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Abstract

In the optimization of queries in an object-oriented database system (OODB), a natural
first step is to use the typing constraints imposed by the schema to transform a query
into an equivalent one that logically accesses a minimal set of objects. We study a class
of queries for OODB’s called conjunctive queries. Variables in a conjunctive query range
over heterogeneous sets of objects. Consequently, a conjunctive query is equivalent to a
union of conjunctive queries of a special kind, called terminal conjunctive queries. Testing
containment is a necessary step in solving the equivalence and minimization problems. We
first characterize the containment and minimization conditions for the class of terminal con-
junctive queries. We then characterize containment for the class of all conjunctive queries,
and derive an optimization algorithm for this class. The equivalent optimal query produced
is expressed as a union of terminal conjunctive queries which has the property that the
number of variables as well as their search spaces are minimal among all unions of terminal
conjunctive queries. Finally, we investigate the complexity of the containment problem. We
show that it is complete in IT5.

1 Introduction

The initial attempts at constructing object-oriented databases (OODB’s) provided only nav-
igational programming languages for manipulating data [25, 6]. The lack of query languages
like those available in relational systems has been criticized as a major drawback of the object-
oriented approach [34, 5]. Consequently, most, if not all, commercial OODB’s now provide,

or will provide, some form of high-level declarative query language (e.g., [27, 15, 26, 21, 22]).



These query languages, like those of the relational model, transfer the burden of choosing an
efficient execution plan for a query to the database system. This has lead to a resurrection of
the study of query optimization in the object-oriented setting (e.g., [30, 8, 7, 31, 18, 23, 13]).
Most of these papers develop transformations that reduce the cost of evaluating a given query
but do not necessarily produce an optimal equivalent query.

In the setting of relational databases, a well accepted notion of query optimality exists for
the class of conjunctive queries [12], and the classical theory is based on the notion of query
containment. A query Q) is said to be contained in a query @, if in every database instance,
the set of answers to ); is a subset of the set of answers to (J2. In this paper, we study the
containment and optimization problems for a class of conjunctive queries in an object-oriented
setting. The closely related equivalence problem has previously been addressed for object-
oriented queries in [18]. Our results are complementary to their work, in that the language in
[18] is object-generating, while our language is object-preserving. Our language enables a user
to retrieve objects from a database, but not to create new complex objects. Moreover, our
language, like the one in [8], is defined on an inheritance hierarchy, whereas most languages
studied in the literature are basically languages for complex objects without inheritance. The
need to deal with inheritance introduces an extra level of complexity into the containment and
optimization problems.

In an OODB, classes are named collections of similar objects. A class C'may be refined into
subclasses. Conversely, the class Cis said to be a superclass of its subclasses. Subclasses are
specializations of their superclasses. Consequently, objects in a class are also contained in its
superclasses. Specialization of a class is often achieved by refining and/or adding properties to
its superclasses. Since properties of a superclass are also properties of its subclasses, a subclass
is said to inherit the properties of its superclasses. Class-subclass relationships form an acyclic
directed graph called an inheritance or generalization hierarchy.

Inheritance is a powerful modeling tool, because it allows for a better structured and more
concise description of the schema, and helps in factoring out shared implementations in appli-
cations [4]. Objects belonging to the same class share some common properties. Properties are
attributes or methods defined on types; they are applicable only to instances of the types. In

effect, therefore, types are constraints imposed on objects in the classes. Properties are formally



denoted as attribute-type pairs in this paper. A natural first step in query optimization is to
use the typing constraints implied by the schema to minimize the search space for variables
involved in the query. The following example illustrates how this idea may be applied to the

kind of object-oriented conjunctive query we consider.

Example 1.1 The following is a schema for a vehicle rental database. It keeps track of all
rental transactions for vehicles in the company. In this application, Auto, Trailer and Truck
are subclasses of the superclass Vehicle. There are clients, called discount customers, who are
known to the company and receive special treatment. Discount customers receive a special rate
and are not required to pay a deposit on the vehicles rented. However, discount customers are
only allowed to rent automobiles, and not other types of vehicles. Note that this constraint is
captured by the more restrictive typing of the attribute VehRented in the subclass Discount of
the class Client. Let us assume further that all superclasses are partitioned by their respective

subclasses.

Vehicle

Id: Int.
Model: Str.
Maker:Str.

Auto ,4\\ Truck

#OfSeat: Int. Fecilities:{ Str.} CargoCap: Int

Client

Customer:Renter
Rental Period: Date

VehRented:{ Vehicle}
Normal A Discount
N VehRented:{ Auto}
Deposit: Money DoscountRate: Int.

Suppose we want to find all those vehicles that have been rented to a discount client. FEz-

pressed in a calculus-like language, the query looks like:

Q1: { z| Jy (z€ Vehicle & yc Discount & zcy. VehRented)}.



Since discount clients are allowed to rent automobiles only, the above query is equivalent to the

following query:
Q2: { z | Jy (z€Auto & ye Discount & zcy. VehRented)}.

Q)» is considered to be more optimal since the number of variables as well as their search spaces
are minimal, given the typing constraints tmplied by the schema. Let us consider another query.

Assume that we want to find those clients who rented a truck. It can be expressed as follows:
Qs: { z| Jy (z€Client & yc Truck & ycz. VehRented)}.

Since discount clients are allowed to rent automobiles only (but not other kind of vehicles), Qs

is the same as the following query.

Qs { z | Jy (z€Normal & yc Truck & ycz. VehRented)}.

Relational conjunctive queries have been studied extensively in the literature. A variable
in a relational query ranges over a homogeneous relation. On the other hand, as illustrated
by the example, variables in an object-oriented query range over classes which could consist of
heterogeneous sets of objects. This is because a class may be refined to various subclasses, in
which shared attribute names may correspond to different types or classes. For example, the
variable z in ()3 in Example 1.1 ranges over a heterogeneous set Client = Normal U Discount.
All the members of this set have the attribute VehRented, but only for members z of Normal
can z.VehRented contain an element of the class Truck. This implies clients who rent a truck
are normal clients. This constitutes a significant divergence from the relational case. For
instance, syntactically correct relational conjunctive queries are always satisfiable but this is
not true for object-oriented conjunctive queries [10]. The additional complexity is also reflected

in the containment problem, as is illustrated by the following example.

Example 1.2 The following schema records the employer-employee relationships among a group
of people. The Employee atiribute indicates the set of employees hired by a person.
Consider the following two queries defined on the above inheritance hierarchy. @, retrieves

all people © who hire a person u and a male v such that u is also an employee of v and u hires



Person

Employee:{ Person}

Mae A Female

a female employee w. Qo finds all those people © who hire a male employee y who in turn hires

a female employee z. Ezpressed in our language, they are as follows.

Q1: { z| Ju Fv Jw (z€Person & uc Person & ve Male & we Female &

uez. Employee & vez. Employee & ucv. Employee & weu. Employee)}.
Q2: { | Jy 3z (z€ Person & yc Male & z€ Female & ycz. Employee € z€y. Employee)}.

The above two queries are best visualized as the following two graphs.
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We claim that Q- contains @1, meaning that whenever there is an answer for @, it will
also be an answer for Q3. The person u is either a male or a female. If u is a male, then y and
z in @ can be mapped to u and w, respectively. Similarly if u is a female, variables y and z in
()2 can be mapped to v and u, respectively. Thus, whenever there is an answer for @1, it will

also be an answer for Q3. O

The above examples illustrate the kind of conjunctive queries we are interested in. Exam-

ples 1.1 and 1.2 demonstrate that the analysis of containment of conjunctive queries is more



difficult than its counterpart in the relational case. This is due to the fact that the domains of
attributes impose certain constraints on a query, and the analysis of the containment problem
also involves analysis of disjunctive information.

The following is an overview of the problem and the approach we took in solving it. Given
a conjunctive query Q(S), where S is an object-oriented database schema denoted by an in-
heritance hierarchy, we want to find an equivalent query Q’(S) that is, in some sense, optimal.
Moreover, we are interested in determining when a conjunctive query is contained in another
one. Both problems require an understanding of what a conjunctive query represents. We first
observe that a conjunctive query, like the ones in Examples 1.1 and 1.2, can be decomposed as a
union of special kind of conjunctive queries called terminal conjunctive queries. As typing con-
straints in an inheritance hierarchy are restrictions on objects in a database, not every terminal
conjunctive query is satisfiable. With typing constraints implied by an inheritance hierarchy,
unsatisfiable terminal conjunctive queries can be determined and are eliminated from a union.
Having removed unsatisfiable terminal conjunctive queries, characterization of containment and
optimization are then derived. The technique employed and the result obtained are similar to
those in SPJU expressions in the relation system [28].

Most work on query optimization in OODB’s concentrates on complex object optimiza-
tion without considering the typing constraints imposed by the inheritance hierarchy (e.g.,
[30, 7, 31, 18, 23, 13]). Type checking of queries in the presence of non-strict inheritance
hierarchy was studied in [8]. Our work is different from all previous approaches in several im-
portant respects. Firstly, we use the typing constraints imposed by an inheritance hierarchy
to study the containment, equivalence and optimization of queries. Secondly, our optimization
is an exact minimization while most of the previous work deals with algebraic transformations
and/or heuristics (e.g., [30, 31, 7, 23, 13]). Thirdly, with reasons similar to those noted in [28],
characterizing equivalence does not suffice to solve the optimization problem. Instead, we need
to understand the containment problem as well. This work, to our best knowledge, is the first
work that provides a characterization for containment of queries in an object-oriented setting.
This result could also find applications in view definition and classification in an OODB. For
instance, to correctly integrate a virtual class or view into an inheritance hierarchy, it is im-

perative to resolve the containment problem for the view definition language [29]. Lastly, we



demonstrate that the idea of containment mappings of relational conjunctive queries [12] can
be extended to its object-oriented counterpart. Our proposed language, on the other hand, is
perhaps more restrictive than some other query languages studied in the literature.

