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Abstract

Hierarchical surface pasting [Bar94], developed by Barghiel, Bartels and Forsey, is an interactive
surface modelling technique that is used to add local detail to a tensor product B-spline surface
without increasing the overall complexity of the original surface. Surface pasting approximates
displacement mapped surfaces by placing additional tensor product surfaces, called features, on
the base surface. The features may be scaled, rotated, and translated arbitrarily over the base
surface, and the composite surface can be evaluated using relatively little computational power.
Because the feature only approximates a displacement map, a surface produced using standard
surface pasting often has noticeable gaps at the edges of the pasted feature. The severity of the
surface discontinuities may be made as small as desired via knot insertion, but this can result in
an unacceptable degradation in the performance of the modelling software.

Quasi-interpolation [LS75] is an approximation method that approximates curves with spline
curves to a high degree of accuracy. The approximation is constructed by computing coeffi-
cients that are used to weight samplings of the curve to be approximated. The Lyche-Schumaker
quasi-interpolant uses coefficients that are inexpensive to compute and samplings that are rela-
tively expensive to compute. I propose an improved surface pasting technique that uses quasi-
interpolation to set the feature’s boundary control vertices. For surface pasting it is necessary
to have quasi-interpolants that reproduce position and derivatives at the endpoints of the curve
to be approximated. In addition, as the feature surface is moved, the curve samplings must be
recomputed, but the coefficients remain fixed. Therefore, I have developed a variation of the
quasi-interpolant whose coeflicients are expensive to compute, but whose samplings are relatively
inexpensive to compute.

Surface pasting with quasi-interpolation produces features whose boundaries approximate the
base surface to within the same tolerance as those produced by standard pasting, but with one
third the boundary control vertices. The resulting feature has one ninth the total control vertices

and can be constructed in approximately one tenth the time as with standard surface pasting.
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Chapter 1

Introduction

Spline curves and surfaces are used in many areas of computer graphics and computer aided ge-
ometric design. In particular, tensor product B-spline surfaces are commonly used in modelling
and computer animation because they have many attractive properties, such as a compact repre-
sentation and adjustable levels of internal continuity [Far93]. A tensor product B-spline surface
can be edited by subjecting it to affine transformations, by manipulating the positions of the
control vertices that define the surface’s shape, or by adjusting the knot vectors that determine

the parameterisation and continuity of the surface.

Frequently, the user of a piece of modelling or animation software will want to add a region
of local detail to a B-spline tensor product surface, but the knot structure will be too coarse
to allow the fine-grained control that the user desires. Traditional methods of increasing the
complexity of the surface include inserting knots using either Boehm’s algorithm [Boe80] or the
Oslo algorithm [CLR80]. The insertion of a knot into either of a surface’s knot vectors causes an
entire row or column of subpatches to be split — rather than increasing the number of subpatches
locally, extra subpatches are created across the width or breadth of the surface. The presence
of the additional subpatches increases the space needed to store the surface and complicates the

task of making coarse-grained adjustments to the surface.

Forsey and Bartels [FB88] developed an alternative surface representation that allows the user
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to add local detail to a tensor product B-spline surface. Their representation, each instance of
which is called a hierarchical B-spline, allows the user to add a detail surface, called an overlay,
to a tensor product B-spline. A region of the base surface is selected and knot insertion is applied
within that region, after which the new control vertices can be manipulated and the positions are
be stored as an offset relative a hierarchy of local reference frames. By fixing a number of the
outermost layers of control vertices with each region of local detail, C! or C? surface continuity

can be preserved.

Hierarchical B-splines suffer from a number of drawbacks: the regions of added detail must
remain parametrically aligned with the base, and it is impractical to slide the features or to
maintain a library of overlays that may be added to a base surface. Wavelets [Chu92] can be
used in a similar hierarchical modelling technique, but they also require the detail regions to be

parametrically aligned with the base.

Displacement mapping is another technique for adding local detail to a surface while adding as
few extra control vertices as possible. A displacement mapped surface consists of a base surface
and a displacement feature that are combined to form a composite surface. Every point on the
feature is defined by a displacement vector relative to a certain point in a reference plane. An
invertible transformation is used to embed the feature’s domain into the base domain, and for
a given value, say ¢, in the base domain, the composite surface point is defined by one of two
constructions. If ¢ is not in the image of the feature’s domain, the surface point is taken to be
the position of the base surface evaluated at ¢. If ¢ is in the image of the feature’s domain, a
local coordinate frame is constructed on the base surface at ¢ and the composite surface point is
taken to be the the endpoint of the displacement vector found by evaluating the feature at the
pre-image of ¢ and expressing the vector relative to this coordinate frame. Further details may be

added to the feature by hierarchically composing feature surfaces.

Via displacement mapping, a library of features may be maintained, each of which can be
translated or rotated on a base surface by adjusting the transformation that embeds its domain
into the base domain. By adjusting the level of continuity with which a feature meets its reference

plane, composite features that exhibit any desired level of continuity may be created. The greatest



disadvantage to using displacement mapped surfaces is that displacement mapping is expensive.
Multiple surface evaluations, up to the depth of the surface hierarchy, must used to determine

each point to be rendered on the composite surface.

Barghiel [Bar94] implemented a method for constructing surfaces that approximate displace-
ment mapped surfaces, based on a technique suggested by Forsey and Bartels [BF91]. The new
method, called surface pasting, is a generalisation of Forsey’s method that was intended to com-
bine the flexibility of displacement mapped surfaces with the speed of evaluation enjoyed by
hierarchical B-splines. The technique used to construct a composite pasted surface is similar to
that used to construct a displacement mapped surface. Two tensor product B-splines surfaces,
a feature and a base, are defined, as is an invertible map from the feature’s domain into the
base’s domain. The feature’s domain is embedded into the feature’s range space, and each feature
control vertex is represented as a displacement vector from a corresponding point in the domain.
The composite surface is constructed by evaluating the position of each pasted control vertex. A
coordinate frame is constructed on the base surface and the control vertex’s displacement vector
is represented relative this frame. This technique has all the flexibility of displacement mapping,
but it is much cheaper since only the control vertices of the feature must be mapped, rather than
the larger number of surface points to be rendered. This combination of flexibility and speed has
drawn the attention of the modelling industry to surface pasting — recent versions of Houdini, a
commercial animation tool produced by Side Effects Software, have included support for surface

pasting.

However, surface pasting is only an approximation, and as such it does not have the same
continuity properties as displacement mapping. In general, there is no guaranteed continuity
between the feature and the base surfaces. Composite surfaces that are constructed so a feature
surface has few control vertices or a coarse knot structure relative the base often exhibit gaps
between the feature and the base. It is possible, by inserting knots into the feature surface, to
cause the boundary of the feature to approximate the base to within any desired tolerance, but
often many knot insertions are required to approach the desired level of approximation, and the

additional control vertices in the feature dramatically increase the cost of performing the pasting
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operation.

In this thesis, I suggest altering the surface pasting technique to improve the approximate
continuity between the feature and base surfaces. I have chosen to modify the way in which
tensor product B-spline surfaces are pasted rather than to work with other types of surfaces
because of the advantages inherent in working with tensor products. Tensor product surfaces have
guaranteed internal continuity if the knot vectors are set properly, whereas a feature constructed
from triangular Bézier patches, for example, would not have guaranteed internal continuity and
some effort would have to be expended to obtain a continuous surface. Triangular B-splines can
have a guaranteed level of internal continuity, but these patches are computationally expensive to

evaluate and thus are considered to be unsuitable for use in an interactive surface modeller.

I propose modifying the standard surface pasting technique to use two methods to place the
control vertices of the pasted feature. The method of standard pasting is used to place the interior
control vertices, while one or more of the outer rings of feature control vertices are placed using

a spline approximation technique.

The spline approximation technique that I use in this thesis is quasi-interpolation, first devel-
oped by de Boor and Fix [dBF73]. The quasi-interpolation operators were later generalised by
Lyche and Schumaker [LS75], and it is their version that I use in my alternative surface pasting
technique. A quasi-interpolation operator approximates a curve by calculating coefficients that
are used to weight samplings of the curve to be approximated. The Lyche-Schumaker quasi-
interpolation operator uses coeflicients that are inexpensive to calculate and samplings that are

relatively expensive to calculate.

In this thesis, I develop a specialised class of quasi-interpolants based on position and derivative
samples and use these operators to place the control vertices in the outer rings of the pasted
features. My quasi-interpolation operators are designed to interpolate position and derivatives at
the endpoints of the approximated curve. When a feature surface is moved along the base, the
curve samplings must be recomputed to place the boundaries, but the coefficients remain fixed.
Therefore, I have developed an alternative representation for my quasi-interpolation operators

that relies on relatively inexpensive samplings and more expensive coeflicients. I discuss the error



bounds on approximations created using my quasi-interpolation operators. In particular, I show
that the order of convergence is the best possible.

In addition, I describe the methods by which my quasi-interpolation operators may be used to
create composite pasted surfaces in which the approximate continuity between the feature and base
surfaces is greatly enhanced. I focus on methods of reducing the cost of using quasi-interpolation
to paste the boundary control vertices. As a result, the per vertex cost of pasting a feature using
my method is comparable to, and in some cases lower than, the cost of pasting a feature using
the standard surface pasting method. It possible to construct a feature surface that approximates
a base to the same level of tolerance as does a feature surface constructed using standard surface
pasting, but with only one third the boundary control points. The resulting feature would have
only one ninth the control points of feature pasted using the standard method, and the cost of
pasting the feature using the improved method would be approximately one tenth that of pasting

the original feature.






Chapter 2

Background

In this chapter, I provide background material on the subjects of to hierarchical modelling and
quasi-interpolation. First, I give a brief introduction to B-spline curves and tensor product B-
spline surfaces, followed by a discussion of several methods, including hierarchical surface pasting,
for adding local details to surfaces. Finally I conclude with an examination of curve quasi-

interpolation techniques and error bounds for generic quasi-interpolants.

2.1 B-spline Curves

Much of the information that I present in this and the following section have been presented by
Farin [Far93] and others. However, I chose to include these sections to provide several important
details which cannot be found in Farin’s book, as well as to establish notation that will be used
throughout the rest of this thesis.

A parametric B-spline curve C(u) is a piecewise polynomial defined by a sequence of control

vertices {P;}M, and associated basis functions {B™ (u)}M,:

Clu) = ZPZ»B;" (u).

Each of the basis functions is a piecewise polynomial of degree m. The degree of the B-spline
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curve is determined by the degree of the basis functions. Thus, C(u) is a B-spline curve of degree

m.

The basis functions are defined by a sequence of nondecreasing knot values, called a knot

vector:

where at most m consecutive knots may be equal, i.e., u; < uiym for all i.

The univariate B-splines of degree k are defined recursively as follows:

BO( ) 1 if g <u<uyy
i) =
0 otherwise

U — U U —u )
Bf(u) = —— U BFl(u)4 T T pEol) i k>0,
Ui4k — Ug Uitk+1 — Uit
Note that using the above recurrence relationship to calculate the B["s requires two extra knots,
%_1 and uaf4m, which were not included in the original knot vector definition. For the purpose of
this calculation, these “phantom knots” may be assigned values, u_1 = ug and upr4m = UM 4m—1-

The extra knot values are only of interest when writing a program to evaluate B-splines and will

not be used further in this thesis.

Basis function B!” (u) is non-zero over [u;, 4;+m) and attains its maximum when evaluated at

o “i+”i+1+r'r'L'+“i+’"‘1 . The value v; is called the i*" Greville abscissa of C. Since B (u) attains

its maximum at v;, it is said that C(v;) is mazimally influenced by P;. A B-spline basis function

is bounded on its domain as follows: 0 < B" (u) < 1, for u € [ts, Uiym)-

Bounds for the derivatives of the B-spline functions are given by Lyche and Schumaker [LS75].
Fix 0 < r < m and let u be such that there exists a p, m — 1 <p < M — 1, with u, < u < Up41.

If u = up, suppose that the value of u, occurs at most m — r times in the knot vector. Then

Tm,r

)
Ai,p,m T Ai,p,m—r+1

1B (u)] < 2.1)
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where A; p ; is taken to be the minimum of u, 4 ;—u, for v such that u; <, < u < Up4j < Usigm41,

forallj=m—r+1,...,m, and where

Fomir = WL—!w!(LZJ)'

Typically, a B-spline curve is only evaluated at those values of u for which m+ 1 basis functions
may be non-zero. Thus, the domain of C is taken to be [tm_1, upr). In practice, it is inconvenient
to deal with half-open B-spline domains, so I will extend the domain of C' to [um—1,unr] by

defining C(up) = lim C(u).

U—>Upr

2.1.1 B-spline Blossoms

The blossom of a degree n polynomial F(z) is a symmetric, multi-affine map f(z1,z2,...,2xs)
n terms
such that f(z,z,...,z) = F(z). The notation w[F] will be used to denote the blossom of F.

The blossom of a piecewise polynomial may be found by individually blossoming each of the
polynomial pieces of the function. Examining the blossom of a B-spline reveals a relationship
between the B-spline’s knot vector and its control vertices. If C(u) is a B-spline curve of degree
m, with control vertices Py, Pi,... Py, knot vector wg,u1,...,usr4+m—1 and blossom ¢, then
P; = (s, Uig1y - - - Uigm—1)-

I now present a B-spline knot insertion algorithm based on the correspondence between the
B-spline blossom and the B-spline control vertices. The B-spline curve contains contain one more
control vertex after the knot insertion than it did before. If the knot value u, where u; < u < 441,

is inserted, with ¢ > m — 1 and ¢ < M — 1, then the adjacent control vertices

\

C(ui—m+27 Ui —m43; .- 5 Uy ui+1)
c(ui—m+37ui—m+47"' 7ui+17ui+2) .
m — 1 control vertices
C(Ui, Uity .- 7Ui+m—1)
corresponding to the knot vector subsequence w;_m42, Ui—m43,-«+ s Uiy Uig1y-«+ s Uitm—1 L€ Te-

placed with
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C(Ui—m-}-Za Ui—m+3y -+ - 5 Uiy U)

C(ui—m+37 Ui —m4dy -, Ui, U, ui+1)
m control vertices
C( Uiy Uy Uig1y e e oy Uigm—2)

C(U, Uiplyo-y ui+m—1)

7/

The new control vertex sequence corresponds to the new knot vector subsequence
Ui—m+42y Us—m 43y« 3 Uiy Uy U1y -0, Uj4m—1-

As noted before, the B-spline blossom is symmetric and affine in each argument, so the new
control vertices generated above may be constructed directly from the existing knot vector and

control vertices. The following construction is used:

C(Uk+1, ceey Uy Uy Uiy, - 7uk+m)

 (urgmyr —w)e(Un, o Ugm) + (0 — ug)e(Upg1y e Uk pma1) (2.2)

Uk 4m+1 — Uk

2.1.2 Knot Multiplicity and Continuity

A knot vector may contain repeated knots. Knot multiplicity is the number of times a knot value
occurs in a knot vector. If a knot has multiplicity equal to the degree of the B-spline curve, it is
said to have full multiplicity. If knot value w; has multiplicity &, then a degree m B-spline curve
is C™~* at u;, as are the B-splines whose support contains ;.

