = 0 iff h is non-erasing.
In this case, we take t = 0. We write the mortality exponent as exp(h) = t. It is easy to
prove that exp(h) < Card Mj,.

We let X denote the set of all one-sided right-infinite words over the alphabet ¥. Most
of the definitions above extend to ¥£“ in the obvious way. For example, if w = c¢jcacs-- -,
then h(w) = h(c1)h(c2)h(cs)---. If L C XF is a set of nonempty words, then we define

LY = {wywowz -+ : w; € L for all i > 1}.

%
Perhaps slightly less obviously, we can also define the word h* (a) for a letter a, provided
h(a) = waz and w € Mj. In this case, there exists ¢ > 0 such that h*(w) = e. Then we
define

1 (a) = B (w) - - h(w) w az h(z) k2 (z) - - |
which is infinite iff ¢ ¢ M.

Infinite fixed points of morphisms have received a great deal of attention in the literature.
The “usual way” to generate infinite fixed points is to take a morphism £ and a letter a such
that h(a) = ax for some « ¢ M. In this case, h is said to be “prolongable” on a [7], and

1 (a) = azh(z) B (z) - --

is clearly an infinite fixed point of h. As we will see in Section 3, however, this approach
does not necessarily generate all the infinite fixed points of h.
The classical example of a fixed point of a prolongable morphism is the Thue-Morse word

9, 1]

t = totyty---
= 0110100110010110 - - -

where ¢; is the sum of the bits in the binary representation of n, taken modulo 2. Then t is
%

a fixed point of the morphism g which sends 0 — 01 and 1 — 10; in fact, t = p* (0). The

infinite word t is of interest in part because it is cube-free, that is, it contains no nonempty

subword of the form www. Similarly, the morphism 2 — 210, 1 — 20, and 0 — 1 has as a

fixed point the infinite word
210201210120 - - -

which is square-free (contains no nonempty subword of the form ww).



2 Finite Fixed Points

In this section we give a new proof of Head’s characterization [4] of the finite fixed points of
a morphism. We start with a general lemma that appears to be new.

Lemma 1 Let h : ¥* — X* be a morphism. Let w € XV be a finite nonempty word such
that w is a subword of h(w). Then there exists a letter a € ¥ occurring in w such that a
occurs in h(a).

Proof. Let w = ¢ijep---¢,, where ¢; € L for 1 < i < n. For 0 < i < n define s,(i) =
|h(cica - -+ ¢;)|. (If the word w is clear, we omit the subscript.) In particular, s(0) = 0.
Let h(w) = didy - - - dy(r), where d; € X for 1 < < s(n). Hence

h(ci) = dyiz1)1 -+ dags)

for 1 < i < n. Since w is a subword of h(w), we know there must exist an integer ¢,
0 <t <s(n)—mn,such that w = dyyq - - dy1n. Hence ¢; = dpy; for 1 <i <.

Consider the least index j > 1 for which s(j) > t + 7. Such an index must exist, since
the inequality holds for j = n. There are now two cases to consider.
Case 1: j = 1: Then s(1) > t+1. Hence h(c;) = didy - - - d,1) contains dpy = ¢;. Let a = ¢;.

Case 2: j > 1: Then by the definition of j we must have s(3 — 1) < ¢t + j — 1. Hence
5(j —1)+1 < t+7, and since h(c;) = dyj_1)41 - - - dy(j), we know h(c;) contains dypj_1dpr; =
cj_1¢; as a subword. Let a =¢;. ®

As a consequence, we deduce the following useful corollary.

Corollary 2 If w € ¥ is a nonempty finite word with h(w) = w, then there exist words
Wi, We, w3, ws € L* and a letter a € ¥ such that w = wiwsawswy, h(wiws) = wy, h(a) =
wyaws, and h(wsw,) = wy.

Proof. If h(w) = w, then, using Lemma 1, we have t = 0 and s(n) = n. Let

wy = dy - ds(j—1)§

Wy = ds(j—1)+1 s djog;
a = dj;

w3 = dji1 + - dy(jy;

wa = dyjyp1 -+ - dn.

The verification is straightforward. =



Now define
Ap={a€X : Jz,y € ¥ such that h(a) = zay and zy € M;}

and
F, ={h'(a) : a€ A, and t = exp(h)}.