The next section defines the class of conjunctive queries and the basic notation needed
throughout the discussion. In characterizing the containment and equivalence of terminal con-
junctive queries, it is assumed that the query involved is satisfiable. We present an efficient
algorithm for solving the satisfiability problem for terminal conjunctive queries in Section 3.
The results in that section were proven in [10] and are needed in the subsequent discussions.
Sections 4 and b characterize the containment, equivalence and minimization conditions for
terminal conjunctive queries. In Section 6, we solve the containment problem and derive an
algorithm for optimizing the class of all conjunctive queries. The notion of optimization cap-
tures the intuition of minimization of the number of variables as well as their search spaces. In
Section 7, we analyse the complexity of testing containment of conjunctive queries. The main

result shows that the problem is II5-complete. Finally, we give our conclusions in Section 8.
2 Definitions and Notation

In this Section, we introduce notation that is necessary for the rest of the discussion.
2.1 Types, Classes and Schemas
We suppose given the following pairwise disjoint sets:

1. A set T of atomic type domains, where each atomic type domain is an infinite set of
atomic values. Examples of atomic type domains are the set of integers, and the set of

strings over some alphabet. We asssume distinct atomic type domains are disjoint.
2. A countably infinite set O of symbols which are called object identifiers.

3. A set B of atomic types, containing for each atomic type domain T € T, a symbol T
naming that type domain. For brevity, we abuse notation by using the same symbol T

for a type domain and its name. Thus B=T.
4. A countably infinite set A of symbols, the atiributes.

5. A countably infinite set C of symbols which are called classes.



The set [Jpc7 T is said to be the set of atomic values. The elements of A will be used as
attribute names in tuple types, and the elements of C serve as names for user-defined classes.

A type expression over a set CCC of class names is an expression defined as follows:

1. Every element of B is a type expression, called an atomic type.
2. Every element of C is a type expression, called a class.
3. If ¢ is an atomic type or a class, then {¢} is type expression, called a set type.

4. If a1 , ..., a, are distinct attributes in A and ¢, , ..., %, are atomic types, set types or
classes, where n>0, then [a;:t; , ..., a,:t,] is a type expression, called a tuple type. As
in a relation scheme, the order of attributes is immaterial. The empty tuple [] is also a

tuple type. The type t; is said to be the type of the attribute a;, for each ¢ =1...n.

We write type-ezpr(C) for the set of all type expressions over C.

Following [24, 9], we introduce the notion of schema. A schema S is a triple (C, o, <),
where C is a finite subset of C, o is a function from C to tuple types, and < is a partial
order on C. The mapping o associates to each class in C a tuple type in type-ezpr(C) which
describes its structure. As noted in [16], there is no loss of representation power in restricting
the structures of classes to be tuple types. The relationship < among classes represents the
user-defined inheritance hierarchy. We assume that the hierarchy has no cycle of length greater
than 1. A class A€C is said to be terminal if there is no class B#A such that B<A. Otherwise
A is non-terminal. A class B is a descendant (or an ancestor) of a class A if B<A (or A<B,
respectively).

Following [2, 24], we derive from this hierarchy a subtyping relation < among expressions
in type-ezpr(C). Let S = (C, o, <) be a schema. The subtyping relation among expressions in

type-ezpr(C) is the smallest ordering < which satisfies the following axioms:

1. A<Aif AeB.
2. B<(Cif B<C, for all classes B and C'in C.

3. {t}<{s}, for all types s, ¢ such that ¢<s.



4. [arity ..oy apity oo, Guapitnyp] <[@1:81, ..., ay:8y], for all atomic types, set types or

classes t; , ..., tn, 81, ..., S, such that £;<s;,foralli=1...n.

The order of arguments in a tuple type is immaterial, so we have [a3 : C3,a5 : Cq,a; : C1] <
[a1 : C1, a2 : Cy].

For any expressions F; and E, in type-expr(C), Ey is a subtype of Es if E1<F,. It is
worth noting that the subtyping relation is a reflexive and transitive relation. As inheritance
hierarchies are given by users, some schemas may not be meaningful. Let S = (C, o, <)
be a schema. S is consistent if for all classes B and C such that B<C, we have o(B)<o(C).
We only consider consistent schemas throughout this paper. The schemas we have defined
are essentially the same as those defined in ODMG-93 [9]. Thus our results are applicable to
systems conforming to this standard. Let C' € C. Attributes in o(C) are called the attributes
of C. The type of C.A, denoted type(C.A), is the type ¢t of A in o(C). In consistent schemas,
subclasses are specializations of their superclasses. Specialization of subclasses is represented

formally by refining types of inherited attributes and/or adding new attribute-type pairs.
2.2 States, Domains and Objects

Let S = (C, o, <) be a schema and < the subtyping relation on type-ezpr(C). Let O be a
finite subset of O and I. be a function from O to C. Given O and I., each type expression
T in type-expr(C) is interpreted as a set of possible values, called the domain of T, denoted
as dom(T). In order to represent inapplicable attributes, we introduce a new symbol ‘A’. The

domain of a type with respect to (w.r.t.) O and I. is defined as follows:
1. If T € B is an atomic type naming the type domain T', then dom(T) =T.
2. For each class DeC, we define dom(D) = {o | 0 € O and I.(0o) = E, where E<D}.
3. For each set type {t}, we define dom({t}) = {v | v C dom(¢t)}.

4. For each tuple type [a1:t; , ..., an:t,], we define dom([ ai:ty , ..., a,:t,]) = {[a1:v1 , ...
y GnUy] | vi€dom(t;)U{A} for alli=1...n}.

Note that the value of an attribute of a tuple may be the null value A. This is to be interpreted

as the attribute being inapplicable.



A state s on a schema S = (C, o, <) is a triple (O, I, I,), where O is a finite subset of
O, 1. is a function from O to C, and I, is a function from O to tuple values in domains of
types with respect to O and I.. The function I, maps each element in O to a tuple value which

satisfies the following:
Vo€, I,(0)edom(o(I:(0))).

That is, I, defines the data value of an object and the (tuple) value of an object defined on a
class must satisfy the type specification associated with the class. The set {<o, I,(0)> | 0€O0}
is the set of objects in the state s. Two objects in a state are identical if and only if they have
the same identifier, so we may sometimes abuse terminology by referring to the identifier o as
an object of s.

Let [a;:v1 , ..., a,:v,] be a tuple value. Then [a;:v; , ..., ay:v,].0; is v;. We call v; the
value of attribute a; in the tuple. If the attribute a does not occur in a tuple then the value of
attribute a in the tuple is A.

In many, if not most, existing object-oriented database systems (e.g., [26, 21, 27]), an object
is defined on exactly one most specialized class in an inheritance hierarchy. Consequently, as
in [2, 21], we assume the following throughout the discussion.

Terminal Class Partitioning Assumption: Given any state s= (O, I, I,) on a schema
S, the class I.(0) is a terminal class in S for every object o in O. That is, every non-terminal

class is partitioned by its terminal descendants.
2.3 A Class of Object-Preserving Conjunctive Queries

In this subsection, we define a calculus-like query language for an object-oriented database.
Queries are constructed from a set of variables, symbols from the set of atomic values, the
equality operator ‘=", the membership operator ‘€’, the OR operator ‘LI’, the logical operator
‘&’, as well as the existential quantifier ‘3’. The set of variables is assumed to be disjoint from
other sets of symbols.
First we define the concept of term. Terms enable us to refer to an object or a component
of an object. A term is an expression of one of the following forms: ¢ or z or z.A, where c is

an atomic value, i.e., ¢ is in some atomic type domain, z is a variable and A is an attribute. A

term of the form z or z.A4 is called a variable term. An attribute term is of the form z.A.

10



An atom or an atomic formula is defined to be one of the following:

1. zeCy U---U C,, where the C;’s are classes or atomic types, and z is a variable. An atom
zeCy U---U C, is called a range atom and it asserts that the variable z denotes an object

in the class C; or a value in the atomic type C;, for some 1<i<n.

2. t; = ty, where ¢; and t5 are terms. Such an atom is called an equality atom. An equality

atom asserts that the operands denote identical objects or are of the same atomic value.

3. z€y.A, where z and y are variables. The atom z€y.A is called a membership atom. A
membership atom asserts that the object or atomic value denoted by z is a member of

the set object denoted by y.A.

It is worth noting that path expressions of the form z.4;... 4,, (as used in [37]) and of the
form z.A1[y1]. . . .An[yn) (as used in [19]); where z and y;’s are variables or atomic values, can
all be represented indirectly in our language. Likewise, atoms of the forms c€z.A and y. A€ C}
U---U C, and of the form z.A€y.B, where z and y are variables and c is an atomic value, can
again be expressed indirectly in our language.

A formula is constructed from atomic formulas, the logical operator ‘&’, as well as existential
quantifiers. Bound and free variables are defined in the usual manner. A query is an expression
of the form { ¢ | ®(¢)}, where ¢ is either a variable or an atomic value and &(¢) is a formula. The
term ¢t is called the distinguished term of the query. A query { so | ®(¢)} is called conjunctive
if ®(t) is of the form Js;...3s,, (M), where M is a formula containing no quantifier that is a
conjunction of atomic formulas.! Js;...3s,, is called the prefiz and M is called the matriz of the
formula or of the query. We also make use of union queries, which are expressions of the form

Q1 U...UQ,, where each @; is a conjunctive query.
2.4 Semantics of Queries

We now give the semantics of queries, and define the notion of query containment. It is conve-
nient for technical reasons that will become apparent below to state the semantics in terms of
a mapping to a language that uses the objects and atomic values of a state as basic syntactic

entities. We remark that the semantics is slightly non-standard in that it requires that the

!The results in this paper can be extended to conjunctive queries with more than one free variable.
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terms occurring in an atom must have a non-null value in order for the atom to be true: this
was handled in [10] using a three valued logic, but since only the truth of atoms is relevant to
the containment question for conjunctive queries we simplify this here.

Define a term over a state s = (O,1,,1,) to be an expression of one of the following forms:
an atomic value ¢, an object o € O, or an expression 0.A, where o € O is an object and A is an

attribute. The value Val(t) of a term ¢ over s is defined as follows.
1. If t is an atomic value ¢ then Val(t) = c.
2. If t is an object o € O then Val(t) = o.

3. If t is the expression 0.4, where o € O is an object and A is an attribute then Val(t) is

the value of attribute A in I, (o).

Note that Val(t) may be an atomic value, object, set, or the null value A.