The position and derivatives at the ends of a B-spline curve are determined by a small number
of its control vertices. In particular, for any j < m, the j*! derivative at the beginning (end) of
the B-spline curve is uniquely determined by the first (last) j 4+ 1 control vertices, and each of
these control vertices has a non-zero contribution. Furthermore, if a B-spline curve has full knot
multiplicity at each end, the position at the beginning of the curve coincides with the first control
vertex, and the position at the end coincides with the last control vertex.

The first derivative at the beginning (end) of a curve whose end knots have full multiplicity
is a scalar multiple of the vector difference of the first (last) two control vertices. The multiple

is equal to the degree of the curve divided by the difference between the first (last) two distinct
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knot values. Thus, if ug =41 = -+ = Um—1 < Uy and upr—1 < Uy = Upr41°** = UM 4+m—1, then
dC (uo) m dC (upr) m

= P, — P d = Py — Par_q). 2.3

du um—um_l( ! o) an du uM—uM_l( M ar-1) (2.3)

Unless explicitly stated otherwise, the end knots of all B-splines mentioned in the remainder
of this thesis are assumed to have full multiplicity.

Two B-spline curves can be joined together with varying levels of continuity. Suppose that in

addition to C, there is a B-spline curve C* with degree m*, knot vector ug, ui, ..., Uy e 15
with ug = u] = -+ = gy < Upe and ujpe ) < Ujpe = Ujpeyg 0 = Uppe e g, and control
vertices PJ, ..., Py.. To have C and C* meet with C° continuity, it is sufficient to have Py = Pg.

To ensure a C' join, the two curves must meet with C° continuity and must have

m m

————(Pyy— Py—1)= ————(P;{ — P} 2.4
(P = Put) = (P R)) (24)
as shown in Figure 2.1.
PM = P* *
Py o 0 Pl
m* m
U:n*_u *x_1 UM —UM-1
Par_s P;

Figure 2.1: Joining Two Curves with C' Continuity

2.1.3 Evaluation of B-spline Curve Position and Derivatives

One popular method for evaluating B-spline curves is called the de Boor method, which is based
on the knot insertion method described in the previous section. A B-spline curve C'is evaluated at
a point u via the de Boor method by repeatedly inserting the knot u into the curve’s knot vector
until u has reached full multiplicity. If u were such that %, 4i—1 < 4 < Um44, then only the control

vertices ¢(tsy .-y Umgi=1)s- -+ > C(Umtiy- -+ > Uzmyi—1) are needed to produce c(u,...,u) = C(u).
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This method requires E;n:lj = m(m + 1)/2 affine combinations of control vertices to evaluate

C(u). Figure 2.2 shows an example of evaluating a cubic B-spline curve at u, where uy < u < us.

c(u, w,u)
Ug—u
Ug—Un
U—Us
Ug— U
c(u, u, ws) c(u,u, us)
Us—u Ug—U
Ug— Uy Ug—U2
u—uy U—Up
Ug— U7 Ug—UD
c(u,uy, us) c(u, ug, us) c(u, us, uq)
Ug—u Ug—U Us—U
Ug—Ug Ug—U7 Us— U2
U—Ug U=y U—Usp
Ug—Up Ug—UY Us—U2
c(uo,ul,u2) C(u17u27u3) u27u37u4 u3,u4,u5

Figure 2.2: Example of de Boor Curve Evaluation

The de Boor method of curve evaluation provides a way to evaluate curve derivatives. When

the de Boor evaluation at u is stopped one level short of completion, two “control vertices” remain:

m—1 m—1
c(ti, U, ..., u), and e(u;y1,%,...,u), where ¢ is such that u; < w < u;41. The derivative of C
at u can be calculated as C'(u) = ﬁ(c(u,q_l,u, cooyt) — (g, Uy ... yu)). The method of

derivative calculation that is based on the de Boor evaluation requires m(m + 1)/2 — 1 affine
combinations to produce the ¢(t;41,4,...,u) and c¢(u;, u, ... ,u), and the equivalent of one more

combination to produce the derivative, for a total of m(m + 1)/2 combinations.

To evaluate the position and derivative of a curve at a value u, first evaluate the derivative
using the de Boor described above, but “cache” the values of e(u; 1,4, ... ,u) and e(u;, t, ..., u).
Then the position C(u) can be evaluated at a cost of one additional affine combination. Thus,
the cost of evaluating the position and derivative of the curve C at u is m(m + 1)/2 + 1, merely

one affine combination more than evaluating either value alone.
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2.2 Tensor Product Surfaces

A tensor product surface can be thought of as an extension to a B-spline curve that is evaluated
over a two-dimensional domain. A tensor product surface S(u,v) is defined by a rectangular
grid of control vertices, F; j, and associated patch basis functions. The patch basis functions are
formed by taking the product of two curve basis functions, B(u) and B(v). B(u) and B(v) are
determined by two sets of knot vectors uo,...,usrym—1 and vo,...,vN4n—1, as in §2.1. The
patch domain is defined to be D = [uy—1, ups] X [vn_1, vN].

The patch control vertices are double indexed to reflect their rectangular arrangement. Thus

the tensor product B-spline surface S(u,v) can be expressed as a double summation:

S(u,v) =YY" P ;B (u) B (v). (2.5)

i=0 j=0

Here, m and n are the degrees of the curve basis functions in the w and v parametric directions,

respectively. An alternative formulation of (2.5) is

where B; j(u,v) = Bl" (u) B} (v).

Figure 2.3: Joining Two Surfaces with C! Continuity
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Tensor product surface continuity arises from curve continuity. Tensor product surfaces may
be joined with a desired level of continuity by constructing rows (or columns) of control vertices
that would meet with that level of continuity when treated as curves. Equation (2.4) indicates
that in Figure 2.3, the join between the two surfaces will be C if the boundary curves coincide

and if the control vertices A4;, B;, and C; are collinear for each 7, and

i (Bi — 4;) = .

Up — UM -1 Ums — Upps 1

(C; — By),

where the rightmost surface has degree m* and knot values %} in the u parametric direction.

If their underlying basis functions are formed from knot vectors whose end knots have full
multiplicity, a tensor product surface’s boundaries can be derived directly from the control poly-
gon. Equation 2.5 may be rewritten as S(u,v) = Ei\io (Zj’vzo P; B} (v)) B"(u). If the end
knots in the v; knot vector have full multiplicity, then Ej\;o P; ;BY} (vn—1) = Pio for all . Thus,
S(u,vp_1) = Z?io (Ej\;o P; ;B} (vn_l)) BI" (u) = Z?io P; 9B (u) and the boundary of the
surface corresponding to v = w,_1 is the B-spline curve formed by the the P;¢s and the knot
vector g, U1, ..., UpM+m—1. Similar results hold for the boundaries corresponding to v = vn_pn 41,
U= Um—1, a0d U = Ul —m+1.

The cross-boundary derivatives of a tensor product B-spline surface can also be computed
from the surface definition. As can be seen from (2.3), the cross-boundary derivative of any point

on the boundary v = wu;,—1 can be found by considering the derivatives at the endpoints of the

curves formed by each column of control vertices:

9 9 m n
guSlim—s0) = 5 2, 2 PuiB (ums) B} (1)
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Evaluating a derivative at an arbitrary point on a surface is slightly more complicated. In the next

section I present a method, based on de Boor curve evaluation, for performing such an evaluation.

2.3 Efficient Evaluation of Position and Derivatives

In §2.1.3 I described how the de Boor method for curve evaluation can be used to efficiently
compute the position and derivative of a B-spline curve at a given domain value. In this section,
I explain how the de Boor method can be extended to the efficient evaluation of position and
derivatives of a tensor product B-spline surface. Similar explanations appear elsewhere and the
results are well known [Car95], but I repeat them here since I use the resulting evaluation costs
directly later in this thesis. Also note that the results presented in this section are summarised
for easy reference in Table 3.1.

A given point, S(u,v), on a tensor product surface is a convex combination of (m + 1)(n + 1)
control vertices. If u and v are such that w;1n_1 < % < %iym and vjyn_1 < v < Vj4p, then the
relevant control vertices are {Py,;}, where i < k <i+m and j <! < j+ n. For the remainder of

this section, I will make use of a notational convenience where #{*) appearing in a blossom value

m times n—1 times
indicates that the parameter ¢ is repeated e times; thus s(u,...,u;v;, v,...,v) could be written

as s(u<m);vj,v<”_1)).

Recall that each B-spline curve control vertex Pj can also be referred to by its blossom value
as ¢(Uk, U1, - - , Uk4m—1). Similarly, each tensor product surface control vertex has a blossom
value that can be obtained by concatenating one set of blossom arguments for each parametric

direction:

Pryp= s(Up, Ukg1y -+ s Ukpm—1; V1, Vitly« -+ > Vldn—1)-

This construction suggests a method that may be used to evaluate a tensor product surface point:
apply the de Boor method in one parametric direction, and then in the other.
To evaluate S(u,v), first apply the de Boor curve evaluation method to each of the columns

of contributing control vertices, as if evaluating n curves at u. Thus, for each [, the control
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vertices $(Usy .-« ) Uidm—13Vy - s Vign—1)y- -+ s S(Uitmy- -+, Uit2m—1;Vl, .-, Vi4n—1) are replaced
with s(u<m);w, -y Vtn—1). Next de Boor curve evaluation is applied to the remaining row, as
if evaluating a curve at v, to calculate S(u,v). Now control vertices s(u{™?; Vjy Ujgly e e Vjtn—1)s

., s(u<m>;vj+n,vj+n+1,... ,Vjtam—1) are replaced with s(ul™; ")) = S(u,v). Figure 2.4

demonstrates the evaluation procedure for a bicubic surface with us < u < ug and vy < v < vs.
Psg P31 P55 Psg

S(u,v)
Py

PlO

)

Poop Pop Pop Pogs

Figure 2.4: Evaluating a Surface for Position

Consider the number of affine combinations required to use this method of surface evaluation.
Performing de Boor on each of n+ 1 columns of m+ 1 control vertices costs > .-, i = m(m+1)/2
affine combinations, for a total of (n 4+ 1)m(m + 1)/2. Combining the remaining row of n + 1
control vertices costs an additional n(n + 1)/2 affine combinations. Thus the entire evaluation

requires

nn+1)+(n+1)mm+1) mn: +mn+mi4+ni+m+n

2 2

affine combinations. Note that this value is not symmetric in m and n; the number of combinations
is lower if n < m, as compared to m > n. Thus, if m > n, the de Boor method could be applied
first row-wise and then column-wise to reduce the computational cost of performing the evaluation.

Just as the de Boor curve evaluation method was adapted to evaluate curve derivatives, it
can be used to find the derivatives on tensor product surfaces as well. For example, to calculate
%S(u, ), reduce each column of control vertices as before, but stop one level short when applying

de Boor to the remaining row of control vertices. At this point, two control vertices remain,
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s(ul™ v, 1,077 1) and s(ul™;vj 40, v1" 1)), The derivative is then computed as

0 n
il - (m). . (n=1)) _ g(efm) .y, (n—1))
7 S(u,v) FO—— (s(u $Vjgn, U )= s(ut™ 5 v 41, ))

The cost of computing the derivative in this manner is exactly the same as computing the position
S(u,v), just as in the case of curve evaluation. In addition, the position of S(u, v) may be obtained

with one additional affine combination:

S(U,U) = Ms(u(m>;vj+n_l’v(n—l)) + m

s(u<m);vj+n,v<"_1>).
Vj+n — Vj4n—-1 Vj+n — Vj4n-1

A similar construction may be used to efficiently obtain both S(u,v) and g—uS(u, v).

A second-order partial derivative can be calculated (assuming the degree of the surface in the
parametric direction is at least two) by stopping the second de Boor curve evaluation step two
levels short, so three control vertices remain. Scaled pairwise differences are then taken, resulting
in two “control vertices” (which are vectors). The difference of these two vectors is then taken
and scaled appropriately to produce the second partial derivative. The original evaluation could
then resume with the three intermediate control vertices that were produced and the first partial
derivative and position could be calculated. The cost of evaluating the position, first, and second
partial derivative at a point is only three affine combinations greater than evaluating the position

and first partial derivative.

Attempting to evaluate the position and both partial derivatives of a surface at a given point
is slightly more involved [MD95]. Rather than completely reducing each column of control ver-
tices to a single point, the evaluation is stopped one step short, when two vertices remain in the
column. Thus, there are two rows of control vertices which must be reduced, instead of just one.
The second reduction stage is also stopped one step short, so there are four control vertices left:
$(Uitm—1, ulm=1). Vjtn—_1, 11(”_1)), $(Uipm, ulm=1). Vjtn—1, 11(”_1)), $(Uipm—1, ulm=1), Vjtn, v<”_1)),
and s(ui+m,u<m_1);vj+n,v<”_1>). Figure 2.5 shows a sample evaluation of a bicubic surface to
this point, with %iym—1 < u < Uipm and vp_1 < v < V,.