Note that there is at most one way to write h(a) in the form zay with zy € M.
Furthermore, note that if & is non-erasing, then the only letters a in A, are those for which
h(a) = a. In this case Fj, = Ap,.

We now state Head’s result [4]:

Theorem 3 Let h: ¥* — ¥* be a morphism. Then a finite word w € ¥* has the property
that w = h(w) if and only if w € F}.

Proof. (<=): Suppose w € F}. Then we can write w = wiws - - - w,, where each w; € £*,
and there exist letters ay,as, ... ,a, € Ay such that w; = h'(a;), with ¢ = exp(h).

Since a; € Ap, we know that there exist z;,y; with z;y; € M} such that h(a;) = z;ay;.
Since t = exp(h), we have h'(z;) = h*(y;) = €. Hence

Bt (a;) = b (z;) bt (a;) B (y;) = h*(a;).

Thus h(w;) = w; for 1 <i <7, and so h(w) = w.

(=>): We prove the result by contradiction. Suppose h(w) = w, and assume w is the
shortest such word with w ¢ F;. Clearly w # e.

By Corollary 2 there exist wi, w2, w3, ws, a such that w = wywsawsws, h(wiws) = wy,
h(a) = weaws, and h(wzws) = ws.

Now a is a subword of w, so h(a) is a subword of h(w) = w, and hence by an easy
induction, it follows that

hi(a) is a subword of w for all 7 > 0. (1)
Then we must have wows € Mj, since otherwise the length of
hi(a) = hi_l(wg) -+ h(w2) we a ws h(ws) - - - hi_l(wg,)

would grow without bound as ¢ — oo, contradicting (1). It follows that A*(wsws3) = €, where
t = exp(h).
Now we have w; = h(wjw,), so by applying h' to both sides, we see

B (wy) = B (wyws) = A (w1) B (wq) = A (wy).

Hence, defining y; = h*(w;), we have h(y;) = y1. In a similar fashion, if we set y2 = h*(w,),
then h(ys) = y2. Since |y1|, |y2| < |w|, it follows by the minimality of w that y;,y» € Fj.
Now

w = B (w) = K (a0y) B (03) () B(a0s) B (u0s) = 3 B () s,

and hence w € F}, a contradiction. ™



We now examine the following question. Suppose h possesses a nonempty finite fixed
point w. How long can the shortest w be, as a function of the description of h?

Theorem 4 If a morphism h possesses a nonempty finite fized point, then there exists such
a fized point w with |w| < m™ !, where n = Card ¥ and m = maxuex |h(a)|. Furthermore,
this bound 1s best possible.

Proof. As we have seen in Theorem 3, a word w is a finite fixed point iff w € F}. Hence,
if there exists a nonempty finite fixed point, the shortest such must lie in F},. But

F, ={h'(a) : a € Ay, and t = exp(h)}.

Since a € A, we have h(a) = zay with 2y € M;. Hence a ¢ M) and so exp(h) <
Card My, < n — 1. If m = max,es |h(a)|, then clearly |hi(a)| < m' for all i > 0. It follows
that |w| = |kt(a)| < m™ .

To see that the bound is best possible, consider the morphism h defined on ¥ = {ay, as, . . .
as follows:

h(a;)) = azay ™
h(a;) = aj}, for 2 <4 <n —1;
h(an) = €.

Then

m—1_m(m—1) .

n—2 _
W= 10y dg " (m—1)

--a,n

is a fixed point of h, and
lw| = 1—|—(m—1)—|—m(m—1)—|—---—|—m”_2(m—1) =m" L

3 Omne-Sided Infinite Fixed Points

Let w = ¢jeacs- -+ be an infinite (one-sided) word over X, and let A be a morphism. Head
and Lando [5] characterized those w for which h(w) = w. We now give a different proof of
this characterization.

Theorem 5 The infinite word w is a fized point of h if and only if at least one of the
following two conditions holds:

(a) w € FY; or

%
(b) w € Ff h* (a) for some a € X, and there exist x € M; and y ¢ M) such that
h(a) = zay.

Note that there is at most one way to write h(a) = zay with « € M} and y & M;.

5
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Proof. («<=): First, suppose condition (a) holds. Then we can write w = wjwaws-- -,
where each w; € Fy. Then by Theorem 3 we have h(w;) = w;. It follows that h(w) = w.
Second, suppose condition (b) holds. Then we can write w = vz, where v € F} and

%
z = h* (a), where h(a) = zay for some z € M}, y ¢ M;. Then from Theorem 3, we have
h(v) = v.