An atom over s is an expression of one of the following forms:

1. t €Cy U---UC,, where t is a term over s and the C; are classes or atomic types;

2. t; = ty, where £, and ¢, are terms over s, or

3. t € 0.A where t is a term over s, where o0 is an object of s, and where A is an attribute.
We define certain atoms A over a state s, to be satisfied in s, written s |= A, as follows:

l.sEteCy U---UC,, where t is a term over s and each C; is a class or atomic type, if

Val(t) € dom(C;) for some i =1...m;

2. s | t; = ty, where t; and ¢, are terms over s, if Val(t;) = Val(t2) and neither value is

equal to A;

3. s =t € 0.A where t is a term over s, the o is an object of s, and A is an attribute, if

Val(t) is not equal to A and Val(0.A) is a set that contains Val(t).

Note that in order for an atom to be satisfied, all of its terms must have non-null values.
An assignment for a query Q in a state s = (O,I,,1,) is a function o mapping each variable
of @ either to an atomic value or to an object in O. Assignments may be extended to mappings

from the terms and atoms of @) to terms and atoms over s, respectively, as follows:

12



1. For terms which are atomic values ¢ we define a(c) = c.

2. For terms of the form z.A, where z is a variable, we define a(z.A) to be the expression

0.A, where 0 = a(z).

3. For atoms A of Q we define a(A) to be the atom over s obtained by substituting for each

term ¢ in A the term «a(t).

Using the notion of satisfaction of atoms over a state in that state, we now define a formula
® to be satisfied in a state s with respect to an assignment «, written s, = ®, in the usual
way. For atomic formulae A we have s, = A if s = a(A). The cases of Boolean operators
and quantifiers are as in the standard semantics of first order logic, where the universe consists
of the union of the sets dom(T), where T ranges over all type expressions.

A query Q = { t| ®(¢)} is said to be satisfied in a state s with respect to an assignment a,
written s, = Q, if s, @ = ®(¢). The assignment « is called a satisfying assignment for @ in
this case. We say that the object or value a is an answer of @ with respect to s if there exists
a satisfying assignment « for Q such that a = a(t), where ¢ is the distinguished term of Q. If
Q is a query and s is a state, we write Q(s) for the set of all answers of Q) with respect to s.
For union queries @ of the form Q; U ...UQ,, we define Q(s) to be the set Q1(s)U...UQ,(s).

A query @ is said to be satisfiable if there is a state s such that Q(s) is non-empty. Given
two queries @Q; and Q2 (on a schema S), Q; is said to contain Q2 with respect to S, denoted
Q12Q2, if Q1(s)2Qa(s), for all states s on S. Two queries 1 and Q2 are said to be equivalent
with respect to schema S, denoted Q1=Q),, if they contain each other with respect to S.

We note that for conjunctive queries, the existential quantifiers are not strictly essential:
the query {¢ | 32, ...32,(®)} is equivalent to the query {t | #}. Consequently, we assume
henceforth for purposes of analysis that queries do not contain existential quatifiers. This
yields the following simple characterization of satisfaction: « is a satisfying assignment for a
conjunctive query @ in a state s if and only if s = a(A) for all atoms A of Q. (It is still
sometimes convenient to write formulae with quantifiers in order to scope variables and avoid

naming conflicts.)
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2.5 Well-formed Conjunctive Queries

We consider only those queries in which each term either denotes an object or a value, or a
set of objects or values, but not both. We call such queries well-formed. The following defines
when a query is well-formed. First we note that, given a conjunctive query, additional equalities
among terms could be inferred with the following algorithm. It is easy to see that the inferences

performed in the algorithm are correct.

Algorithm EqualityGraph: Given a conjunctive query, generate additional implied equality
edges.

Input: A conjunctive query Q.

Output: An undirected graph E(Q), called the complete equality relationship graph for Q.
Method:

The edges {z, y} in the graph F(Q) are called equality edges, and are also denoted by ‘z = y’.

(1) Generate a graph with terms in @ as nodes. (If 2.4 is a term of @ then so is z.) Generate
additional nodes and equality edges by applying the following three steps exhaustively to
the graph until no more edges can be derived.

(i) For each node ¢, derive the equality edge ¢ = t. For each equality atom ‘s = ¢’ of Q,
generate an equality edge between the node s and the node .

(ii) If s = t and t = u are equality edges, then derive the equality edge s = u.

(iii) If z and y are variable nodes, £ = y is an equality edge, and z.4 is a node in the
graph, then add the node y.A, if it does not already exist, and derive the equality edge
z.A = y.A.

(2) Output the graph constructed.

By steps (i) and (ii), the complete equality relationship graph F( Q) for a conjunctive query
Q, yields an equivalence relation R, defined by tRt’ if there exists an equality edge between ¢
and t'. For each term ¢ in F(Q), the equivalence class [t] of R containing ¢ is the set {t' | ¢’ is
a node in E(Q) and there is an equality edge between ¢ and t'}. These sets are said to be the
equivalence classes of E(Q).

Let @ be a query. An occurrence of a term z.4 in the matrix of @ is a set occurrence if
the occurrence appears on the right-hand side of a membership atom. All other occurrences
of terms in the matrix of @) are object occurrences. A term s is an object term if some term
t in the equivalence class [s] has an object occurrence in the query. A term s is a set term if
there is a set occurrence in the query of some term ¢ € [s]. Intuitively, a set term is one that
must denote a set, and an object term is one that must denote an object or atomic value. A

conjunctive query @ is well-formed if

14



(i) every term in @) is either an object term or a set term, but not both, and

(ii) each object term of the form z.A is equated, directly or indirectly, to some variable or

atomic value; that is, there is a variable or an atomic value in the equivalence class [z.4],

and

(iii) every variable in @) ranges over exactly one disjunction of classes or atomic types; that is,

there is exactly one range atom associated with each variable.

Condition (i) is necessary for the satisfiability of the query, and arises from the obvious
constraint that no term can simultaneously denote both an object and a set. It is worth
remarking that this condition implies that a set term cannot occur within an equality atom in
the query. For, such an occurrence would be an object occurrence, which would make the term
simultaneously a set term and and object term. Note, moreover, that no object term can ever
denote a set. For, by conditions (ii) and (iii), an object term must denote an element of some
union of classes and atomic types.

For terms denoting objects or atomic values, condition (ii) is not a real restriction, since
such a term can always be equated to some new existentially quantified variable ranging over all
classes and atomic types. This condition is needed to simplify the discussion in the subsequent
sections. In the case of condition (iii), note that because of the Terminal Class Partitioning
Assumption, a query is unsatisfiable if it contains both z € C' and z € D, where C and D are
distinct terminal classes. Such a query may be satisfiable if C' and D are nonterminal classes,
but in this case the two range atoms can be replaced (given a schema) with the single atom z €
CiU---uCy,, where Cy,...,C, are the common terminal descendants of C' and D. Moreover,
if the variable z occurs in no range atom, then we may clearly add the atom z € C1U---UC,,
where C4, ..., (), are all terminal classes and atomic types, without changing the meaning of
the query.

For the rest of this paper, we use the term conjunctive queries to denote well-formed con-
junctive queries. Well-formed queries include safe, as well as unsafe queries that produce infinite

answers [35].
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2.6 Terminal Conjunctive Queries

A terminal conjunctive query is a conjunctive query in which every range atom is of the form
‘ze C°, where C'is a terminal class or an atomic type.

Every conjunctive query can be expressed as a union of terminal conjunctive queries, as
follows. First, define an ezpansion of a query @ to be a query obtained by replacing each range

atom of the form z € C; U---UC,, by one of the atoms z € C;. For example, the query
{z|(z€CU D)A(ye EU F)A(z.A=1y)}
has four expansions, one of which is the query
{t|zeDANyc ENnz.A=y}.
Note that every expansion of a conjunctive query is a terminal conjunctive query.

Proposition 2.1 Let QQ be a conjunctive query and let Q1,...,Q, be all the expansions of Q.

Then Q is equivalent to Q1 U ... U Q.

[Proof]: See [10]. O

This result states that, semantically, a conjunctive query corresponds to a union of terminal
conjunctive queries. Each terminal conjunctive query in a union could have variables defined
on different domains. To solve the containment and equivalence problems, it is necessary to
solve the satisfiability problem and to identify exactly the set of objects or values over which
a variable is ranging. In Section 3, we present an algorithm for solving these problems for the
terminal conjunctive queries. This algorithm employs typing constraints to determine satisfia-
bility of a terminal conjunctive query. Queries that are not terminal could, by Proposition 2.1,
first be decomposed into a union of terminal conjunctive queries. We can then apply the al-
gorithm in Section 3 to each subquery in the union to determine its satisfiability, and delete
the unsatisfiable subqueries from the union. In Sections 4 and 5, we shall derive algorithms for
testing containment and for minimizing terminal conjunctive queries. Section 6.1 deals with
containment of unions of conjunctive queries, which can be used to determine containment of

arbitrary conjunctive queries.
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3 An Efficient Algorithm for Testing Satisfiability of Terminal
Conjunctive Queries

Testing satisfiability of restricted classes of conjunctive queries is an NP-complete problem [10].
However, determining if a terminal conjunctive query is satisfiable is tractable. We present in
this section an algorithm that solves this problem in polynomial time, from [10], along with
a sketch of its correctness proof. The aspect of this proof that is germane to our purposes in
the present paper is that if the input query is satisfiable, it is possible to construct a ‘minimal’
state with respect to which the query returns a non-empty result. Various properties of the
state constructed are needed in the proof of the characterization of containment of terminal
conjunctive queries.

One of the reasons for unsatisfiability of a query is the incompatibility of the typing of
its terms implied by the schema. Note that a query Q and schema S = (C, o, <) together
determine a type type(t) for every term ¢ of the query. (In every case, this type is in fact a
class or atomic type.) For every atomic value ¢ in an atomic type T', we define type(c) = T.
For every variable z in @, define type(z) to be the unique class or atomic type C such that Q
contains an atom of the form z€ C. For every term of the form 2.4 in @, define type(z.A) as the
type of attribute A in o(type(z)), if type(z) is a class and A is an attribute of o(type(z)), and
undefined otherwise.