To simplify the notation in the following discussion, let L(s,t) = s(s,uw{™~1);¢, v{*=1)). Thus,
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)

Pyyq

PlO

Poo Pop Pop Pogs

Figure 2.5: Evaluating a Surface for Position and Derivative — First Stage

the four remaining control vertices may be rewritten as L(uijtm—1,%j4n—-1); L(%itm;Vjtn_1),
L(Uigtm—1,Vj4n), and L(Uitm, Vjtn).

At this point, four more affine combinations are applied to generate the control vertices
L(tiym-1,7), L(%itm,v), L(t,vj4n_1), and L(u,vj4n). These newest control vertices undergo

two more affine combinations that generate each of the partial derivatives of the surface at (u,v):

7] m

a—uS(u,v) = m([l(ui-}-m,v) — L(Ui+m—171}))
7 5(u0) (L () — L )
—8S(u,v) = —————(L(u,vj1pn) — L(u,vj4n_

D s Vjtm — Vitn_1 » Vit j+n—1

Finally, one last affine combination gives the position S(u,v):

Ui+m Ui+m

S(u,v) = ————————— L(titm-1,v) +

L, ).
Ui+m — Ui+m—1 Ui+m — Ui+m—1

An example of the second stage of the evaluation is shown in Figure 2.6.

The cost of evaluating the position and both partial derivatives at a point in this manner is
considerably more expensive than evaluating only for position and one partial derivative. Partially
evaluating each column of control vertices in the first stage costs m(m + 1)/2 — 1 affine combina-
tions, or (n+1)(m(m+1)/2—1) affine combinations for all columns. Next, the two rows of control

vertices must be partially evaluated, at a combined cost of n(n + 1) — 2. In the second stage of
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L(ui-}—m—la vn—l—i) L(ui-}—mv {Uj-}—n)
: \]
Ui+m_:Li+m—1 ;)_us(u’,v)
S(u,v)

L, vjn1) | @ @ N[ o i)

Uj+n—Zj+n—1 %S(u, 1))

G

L(ui—}—m—ly Uj+n—1) L(ui-}—mv Uj+n—1)

Figure 2.6: Evaluating a Surface for Position and Derivative — Second Stage

evaluation, four affine combinations are used to evaluate L(u,vj4n—1), L(%, vj4n), L(%itm—1,7),
and L(ti+m, ). Finally two affine combinations are required to obtain the partial derivatives and
one for the position, S(u,v). Thus, the total number of affine combinations required to evaluate

the position and both partial derivatives is

(n+1)(mim+1)/2-1) + n(n+1)—24+4+2+1
nm? + 3nm+m2+m+ 8
5 .

If the surface is bicubic, then n = m = 3 and the number of required combinations is 37, compared

to 31 if position and only one partial derivative is calculated.

The procedure for calculating any arbitrary directional derivative at a particular point makes
use of the method for calculating both partial derivatives. Suppose the directional derivative in
the 7 direction, where £ = @i + /37 for some « and 3, were required. First the partial derivatives
would be calculated, and then the directional derivative would be calculated as

0 0 0
E_S(u,v) = aa—uS(u,fu) —|—ﬂa—US(u,v).
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The cost of calculating an arbitrary directional derivative is only one more affine combination than
calculating both partial derivatives, and additional directional derivatives require only one more
affine combination each. Thus, calculating the position and two arbitrary directional derivatives
at a point on a bicubic surface would require 39 affine combinations.

Later T will use a construction that requires the position, two directional derivatives, and a

mixed-partial derivative of a surface to be calculated. Suppose S(u,v), a%..S'(u, ), %S(u, v), and

%%S(u, v), are required, where § = a, 4+ (3,7 and i = ay@ + B;v. The mixed partial derivative
will be calculated as an affine combination of the partial derivatives:

g 0 0 0 0
%E_S(U,U) = % <ata—u5(u,v) —}-ﬂta—vS(u,v))

0 0 0 0 7] 0
= Qe (ata_us(uav) +ﬂta_vs(uav)> +'838_v <O‘ta_u5(“’”) +ﬂta_vs(ua”)>
2 2 52

0 0
= Q04 WS(U’ v) + (Pt +ﬁsat)m5(% v) + Bt WS(U’ v)

This sum can be calculated at the cost of two affine combinations, once the two second derivatives
and the mixed-partial derivative are known.

The quantities S(u,v), a%..S'(u, v), 2.8(u,v), and 2 2.S(u,v), are calculated using a procedure

ot 0% ot

in which the de Boor evaluation is stopped two levels short of completion in each parametric
direction, leaving a 3 x 3 grid of control vertices, and similar calculations are carried out as in
the cases discussed earlier in this section. I will omit the details of the calculation, but 42 affine
combinations are required after the 3 x 3 grid of control vertices is established. Thus, for a bicubic

surface, the total cost would be 21 affine combinations to construct the grid plus 42, for a total

of 63 affine combinations.

2.4 Adding Details to Surfaces

Many methods to add local detail to surfaces exist. In this section I briefly describe three such
methods: refinement by knot insertion, hierarchical B-splines, and displacement maps. In addition

to describing the techniques, I discuss the relative advantages and disadvantages of using each.
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2.4.1 Adding Detail Using Knot Insertion

To add local detail to a tensor product B-spline surface, more control vertices must be added
to the surface. Control vertices can be added by refining the knot vectors associated with the
surface. Two popular methods for inserting knot values are Boehm’s algorithm [Boe80] and the
Oslo algorithm [CLRS80], although it is possible to use the equation for the blossom of a curve
and (2.2) to produce a knot insertion algorithm. Such an algorithm would be a generalisation of
Boehm’s algorithm, and would also be more efficient than the Oslo algorithm.

To add an extra knot to a surface, an entire row or column of control vertices must be added.
Figure 2.7 is a schematic representation of adding three knots in each of the parametric directions

to a surface that had previously had a 6 x 6 net of control vertices.

a) before refinement b) after refinement

Figure 2.7: Adding Local Detail via Knot Insertion

The main advantage of adding detail to a surface by knot insertion is that it can preserve
the desired continuity of the surface. Since the resulting surface is just another tensor product
B-spline surface, the continuity will only be decreased by introducing repeated knots into the knot
vectors.

The knot insertion method of adding detail has a number of drawbacks. The base surface
must be modified, resulting in a surface with a higher complexity. In addition, many of the extra

control vertices that are added may be superfluous. In the example of figure 2.7, if the surface
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were only modified in the centre of the patch, the 24 extra control vertices in the outer two layers
are not needed.

The unneeded extra control vertices that are added by the knot insertion technique increase
the storage size of the surface. Furthermore, the presence of the extra control vertices reduces
the ease with which the gross shape of the surface may be adjusted. Knot insertion is not a
hierarchical modelling method — it is impossible to switch easily between editing the high-level
details of the surface and editing the low-level details. Once the surface has been refined, its
knot structure irrevocably changes and the effect of moving a control vertex, even one somewhat
removed from the area of local detail, may be altered. The increased knot density in the domain
of the surface reduces the region of the surface that is changed when certain control vertices are

moved.

2.4.2 Hierarchical B-splines

Hierarchical B-splines were developed by Forsey and Bartels [FB88] and are intended to add as
few control vertices to a surface as possible when adding details. This scheme relies on a variant
of the knot insertion method described above, but control vertices are only inserted in the region
where editing is to be performed. A detail region, called an overlay, is created on a surface by
selecting a local region of the base’s domain and performing knot insertion in this region. Each
control vertex in the region is then represented as an offset relative to a hierarchy of local reference
frames. Continuity with the rest of the surface is maintained by leaving the two outermost layers
of control vertices from each overlay fixed, giving C! continuity. C? continuity may be preserved by
fixing the outer three layers of control vertices. Additional overlays may be inserted hierarchically
by repeating the refinement procedure on the interior of an existing overlay.

Hierarchical B-splines allow the insertion of surface details while inserting a minimum of extra
control vertices and retaining as much continuity as possible. However, hierarchical B-spline
surfaces are limited in that the areas of local detail must remain parametrically aligned with the
original (base) surface and have rectangular domains. In addition, it is difficult to translate the

areas of local detail along the surface once they have been placed.
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2.4.3 Displacement Maps

Displacement mapping is another method to add detail to a surface with as few extra control
vertices as possible. Displacement mapped surfaces consist of two components, a base surface,
B, and a displacement feature, D, which are combined to form a composite surface DM . B may
be a simple tensor product B-spline surface or a composite surface constructed by applying a
displacement map, and D is a vector-valued function defined over a compact domain Dy.

A displacement mapped surface is formed when an invertible transformation T is used to
embed Dy into B’s domain Bg. The composite surface DM is evaluated at a point (u,v) by first
determining whether (u,v) lies within the image of D’s domain, T(Dq). If not, then DM (u,v) =
B(u,v). Otherwise, D is evaluated at the pre-image of (u,v) under T to give a displacement
vector d = D(T~1(u,v)).

The displacement vector is added to the base surface as follows. A local coordinate frame F
is built with origin B(u,v) and frame (i, j, k), where i = %B(u, v),J= %B(u, v), and k =1 xj,
with 4’ and v’ being the parametric directions of Dgq embedded in Bgq. Then DM (u,v) is taken
to be the point-vector sum of B(u,v) and d in the local coordinate frame F.

Displacement mapping offers a number of advantages when considered as a surface modelling
technique. Libraries of displacement map features may be built and later applied to arbitrary
base surfaces. The features’ domains may be mapped into a non-rectangular region of the base
domain, and may be translated or rotated arbitrarily within the base domain. Also, displacement
maps may be built so there is no loss of continuity between the “base” and “feature” portions
of the composite surface. Any displacement map that produces a C° surface when applied to a
region of the plane will produce C° composite surfaces. In practice this restriction only means
that the displacement map feature must have 0 displacement along its boundary. C! and higher
surfaces may be constructed using similar restrictions on the displacement fields.

The drawback to using displacement maps is that they are expensive to evaluate. Every
composite surface point that is evaluated will require one tensor product evaluation of the base
surface, plus possibly another evaluation of the displacement map feature. If additional features

are added to the composite surface in a hierarchical fashion, an extra evaluation is added for
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every level of the hierarchy that must be traversed to reach the base surface. In addition, since
the displacement features may be oriented arbitrarily to form a composite surface and each surface
point in the detail region also depends on an underlying surface, it is not possible to use more

efficient tensor product grid evaluation methods for the tensor product surfaces.

Displacement mapping is a superior modelling technique in many respects. The technique is
very flexible and can be used to produce composite surfaces with any desired degree of continuity.
However, without restricting the points at which the displacement mapped surfaces will be eval-
uated, they are too expensive to use for interactive modelling — the cost of performing several

surface evaluations for each one of potentially thousands of tessellation points is prohibitive.

2.5 Surface Pasting

Surface pasting is a method in which a tensor product B-spline surface, designated the feature,
is attached to a base surface to add detail to a region of the base. The base surface may be
either a simple tensor product surface or a compound surface formed by previous surface pasting
operations. The pasting procedure does not modify the base surface, and the feature exhibits
characteristics of its unpasted shape while reflecting the underlying surface.

Barghiel implemented the standard surface pasting method that is discussed in this thesis
[Bar94, BBF95]. The method is based on a technique proposed by Bartels and Forsey [BF91].
In this section I explain how two concepts — Diffuse Coordinate Systems and Greville Displace-
ment B-splines — are used in standard surface pasting, and I comment on some advantages and

disadvantages of using surface pasting as a surface modelling technique.

2.5.1 The Diffuse Coordinate System

A Diffuse Coordinate System makes use of a diffuse coordinate space. In a diffuse coordinate
space, each control vertex has an associated local coordinate frame. The local coordinate frame

can be used to express a control vertex as an origin O; ; plus a displacement d; ; in the diffuse
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coordinate space:

S(u,v) = Y. Pi;B"(u)B](v)

i=0 j=0

= > > (0ij+di;)B"(w)B} (v)

i=0 j=0

The behaviour of pasted surfaces depends on the choice of the origin and displacement vector
for each control vertex. The standard surface pasting technique uses Greville Displacement to

define the origin and the displacement vector [Bar94].

2.5.2 Greville Displacement B-splines

In this section, I describe the method used to obtain the offset and local coordinate frame that
are used to construct each control vertex of a pasted feature. First, the domain of the surface
is embedded in its range space so a local coordinate frame may be associated with each control
vertex. The domain is embedded in the range space by mapping each domain point (u,v) to
(u,v,0).

Each control vertex P; ; has an associated domain point, called a Greville point, v ; = (i, ;).
where +; is the i*" Greville abscissa in the u parametric direction, and v; is the 7% Greville
abscissa in the v parametric direction. The surface point S(vi,%;) is maximally influenced by
P; ;. The origin O; ; of P; j’s local coordinate frame is taken to be the three-dimensional Greville

point, I'; ;, corresponding to F; ;:

Tij = (%,4,0) = (7:70)

The displacement vector d; ; is, by definition, a vector from the origin of P; ;’s local coordinate

frame to P; ;. Thus,

di; =P —Tij,
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Figure 2.8: Greville Displacement B-spline

and d; ; is called a Greville displacement. Using these origins and displacements, the diffuse

representation of a tensor product B-spline surface is:

M N

S(u,v) =Y (T4 + di ) B (u) B (v).

i=0 j=0

Figure 2.8 illustrates the relationship between a control vertex, its associated Greville point, and

its Greville displacement.

As mentioned before, the origin of P; ;’s local coordinate frame is taken to be I'; ;. The basis for
the frame is written as (x,y, z), where x is taken to be the parametric u direction of the embedded
domain, y is taken to be the parametric v direction, and z = (0,0, 1). The Greville displacement

d; ; can be expressed relative the local frame as a linear combination of the coordinate vectors:
dij = dijo+dijy+di;z

where d7 ;, di{j, and d; ; are the z, y, and z components of d; j, respectively.
Using this construction of Greville displacements, a tensor product B-spline surface can be

represented vectorially as a Greville displacement B-spline by removing the origins I'; ; and ex-
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pressing the control vertices solely as displacements from the corresponding Greville points:

S(u,v) =Y > " d; ;B (u) B (v).

i=0 j=0
2.5.3 Pasting Greville Displacement B-splines

At least two surfaces are involved in surface pasting: a base surface Sp, and a feature surface Sg
that is pasted onto the base. Each surface is defined over its own domain. The surface pasting
procedure sets the position of the pasted feature’s control vertices based on the topology of the
base surface and the Greville displacement B-spline representation of the feature surface.