Since z € M}, we have h'(z) = ¢, and hence

2 = h*(a) = B (2) -+ h(z) z ay h(y) B (y) h*(y) - - - .

Since y & Mj, it follows that |h*(y)| > 1 for all ¢ > 0, and hence z is indeed an infinite word.
We then have

h(z) = b'(z) -~ h(z) zayh(y) h*(y) K*(y) - -- = 2

and so h(w) = h(vz) = vz = w.

(=): Now suppose W = cjcacs--- is an infinite word, with ¢; € X for ¢ > 1, and
h(w) = w. As before, we define sw (i) = |h(c1ca---¢;)| for ¢ > 0. There are several cases to
consider.

Case 1: sw(i) = ¢ for infinitely many integers ¢ > 1. Suppose s(¢) = ¢ for ¢ = ig,41,%2,....
Clearly we may take 1o = 0. Then we can write

W = Y1YaYys -

where y; = ¢;;_ 41+ ¢;; and h(y;) = y; for j > 1. It follows that w € Fy.

J

Case 2: sw(i) = 4 for finitely many ¢ > 1, and at least one such i. Let s(i) = ¢ for
t = 1g,%1,-... ,%, and again take 29 = 0. Then for some integer r > 1 we can write

W =Y1Y2Yys Y X

where y; = ¢;;_,41-+-¢;; and h(y;) = y; for 1 < j < r, and h(x) = x. Furthermore, if we
write X = dydsdz --- for d; € ¥, ¢ > 1, then

sx(i) # 4 for all 1 > 1. (2)

%
If we can show that (2) implies that x = h* (a), where h(a) = zay for some z € M,y & M,
we will be done. This leads to Case 3.

Case 3: sw(i) # i for all ¢ > 1. Suppose there exist 4,5 with 1 <4 < j and
s(2) > ¢ but s(j) < J. (3)

Among all pairs (¢,7) with 1 <4 < j satisfying (3), choose one with j — ¢ minimal. Suppose
there exists an integer k& with ¢ < k < j. If s(k) < k, then (¢,k) would be a pair with
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smaller difference, while if s(k) > k, then (k,7) would be a pair with smaller difference, a
contradiction. Hence s(k) = k. But this is impossible by our assumption. It follows that
j =1+ 1. Then s(¢) > ¢, but s(¢ + 1) < ¢+ 1, a contradiction, since s(i) < s(z + 1).

It follows that either (a) s(Z) < ¢ for all ¢ > 1, or (b) there exists an integer r > 1 such
that s(¢) <ifor 1 <¢ < r and s() > for all 4 > r.

Case 3a: sw(i) < i for all 4 > 1. Since this is true for ¢ = 1, in particular we see that
h(c1) = €. Now let j; be the least index such that

h(cj ) contains cy; (4)

such an index must exist since h(w) = w. We then have h(cs) = h(cs) = -+ = h(cj,—1) =€,
so the first occurrence of ¢; in w is at position 7;.

Now inductively assume that we have constructed a strictly increasing sequence jp = 1 <
J1 < +++ < gt such that the first occurrence of ¢;; in w is at position j;, for 1 <1 <.

Let j;+1 be the least index such that h(chl) contains c¢j. Assume j; > jey1. Since
s(4) < i for all 4, we have h(cj,,,) = cx -+ with I < jiy1 < jp. Since h(cj,,,) contains cj,
this implies that ¢;, occurs to the left of position j;, a contradiction. Hence j; < js11.

Thus we can construct an infinite strictly increasing sequence jo < j; < --- such that
the first occurrence of ¢;; in w is at position j;. It follows that the letters ¢;,,¢;,,... In X
are all distinct. But X is finite, a contradiction. Hence this case cannot occur.