In order for the query to be satisfiable, the type assigned to its terms must be consistent.
By the Terminal Class Partitioning Assumption, terms denoting the same object must belong
to the same terminal class or atomic type, and an object belonging to a set must be of a type
admissible for that set. The following definition helps to check these conditions. If T is an
atomic type or a class, we say D is a terminal subtype of T if either T is an atomic type and D
is T, or D is a terminal descendant of T. Let ¢ be an object term in Q. Define SatType(t) to be

the set of all D such that
1. for all terms u € [t], D is a terminal subtype of type(u), and
2. for every ‘ucz.A’ in @, where u€lt], D is a terminal subtype of C, where type(z.4) is { C}.

Intuitively, SatType(t) is the set of terminal types that are consistent with all the typing in-

formation on t derivable from the query. Since every object term must be equated to some
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variable, which must range over a terminal type, or to an atomic value, SatType(t) contains at
most a single element. Note that the definition depends only on the equivalence class of £, so we
may also write SatType([t]) for SatType(t). Note also that if @Q is satisfiable, then SatType(t)
is a singleton set, for every variable object term ¢ in Q. For, if SatType(t) were empty, then it

would be impossible to construct a satisfying assignment.

Algorithm SatTestUT: Verify if a terminal conjunctive query @ is satisfiable.
Input: A terminal conjunctive query @ on S.

Output: yes if @Q is satisfiable, and no otherwise.

Method:

Compute the complete equality relationship graph E(Q) for Q.

(1) If there is an object term of the form z.A for which type(z.A) is undefined or equal to a
set type, or there is a set term of the form 2.4, for which type(z.A) is undefined or is not
equal to a set type, then output no and exit.

(2) If there is an object term ¢ in @ such that SatType(t) is empty, then output no and exit.

(8) If there is an object term ¢t with two distinct atomic values ¢; and ¢y both in [¢], then
output no and exit.

(4) Output yes.

Lemma 3.1 If the algorithm SatTestUT outputs yes, then Q) is satisfiable.

Suppose the algorithm outputs yes. We construct a state sg and a satisfying assignment o
for @ in sg. This assignment will be called the canonical asssignment for Q) in sg. The details
of the construction will be applied in later results.

First, to each equivalence class [t] of the complete equality relationship graph of @, we
associate a distinct value [t], and a terminal class or an atomic type type,([t]). The type
type, ([t]) is defined to be type(s) for any term s of the query in [f]. This is well-defined in the
case of object terms by statement (2). For set terms z.A, note that if ¢ € [2.A] then ¢ must be
of the form y.A for some variable y € [z], by the fact that set terms do not occur in equations
in @ and construction of E(Q). Thus type,([z.A]) may be defined to be type(z.A) in this case.

The values [t], are assigned as follows.

Vall: If type,([t]) is an atomic type, and there is an atomic value ¢ in [¢], then [t], = ¢. By

statement (3), ¢ is the unique atomic value in [t].
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Val2: If type,([t]) is an atomic type and there is no atomic value in [¢], then take [t], to be any
value of type type,([t]), in such a way that no two distinct equivalence classes are assigned

the same value. (This is possible because the atomic types are infinite.)

Val3: If type,([t]) is a terminal class then the value [t], is defined to be just the equivalence
class [t] itself. In this case these values will be interpreted below as objects in the state

to be constructed.

Val4: If none of the above cases apply, then type,([t]) is a set type. In this case [t], is defined
to be the set {[v], | ‘v€z. A’ is an atom in @ for some variable z in [t]}. (Note that
the variables v must be object variables, so the values [v], are already defined by cases

Vall-Val3.)

Observe that it follows from this definition that distinct equivalence classes are assigned distinct
values.

We now construct a state sg = (O, L, I,). We take the set of objects O of this state to
be { [t] | [f] is an equivalence class of @ such that type,([t]) is a terminal class}. These objects
are assigned to terminal classes by putting I.([t]) = type.([t]), for every [{]€O. The mapping
I,, defined below, maps each [t]€O to a tuple value on type,([t]). First, for each [t]€O, define
attr([t]) to be the set of attributes A such that 2.4 is a term of @ for some variable z€[t]. We
now define attribute values for the object [¢] as follows. Note that by conditions (1) and (2), the
set attr([t]) is a subset of the set of attributes in I.([t]). For each attribute Acatir([t]), the value
assigned to the attribute A for the object [t] is [z.A],, where z is any variable in [¢] such that
z.A is a term of (). (Note that the definition of the complete equality relationship graph ensures
that if # and y are variables in [¢] such that z.A and y.A are terms of @ then [z.A4] = [y.4],
so this definition is independent of the choice of z.) If A is an attribute in type,([t]) but not
in attr([t]), a null value is assigned to A for the object [t]. This completes the definition of the
state s.

Finally, we define a mapping a from the variables of @) to this state. For each variable z,

we let a(z) be the value [z],.

Lemma 3.2 The query Q is satisfied in the state sg under the assignment a.
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See [10] for more details (on a slightly different approach to the proof).

Theorem 3.3 A terminal conjunctive query @ on S is satisfiable if and only if the algorithm

SatTestUT outputs yes.

[Proof]: See [10]. O
Unless otherwise stated, we consider only satisfiable terminal conjunctive queries for the

rest of this paper.

4 Containment of Terminal Conjunctive Queries

We now set about developing a condition that characterizes containment of terminal conjunctive
queries. We remark that some of the results of this section depend crucially on the notion of
atoms over a state defined in section 2.4. For the rest of Sections 4 and 5, a query @ refers to
a terminal conjunctive query Q.

We begin by defining a relation that is intended to capture the equations that must be
satisfied under any satisfying assignment for a query. Recall that the terms in an equation
must have non-null interpretations for the equation to hold. Given a query @, define the

relation ~ on the set of terms by s ~ ¢ if either
1. s and ¢t are both terms in the complete equality relationship graph of Q and [s] = [t], or
2. s and t are the same term, which is an atomic value.

Note that the relation ~ is an equivalence relation when restricted to the set of terms of
the complete equality relationship graph of Q. However, ~ is not an equivalence relation in
general, since we do not have ¢t ~ ¢ for terms ¢ that are not an atomic value or in the complete
equality relationship graph of ). Intuitively, this reflects the fact that such terms may have
interpretation A under a satisfying assignment, so that the equation ¢ = ¢ does not hold. (We
do have ¢ & ¢ for atomic values ¢ because the equation ¢ = ¢ will hold under every satisfying
assignment.)

We can extend the relation &~ on terms to a relation on atoms by defining A ~ A’ if A and
A’ are atoms of the same syntactic form and the terms in corresponding positions are ~-related.

(For example, if [z] = [y] and z.A is a term of the complete equality relationship graph then
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we have 2 € z. A~ y € z.Z, but not ¢ = z.A ~ y € z.Z, because these atoms are of different

syntactic forms.)

Lemma 4.1 If a is a satisfying assignment for Q) in a state s then

(i) If s and t are terms with s ~ t then both Val(a(s)) and Val(a(t)) are non-null and

Val(a(s)) = Val(a(t)).
(i) If A and A’ are atoms with A ~ A’ then s |E a(A) if and only if s = a(A’).

[Proof]: The claim of part (i) is trivial for constants ¢, since we always have Val(a(c)) = ¢
is non-null. The case where s and t are terms of the complete equality relationship graph with
[s] = [t] is by induction on the construction of the complete equality relationship graph, proving
also the additional property that Val(a(t)) is non-null for any term in the complete equality
relationship graph.

Note that for all terms ¢ of Q, we must have that Val(a(t)) is non-null, since this is required
for the atom in which ¢ occurs to be satisfied under a. (There is one exception to this observa-
tion, the case in which ¢ is the distinguished term and not equal to a variable. But then ¢ must
be an atomic value ¢, for which Val(a(t)) = c is non-null.) For equations s = ¢ in Q we must
have Val(a(s)) = Val(a(t)) in order for a to be satisfying. It is trivial that for an equality edge
t =t we have Vul(a(t)) = Val(a(t)). This establishes the base case of the induction. (The
case of equations ¢ = ¢, for terms introduced later in the construction, is similar, but uses the
additional property.)

Consider next the case of edges t; = t5 and t5 = t3 inducing an edge t; = £3. Since we have
[t1] = [t2] and [t2] = [ts] it follows from the inductive hypothesis that Val(a(t;)) is non-null
for i =1...3 and Val(a(t1)) = Val(a(tz)) and Val(a(tz)) = Val(a(ts)). It is immediate that
Val(a(t)) = Val(a(ts)).

Finally, suppose that # and y are variables with z = y an edge of the complete equality
relationship graph, and that z.A is a node of the complete equality relationship graph. By the
induction hypothesis Val(a(z)) and Val(a(y)) are non-null and equal, and Val(a(z).A) is non-
null. It follows that Val(a(y.A)) = Val(a(y).A) is equal to Val(a(z).A) and hence non-null,
and equal to Val(a(z.A4)).
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Part (ii) follows directly from part (i) using the fact that the definition of satisfaction
depends only on the values of the terms in the atoms A and A’. O

In addition to the atoms in a query, certain other atoms will always be satisfied with respect
to any satisfying assignment for the query. For example, if a query contains atoms #z = y and
y € C then every satisfying assignment also makes the atom z € C true. The following notion

is intended to characterize such atoms. A query @ is said to derive an atom A if

1. A is of the form ¢ € T where T is a basic type and t & ¢ for some atomic value ¢ of type

T, or
2. A is of the form t; = t,, where ¢; and 5 are terms satisfying ¢; &~ t,, or
3. @ contains an atom A’ such that A’ ~ A.

We write Q - A if Q) derives the atom A. The following result shows that every atom derived

by a query in fact holds under any satisfying assignment.

Lemma 4.2 Let a be any satisfying assignment for the query Q in the state s. If A is an atom

such that Q - A then s = o(A).

[Proof]: We consider each clause of the definition of derivation:

1. Suppose A is of the form ¢t € T where T is an atomic type and ¢ = ¢, where ¢ is an
atomic value of type T. By Lemma 4.1, we have Val(a(t)) = Val(a(c)) = c. It follows
that s = a(A).

2. If A is of the form s =t with s &~ t then by Lemma 4.1(i), Val(a(s)) = Val(a(t)), with
both non-null, so s = a(A) by definition.