A transformation T is used to map the feature domain into the base domain. T determines
the size and placement of the feature surface relative to the base surface. Under T, each Greville
point i ; = (vi,7;) is mapped to T(vi,;) = (v;,7;). The local coordinate frame based at I'; ; is
transformed as well. The origin of the frame is mapped to (v;,7;, 0), and the frame basis (x,y, z)
is mapped to (x',y’,2'), where x’ and y’ are the parametric directions of the embedded feature
domain, and z' = (0,0, 1)

The pasting procedure is accomplished by creating a new local base coordinate frame Fp
to express each of the displacement vectors d; ;. The origin of the local frame is taken to be
SB(vi,7;), the point on the base surface evaluated at the transformed Greville point. The cur-
vature of the base surface at the frame origin, Sg(v;,7}), is accounted for in the construction of
the frame basis, (i, j, k), by taking the first two components to be the partial derivatives of Sp at
SB(7i,v;) in the x" and y’ directions. Thus, i = %SB (Yisvi)s d = aiy,SB (7i,7;), and k is taken
to be 1 x J.

The pasted control vertex Pi"j is constructed by embedding the feature’s displacement vector
d; ; into the local base coordinate frame Fp. Thus, PZ-’.]- is calculated by performing point-vector

addition in the local coordinate frame Fg:

P, = Sp(vi,vj)+di

= Sp(vi,v) +di;i+di;i+di k.
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2.5.4 Advantages of Surface Pasting

Surface pasting offers a number of advantages as a surface modelling technique, compared to the
methods described in §2.4.

Knot insertion permanently modifies the original surface, constructing a more complex surface
that can accommodate the local detail that is desired by the modeller. As a result, the surface
requires more storage space and modifying the overall shape of the surface becomes more difficult.
Surface pasting leaves the original surface untouched, adding a new feature surface that contains
only the minimum number of extra control vertices required to add the local detail.

It is difficult to maintain a library of features that may be applied to any base when using
either hierarchical B-splines or knot insertion. In addition, the rectangular areas of local detail
must be parametrically aligned with the original surface and may not be translated or rotated.
Using surfaced pasting, it is possible to maintain a library of feature surfaces that may be applied
to any base surface and that can be rotated, translated and scaled on the base.

Finally, pasting a feature surface requires only the control vertices for the feature to be mapped,
rather then every point on the composite surface as for a displacement mapped surface. Thus,
in general, surface pasting is computationally less intensive than constructing a displacement
mapped surface.

Surface pasting does have a number of advantages when considered as a hierarchical modelling
technique, but it is not perfect. The major disadvantage of using surface pasting as a surface

modelling technique is described in the following section.

2.5.5 Continuity of Pasted Surfaces

Surface pasting is an approximation technique and is not guaranteed to produce surfaces with
even C° continuity. One technique that has been developed to produce surfaces that look good
involves setting each boundary control vertex for a feature to coincide with the Greville point

corresponding to that vertex. The unpasted boundary control vertices lie in the z-y plane of the



2.5. SURFACE PASTING 29

Sg(viy)

)

Base Domain vy 2D Domain
/ N
\ '\ X' Feature Domain
\ YD
Base Domain

Figure 2.9: Pasting a Greville Displacement B-spline [Tsa98]



30 CHAPTER 2. BACKGROUND

embedded feature domain. When the boundary control vertices are pasted they are positioned
directly on the base surface. This construction results in a nearly C° join between the base surface
and the feature if the base has low curvature relative the spacing between the feature’s boundary
Greville points. In addition, the approximation to the base surface at the feature’s boundary can
be increased to any level of tolerance by refining the feature surface’s knot vectors.

The procedure just described allows one to paste surfaces so they meet with nearly C° con-
tinuity to the base surface. This procedure can be extended to provide an approximation to ¢!
continuity as well. The control vertices in the second layer around the boundary of the unpasted
feature surface should be set to correspond to their Greville points as well. These control vertices
will then be pasted so they are positioned on the base surface. The vector formed between such a
control vertex and its neighbour on the boundary is the difference of two base surface points and
is therefore an approximation to the partial derivative of the base surface under the boundary of
the pasted feature. Thus, the feature surface will meet the base surface with an approximation

to C! continuity.

2.6 Divided Differences

In this section, I briefly introduce the concept of the divided difference, a functional that can be
used to construct polynomials that interpolate certain data sets. The material in this section
is intended only to discuss aspects of divided differences that are relevant to this thesis, and is

derived from information presented by de Boor [dB78].

Definition 2.1 Denote the k** divided difference functional of a function f at the points 7, ...,

Tivk by [T, ..., Tizk|f- Then

18(r) frn=mi1=--7 d fisC*k
) s = Tix1 = Ttk and fis C
[Tiseoo s Tipr]f = * o * (2.6)

[Tit1seesTigrlf =[Tisee s Tign—1]f ) '
S , where 7; # T4

Note that in addition to the above properties, the divided difference functional is symmetric

with respect to its arguments, and is linear in each argument.
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Define a sequence of scalars {rg,...,7,} , with the value of 7; appearing in {7,...,7,} at
most d; times, and let f be a function that is C%~! at 7;. It is possible to construct a degree n
polynomial p, such that pgj)(n) = fU)(x;) for each i = 0,...,n and for all j = 0,...,d; — 1 as

follows:

i—1

po(w) =Y ([ro,-..,mlf [J(w— 7). (2.7)

=0 j=0

3

The representation of p, given above is referred to as the Newton form of p,.

2.7 Quasi-Interpolation

Spline approximation techniques are methods of constructing a spline curve to approximate a
given function. Quasi-interpolation is a spline approximation technique developed by de Boor
and Fix [dBF73]. They describe a method that, given a function f defined over a region of R
and a partition m of R, constructs degree k spline, Fif, that approximates f. Frf is called
the quasi-interpolant of f. The quasi-interpolant is a local approximation in that its value at =
depends only on the values of f in a small neighbourhood around z, it reproduces polynomials of

degree k or less, and it provides a high order approximation to f, with |Ff — f| being O(|x[**1).

2.7.1 Spline Approximation by Linear Functionals

Lyche and Schumaker have refined the quasi-interpolation operator and describe a technique for
constructing a spline approximation operator, @ [LS75]. The @ operator can be applied to a real-
valued function f to produce a B-spline curve, ) f, that approximates f. This section describes
the construction of @ f as outlined by Lyche and Schumaker. I have taken the liberty of changing
their notation to conform to that which appears earlier in this thesis and I have also expressed

some concepts in terms of the blossom of a function.



32 CHAPTER 2. BACKGROUND

The approximation @ f is generated as follows:
M
Qf =Y _ NfBF, (2.8)
=0

where the {B™}M  are the B-splines described in §2.1 and {\;}4, are linear functionals. The
linear functionals are chosen so @) is applicable to a wide class of functions, @ is local, and Qf

approximates smooth functions with a high order of accuracy.

The quasi-interpolant @Qf approximates a smooth function f with a high order of accuracy
because () is constructed specifically to reproduce polynomials. In particular, if P; is the class of

polynomials of degree at most [ for some 1 <1 < m, the A;s are chosen so that

Qg =g for all g € P,. (2.9)

Such a construction is made possible by applying the following lemma and corollary:

Lemma 2.2 Suppose Uy,(z) = 2, and uo, ... ,Unr+m—1 are the knot values associated with the

BI"s. If Q is as defined in (2.8), then Q satisfies (2.9) if and only if
)\iUu :w[UN](ui,... ,uH_m_l) (210)

Corollary 2.3 Suppose that F is a linear space of real-valued functions on [um—1,upr] and for

each1=0,..., M, {/\i,j};':o is a set of linear functionals over F such that
det (Xi jUp)j umo # 0. (2.11)

Let {O‘i-j};:o be the solution of

1
3 i i Up = U (i o thigm—1),  p=0,1,...,L (2.12)

j=0
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Then for each i, \; = Zl a; ;N ; satisfies (2.10), and Q satisfies (2.9).

7=0

The «a; js in Corollary 2.3 may be obtained by solving a system of linear equations. A slightly
more direct method, based on extracting the «a; ;s directly from a set of degree ! or lower polyno-

mials is given in the following theorem, which is due to Lyche and Schumaker.

Theorem 2.4 Fori=10,..., M let {/\i,j}}zo satisfy (2.11), and suppose {pm};:o are polyno-

mials of degree at mostl such that

)\i,upi,j Z(Sj“u, j,ILLZO,l,... ,l. (213)

Then if pi j(z) = S22, a; j,77 with 0 < q; ; <1, the solution of (2.12) is given by

qi,j

aij = > @[] (e ipm1) (2.14)
v=0

= wlpigl(ui ..o vigm-1) (2.15)

The Lyche-Schumaker quasi-interpolant approximates smooth functions with a very high order
of accuracy, up to O(h™*!) for a function with a high degree of continuity. In addition, quasi-
interpolants can be constructed with linear functionals that can be quickly evaluated, resulting
in a fast approximation operator. The combination of high accuracy and speed make quasi-
interpolation a fitting tool to improve the approximate continuity around the boundary of pasted

features.

Note that quasi-interpolation operators can be constructed to reproduce spline spaces. Specif-
ically, if I is a positive integer and 7 is a knot vector with no knots of multiplicity greater than
[, then let S;; be the class of B-splines with knot vector 7, and degree no greater than /. Then
there is a choice of linear functionals and coefficients that leads to the construction of a quasi-
interpolation operator with knot vector 7 that reproduces Sr;. I will not make use of such a
quasi-interpolation operator in this thesis, since the linear functionals required are too costly to

use in an interactive surface pasting editor.
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2.8 Error Bounds for Quasi-Interpolants

I now discuss how well quasi-interpolants reproduce smooth functions. In particular, I will discuss

methods for approximating

D (f — t), 0<r<s
P AU E
D Qf(¢), s<r<m
where s is an integer with 1 < s < m+ 1, and ¢t € [up, up41] for some p € {m—1,..., M — 1}.

The operator D" takes the 7! derivative, i.e., D" f(t) = f(")(t). The parameter s was introduced
because @ f sometimes has more derivatives than f. The following error analysis depends on f
being C*~! on some interval I around . The exact choice of I depends on the linear functionals
used in the construction of @ and will be discussed in more detail in §3.5. The following results

are due to Lyche and Schumaker and apply to a wide class of quasi-interpolation operators [LS75].

Lemma 2.5 Let () be a gquasi-interpolation operator such that Qf = Ei‘io XifB™, where the

[

B"s are degree m B-splines over knot vector ug, ..., Up+m—1. Suppose Q is defined on a class
of functions including polynomials of degree I or lower, where I < m, and that QQ reproduces
polynomials of degree | or lower. Then if f is such that D" f(t) exzists, for 0 <r < s<l+1, and

g s any polynomial of degree s or less,

. D'R(t) — D'QR(t), 0<r<s

<
D" QR(t), s<r<m,

INA

where R(u) = f(u) — g(u).

Thus, |E, ,(t)| can be estimated by finding estimates for | D" R(¢)| and |D"QR(t)|. If f is C*~*

over I, then g can be chosen to be the Taylor expansion of f at ¢, truncated to s terms. Thus,

(u—1t)", (2.16)
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and D" R(t) = 0 for 0 < 7 < s, so the problem of estimating | E, ,(¢)| is further reduced to finding
bounds for |[D"QR(t)]. If \; = El @ jAi j, then

j:O
p+1
ID"QR(t)| < Y |NRI|ID"B(t)],
i=p—m+1

with

1
IR < el X RI-
j=0
The bounds on | D" B!™(¢)| are given in (2.1), so bounds need to be found only for the quantities
|a; j| and |A; jR|. The range of |A; j R| depends on the linear functionals, but Lyche and Schumaker

have derived bounds on |a; ;| for at least one common case.

Lemma 2.6 Suppose Q is as in Lemma 2.5, with \; = Z;’:O

aijXij. Let pij(u) = cij(u—
Zig1) (= zijq ), where qij <1 for each i and j. If a;; = w[pij](%is... , %itm-1), and

t € [up, Upy1], with R as defined in (2.16) then |a; ;| is such that

!
D QRO < (1) Tmr | w3 D Bl (2.17)

1=

with
Uy — Zijol " |y, . — Zijgi;
A; ; = max S g RPN (2.18)
’ Ai,p,m o 'Ai,p,m—r+1

where the mazimum is taken over all choices of distinct vo, ..., vy, ;, withi <vp <i+m—1 for

all k, and Tr, , and A; p 1 are as defined in (2.1).

I introduce a class of quasi-interpolation operators, Q¢, in §3.3. The general error bound

results presented here will be used to develop error bounds for the Q? operators in §3.5.






Chapter 3

Quasi-Interpolated Surface

Pasting

3.1 Motivation and Goals

One of the main disadvantages to using surface pasting as a modelling technique is that the
boundary of a pasted feature is not guaranteed to meet the base with any degree of continuity. In
practice, the feature/base boundary can be marred by obvious gaps if the base surface has high
curvature or if the pasted feature has a coarse knot structure. The traditional method of reducing
gaps between the base and feature is to refine the feature. The boundary control vertices of a
refined feature are more closely spaced, so the feature’s boundary is a better approximation of
the base surface.

Although refining the feature results in a more appealing composite surface, refinement should
be avoided if possible. Since the refining technique is the same as adding detail to a surface
with knot insertion, it introduces the same disadvantages. Extra control vertices are inserted
over the entire surface of the feature rather than just at the boundary where they are needed,
and the refined feature is more complex than the original one, requiring extra storage and effort

to evaluate. Furthermore, each of the feature’s control vertices must be placed relative a local

37
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coordinate frame on the the base surface, so additional control vertices require extra surface
evaluations to paste the feature.

In this thesis, I propose an alternative surface pasting technique that results in improved
continuity between the pasted feature and underlying base without resorting to refining the feature
surface. Given a feature surface to paste on a base, the new method produces a composite surface
with considerably smaller discontinuities around the feature boundary. The new method does
not require any changes to the knot structure of the feature and the average cost of placing each
control vertex is not significantly higher than that of the original surface pasting technique.