Case 3b: There exists an integer r > 1 such that
sw(t) <ifor 1 <i<rand sw(¢)>dforall i >r. (5)
Put a = ¢,. Then h(a) = cyp_1)41 " Csr). If 7 = 1, then (5) implies that s(r) > r, so
h(a) = zay for z = € and some y € £*. If » > 1, then (5) implies that s(r — 1) +1 < r
and s(r) > r, so h(a) = zay for some z,y € L*. More precisely, the conditions (5) imply
that we can write w = wa v for some v € £*, v € ¥, and h(w) = h(u) z ay h(v) such that
w = h(u)z. An easy induction now gives
hi(w) = Bi(u) K" (@) - h(z) 2 ay h(y) - b7 (y) B(v) (6)
and
w = hi(u) '~ (z) - h(z)=z (7)
for all 4 > 0. Since |u| < oo, it follows from letting ¢ — oo in Eq. (7) that there exists an
integer j > 0 such that h’(z) = e. Hence = € Mj, and so h¥(z) = ¢, where t = exp(h).
Now u = h(u)z, so hi(u) = Rt (u)hi(z) = h**'(u). Define v’ = h'(u); then h(u') = u'.
Hence, putting j = |«|, it follows that s(j) = 7. Hence j = 0 and v’ = e.
Now, to get a contradiction, suppose that y € M;. Then h'(y) = e. Define z = h'(a).

Then
h(z) = h**'(a) = B*(h(a)) = A (zay) = h'(z) h'(a) h'(y) = h'(a) = =

Hence, putting j = |z|, we see that s(j) = j, a contradiction since |z| > 1. Hence y ¢ M;;.

%
Now, letting ¢ — oo in (6), we see that w = h¥(a). ®
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We stated Theorem 5 for right-infinite words, but of course the same arguments work for
left-infinite words. Let ¥7* denote the set of all left-infinite words, which are of the form
W = ---c_sc_1¢. We write h(w) = ---h(c_2)h(c_1)h(co). If L C 7T is a set of nonempty
words, we define L™ to be the set of left-infinite words formed by concatenating infinitely
many words from L, that is,

L™ ={ - w_sw_jwy : w; € L for all i < 0}.

-
If h(a) = waz, and w ¢ M}, z € Mj;, then by h*(a) we mean the left-infinite word
- h*(w) h(w)wazh(z) --- B (),

where h'(z) = e. Again, if the factorization of h(a) as waz exists, with w & M}, © € M,
then it is unique. Then we have

Theorem 6 The left-infinite word w is a fized point of h if and only if at least one of the
following two conditions holds:

(a) w € F,¥; or

F
(b) w € h*(a)F} for some a € X, and there exist & ¢ M} andy € M such that h(a) = zay.

4 Non-Trivial Infinite Fixed Points

Call an infinite fixed point ¢rivial if it is in F}’. Our last result shows that, up to application
of a coding (i.e., a letter-to-letter morphism), all non-trivial infinite fixed points can be
generated in the “usual way”, i.e., by iterating a morphism f on a letter b such that f(b) = bu

with w ¢ M7.

Theorem 7 Suppose h : ¥* — ¥* is a morphism and w € X¥ is an infinite word such
that h(w) = w and w ¢ Fy. Then there exists an alphabet A, a non-erasing morphism
f:A* = A*, a coding g: A — X, a nonempty word w € AT and a letter b € A such that

£(6) = bu and g( £ (b)) = w.

%
Proof. If w ¢ F, then by Theorem 5, there exists a € ¥ such that w € Fy h* (a), and
h(a) = zay with z € My and y & M. Thus, if ¢ = exp(h), there exists v € F} such that

w=vh" (e) - h(z)zayh(y) K (y)--- .

Define z = vh*"(z)h*"?(z)--- h(z)z, and let r = |z|. If r = 0, then v = z = ¢, and the
desired result follows by taking f = h and g = the identity map.
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Hence assume r > 0 and write z = biby -+ - b, for b; € 3, 1 <4 < r. Introduce r + 1 new
symbols b, as, ... ,a,,a,41, and set A =% U {b,as,...,a,,a,11}.
For d € A define

bay, if d =b;

a;y1, 1if d=a; with 2 <7<
fld) =4 "

Y, lf d = a,7-+1;

h(d), ifdex.
Then we have .
fw(b) = ba2"‘Grar+1yh(y)h2(y)... ]
Finally, define the coding g : A — ¥ as follows:
by, ifd=b;
b;, if d=a; with 2 <4 <r;

a, ifd=a.i;
d, ifdeX.

g(d) =

It follows that

%
g( (b)) =biby---bayh(y) h*(y)--- = w,
as desired.
Note that f is non-erasing iff h is. In any event, by a theorem of Cobham [2], there exists

%
a letter ¢, a non-erasing morphism f’, and a coding ¢’ such that w = ¢'( f'“(¢)). =
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