3. Otherwise, ) contains an atom A’ such that A’ ~ A. Since « is a satisfying assignment,

we have that s = a(A’). By Lemma 4.1(ii), it follows that s = a(A) also. O

We now set about showing that a converse to this result holds for the state sg constructed form
a query . We begin by relating atoms over this state to atoms of the query. Define an inverse
of the canonical mapping «a for the query @ to be a function w mapping each object of sg and

each atomic value to either a variables of () or an atomic value, such that
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1. for all atomic values ¢ such that there exists a variable y of Q with a(y) = ¢, we have

that w(c) is a variable with this property, and

2. for all atomic values c such that there exists no variable y of Q with a(y) = ¢, we have

w(c) = ¢, and

3. for all objects [t] of sg we have that w([t]) is a variable in [t]. (Note that each object of
sg is an equivalence class of terms that must contain a variable by condition (ii) of the

definition of well-formed queries.)

We may extend w to a mapping from terms over the state sg to terms formed using the variables
of @Q by defining w([t].A) = w([t]).A for all terms of the form [].A. The following result explains
why we call such a mapping an inverse of a. (To understand the condition on (ii), observe that

w is not defined on sets occurring in sg.)

Lemma 4.3 If w is an inverse of the canonical mapping o from Q to sq then:
(i) For all terms t of Q we have w(a(t)) ~ t.

(i) For all terms t over sq for which Val(t) is non-null and not equal to a set, we have

w(Val(t)) ~ w(t).

(i) For all terms t over sq for which Val(t) is non-null, w(t) is either an atomic value or a

term in the complete equality relationship graph of Q.

[Proof]: For (i) we consider three cases, according as whether a(t) is an atomic value,
object or attribute term.

Consider first the case where a(t) is the atomic value c. Note that ¢ cannot be an attribute
term since these must be mapped to attribute terms. If ¢ is an atomic value, ¢ must be equal
to ¢, so w(a(t)) = ¢ &~ ¢ = t. If ¢ is a variable, there exists a variable y with a(y) = ¢ and
w(c) = y. Since the construction guarantees that distinct equivalence classes are mapped by a
to distinct values, we must have ¢t € [y]. Thus w(a(t)) =y ~ t.

Next, consider the case in which () is the object [z]. As this case can only arise from case

Val3 of the construction, we have ¢ € [z], so w(a(t)) = w([z]) ~ ¢.
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Finally, if a(t) is of the form 0.4, where o is an object of sg, then ¢ is a term of the form
z.A, where z is a variable, and o = [z]. Thus w(a(t)) = w([z].4A) = w([z]).A. Let w([z]) be
the variable y. Because y must be in [2z] and z.A is a term of the complete equality graph,
y.A is also a term of the complete equality graph, with [2.A4] = [y.A]. Hence we have that
wla(t) =y A~z A=t

We prove (ii) and (iii) together. Note that if ¢ is an atomic value or an object of sg then
w(t) is a variable of Q or an atomic value, so the claim of (iii) holds. In this case we also have
Val(t) = t so the claim of (ii) follows directly from the fact that w(t) is an atomic value or a
term of the complete equality relationship graph, so that w(t) ~ w(t).

Suppose next that ¢ is a term over sg of the form [z].A (where, without loss of generality,
z is a variable) for which Val(t) is defined and not equal to a set. By definition, w([z].4) =
w([z]).A = y.A for some variable y € [2]. Moreover, by construction of sg, there exists a
variable z € [z] such that z.A is a term in the complete equality relationship graph. It follows
that w([z].A) are in the complete equality relationship graph, establishing the claim of (iii) in
this case. (Note also that z.A is in the complete equality relationship graph.)

Moreover, we have either Val(t) = [2.A] or Val(t) = c for some atomic value ¢. To complete
the proof of (ii) we consider each of these cases individually.

Suppose first that Val(t) = [2.A]. Let w([z]) be the variable y € [z]. Then z ~ y. Hence
w(Val(t)) = w([z.4]) ~ z.A ~ y.A = w(t). Next, if Val(t) is the atomic value ¢ then, by

construction of sg, one of the following cases applies:

1. In case (Vall) of the construction, we have ¢ € [2.A]. Thus w(Vai(t)) = w(c). If there
does not exist a variable v with w(v) = ¢, then w(c) = ¢ ~ z.A. If there does exist such a
variable, and w(c) = v, then we must have v € [2.A]. Hence here w(c) = v ~ 2.4 also. In

either case, it follows that w(Val(t)) ~ w(t).

2. In case (Val2) of the construction, z.A4 is of atomic type, but [z.A] contains no atomic
value. In this case, there exists a variable y in [2.A], for which we must have a(y) = c.
Without loss of generality, take y to be the variable such that w(c) = y. Then w([z].4) =

w([z]) Ax 2. Axy =w(Val(t)). O

We may extend an inverse w of o to a mapping from atoms A over sg to atoms over the
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variables of @ by defining w(A) to be the atom obtained by substituting for each term ¢ over
sg in A the term w(t).

We now show that the atoms derived by a query @) completely capture the set of atoms of
a certain form holding in the state sg. Define an atom over s to be terminal if it is of one of

the following forms:
1. t € T, where t is a term over sg and T is an atomic type or terminal class,
2. s =t, where s and ¢ are terms over sg such that neither Val(s) nor Val(s) is a set,
3. t € 0.A, where t is a term over sg and o is an object of sq.

Intuitively, the terminal atoms are those that may occur as images under satisfying assigments

of a well-formed query.

Lemma 4.4 Let w be any inverse of o. Then for all terminal atoms A over sg such that

sg = A we have Q - w(A).
[Proof]: We consider each of the possible cases for the atom A.

1. If A is of the form ¢ € T where c is an atomic value of type T then Q - w(A) by the first

clause of the definition of derivation.

2. Suppose A is of the form [t] € C where C is a terminal class and [t] is an object of sg, with
I.([t]) = C. By construction of sq, there exists a variable € [t] such that z € C is an
atom of Q). Since w([t]) is also an element of the equivalence class [{] we have z ~ w([t]),
so the atom w(A) is ~-related to the atom z € C. Hence Q - w(A) by the third clause

of the definition of derivation.

3. Suppose that A is of the form s = ¢, where s and ¢ are terms over sg. For this equation to
hold in sg, we must have Val(s) = Val(t), with both non-null. Since the atom is terminal,
neither value is a set. Hence, by Lemma 4.3(ii), we have w(s) = w(Val(s)) = w( Val(s)) =~

w(t). It follows that Q - w(s) = w(t) by the second clause of the definition of derivation.

4. Suppose that A is an atom of the form a € .4, where a is a value or object of sg and b

is an object of sg. By construction of sg, for this atom to hold in sg there must exist an
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object term ¢ in @ and a set term z.A such that ¢ € 2.4 is an atom of Q and a(¢) = a and
a(z) = b. Since w(a) = w(a(t)) ~ t and w(b) = w(a(z)) ~ = by Lemma 4.3 (i), it follows

the third clause of the definition of derivation that Q F w(t) € w(b).A, ie.,, Q Fw(A). O

We comment that the corresponding property could not be established for atoms over sg
expressing equations between sets. For example, for the query Q = {z |1 € z.AA 1 € y.B}
we find that in sg we have sg = [2].A = [y].B, since Val([z].A) = {1} = Val([y].B), but not
QF 2. A=y.B,since [z.4] # [y.B].

We are now ready to state the characterization of containment of queries. First, define a
variable mapping from a query @, to a query Q; to be a function g mapping each variable of
Q- to either a variable of (; or to an atomic value. Such a mapping can be extended to a
mapping from terms in the complete equality graph of Q5 to expressions formed from atomic
values and variables of Q; by taking u(c) = ¢ for all atomic values ¢, and p(z.B) = p(z).B for
all variables z. (Note that the expression p(z).B need not be a term of the complete equality
graph of @1, or even a term. For example, if y(z) is the atomic value ¢ then this expression
is ¢.B, which is not a term, and is uninterpretable in our language, since atomic values do not
have attributes.)

We will deal with the composition of various such mappings. Recall that if f: X — Y and
g :' Y — Z are functions then the composition g o f is the function from X to Z defined by
g0 £(z) = g(£(2)).

Define a containment mapping p from a query @2 to a query @; to be a variable mapping

from Q)5 to @1 such that

1. if ¢; is the distinguished term of Q; and ¢, is the distinguished term of Q4 then u(t2) ~1 1

(where = is the relation derived from Q;), and
2. for every atom A of Q2, we have Q; F u(4).

The following result shows that containment mappings characterize containment between ter-

minal conjunctive queries.

Theorem 4.5 If Q. and Qs are terminal conjunctive queries then Q1 C Q+ if and only if there

exists a containment mapping from Qs to Q1.
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[Proof]: Suppose first that g is a containment mapping from Q5 to Q1. We need to show
that Q1 C Q. For this, let s be any state and suppose that « is a satisfying assignment for Q;
in the state s, so that a(t;) € Q1(s), where ¢; is the distinguished term of Q;. We show that
a(t1) is also in Q2(s). Define the assignment 3 for Q2 in s by 8 = aou. If A is an atom of Q»
then since g is a containment mapping we have by definition of containment that @, F p(A).
By Lemma 4.2 it follows that s = a(g(A)), i.e. that s = #(A). Since this holds for every atom
of Q2 it follows that f is a satisfying assignment of Q2 in s. Thus Q2 (s) contains 3(¢3), where
to is the distinguished term of Q5. Because g is a containment mapping, we have p(t2) ~ ;.
Thus, by Lemma 4.1 we have that §(t2) = a(p(t2)) = a(t1) is in Q2(s), as promised. This
completes the proof that Q; C Q,, establishing the implication from right to left in the lemma.

To prove the converse, assume that there exists no containment mapping from @, to Q.
We show that @, is not contained in Q) by establishing that Q;(sg,) is not a subset of Q2 (sq, ).
In particular, we argue that if a is the canonical assignment of Q); in sg, and and ¢, is the
distinguished term of @, then a(¢;) is not in Q3(sg,). Note that, on the other hand, a(t;) is
an element of Q(sg,) by Lemma 3.2.