The new surface pasting technique does not use a single method for placing each control vertex.
The control vertices are logically divided into two groups — the boundary control vertices and
the interior control vertices. The interior control vertices are placed as in the standard surface
pasting method. The boundary control vertices consist of the outermost one or two layers of
control vertices and are placed using a spline approximation technique. I have chosen Lyche and
Schumaker’s quasi-interpolation technique since it provides a high order of approximation and

can be implemented so as to have a relatively low computational cost, as will be shown later.

3.2 General Features of Quasi-Interpolated Surface Pasting

I will present two surface pasting techniques that use quasi-interpolation to improve the approxi-
mate continuity around pasted feature boundaries. The first technique is intended to improve the
approximation of the boundary position, and the second is intended to improve the approximation
of both the boundary position and cross-boundary derivative.

Each feature boundary is constructed as the approximation to a curve on the base surface.
Each approximation is calculated using a Lyche-Schumaker quasi-interpolation operator. Since
surface pasting is used as an interactive modelling technique, the quasi-interpolation operators
are designed to require relatively little computation to evaluate.

Each surface in a composite pasted surface is a tensor product B-spline surface, so it is possible

to obtain the position and (between knot lines on the base) arbitrarily many derivatives of the base
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surface. The position operator and all the derivative operators may be used as linear functionals to

construct a quasi-interpolant; however the cost of using each of these operators must be considered.

Each boundary of a feature surface is constructed as if it were a curve approximation problem.
The curve to be approximated is obtained by evaluating the base surface along the curve formed
by the image of the feature’s domain boundary after it has been embedded in the base domain.
That is, the feature boundary corresponding to parameter value v = up,—1 1s an approximation of
Sp evaluated along the domain curve T (tm_1, (1 — t)vp—1 +tvn), where ¢ € [0, 1], and similarly

for the other three feature boundaries.

In the following section I develop a class of quasi-interpolants that interpolate one or more
derivatives at the endpoints of the approximated curve. These quasi-interpolants are used in the

modified surface pasting procedure.

3.3 Quasi-Interpolants that Reproduce Derivatives

I now introduce a class of quasi-interpolation operators that use point and derivative samples to
approximate curves. The quasi-interpolants are designed so the endpoints of the approximations
reproduce the position and zero or more derivatives of the original curve. These operators are

special cases of the @ operator that was developed by Lyche and Schumaker [LS75].

Let I, m and M be positive integers with | < m < M, and let ug,...,upr4+m—1 be a non-
decreasing sequence of knots with u; < 4;4m. Lyche and Schumaker introduce a quasi-interpolant
Q, with Qf = Ef\io AifBM™, where \; = El a; ;A ; and the o; js and A; js are as given below.

j=0

For:=0,1,...,M and j =0,1,...,!, define

Xijf =10, 1 lf (3.1)

where for each 4, 7 0,..., 71 is a sequence of nondecreasing scalar values, with 7; ; € [um—_1, uar].

Lyche and Schumaker also defined polynomials p; ; with the property that for each i, A; ,p; ; =
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dp,j for jyu=0,1,... 1

Finally, a set of coefficients, {e; ;}, is constructed from the p; ;s as follows:
Q5 = w[pi,j](uia s 7ui+m—1) (33)

The quasi-interpolant () reproduces polynomials of degree ! or less exactly, but is not guar-
anteed to reproduce the position and derivatives of the base curve at its endpoints. For a fixed
integer d, with 0 < d < m, and d < M/2, I define a quasi-interpolation operator Q? that
reproduces polynomials of degree m or less. In addition, if f is C? at wu,_1 and ups, then

D*Q4f(um—1) = D¥ f(um—1) and D¥*Q? f(upr) = D* f(uns) for k < d.

For each d, the operator Q? is an instance of Q, with ! = m and the values of 7;,; restricted
as follows:
Um—1 if .7 S i S da

Ti,j = (34)
Upg ife>M—d,and j< M —2

and 7;; # T except where specified above. Note that Q%f can be constructed solely from
position samples of f, except at um,_1 and uar, where position and the first d derivatives of f are

sampled via the divided difference operators.

Theorem 3.1 If m, M, d, ug, ..., usrym—1, 1N}, and {TiJ}f\i’ng:O are defined as in (3.1),
{B™1M  are the B-spline functions of degree m over knot vector ug, ... ,uprym—1, and Q% is an

operator with

M
Q'f=>_ NfBI, (3.5)
=0
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then Q% reproduces polynomials of degree m or less and has following properties:

DFQ% f(um_1) DF f(tm_1), if k< d

DEQ%f(upr) = DFf(upr), if k<d.

Proof: Q? reproduces polynomials of degree m or less, as it is merely a restriction of the Q

operator defined by Lyche and Schumaker [LS75].

It remains to show that Q?f shares position and d derivatives with f at its endpoints. I will
use the Taylor series representation of a function to show this result. In particular, let T% f

be the Taylor series representation of f expanded around u, truncated to ! + 1 terms:

ﬁﬂw=§j@§#3mﬂw-

By construction, DITL f(u) = D’ f(u), for j <.

The B-spline curve Q?f was constructed so the " control vertex is

Pi = /\zf = Zw[pm](ui, e aui-}-m—l)/\i,jf- (36)

j=0

Consider the terms in (3.6) where j > 4 and 7 < d:

@lpig) (s vitm-1) i f

=Xijfol(-—mo0) (- —Tij—1)](%iy . oo Uigm—1)

j—i-1 factors m—i{ parameters

=Xijfol(- —tm—1)" (- = Tig1) - (- = Tij—1)](m—1s -, U1 Uy - o+ s Yigm—1)
=X;f-0=0.
This result holds since w[p; j](wi,... , Um4i—1) = 0 whenever j > i because j < m for each

J,and so j —i— 1 < m—1i. Accordingly, at least one of the (- — un_1) factors in each term
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of w(p; ;] is evaluated at um_1, so w[p; ;] = 0. Thus, for ¢ < d,

m

P=)\f = Ew[Pi,j](Uia ey Uipm—1)Ai G f
j:O

= Zw[Pi,j](Uia---aui+m—1))\i,jf
j:O

i

= Z w[(' - Ti,O) e (' - Ti,i—l)](uia R 7ui+m—1)[7—i,07 R 7Ti,i]f

7=0
= w[(-— um_l)j](ui, oo Uipme1)[Um—1y o, Um—1]f
7=0
= w[ [Um—la-" aum—l]f('_um—l)j] (uia-" 7ui+m—1)
j=0
D '
= w[z f(; 1)('—Um_1) ](uia '7ui+m—1)
j=0
= w[T;m 1](“1'7 7ui+m—1)

And so, the first d + 1 control vertices of QZf correspond exactly to the first d + 1 control
vertices of Tém_lf expressed as a B-spline curve with knot vector wo,u1,..., UpM4m—1-
Therefore DV Q¥ f(um—1) = D’ f(um—1) for j = 0,...,d, as was discussed in §2.1.2. A
similar analysis reveals that D/ Q9 f(upr) = D7 f(ups) for 5 = 0,...d. Thus, Q?f shares

position and d derivatives with f at its endpoints. O

3.3.1 Another Representation of Q¢

The description of the Q¢ operators given in the previous section has several advantages. The
given representation clearly shows the relationship between Q? and the @ operator and, as a
result, lends itself well to error bounds analysis. There is one major drawback to the given
scheme, however.

As defined, each of the Q¢ operators is based on linear functionals that make use of divided
differences and on rather simple polynomials, p; j, that are used to compute the a4 ;s, the coefhi-

cients that weight the linear samples. If a given Q7 operator, that is one with fixed knot structure
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and 7; js, is used to construct approximations to different curves, some effort would be wasted
evaluating the divided differences. A more efficient technique would use simpler linear function-
als, possibly at the expense of more complicated p; js. Since the approximating splines have the
same knot structure and ; ;s, the coeflicients need only be computed once. Thus, the increased
complexity in the p; ;s, and hence in the calculation of the a; ;s, would be amortised over many
approximations. The linear functionals, which must be applied for every approximation, would be

less expensive to evaluate, so the overall cost of forming the quasi-interpolant would be reduced.

I designed the Q% to construct the boundary of pasted features. The underlying curves that
are approximated using the Q¢ operators are expected to change frequently as the feature surface
is translated and rotated on its base. It is relatively uncommon for the knot structure of a feature
surface to change frequently. If the feature’s knots change infrequently, then the knot structures

for the B-spline approximations created with the Q¢ operators will also change infrequently.

In §3.4, I propose a method for basing the 7; js on the knot structure of the B-spline approx-
imations. In such a scheme, an infrequently changing knot structure means that the coefficients
weighting the linear functionals (the a; js) in Q7 also change infrequently. Thus, it would be
preferable to have Q¢ operators that used inexpensive linear functionals, even if the pi,;8 would

be more expensive to evaluate.

In this section, I present an alternative formulation of the Q¢ operators. This new repre-
sentation describes a set of operators that provides identical results to the one described earlier,
but makes use of simplified linear functionals. I will proceed by defining a second class of quasi-
interpolants and showing that they are identical to the Q% defined in the previous section. Let

Q_dfzzi‘ioﬁBlm,where for:=0,..., M,

Xi= Y aijhig, (3.7)
j:O

with the Qi ;s and /\Z_js defined as follows.



44 CHAPTER 3. QUASI-IINTERPOLATED SURFACE PASTING

For 0 <2< M, and 0 < j < m, define

DOf(7i ;) fd<i<M-—d
Aijf o= Dif(um_1) ifi<dandj<i (3.8)
DI f(upr) fi>M-—-dandj<M-—1i
UTTik it dci<M—d
_ Tij — Tik
E=0k#j "7
— J
piy(u) =  (u=tmoa)! if i <dandj<i (3.9)
J- i
(o = ) ifi>M—dandj<M—i
7.
0 ifi<dandj>i
@i = 0 ifi>M—dand j>M—i (3.10)
w([pi ;] (wis. .. Viym—1) otherwise

where the 7; ;s are as defined in the previous section. Note that for d < ¢+ < M —d, the pi,j8 are
merely Lagrange polynomials.

Note that I have not defined p; js for ¢ < dand j > 4 or for 2+ > M and 7 > M — 1.
The polynomials have been omitted for two reasons: 1) these p; js, with A\; ,pi; = d;; are quite
complex, and 2) as I will show in Theorem 3.2 below, these p; ;s are not needed in the construction

of Q%; it is sufficient to set a; ;j = 0 for the appropriate values of 4 and j, as I have done in (3.10).

Theorem 3.2 Suppose \; is as defined in (3.1), and X\ is as (3.7). If f is defined for each
7i,j and is d-times differentiable at un,_1 and upr, then \if = Nif fori=10,..., M, and thus

Q'f =Q'f.

Proof: If d < i < M — d, then

m j—1
Aif = W[E[Ti,oa-.. 7Ti7j]fH(‘—Ti,k)] (ui,... 7ui+m—1)a and (3]_]_)
j=0 k=0
Afo= w[ZDOf(ﬂ',j) H %](ui, ey Uigm_1) (3.12)
j=0 k=0,k#j Ti,j — Tik
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However, it is known that
m j—1 m m R
Dol JLC = ma) = D00 (my) I ——=— (3.13)
=0

Ti.i — T,
i= k=0 i=0 k=0kzj T 0k

and so A\; f = A\ f [dBT78].

If + < d, then

<

m 7
Nf o= D eijhigf = aijhiy
j=0 j=0

= Y wlpi) (Wi vigmo1) N f
j=0

= w[z WDjf(Um—l)](uiw--aUz’+m—1)
j=0 )
= w[sz_lf] (uia"' 7ui+m—1)

= Nf
A similar analysis reveals that \;f = X\; f for 1 > M —d.

Thus, A; f = A; f for all 4, and so Q_df:Qdf. a

I have shown that my Q_d operator is merely an alternative representation for Q¢ that makes
use of simpler linear functionals than those proposed by Lyche and Schumaker. In particular,
note that the A; js consist solely of position samples along the interior of the approximation, as

well as position and up to d derivatives at the endpoints.

I have implemented the Q% operators using the alternative representation, and so I will refer
largely to that representation for Q7 in the remainder of this thesis. When it is necessary to refer
to the representation that uses divided differences in its linear functionals, I will mention this

explicitly.
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3.3.2 An Alternative Approach — Sampling Derivatives

The choice to use only position samples away from the endpoints of the approximating curve was
somewhat arbitrary. Another equally valid construction for Q% could use position and derivative
samples along the curve, as demonstrated in Figure 3.1. Using derivative information could
reduce the number of base samples by half, while increasing the cost of each sample by only a

small amount.

Figure 3.1: Position-Only Samples Versus Position and Derivative

If a cubic spline approximation were being constructed using the method presented in this
section, four base samples would be used to place each control vertex. Sampling the base curve
for both position and derivative would reduce the required number of samples to two. If the base
curve to be sampled were a part of a bicubic tensor product surface, each position-only sample
would cost 30 affine combinations and each sample of position and derivative would cost 38 affine
combinations. Thus, sampling only for position would require 120 affine combinations per control
vertex in the approximation, and sampling for position and derivative would require 76 affine
combinations per control vertex.

I chose to use the position-only version of the quasi-interpolants in this thesis for a number of

reasomns:

1. the sampling method that I present in the next section uses sample sharing to reduce the

cost of constructing the approximation without using derivatives;

2. I'later develop an alternative surface pasting technique that uses position and cross-boundary

derivative base samples; using derivatives along the curve would require the inclusion of a
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mixed-partial derivative, which reduces the cost-effectiveness of the technique considerably;
3. the use of derivatives does not affect the order of the approximation error;

4. using derivatives as well as position significantly increases the amount of programmer effort

needed to calculate coefficients used to weight the samples.

In spite of these points, using combined position and derivative samples likely would be useful
in a production setting; however, I felt that the probable benefits in a research setting did not
justify the extra work required to implement the technique.