To show that a(t;) is not in Q2 (s, ), assume to the contrary that f is a satisfying assignment
for Q; in sg, with B(t2) = oa(t1), where 5 is the distinguished term of Q;. We derive a
contradiction to the assumption that there exists no containment mapping from @, to Q1. In
particular, let w be any inverse of & and consider the mapping g = w o 8. Note that this must
be a variable mapping from @, to Q1. We claim that g is a containment mapping from @, to
Q1.

To see this, note first that u(t2) = w(B(t2)) = w(a(t1)) ~ t1. Thus p satisfies the first
clause of the definition of containment mapping. Next, note that if A is an atom of Q5 then
since 3 is a satisfying assignment we have that sg, = B(A). Since 8(A) is a terminal atom
over sg, we have by Lemma 4.4 that Q; F w(8(A)), i.e., that Q; F p(A). Thus, u satisfies
the second condition of the definition of containment mapping, completing the proof that p is

a containment mapping from @ to @1, and yielding the desired contradiction. O
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5 Minimization of Terminal Conjunctive Queries

In this Section, we define a notion of minimality of terminal conjunctive queries, and derive an
algorithm that, given a terminal conjunctive query as input, finds a minimal equivalent query
among all terminal conjunctive queries.

Let @ be a terminal conjunctive query. A minimal terminal conjunctive query of ) is a
terminal conjunctive query equivalent to ) with the number of variables minimal among such
terminal conjunctive queries. We now show how to find minimal queries.

We begin with a number of lemmas concerning containment mappings. In the rest of the
discussion, we use subscripting to indicate the query with respect to which we compute the

equivalence classes.

Lemma 5.1 Let p be a containment mapping from the satisfiable terminal conjunctive query

Q- to the satisfiable terminal conjunctive query Q1.

(i) If t is a term of the complete equality relationship graph of Q2, then pu(t) is either an

atomic value or a term of the complete equality relationship graph of Q1.

(ii) Let ~1 and =~ be the relations on terms corresponding to the queries Q1,Q2, respectively.

For all terms s and t, if s ~o t then p(s) =1 p(t).

[Proof]: We establish (i) and (ii) simultaneously. If s a3 ¢ because both s and ¢ are the
atomic value ¢, then we have u(s) = u(t) = ¢, so p(s) ~1 p(t). It therefore remains to show that
if [s]s = [t]2, where s and t are terms of the complete equality relationship graph of @2, then
w(s) and p(t) are terms of the complete equality relationship graph of Q1 and [u(s)]1 = [p(t)]:.
We prove this by induction on the construction of the complete equality relationship graph of
query 2. Note that it is immediate from the fact that p is a containment mapping that for
all terms s of @ such that p(s) is not an atomic value, we have p(s) equal to a term in the
complete equality relationship graph of @J;. This is because s occurs in an atom A of @J2 and
Q1 derives the atom p(A).

In the case of edges s = s, we clearly have p(s) ~; p(s). For edges s = ¢ corresponding to
atoms of Q2, we have u(s) ~; p(t) because p is a containment mapping. Suppose that an edge

s = u is derived from edges s = t and ¢t = u of the complete equality relationship graph of Q-
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for which we have p(s) ~; p(t) and p(t) ~; p(u). Since all the latter terms are in Q1, it follows
from the fact that ~; is an equivalence relation on the terms of Q; that pu(s) ~; p(u).
Finally, suppose that an edge .4 = y.A is derived from an edge # = y and a term z.A of the
complete equality relationship graph of Q2. We assume by way of induction that u(z) ~1 p(y)
and that the term p(z.A4) occurs in the complete equality relationship graph of Q;. Now
p(z.A) = p(z).A, so p(z) must be a variable, else Q; would not be satisfiable. Since p(z) =
1(y), it follows similarly that p(y) must be a variable. Thus, u(y.A) = p(y).A is a term of the
complete equality relationship graph of @; and p(z).A =~ p(y).4, by the inductive hypothesis

and the construction of the complete equality relationship graph of @Q;. O

Lemma 5.2 Let p be a containment mapping from the satisfiable terminal conjunctive query

Q- to the satisfiable terminal conjunctive query Q1. If A is an atom such that Q1 - A then

[Proof]: We consider the three cases of the definition of derivation. First, suppose A is
of the form t € T where T is an atomic type and t is &-related to the atomic value ¢ of type
T. Then by Lemma 5.1 (ii) we have p(t) ~1 ¢, so @1 F u(t) € T. Second, if A is the atom
s =t and s ~3 t, then by Lemma 5.1 (ii) we have p(s) ~;1 p(t), so @1 F p(s) = p(t). Finally,
if Q2 contains the atom A’ ~; A then by Lemma 5.1 (ii) we have p(A’) ~; p(A). Since p
is a containment mapping it is also the case that Q; - p(A’). It follows using the definition
of derivation and the fact that ~; is an equivalence relation on terms of the complete equality

relationship graph that Q; F p(A). O

Lemma 5.3 Let Q1,Q2 and Q3 be satisfiable terminal conjunctive queries. If p1 is a contain-
ment mapping from Q1 to Q2 and p1 is a containment mapping from Q- to Q3 then ps o yy is

a containment mapping from Q1 to Qs.

[Proof]: Let t;,t, and t3 be the distinguished terms of Q1, Q2 and Q3, respectively, and
let ~41,~2 and ~35 be the relations on terms derived form these queries. Since y; and p, are
containment mappings, we have p;(f1) ~2 t2 and pa(t2) ~3 t3. It follows using Lemma 5.1(ii)
that ps o p1(t1) =3 pa(t2) ~s t3. This establishes that ps o p; satisfies the first condition of the

definition of containment mapping.
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It remains to show that if A is an atom of @Q; then Qs F p2 o pi(A). Since p; is a
containment mapping we have that Q2 F p1(A). It follows using Lemma 5.2 and the fact that
{2 is a containment mapping that Q3 F p2 o ug(A). O

Let @ = {t | M} be a conjunctive query and suppose g is a variable mapping on Q. Define
1(Q) to be the conjunctive query with the distinguished term p(¢) obtained by replacing each
atom A of by the atom u(A).

Proposition 5.4 Let Q) be a terminal conjunctive query. Suppose there is a containment map-

ping p from Q to itself. Then u(Q) is equivalent to Q.

[Proof]: It is easy to check that p is a containment mapping from @ to p(Q), so we have by
Theorem 4.5 that p(Q)CQ. To show QCpu(Q), we show that there is a containment mapping
from u(Q) to Q. We claim that the identity mapping ¢ is such a mapping. Note first that
the distinguished term of p(Q) is p(t), where ¢ is the distinguished term of @), and we have
i(p(t)) = p(t) ~ t because p is a containment mapping. It remains to show that for every atom
A of Q, we have for the corresponding atom p(A) of p(Q) that @ - ¢(x(A)). That is, we need
Q F p(A). This is immediate from the fact that g is a containment mapping. O

The following describes how to obtain a minimal terminal conjunctive query. Say that a
variable mapping p from a query Q1 to a query Q- is bijectiveif p(z) is a variable of Q, for every
variable z of @)1, and the restriction of p to the set of variables of @); is a bijective mapping to

the set of variables of Q5.

Theorem 5.5 A terminal conjunctive query Q is minimal if all containment mappings from

Q to itself are bijective.

[Proof]: Suppose that all containment mappings from Q to itself are bijective, but that Q is
not minimal. We establish a contradiction. Since @ is not minimal, there is a minimal terminal
conjunctive query Q' equivalent to Q which has fewer variables. Now by Theorem 4.5, the fact
that Q’=Q implies that there is a containment mapping u from @ to Q' and also that there is a
containment mapping w from Q' to Q. It follows from Lemma 5.3 that the composite mapping
w o p is a variable mapping from @Q to itself. By the assumption, w o y is bijective. But this
means that the number of variables of Q' is at least as large as the number of variables of Q,

contradicting the choice of Q. O
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The converse to Theorem 5.5 follows from the following.

Theorem 5.6 Let Q1 and Q2 be minimal terminal conjunctive queries. Suppose Q1 = Q.

Then every containment mapping from one query to the other is bijective.

[Proof]: Let p be a containment mapping from @Q; to Q2. Since these queries are equivalent,
there also exists a containment mapping w from @, to @;. By Lemma 5.3, the composite
mapping p o w is a containment mapping from Q- to itself. Suppose that the image of the
set of variables of J» under p o w does not contain all the variables of Q5. Then the query
(¢ 0o w)(Q2), which is equivalent to Q2 by Proposition 5.4, has fewer variables than Q5. This
contradicts the minimality of Q5. This shows that the image of the the set of variables of Q5
under p o w contains all the variables of @),. It follows that (J; has at least as many variables
as (J2. A similar argument using the containment mapping w o g from Q1 to @; shows that Q-
has at least as many variables as Q1. Since pow covers the variables of @),, it now follows that
¢ must in fact be a bijection between the variables of J; and Q.. O

Given a satisfiable terminal conjunctive query ) the algorithm to find a minimal terminal
conjunctive query @’ equivalent to Q is as follows. Consider all containment mappings u from
Q to itself. Choose Q' to be one of the queries p(Q) that has the fewest variables among such
queries. The minimality of Q' follows from Theorem 5.6.

Note that there may be some further optimizations possible for the query Q' so obtained,
since this may contain atoms of the form ¢ € T or ¢ = ¢, where ¢ is an atomic value of type
T. Such atoms, since they are derivable even from an empty query, can be deleted, yielding an

equivalent query.
6 Containment and Optimization of Conjunctive Queries

In this Section, we study the containment of conjunctive queries and show how to obtain
optimal conjunctive queries. The optimal conjunctive queries obtained are expressed as unions
of terminal conjunctive queries and are optimal among all unions of terminal conjunctive queries.
In Section 6.1, we characterize containment of conjunctive queries by solving the containment
problem for unions of terminal conjunctive queries. In Section 6.2, we give our notion of

optimality. In Section 6.3, we derive an algorithm, given a conjunctive query, for finding an
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optimal union of terminal conjunctive queries. We first use an example to illustrate our notion

of optimality and the approach taken in obtaining an optimal query.

Example 6.1 Let us consider the following query defined on the schema in Example 1.1.
Q1: { z | Jy Iz (z€ Vehicle & yec Discount & z€ Client & zcy. VehRented € z€z. VehRented)}.
This query retrieves all those vehicles that have been rented to a discount client. By Propo-
sition 2.1, Q1 is equivalent to the union of the following terminal conjunctive queries:
S1: { ¢ | Jy Iz (z€ Auto & ye Discount & z€ Normal & z€y. VehRented & z€z. VehRented)}.
Sy: { z | Jy Iz (z€ Auto & ye Discount & z€ Discount € z€y. VehRented & z€z. VehRented)}.
Ss: { z| Jy 3z (z€ Trailer & ye Discount & z€ Normal & zcy. VehRented € z€z. VehRented)}.
Sy: { z| Jy Iz (z€ Trailer & ye Discount & z€ Discount & z€y. VehRented € z€ z. VehRented)}.
Ss: { z | 3y Iz (z€ Truck & ye Discount & zc Normal & zcy. VehRented & z€z. VehRented)}.
Se: { z| Jy Iz (€ Truck & yc Discount & zc Discount & zcy. VehRented € z€z. VehRented)}.
With algorithm SatTestUT, it can be shown that S3, Si, S5 and Sg are unsatisfiable. The
reason is being discount clients only allow to rent automobiles but not other types of vehicles.
Hence @y is equivalent to S1US>. There is a containment mapping from Sy to Si; the mapping
is to map z to z and y and z to y. By Theorem 4.5, 51 is redundant and is removed from the
union. Se can further be minimized by mapping = to  and y and z to y. The resulting optimal
query obtained is:
So’: { 2| Jy (z€Auto & yc Discount & zcy. VehRented)}. O
6.1 A Characterization of Containment of Unions of Terminal Conjunctive
Queries
By Proposition 2.1, understanding containment of unions of terminal conjunctive queries suffices
to solve the containment problem of conjunctive queries. We have found a characterization of
containment for terminal conjunctive queries. We are now ready to state the containment

condition for two unions of terminal conjunctive queries.

Theorem 6.1 Let M = Q; U--- UQ, and N = P; U--- UP; be two unions of terminal conjunc-

tive queries. MCN if and only if for each Q; in M, there is a P; in N such that Q;CP;.

[Proof]: “If” Trivial.
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“Only if” Let @; be a subquery in M. Let sg, be the state constructed for ¢);. Suppose «
is a satisfying assignment from @); to s, and let w be an inverse of a. Since MCN, there is
some P; such that there is a satisfying assignment v of object identifiers and atomic values in
the state sg, to variables in P; that gives rise to the answer (%), where ¢; is the distinguished
term of ;. Then wovy is a variable mapping from P; to ;. Want to show that the mapping
wovy is a containment mapping.

Let woy(t;) = v, where t; is the distinguished term of P;. Then v(¢;) = a(t). Hence,
w(v(t)) = w(a(t)). By Lemma 4.3(i), w(a(t;))~ t;. Let A be an atom of P;. Then y(A) is
a terminal atom over sg; and sg; = v (A). By Lemma 44, Q; - w (y (A)). Hence woy is a
containment mapping. By Theorem 4.5, Q;CP;. O

As a corollary, we solve the problem of determining when one conjunctive query contains

the other one.
6.2 Search-Space-Optimal Queries

We now introduce our notion of optimality which intends to capture the intuition that the
number of variables as well as their search spaces are minimal among all equivalent queries. In
a conjunctive query, each variable is associated with a set of terminal classes or atomic types
which denotes the search space of the variable. Without knowing the physical data organization
for various classes, a good criterion of evaluating various equivalent queries is by comparing the

set of variables in a query and their associated search spaces.

Example 6.2 Let us consider again the Vehicle Rental Schema. The following three queries
can be shown to be equivalent.

Q1: { z| Jy Iz (zcAuto & yc Discount & z€ Vehicle & zcy. VehRented & zcy. VehRented)}.

Q2: { z| Jy (z€ Vehicle & ye Discount & zcy. VehRented)}.

Qs: { z | Jy (z€Auto & ye Discount & zcy. VehRented)}.

If we consider the domain of the type of a variable as its search space, then @ has more
variables and has a larger search space than Q. Although @ and Qs have the same number
of variables, the search space associated with variables in @9 is greater than that in Qs. @3
is considered to be more optimal since the number of variables as well as the search space are

minimal. O
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Existing work on exact minimization try to minimize the number of joins in an expression
[3]. The notion of optimality we shall propose attempts to generalize that idea.

A multiset is a set or bag of elements in which duplicate elements are allowed. Let S and T
be two multisets. The bag union of S'and T, denotes S'W T, is a multiset obtained from merging
elements in the operands such that for every element z in S or T, the number of occurrences
of z in the bag union is the sum of the numbers of occurrences of zin § and in T. Clearly the
bag union operator is commutative and associative. S'is a bag subset of T, denotes S C T, if for
every element z in 5, there are n occurrences of z in § implies there are at least n occurrences
of zin T.

Let @ be a conjunctive query and z a variable in Q. Define term-class(Q, z) = {E| z€ C}
U---UC, is the range atom associated with the variable z, and F is a terminal subtype of C;,
for some 1 <i <n}. Informally, term-class(Q, z) gives the terminal descendent classes or atomic
types over which the variable z is ranging in the query. Let z; , ..., 2, be the set of variables
in Q. Then term-class(Q) is a multiset defined as term-class(Q, z1) W ... term-class(Q, ).

We are now ready to define our notion of optimality. Let Q=QU--- U@, and P=P,U---UP,,
be two unions of conjunctive queries. @ is said to be at least as optimal as P, denotes Q< P, if
term-class(Q1) W ... term-class(Q,) C term-class(P1) & ... term-class(P,y,).

A query @ is search-space-optimal among a set of queries S if for all P in S such that
P is equivalent to @, P<(Q implies Q< P. For search-space-optimal queries, the object search
spaces are minimal among all equivalent queries in the set S. The query @5 in Example 6.2 is

a search-space-optimal query.

Corollary 6.2 If Q) is a minimal terminal conjunctive query. Then @ is a search-space-optimal

gquery among all terminal conjunctive queries.

[Proof]: Follows from Theorem 5.6 and the derivability of range atoms. O
6.3 Optimization of Unions of Terminal Conjunctive Queries

In this subsection, we study the optimization of unions of terminal conjunctive queries. We
show how to obtain a search-space-optimal query among all unions of terminal conjunctive

queries.
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A union of terminal conjunctive queries Qi (s, t) U--- UQ,(s, t) is nonredundant if there are
no @; and @);, #7, such that ;C @Q;. We can transform a union of terminal conjunctive queries
to an equivalent nonredundant union by finding @; and Q;, i#j, such that Q;CQ; and deleting
(); from the union until no more subquery can be removed.

The following is an important property about nonredundant unions of terminal conjunctive

queries.

Theorem 6.3 Let M = @ U--- UQ, and N = P, U--- UP; be two unions of nonredundant
terminal conjunctive queries. M=N if and only if for each Q; in M, there is a unique P; in N

such that Q;=P; and vice versa. Moreover, s=t.

[Proof]: “If” Follows from Theorem 6.1.

“Only if” Suppose M=N. Let @); be a subquery in M. By Theorem 6.1, there is a P; in
N such that @;CP;. By assumption on equivalence and by Theorem 6.1, there is @, in M
such that P;CQ,. If i#p, then Q;CP; and P;CQ,. This implies Q;C @, and contradicts the
nonredundancy of M. Hence i=p and Q;=P;. If s#t, say, s<t, then there is a P; which is
redundant. A contradiction. It follows that s=t. O

The following is an algorithm for finding an optimal union of terminal conjunctive queries

for a conjunctive query.

Algorithm Optimization: Given a conjunctive query @, find an equivalent union of terminal
conjunctive queries which is search-space-optimal among all unions of terminal conjunctive
queries.

Input: A conjunctive query Q.
Output: An equivalent union of terminal conjunctive queries.

Method:

1) Convert @ into an equivalent union of terminal conjunctive queries.

2) Remove unsatisfiable subqueries from the union using the algorithm SatTestUT.

(
(
(3) Remove any redundant subqueries from the union.
(4) Minimize each of the remaining subqueries.

(

5) Output the union of resulting terminal conjunctive queries.
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Theorem 6.4 The union of terminal conjunctive queries output by Algorithm Optimization is
equivalent to @ and is a search-space-optimal query among all unions of terminal conjunctive

queries.

[Proof]: By Proposition 2.1, Theorem 3.3 and by definitions of redundancy and minimization,
the union, say @, output is equivalent to the input . Let P= P; U---UP, be a union of
terminal conjunctive queries that is equivalent to @. Without loss of generality, let us assume
that P is nonredundant and each subquery is minimal. By Theorem 6.3, there is a one-one
correspondence between the two unions. By Theorem 5.6 and the fact that both unions are
unions of terminal conjunctive queries, @’ <P. O

Let us look at the following example.

Example 6.3 Let us consider a query defined on the following schema.

N H
A:{H}
B:H
I J
T T, T3
B:l A{l} Al
B:l B:J

Qi: {z| Jyds (zeN & ycH & scJ & y=z.B & ycz. A & scz. A)}.
By Proposition 2.1, @1 is equivalent to the union of the following terminal conjunctive
queries:
Si:{z|Jy3s (zcT) & ycl & scJ & y=z.B & ycz. A & scz. A)}.
So: {z|dy3s (zcTy & ycl & scJ & y=z.B & ycz. A & scz. A)}.
Ss:{ z|Jdyds (2cTs & ycl & scJ & y=z.B & ycz. A & scz. A)}.
Sy:{z|Jy3s (zcTy & ycd & scJ & y=z.B & ycz. A & scz.A)}.
Ss: {z|Jy3s (zcTr & ycJ & scJ & y=z.B & ycz. A & scz.A)}.
Se: { z|Jy3s (zcTs & ycJ & scJ & y=z.B & ycz. A & scz.A)}.
With algorithm SatTestUT, S, S3, S4 and S5 are unsatisfiable. Hence @)y is equivalent to

S1USg. Neither subquery in the union contains the other and hence the union is nonredundant.
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Since variables in S1 range over different terminal classes, S1 is minimal. It can easily be shown
that Sg can be minimized further. A minimal form is as follows:

S’ { 2|y (z€T5 & ycJ & y=z.B & ycz.A)}.