Note that there are many possible methods that a quasi-interpolant could use to sample a
base curve. Techniques could be devised that make use of higher-order derivatives, different
distributions of position and derivative samples, integrals over sections of the curve, and so forth.
A thorough discussion of the benefits of using one sampling method over another is beyond the

scope of this thesis.

3.4 A Sampling Discipline

In my definition of Q¢, the values of the 7;,; sample points were unspecified for a number of values
of 7 and j. The construction of the quasi-interpolant makes the choice of 7; ; unimportant when
1<dand j>1io0ri>M—dandj > M —1, but the choice of 7; ; is significant for d < < M —d.
There are many possible methods for selecting these 7; ;s.

I will refer to selection of sample points as a sampling discipline. The quasi-interpolation
operator Q% reproduces polynomials and reproduces derivatives at the endpoints of the approxi-
mation regardless of the sampling discipline used. However, using different disciplines will result
in different qualities of approximation in the interior of the curve whenever the function to be
approximated is not a polynomial of degree m or lower.

The sampling discipline presented in this section was not selected to produce an optimal
reproduction of the curve to be approximated. Rather, it was chosen to keep the cost of forming the

quasi-interpolation low. It is assumed that the dominant cost of forming a spline approximation
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to a curve is the cost of sampling the original curve. One way to reduce the cost of sampling is

to reduce the total number of samples used to form an approximation.

Lyche and Schumaker [LS75] do not address the issue of the cost of applying their quasi-
interpolation operator. More specifically, they make no mention of reducing the number of distinct
linear functionals which must be applied to the curve to be approximated. Lyche and Schumaker
treat the linear functionals that are used to place each control vertex in the approximation in-
dependently. I have developed a sampling discipline that introduces dependencies between the
linear functionals used to place certain of the control vertices in the approximation, with the goal

of reducing the number of linear functionals that must be applied.

My sampling discipline reduces the number of base samples that must be made by forming the
approximation’s control vertices into groups that consist of consecutive control vertices. Within
each group, every control vertex is constructed using the same set of m + 1 samples from the
base curve; only the coefficients used to weight the individual samples differ. Of the M + 1
control vertices in the spline approximation, d + 1 from each end are explicitly set to ensure
that the approximation meets the desired continuity conditions at it endpoints. The remaining
I = M — 2d — 1 control vertices are set based on curve samples, 7; ;. These I control vertices are

the ones that are grouped.

I have developed a grouping procedure that 1) arranges the affected control vertices into
approximately I/m groups, and 2) ensures that the list of group sizes is symmetric. Pseudo-
code for the grouping algorithm appears in Figure 3.2. Figure 3.3 illustrates that the grouping
algorithm produces at most [I/m] + 2 groups of control vertices, and at most three of the groups

contain fewer than m control vertices.

After the control vertices have been grouped, the values at which the base curve will be sampled
must be chosen. Recall from §3.3 that 7; ; is the 4 sample point upon which P,’s position is

based, where 7 = 0,...,m. Thus, for a group of control vertices P, ..., Piy, the required sample



3.4. A SAMPLING DISCIPLINE 49

numFPull Groups := |I/m]
L := I — m x numFullGroups
ifL=0
make numPFullGroups groups of m
else if numFullGroups = 0 (mod 2)
put leftovers in middle group; all others have m
else there are an odd number of full groups
if L =0 (mod 2)
first and last groups contain L/2 each; all others m
else
move one control vertex from middle full group to the leftovers
the first and last groups each contain (L + 1)/2,
the middle group contains m — 1, and the others contain m

Figure 3.2: Pseudocode for the Control Vertex Grouping Algorithm

I
(ayL=0

m

(¢) L #0, {LJ =1 (mod 2), and L =0 (mod 2) (d) L #0, {LJ =1 (mod2),and L =1 (mod 2)

Figure 3.3: Example of Control Vertex Grouping with m = 3. White disks are sample points,
black disks are control vertices. Each column is a control vertex group labelled with the number
of control vertices. The larger arrows are labelled with the number of groups.
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points are

Ti,0 Ti,1 Ti,m
Ti+1,0 Ti+1,1 **°  Ti+l,m
Ti+k,0 Titk,1 *°° Titk,m-

However, sample points are shared among all control vertices in a group, so the values in each
column are equal: 7;; = --- = T4 ; for all j and the base curve need only be sampled at

Ti,00 Ti,1; - - - » Ti,m for this group.

The first step in choosing sample points is to divide the domain of the approximation into
intervals, one for each group of control vertices. For a group of control vertices P;, ..., Piyk, let

41 be the Greville abscissa for control vertex P;. I choose this group’s interval to be

’Yi—12+ ’Yz" Yit+k +2’)’i+k+1 ) (3.14)

All the samples (that is, the 7; ;s) for this group of control vertices lie in this interval.

Note that when forming Q¢, d > 0, sample points are only needed for Py, I = d+1,..., M—d—1.
This ensures that for any control vertex group P, ..., Piyg, wehaves > land i+k < M —d—1,
sot—1>0and 2+ k+1< M. Thus, v,_1 and v;4x+1 exist and are contained in

U+ Up—1 UM+ -+ UMtm-—1

[7077M] = ) = [Um—hUM],
m m

since g = %1 = *++ = Um—1 and Upr = Up41 = *** = UM4+m—1. Lhis ensures that each interval

lies entirely within the domain of the spline approximation.

I have chosen my sampling discipline to select the sample points by uniformly sampling the

interval of the group that contains each control vertex. Thus, any for control vertex contained in
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the group described in the previous paragraph, the sample points will be

m—J Yi-1+% n

I itk + Ytk
. 3.15
m 2 m 2 ( )

Ti,j = 3

for j=0,...,m.

This method for choosing sample points allows some sample points to be shared between groups
of control vertices. For example, if there were another group of control vertices that followed the
one defined above, say Piyry1,..., Piyk4p, then the sample point (yiyr + Yits+1)/2 would be
shared between the two groups. This sharing reduces the total number of base samples needed
by one less than the number of control vertex groups. Figure 3.4 is an example of how sample
points are shared both within and between control vertex groups. The shaded sample points are

shared between sample groups.

® Control vertex
O Sample Point
. Group Boundary

A Greville Abscissa

[ S | O Y Y

Figure 3.4: Sampling the Underlying Curve — shaded sample points are shared between groups.

3.5 Error Bounds for Q?f

I now present error bounds for the Q¢ quasi-interpolation operators. Specifically, I will discuss
how well Q?f reproduces a smooth, real-valued function f. In this chapter I will refer to the
divided difference representation of the Q¢ operators as defined in Theorem 3.1 so as to easily
make use of the error bound results obtained by Lyche and Schumaker [LS75]. The work in this
section follows the statements made in §2.8 on error bounds for general quasi-interpolants and

follows the methodology used by Lyche and Schumaker, with modifications made to accommodate
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the restrictions on the Qs.

Suppose Q? is as in Theorem 3.1, with 7; ;8 as defined in (3.15). Fix um_1 <t < upy and p
such that u, <t < upy1, with u, < upy1. Define I; , to be the smallest closed interval containing
{7i,j}j=0, and I, to be the smallest closed interval containing [up, upt1] Ufi—;)l—m-}-l I;m. The
segment of the curve Q?f that corresponds to domain interval [tp, upt1] is defined by control

vertices Pp_m41,...,Ppt1. Thus I, contains the support of all the linear functionals used to

place the control vertices that define this curve segment.

Recall that the control vertices of the approximating spline curve Q?f are arranged in groups,
and that the same set of 7; ;s is used to place each of the control vertices in a given group. Each
of the control vertex groups contains at most m control vertices, so of all the control vertices in
the group containing P,_,, 41, the lowest possible index is p — 2m + 2. Likewise, of the control
vertices in the group containing P,;1, the highest possible index is p + m. The definition of the

7; ;8 given in (3.15) indicates that

Yp—2m+1 + Vp—2m+2 Vp+m T Vp+m+1
I, < ([upvup+1] U [ £ 2 £ — 2 £ ]) ﬂ [tm—1, un]
p—m ptam—1
k= —2m+1(uk + uk+1) Zk: +m (uk + Uk+1)
= ([upvup+1] U [ £ om ) £ om ﬂ [tm—1, un]

(3.16)

2m

—m +2m-—1
rmpamyr (Uk Fuk1) Dopl o (uk + k)
Im ’ ﬂ [um—lauM]-

where, for the purposes of this calculation, uy is taken to be equal to u,—1 when k < 0, or ups

when k> M +m—1, and v; = (Z;nz_ol Ujtx)/m.

It is the interval I, that replaces I in the discussion of §2.8. If f is C*~1(I,), take R to be as

defined in (2.16):
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Then from the Taylor series for R,

D=1 R(() (u— )"~

D'R(u) = d 3.17
D*"'R(u) = D* 'f(u)— D*71f(t), (3.18)
for some ( between u and ¢, and for j =0,1,...,s— 1.

In order to estimate |A; ;R|, I introduce parameters describing the spacing of the 7 ;s and of

the u;s. Define

Cijy = 0<2n<i?_y(n7”+,, — Tiu), for 1 <v<m, (3.19)
iwWw o — i i,V 2
i, 2in, 7 (3.20)
Z = i — U; 21
v p—2m+112?gxp+2m—1(u ) (3:21)
A = max  (Uip1 — ;) (3.22)

0<i<M+4m—2

Apm-rt1 = p_m+I}1$iI,}Sp+1(Uu+m—r+1 — uy) (3.23)

Am—r+1 = min A —r41 3.24
mort m—1<p<M-1up<upii pmort ( )

From (3.16) and (3.21) it can be seen that |I,| < 3mA, and

3m 42
mt iR, (3.25)

[t — 2| <

for any z € I.
The error bounds that I seek depend on the modulus of continuity of a function. If g is C°(I),

then the modulus of continuity of g with respect to I and A is defined as

w(g;asI) = lg(z +h) — g(=)].

max
z,o+hel,0<h<A

In addition, Lemma 3.4, which bounds |A; ; R|, depends on the following lemma that is due to

Lyche and Schumaker:
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Lemma 3.3 Let 0 < < w—2. Then for any &1 < & < --- < &, withn, = 1<m<in k|§,,+k—§,,| >
SVvsw—

0, fork=p+1,... , w—1,

e w—pu—1
Z ( ;L/L >|[€V+17"' 7€V+ll+1]f|
|[£137§w]f|§ VZO :

Nw—1"""Nu+1
I now present a bound on |A; ;R|:

Lemma 3.4 Let 0<d<s<m+1, and let p—m <i<p. Then if f is C*~1(In),

6 = tls—_l_j j=0 s—1
3m+ 2 o— —_ s _1_ )" =U,...,
iRl < = —w(D* T i Ay ) § (s 0i— i1 . (3.26)
(5= Dloigyooipe © 00
where C,"]' S I,'J.
Proof: From (3.25), if v € I,, then
3 2 _
D1 f(z) — DY) < 2P 2 (D 1A ). (3.27)

2

In addition, for j = 0,...,s — 1, it can be shown that \; ;R = D/ R((; ;)/j!, where (;; €

I; j C I,. Applying equations (3.17), (3.18), and (3.27) yields the first inequality in (3.26):

[Gij —t]* 2

Xii B < Jl(s—=1—4)

3m + 2 Eppp—
5 w(D 1y Ay 1)

The second inequality relies on Lemma 3.3. Specifically, let £ = 7; _1 and apply Lemma 3.3

with w =541 and g = s — 1. Then

j—s+1 .
—s+1
Z <.7 j > |[Ti,l/7"' 7Ti,I/+s—1]R|

v=0

|Ai; R|

IN

Oij,g " 0dg,s

S 2j—s+1 max |[TZ’7,,,..- ,Ti,u+s—1]R|’ (328)
0<v<j—s Tijg* Tijs
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since T2 (075 =

However, |[TZ’7,,,... ,Ti7,,+s_1]R| = |D*7*R((ijw)/ (s — 1), where (i, € I, for each v =
0,...,7 — s+ 1. Thus, combining (3.18), (3.27), and (3.28) yields the second inequality in
(3.26):

) . 2j—s+1
Im + w(Ds_lf; Ay L) .a

(s = Dloyjj---0ijs

[AijR| <

The bounds on |A; ; R| that were calculated in Lemma 3.4 and the statements made in §2.8

provide enough information to formulate local error estimates for Q?.

Theorem 3.5 Let 1 < s < m+ 1 withm > 1 and q be an integer, 1 < q < co. Define E;{s to

be the same as E, , presented in §2.8, but with Q replaced by Q. If f is C*~1 over I,, then for

0<r<m,
VL gty 0 < KBSy (D B i 1) (3.29)
where
o mt Ut (Y[
T s =D \apmort1 —

pp = max Yi+m T Yitm+1 — Vi—2m+1 — ’Yi—2m+2’
p—m+1<i<p+1 2055

1

where Tpy » = (m"fr)! (Lr;ZJ) is the constant from (2.1), and i, is as defined in (3.16).
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Proof: I will make use of Lemmas 3.4, 2.5, and 2.6. Thus, for u, <t < up41,

d
BLl < (mA DYy mﬂ2§<p+lz|/\7JR||CH||AH| (3.30)
Sm4+2 [Gig =t~ tls o
< (mA1)Tm, 2 w(D f’AP’Ip)p mA1gi<ptl ]z: (s —1— |c”’|A”
2 e Ay
4+ 2 (3.31)
E (s=DloijjTijs

j=s

The A; ;s are as in (2.18), with the following substitutions based on the A; ;s and p; js used

to construct the Q? operator: gij=j—1land z;, =7, forv=0,...,7—1. Thus,

|UV0 - Ti70| e |uVj—1 - Ti,j—ll

A;; = max
Ai,p,m e Ai,p,m—r-]—l

Furthermore, the choice of the p; ;s dictates that ¢; ; = 1 for all 4+ and 7.

In addition, note that the p,s were chosen so that |z,, — 7 | < ppoi,. Also, |z, — 7 4| <

5m A, and recall that (;j € I, so [¢;; —t| < 22E2A, < 3 A Thus, inequality (3.31)

becomes
3 2 1 _
|Eg,s < (m+ ;(m—i— )mew(Ds_lf;AP;Ip)
s—1 m s—1—7 mA \j m j—s j
Z (%Ap) 1-j (5_AP)J 9J "'1(,0 oi. s)]'
p— m+1<z<P+1 P j'(S— 1 _,7)' A;m r1 j=s (S — 1) (Ap,m ,-+1) o_g;s+1

j
(3m—|—2;(m—|— 1) Tw(Ds_lf;Zp;Ip)

1 (3mA,)* 1 Z_:l (s — 1)! . i 2i=st1pi gt
(S — 1) p— m+1<z<p+1 A;,m—r-l-l iz j'(s —-1- j)' (Ap,m—r-}-l)r

(3m+ 2)(m+1)
- 2

j=s
1

Yo (D B ) ey e
pym—r

s—1,Y77% s—1 Jj—s+1 ve s—1
L U e © o +2 YT (5Ay)
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(3m+ 2)(m+1)
- 2

-[25—1 + Z 2j_s+1P;]W(Ds_lf3 Ay L)

j=s
(3m + 2)(m + 1) (3mye-t A, el NS ilai1
< Tor 2° 9i—st
— 2 1 (8— 1)' Ap,m—r-}-l [ +]§:; p;:l
‘(Zp)s_r_lw(Ds_lﬁ Zp;Ip)-
Therefore,
|BL < K&, w(D T A ) (3:32)

Now (3.32) implies (3.29) for ¢ = co, and integrating (3.32) over [up, up41] proves (3.29) for

1<g< 0. O

The local error estimate calculated in Theorem 3.5 leads directly to the following theorem that

bounds the global error estimate for Q% f:

Theorem 3.6 Assume the conditions of Theorem 3.5 hold. Furthermore, suppose f is C°~1 on

[tm—1,upr]. For 0 <7 <m,

—s—r—1421 _ -
B s une) < KA T (DL A [t 1, ua])- (3.33)
Where
(m +1)(3m + 2) (3mys-t AN |, & -
K= Yo, 2° 2p)i 5t
2 ’ (3— 1)! Am_r+1 +]z;( p) 9
and

p= max Yi+m T Yitm+1 — Yi—2m+1 — Vi—2m+2 ‘
2m—1<i<M-m—1 205 s

Proof: Note that A, < A for all p, and Apm_r41 < Apm—r41. Furthermore p, < p, so K, < K.
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Therefore, the statement (3.33) follows from (3.29). O

3.6 Pasting Features with Approximate Continuity

In this section, I describe two methods for using the Q? operators as part of modified surface
pasting techniques. The modified pasting techniques set one or two of the outermost rings of
feature control vertices using a quasi-interpolation operator. Setting the outermost layers of
control vertices in this manner improves the approximate C° or C! continuity of the composite
surface, relative a standard pasted surface.

Note that as the surface pasting technique is modified to produce surfaces with increased
levels of approximate continuity, more rows of boundary control vertices will be set by the quasi-
interpolation operators. Thus, care must be taken to ensure that feature surfaces that themselves
are detailed do not have their details obscured when the outermost control vertices are set.

The first of the two techniques that I present in this section is intended to produce an ap-
proximate C° composite surface by pasting features so their boundary position approximates the
underlying base curve. The second technique pastes features whose boundary position and cross-
boundary derivatives are intended to approximate the underlying curves on the base surface, thus
improving the approximate C! continuity of the composite surface. Extending the techniques pre-
sented in this section to form composite surfaces with better approximate C2 or higher continuity

should be straightforward.

3.6.1 (°-pasting

In this section I describe how to construct composite pasted surfaces that have improved approx-
imate C° continuity around the feature boundary. The Q° operator, which reproduces position at
the endpoints of the approximation, is used to implement the improved pasting procedure, which
I call Q%-pasting.

Each boundary of the feature surface is placed as if it were the solution of a separate curve

approximation problem. Thus, four curve approximations are constructed, and each of these
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approximations is used to set the control vertices that contribute to one of the feature’s bound-
ary curves. Typically surface pasting is performed in a higher dimensional space, such as R3.
Therefore, when constructing feature boundaries, the curves to be approximated will typically be
higher-dimensional parametric curves, rather than real-valued functions. The procedure in this
case is to form an approximation to each component of the curve to approximate in turn and to

compose the approximations. Thus, a curve

Cl(u) B QCl(u)
Clu) = ng(u) would be approximated by QC(u) = QC(u)
| cao | e

The Q° operator was designed so the control vertices at the ends of each boundary approx-
imation are set consistently with the adjacent boundary. Appendix A.l provides a verification
that the corner control vertices of the feature surface are set consistently by each of the boundary
approximations. This verification also shows that the corner control vertices are set so corners of

the feature are coincident with the corresponding points on the base surface.

O O @
O O |0
O O |0

o

o

o
O O |0
O O |0
O O @

O

@ O O
O] O O
O] O O
o
o
o
O] O O
O
@ O O

O

Figure 3.5: Corner Control Vertices are Part of Two Boundaries
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3.6.2 ()'-pasting

One advantage of QV-pasted surfaces is that the gaps between the base and the feature surface are
greatly reduced. Unfortunately, the improvement in C° continuity is not enough to make attractive
surfaces in all cases: surfaces constructed as described in the preceding section often exhibit a
pronounced discontinuity in the cross-boundary derivative. This discontinuity is often worse than
that encountered in surfaces constructed via traditional surface pasting. I have developed a second
improved surface pasting method that reduces the cross-boundary discontinuity with little or no
reduction in approximate C° continuity. This second method is called Q-pasting because it makes

use of the Q! operator, and it is based in part on Q°-pasting.

A feature surface is Q!-pasted on a base by setting two layers of control vertices for each
feature boundary. First, the outermost layer of control vertices is set, using the Q' operator to
approximate the base surface. Then the adjacent layer is set, using a similar technique, except a

derivative field derived from the base is approximated, rather than the base’s position.

I will describe the boundary construction procedure for the control vertices that determine the
position and cross-boundary derivative of the boundary « = u,,_1; the procedure for setting the
control vertices for each of the other three boundaries is analogous. Control vertices Py o,..., Pon
determine the position of the boundary in question, and these together with Py o,..., Py y deter-
mine the cross-boundary derivative.

First, the position of the boundary is set as follows: the base curve S, ,_, (v) = Sp(T(tm-1, 7))
is approximated using the Q' operator, and Po.o, ... , P v are set using this approximation. Next,
the derivative field running across S, _, (v) on the base must be sampled. More precisely, the

field to be approximated is

0
Stpr (V) = 5= 8B(T (Um-1,v));

where u* is the image of the feature’s parametric u direction at (tpn—1,v), under T.

The approximation Ql,S'{hn_1 (v) is used to produce a number of “control vertices”, Vo, ..., Vy.

However, S, (v) is a vector-valued curve, and so is Q'S (v). Thus, each Vj is a vector, and
m—1 m—1
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the desired cross-boundary curve for Sg is

) N
30 S (Um—1,v) = ;Bj (v)V; (3.34)

The Vs indicate how the P;;’s should be set to cause Sp’s cross-boundary derivative to

approximate S, _ (v). The derivative across the boundary v = um,_1 is defined by:

9 g _ mBy (um-1) §; B™(v)(Py; — P, 3.35
u F(Um_1,v) = m; j (v)(Pr,; — Poj)s (3.35)
where the knot vector that defines Bgn_l is {u1, .., up4m—2}. Thus 4y, _1 has full multiplicity

with respect to By'™', so By' " (um_1) = 1, and (3.35) can be simplified and combined with

(3.34) to indicate the desired settings for the Py js:

N N
m n .
PR 2B (0)(Pyj = Poj) = Bi ()Y (3.36)
j=0 j=0
Solving for the P ;s gives
Uy, — U —
P =t tmly, o py;

It is this setting for the P; ;s that I use in Q!-pasting.

The boundary construction described above sets the feature control vertices

Poo,...,Pon,P105..., PN

Constructing each of the other three boundaries sets the following feature control vertices:

Purroy.oo s PNy Par—1,05- -+ 5 Pur—1 N,
Po,o, . ,PM70, P071, ey PM,la and

Pony-.. Py n,Pon_1,..., Py nN_1,
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as illustrated in Figure 3.6. This figure reveals a potential problem: each corner of the feature
surface contains a 2 x 2 group of control vertices that are set when each of two adjacent boundaries
are constructed. The Q! operator was designed so these control vertex groups would be set
consistently when the two boundaries were constructed. Appendix A.2 contains a verification of

this property.

O 10 O
[ ]
[ ]
[ ]
O 10 O

O OO
[ ]
[ ]
[ J
O OO

Figure 3.6: Groups of Four Corner Control Vertices are Part of Two Boundaries

3.7 Computational Analysis

One of the primary considerations in the construction of the improved surface pasting techniques
developed in this chapter has been the computational complexity of the algorithm. In particular,
my goal was to construct a method that was not significantly more expensive than traditional
surface pasting. In this section I compare the cost of pasting a feature surface onto a base with
traditional pasting, Q°-pasting, and Q*-pasting.

In this analysis, I concentrate on the number of affine combinations of control vertices that must
be performed to place a control vertex. For the purposes of this discussion, the cost of finding the

difference of a pair of control vertices or taking the cross product of a pair of vectors is considered to
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be one affine combination. The cost, in affine combinations, of mapping a displacement vector into
a new coordinate frame is taken to be the dimension of the space minus one; I have been assuming

the surfaces exist in a three-dimensional space, so this cost will be two affine combinations.

I also assume that all surfaces being pasted are bicubic tensor product surfaces. This as-
sumption is reasonable because, in practice, many of the surfaces used in modelling and computer
animation are bicubic. In §2.3 I calculated the cost of evaluating bicubic surfaces to obtain the val-
ues of various surface properties, including position, directional derivatives and others. Table 3.1

summaries some of these costs for easy reference.

| Quantities Calculated | Number of Affine Combinations
Position only 30
Position and 1 Derivative 38
Position and 2 Derivatives 39
Position, 2 Derivatives and a Mixed Derivative 63

Table 3.1: Costs of Calculating Bicubic Surface Properties

In all three forms of surface pasting that I have described, a certain number of interior control
vertices are set by finding the image of the control vertex’s Greville point in the base domain
and evaluating the base surface to produce a local coordinate frame. The displacement vector
associated with the control vertex is expressed in the local coordinate frame to give the position

of the control vertex.

The coordinate frame constructed on the base surface is formed by two directional derivatives
and a normal to the base surface. The normal is calculated by taking the cross product of the
two directional derivatives. Thus, the position and two directional derivatives at a point on the
base surface must be evaluated, at a cost of 39 affine combinations. Forming the third coordinate
frame vector from the first two costs one additional affine combination and 2 combinations are
used to map the displacement vector into the coordinate frame. Thus, 42 affine combinations are

required to place each feature control vertex in this manner.

In the standard surface pasting method, all control vertices are placed as described above,

whereas in Q°- and Q!-pasting, only selected interior control vertices are set this way. In the
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remainder of this section, I concentrate on the costs of placing those control vertices whose method

of placement is different in either Q°- or Q'-pasting than it is in traditional surface pasting.

In Q-pasting, the outermost ring of control vertices is set differently than in the standard
method. Each of the four corner control vertices is placed so that it is coincident with a particular
point on the base surface. Thus, it is sufficient to evaluate the base surface once, for position only,

to place each corner, at a cost of 30 affine combinations.

Each of the non-corner boundary control vertices are set to be a convex combination of a group
of four base surface points. However, each group of four sample points is potentially used to place
more than one control vertex, and one or two sample points may be shared between groups, as
shown in Figure 3.4. Consider the number of samples required to place the non-corner control
vertices of the feature boundary corresponding to v = v,_1.

There are M — 1 non-corner control vertices along the boundary, which are divided into at

most L%J + 2 sample groups. Each sample group consists of four sample points, with the
last sample point being shared with the next control group. Thus, at most 3 (L%J + 2) +1

distinct sample points must be calculated. There are two cases: M —1 = 0 (mod 3) or not. If

M —1 = 0 (mod 3), there are exactly M3_1 control vertex groups, as shown in Figure 3.3. In
this case, 3% + 1 = M distinct sample points must be calculated. If M — 1 Z 0 (mod 3), then
L@J < @, s0 3 (L@J) < M —1and 3 (L@J +2) + 1 < M + 5. Thus, whatever the
value of M — 1, at most M + 5 distinct sample vertices need be computed, at a cost of 30 affine
combinations each. Similarly, placing the feature boundary corresponding to v = vy requires at

most M + 5 distinct sample points, and the other two boundaries require at most N + 5 sample

points.

Each non-corner boundary control vertex is a combination of four sample points, which takes
the equivalent of 3 affine combinations to evaluate. Thus, the total cost of placing the non-corner

boundary control vertices of a feature with Q°-pasting is at most

30(2(M+5+N+5)) +3-2(M —14+N—1)=60(M + N +10) + 6(M + N — 2)
= 66(M + N) + 588
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affine combinations. Placing the corner vertices takes an additional 120 affine combinations, for

a total of 66(M + N) + 708.

There are 2(M + N) boundary control vertices in a surface with (M + 1) x (N + 1) control
vertices, so the cost of placing all the boundary control vertices for a feature using the standard
surface pasting method is 42 - 2(M + N) = 84(M + N) affine combinations. The cost difference
between pasting the boundary control vertices using QU-pasting and the standard method is

708 + (66 — 84)(M + N) = 708 — 18(M + N) affine combinations.

It is not uncommon for pasted features to have at least nine control vertices in each parametric
direction, which would mean that M = N = 8. The cost to place the control vertices for such
a patch is 3402 affine combinations for the standard method, and 3822 for Q°-pasting, a fairly

reasonable increase considering the relative qualities of the feature boundaries.

In Q'-pasting, the two outermost rings of control vertices are set differently than in the stan-
dard method. At each corner of the feature, a group of four control vertices is placed so the feature
matches the base surface in position, two directional derivatives (corresponding to the feature’s
partial derivatives), and the mixed-partial derivative. Thus, for each feature corner, the base must
be evaluated to find the position, two directional derivatives, and a mixed-partial derivative, at a

cost of 63 affine combinations.