The union of terminal conjunctive queries output by the algorithm is S1USg’ which is a

search-space-optimal query for @1 among all unions of terminal conjunctive queries. O

Algorithm Optimization only produces an optimal query expressed as a union of terminal
conjunctive queries. This form needs not be the most desirable form to be executed. For
instance, ¢J; in Example 6.3 is equivalent to the following query.

Q2 { o] Fyds(ec Ty VTs & yeH & s€J & y=z.B & ycz. A & scz.A)}.

Throughout the discussion, we made no assumption on how data are being physically or-
ganized. It could be the case that, given certain information on data organization, @, is a
better form to be evaluated than the union produced by the algorithm. However, the union of
terminal conjunctive queries produced could be used as a basis to generate equivalent query in
a more desirable form. It is interesting to see how other information could be used to synthesize

a more optimal query for the union.

7 Complexity of the Containment Problem

In this Section, we investigate the time complexity for determining containment of conjunctive
queries. We begin with the simple case of terminal conjunctive queries. The containment
problem for terminal conjunctive queries is clearly in NP. A relational query is called a SPJ-
query if only selection with constant, projection and natural join are used in the query. It is
well-known that the class of relational SPJ-expressions can be expressed as a tagged tableau
[3]. Every such tagged tableau can be translated into a conjunctive query without the set
membership construct. In [3], it was shown that the problem of determining containment
of SPJ-expressions is an NP-complete problem. Consequently, the containment problem of
terminal conjunctive queries is also NP-complete. In fact, it can be shown that containment
problem of terminal conjunctive queries involving only range and set membership atoms is

NP-complete.
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Corollary 7.1 The problem of determining containment for terminal conjunctive queries is an

NP-complete problem.

[Proof]: Follows from the argument above. O

Corollary 7.1 implies that testing containment of conjunctive queries is NP-hard. We shall
show that the problem is in IIf of the polynomial hierarchy [32]. The proof of this result is
similar to a proofin [28]. A language L is in I if its complement is in ©Z', the class of languages
which can be recognized by nondeterministic polynomial-time algorithm with an oracle from
NP. An oracle for a class of decision problems C enables one to decide any problem in C in

unit time. The classes ©% and TIY contain NP and are contained in PSPACE.
Theorem 7.2 The problem of determining containment for conjunctive queries is in IIL.

[Proof]: Let F; and E5 be two conjunctive queries. We describe a nondeterministic polynomial-
time algorithm with an oracle from NP that answers “yes” if and only if F;ZF,. By Theo-
rem 6.1, FyZ F, if and only if there is a terminal conjunctive query in the union for Fj, say
E3, such that E5 Z E,. E3 can be guessed nondeterministically from F; by assigning terminal
classes or atomic types to variables involved. After guessing the query, we test if Fj is sat-
isfiable. Testing satisfiability of terminal conjunctive queries can be performed in polynomial
time [10]. If Ej is satisfiable, then we ask the oracle if E3CE,. If the oracle answers “no”,
then the algorithm answers “yes”. It remains to show that determining F3 CF, is in NP. By
Theorem 6.1, E5C F, if and only if there is a terminal conjunctive query in the union for FEs,
say Fy, such that E3 CFEy. Thus we can guess F, as before and then check in nondeteministic
polynomial time that F3 CFE,. Hence our claim is proved. O
We are now ready to show that the containment problem is II5- hard.

A TI, formula of quantified propositional logic is an expression

©=Vp1...Pn3Pn+1 - Prrm|c]

where a is a formula of propositional logic containing only the propositional variables p1,. .., Pptm-
Such an expression is true if for every assignment of boolean truth value to the variables
D1, --,Pn, there exists an assignment of truth values to the variables p,41,...,Pnt+m under

which the formula o is true. The set II5-SAT is the set of all true II; formulae. This is a
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generalization of the problem of satisfiability to the polynomial hierarchy. It is known that the
set IT,-SAT is complete for the level II} of this hierarchy [33, 36].

Theorem 7.3 There ezxists a fized schema S such that problem of deciding, given queries Q1

and Q2 on S, whether Q1 C Q2 is II5-hard.

[Proof]: By reduction from II,-SAT. We show that for every II, formula ¢, there is a pair
of conjunctive queries @1, Q2 such that ¢ is true if and only if Q; is contained in Q5.

Define the schema S to contain classes C, R,G,V, AND and NOT. The subclass relation-
ships between these classes are given by R < C' and G < C. Thus, the terminal classes are
R,G,V,AND and NOT. The tuple type for both R and Gis[a: C, b: INT, c¢: V], for V is
the empty tuple type [|, for AND is [ing : V, iny : V, out : V], and for NOT is [in : V, out : V.

We first describe the query @)1. Part of this query will encode the truth tables for conjunction
and negation. Intuitively, there are (four) variables ranging over AN D which represent the lines
of the truth table for ‘A’, and there are (two) variables ranging over NOT which represent the
lines of the truth table of ‘—’, and there are variables ¢ and f in V which denote the truth

values true and false, respectively. We write TT'(t, f) for the following formula:

Ju; € AND [uy.iny =t & uy.ing =t & uj.out =t &

Jug € AND [us.ing =t & ug.ing = f & ug.out = fl &
Jus € AND [ug.in; = f & uz.iny =t & us.out = fl &
Juy € AND [ug.ing = f & uging = f & ug.out = f] &

Jv; € NOT [v1.in=t & vi.out = f] &
Jvy € NOT [vs.in = f & vs.0ut = t].

Next, suppose ¢ has n universally quantified variables. Part of the query @; will have the

function of assigning a truth value to each of these variables. We construct foreachi=1,...,n

the query ASGN;,(t, f) given by

Jw;; € R Jw;s € C Jwis € G [wir.6 = wis & wi.a =w;s &
Wig.c =t & wis.c = f].

We now define the query @ to be
{t|teV &IAf eV [TT(¢, f) & ASGN1(t, f) &...& ASGN,(¢, f)]}.
After moving the quantifiers to the front, it is clear that Q; is a conjunctive query.
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Let o be a formula of propositional logic in the propositional constants pi,...,pntm. We
define inductively the formula ®, with free variables amongst x = z,,,,...,2;,,,, and z,. If

is the propositional constant p;, where ¢ = 1,...,n, then
@, =3dz;1 € R3z;2 € Gzin.a = 22 & 2zj2.b =1 & zjp.c = zp,].

If a is the propositional constant p;, where ¢ = n + 1,...,n + m, then ®, is the null formula

true. (Note that the variable z, is z,,; in these cases.) If a = B&y then ®,(x, z,) is

yg.ing = 28 & yg.ing = 2, & yg.out =z, &

Jys € AND dzgz., € V
g a ®s(x,28) & 4(x,2,)

If @ = —f then ®,(x,z,) is
dys € NOT Jzg € V [z.in = zg&yg.out = 2,&Ps(x, zg)].
We define @5 to be the query
{2a | 2o €V & Fzp, ...2p, €V [B4(x,24)]}

Observe that the class C does not occur in Q2. Thus, after moving the quantifiers to the front,
this query is a terminal conjunctive query.

Note that expansions of (); are obtained by replacing each of the n range atoms w;» € C
by either w;s € R or w;s € (G. There are therefore 2™ such expansions. We first show that
each of these expansions uniquely determines an assignment of truth values to the propositional
constants p1,...,Pn.

Suppose 1 < ¢ < n. Because the constant ¢ has only two occurrences in @1, if g is a mapping
from the variables z;1, z;2, ), to the variables of an expansion F of ); that preserves the atom
zi2.b = ¢ of the formula &,,, then we must have p(z;2) = w;s or p(zi2) = w;s. In case the
atom w; € C of ASGN; is expanded as w;» € G, the mapping z;; — w;1, zi2 — Wia, Tp;, — t,
is the only mapping that preserves all the equality and range atoms of ®,;. This determines
the assignment of ¢{rue to p;. Similarly, in case w;3 € C is expanded as w;s € R the mapping

Zj1 — Wi, Zis — W;s, p, — f is the only such mapping. This determines the assignment of

false to p;.
Next, suppose that p is mapping from the variables of the formulae ®,, for< =1,...,n and
the variables z,, . ,,...,2;,,,, to the variables of an expansion E of @, such that the atoms
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of O, containing these variables are preserved. As noted above, this implies that the variables
Tp,---,2p, are mapped to either ¢ or f. The same holds for the variables z,,  ,,...,2Zp, .,
because of the range atoms z,, € V in Q2. Let # be the truth value assignment that assigns
the constant p; to be true if and only if u(z,;) = t. Under these conditions, a straightforward
induction on the complexity of a shows that there exists a unique extension of the mapping
1 to a mapping from the variables of (J» to the variables of J; that preserves all the atoms
of Q2. Furthermore, we have p(z,) = t if and only if the formula « is true with respect to
the assignment #. Note also that this mapping g is a containment mapping from @, to the
expansion E if and only if p(z,) = t.

It now follows from the observations above that there exists a containment mapping from

Q2 to E for each expansion E of Q; if and only if the quantified formula ¢ is true. O

Theorem 7.4 The problem of determining containment for conjunctive queries is complete in

ne.
[Proof]: By Theorems 7.2 and 7.3. O

8 Conclusion

Query optimization is an important and yet difficult problem in an OODB. The types of at-
tributes in an inheritance hierarchy can be considered as constraints imposed on objects in a
state. In this paper, we studied the containment, equivalence and optimization problems for a
class of natural queries called conjunctive queries. A conjunctive query can be expressed as a
union of terminal conjunctive queries. We first characterized containment and minimization for
terminal conjunctive queries. We then solved the problems of containment and optimization
for the class of object-preserving conjunctive queries. The optimal queries are expressed as
unions of terminal conjunctive queries. The notion of optimality captures the intuition that
an optimal equivalent query logically accesses, in certain sense, the least number of objects
in a database. It was shown that testing containment of terminal conjunctive queries is an
NP-complete problem. Moreover, the containment problem of conjunctive query in general is

IT)-complete.
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