After the position and derivative vectors are extracted from the base surface, the four control
vertices in the corner group must be set. Consider the corner corresponding to parametric values
U = Up-1 and v = vy_1: the control vertices to set are Py, Po 1, P1,0,andPy ;. 1 discussed
the exact procedure for placing these four control vertices in §3.6.2; the discussion below is only
intended to motivate the costs associated with the procedure. Py takes the value Sp(tm—_1,vn_1),
while Py, and P;o are each set as Py plus a scaled directional derivative, which costs one
affine combination each to compute. Finally, P;; can be set by taking P ; and adding a scaled
directional derivative corresponding to the u parametric direction, plus the scaled mixed-partial
derivative, costing an additional two affine combinations. Thus, 63 + 1 + 1 + 2 = 67 affine

combinations are required to set each group of four corner control vertices.

Along each boundary, excluding the four control vertices in each corner, there are two rows of
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control vertices that must be set. The two rows of control vertices can be regarded as a sequence
of control vertex pairs, each of which depends on the position and cross-boundary derivative of
4 base samples. However, each group of four samples is potentially used to place more than one
pair of control vertices, and the last sample is shared with the next group, just as in the case of
Q°-pasting. Consider the number of samples required to place the two outermost rows of control
vertices of the feature boundary corresponding to v = v, _1, excluding the groups of four control

vertices at each corner.

There are M —3 pairs of non-corner control vertices along the boundary, which are divided into
at most L@J + 2 sample groups. Each sample group consists of four sample points, with the last
sample point being shared with the next control group. Thus, at most 3 (L@J + 2) +1<M+3
distinct sample points must be calculated, at a cost of 30 affine combinations each. Similarly,
placing the two rows of control vertices that contribute to the feature boundary corresponding to

v = vy requires at most M + 3 distinct sample points, and the other two boundaries require at

most N + 3 sample points.

Each control vertex that is in the outermost ring, but is not part of a four-vertex corner
group, is a combination of four samples, which takes the equivalent of three affine combinations
to evaluate. Furthermore, every vertex in the second outermost ring is set to be the position
of its neighbour on the outermost ring plus a scalar factor times a cross-boundary derivative
approximation. The cross-boundary derivative approximation is, in turn, based on four cross-
boundary derivatives, and requires an additional three affine combinations to calculate. Once the
derivative approximation is known, scaling it and adding it to the outer control vertex costs only
one affine combination. Only the position and one derivative is required for each sample, so the
cost of evaluating the base at a sample point is 38 affine combinations. Thus, the total cost of
placing the two outermost rings control vertices of a feature, exclusive of the corner groups, with

Q'-pasting is at most

38-2(M +3+N+3) +(2-3+1)2(M—3+N—3)=76(M + N +6) + 14(M + N — 6)
= 90(M + N) + 372
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affine combinations.

Placing the four groups of corner vertices takes an additional 268 affine combinations, for a
total of 90(M + N) 4 640. There are 4(M + N —2) control vertices in the two outermost rings for a
surface with (M +1) x (N +1) control vertices. These require 42-4(M+N—2) = 168(M+N)—336
affine combinations to place using the standard method. Thus the standard method uses an
additional 78(M + N) — 976 affine combinations to paste the outer two rows of control vertices.
Even feature surfaces with very few control vertices, for example surfaces with 7 x 8 control
vertices, have M + N > 13, so Q-pasting requires fewer affine combinations to place the feature’s

control vertices.

3.8 Error Bounds for Q%-Pasting

The error bounds derived in section §3.5 apply when a Q¢ operator is used to approximate a
general curve that has certain continuity restrictions. In this section, I examine how those error
bounds may be used to derive bounds on the errors involved when a feature surface is pasted onto
a base using one of the Q?-pasting methods.

Let Sp be a tensor product surface of degree m in the u parametric direction and degree n in
the v parametric direction, with knot vectors uo, ..., usr4m—1 and vo, ..., vN4n—1. Suppose Sg
is pasted on another tensor product surface Sp, with T being the transformation that maps Sg’s
domain into Sp’s. Without loss of generality, consider how the feature boundary edge Sg(u, vn_1)
is pasted; the analysis is similar for the other edges.

Denote the curve that underlies Sg (4, vo—1) on Sp by Sy, _, (u); then S, _, (u) = Sp(T (4, vp—1)).

Place the control vertices of Sp(u,v,_1) by applying Q? to S, If E'ﬁ{s(t) is as defined in The-

n—1"°

orem 3.5 with f replaced by §, then from Theorem 3.6,

no17
—s—r—141 _ —
||E7C'l,3||Lq[um—17UM] < KAS ' qw(Ds 1Svn—1;A; [um—lauM])a

if Sy, , is C*~ 1 over Um—_1,...,uy and s <m+ 1.

However, S, is a curve on a B-spline surface, so slightly more is known about the error

n—1
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bound. The following lemma will be used to form another expression for the bounds on Eis.

Lemma 3.7 If f is a piecewise polynomial that is at least C° on [a, b], then w(f; A; [a, b)) is either

0 or is O(\/vA), where v is the dimension of the range space of f.

Proof: Suppose f(u) = [fi(u)fz(u)--- fp(u)]T, where f; is a C® polynomial over [a,b] for i =
1,2,...,p. There exists some 7, with 1 <7 < p such that w(f;; A; [a,b]) < w(fi; A;[a, b]) for

J=1,...,p, 80 w(f; Asla, b)) < vw(fi; A;a, b)).

If f is constant over [a, b], then each of the f;s are also constant over [a, b], so w(fi; A; [a, b]) =

0. Clearly, if f is constant over [a, b] then w(f; A;[a, b]) = 0.

Otherwise, f; is a non-constant piecewise polynomial over [a,b]. Construct a partition
a =ty <ty <---<t, =bsuchthat f; is a polynomial over [tg,tx41] for k=0,...,p— 1.
Let x be such that w(fi; A; b, tr+1]) < w(fi; A [tr, tet1]) for all k. Then w(fi; A;[a, b]) <
pw (fi3 A [ty teg1]). However, w(fi; A; [te, tet1]) = |fi(z + k) — fi(z)| for some h < A with
z and = + h € [tg,txy1]. The function f; is a non-constant polynomial over [tx,tx41], SO

|fi(z + h) — fi(z)] is at least linear in h. Thus, f; is O(A), and so f is O(y/vA). O

Theorem 3.8 Suppose Q? is as defined in Theorem 8.1 and Eis is the error term defined in

Theorem 8.5, with s < m+1 and 7 < m. If f is a C*~! polynomial over [um_1,uss], then
|EL,|is O(Vv A°7), (3.37)

where v is the dimension of the range space of f.

Proof: From Theorem 3.6,

T

|BL,| < KA (D £ A w1, war)-

Lemma 3.7 reveals that w(D* =1 f; A; [um_1, uar]) is O(v/v A) since f is C*~* on [tm_1, unr),

so (3.37) follows immediately. O.
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Since S,,_, is a curve on a tensor product B-spline surface, it is a piecewise polynomial

1

over [tm—1,up]). Recall that I assumed S, to be C*~! on [um_1,un]. Thus, from Theo-

Vn—1
rem 3.8, |Sr(u,vn-1) — SB(T(u,vn-1))| is O(/v Ks). Note that in most surface pasting ap-
plications, v is taken to be 3. Furthermore, error bounds for derivatives along the boundary as

well as for cross-boundary derivatives can be calculated. Each of the derivative curves would be

1

C*~2 over [um_1,unr], and so |%Sp(u,vn_1) — %SB(T(u,vn_l)ﬂ is O(\/v AT ). The error

|6‘9—vSF(u, Un_1) — %SB(T(U, vn—1))| is also O(y/v Zs_l), if the feature surface is Q-pasted.

Frequently a composite pasted surface will be constructed from pasted bicubic tensor product
B-splines. If a bicubic tensor product feature is pasted onto a bicubic single base surface that has
no repeated interior knots, then the curve underlying each boundary edge is a C? sextic B-spline
curve. Furthermore, the derivative on the base along the curve that underlines the boundary edge
is a C! quintic B-spline curve, as is the cross boundary derivative on the base surface. If this
common situation holds, then the maximum error for the position of the feature boundary would
be O(\/v ZS), and the error for the derivative along the boundary would be O(\/v Kz), as would
the error for the cross-boundary derivative if the feature were Q'-pasted. Note that each repeated
knot line that intersects the image of the feature surface’s domain will reduce the continuity of

the base curve by one less than the multiplicity of the knot.

I have not calculated direct bounds on the differences between tangent planes to the feature and
base surfaces. Nevertheless, the bounds on both the cross-boundary derivative and the derivative
along the boundary are the best possible and suggest a high rate of convergence for the tangent

planes. The empirical results given in Chapter 5 support this conjecture.

No error estimates are available for the case where a feature surface straddles the boundary
between two separate components of a composite base surface. As mentioned in §2.5.5, there is no
continuity across the boundary between a pasted feature and its base surface. Thus, if the feature
edge Sp(u,v,_1) is pasted over such a boundary, the underlying curve is not even C° so none of

the error bounds that have been calculated for the Q¢ quasi-interpolation operators apply.

In practice, discontinuity between a Q°- or Q-pasted feature and its base is small, so a

feature edge pasted across such a discontinuity approximates its underlying curve to an acceptable
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tolerance, as long as the discontinuity is located away from the endpoints of the feature boundary.

A feature boundary could be made to poorly approximate the underlying curve if the feature
is Q'-pasted in such a way that a C!-discontinuity lies near the endpoint of one of its boundaries.
In this situation, the second (or second last) control vertex of the boundary would be set using
the derivative value from one side of the C!-discontinuity, while the bulk of the boundary lies over
the other side of the discontinuity. If the C!-discontinuity were large enough, the placement of
this control vertex could cause a noticeable gap between the feature boundary and the underlying
curve.

An effect that is similar to that described in the last paragraph might be noticed under other
circumstances, such as when the endpoint of a Q'-pasted feature boundary lies on an area of the
base that has high curvature, and the knot spacing of the feature boundary is relatively coarse.
In general, however, the knot spacing of feature surfaces is assumed to be denser than that of the

base surface, so such situations should arise infrequently.



Chapter 4

Implementation — quasiPaste

I have implemented a surface pasting modeller, called quasiPaste, that can use quasi-interpolation
to place the boundaries of pasted features. The modeller is an extension of Chan’s surface pasting
modeller, pastelnterface, which allows the user to manipulate composite pasted surfaces in world
space [Cha96, CMB97]. The modellers pastelnterface and quasiPaste are implemented using Open

Inventor.

With pasteInterface, an arbitrary tensor product surface may be pasted onto an existing com-
posite surface. The user can then modify the resulting surface by translating or rotating features
on their bases, translating individual feature corner points along the base, unpasting individual
features, or by using several other operations.

I extended pastelnterface to enable the use of Q%-pasting and Q!-pasting in addition to stan-
dard surface pasting. In quasiPaste, the user is able to adjust the pasting style of any surface in
the hierarchy. Additional functions that I have provided in quasiPaste include the ability to print
continuity information or to refine a selected feature. In this chapter I discuss the use of these
features in more detail.

I have added three entries to the Pasting menu in quasiPaste to allow the user to control
the pasting style of each surface in the pasting hierarchy: Non-quasi Pasting, Q0-Pasting, and

Q1-Pasting. Selecting any of these entries causes any subsequently pasted surfaces to be pasted

71
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using the named technique. In addition, if a pasted surface is selected at the time the menu entry
is selected, that surface will be repasted using the selected method.

The second feature that exists in quasiPaste, but not in pastelnterface is surface refinement,
which is activated by selecting a surface from the pasted hierarchy and choosing Refine Surface
from the Pasting menu. The selected surface is removed from the pasting hierarchy and replaced
with a refined version of the surface that is pasted using the same method that was used to paste
the original surface.

The refined surface is constructed from the original surface by inserting knots at the midpoint
of each non-degenerate domain interval in each of the parametric directions. The result is a
surface that, when unpasted, duplicates the appearance of the original surface. However, the
refined surface has four times the number of non-degenerate surface patches. For example, a

bicubic tensor product surface with knot vectors

{uo, uo, w0, U1, Uz, Ua, U3, Ud, Ug, Us }, and

{0, v0, v0, v1, v2, V3, V3, V3, V4, V5, U5, V5 }

u; < uj and v; < v; for all 7 < j, would be replaced with knot vectors

uptu u1+tu ustu ustu
{U07u07U07 02 laulv 12 27“23“27 22 37“37 32 47“47“47“4}7 and

vot+v, v1+vo v24vs Vs+vq
2 2

{0071)071)07 y V1, —5 V2, » U3, V3, U3, 2 7”47{”57”571)5}-

Note that the original surface would contain 80 control vertices and the refined surface would
contain 168.

The final additional feature that I have included in quasiPaste allows the user to access infor-
mation based on the approximate continuity between a selected surface and the composite base
on which it is pasted. When the Print Continuity Info option is selected from the Pasting menu,
the currently-selected surface is sampled at various points around its boundary and these values
are compared to those found at corresponding points on the base surface. Statistics based on the
comparisons are printed to standard output, as described below.

The feature surface is sampled for position and normal at each of its corners, and these values
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are compared to the position and normal on the underlying point on the base surface. If either
the position differs between feature and base, the difference is output. The amount by which
the normals differ is measured by taking the dot product of the normals and subtracting the
result from 1. Thus, a normal difference near 0 indicates very good agreement, and a value near
1 indicates nearly perpendicular normals. If the normal difference is non-zero, the difference is
output. The corner positions of the feature should coincide with the underlying base surface under
the three pasting techniques discussed in this thesis. The normals at the feature corners and the
underlying surface should agree when the feature is Q-pasted, but not necessarily when either
Q -pasting or standard surface pasting is used.

Next, each of the four feature boundaries is sampled for position and normal at a number
of uniformly-spaced points. The underlying points on the base surface are likewise sampled for
position and normal. A parameter, which is changeable only at compile time, determines the
number of samples that are taken. The number of samples taken per edge of the feature boundary
is equal to the parameter value times the number of feature domain intervals in either of the two
parametric domain directions, whichever is greater. At least 100 samples are taken, even if there
are very few domain intervals.

A summary of the differences found between the feature and the base is output, including the
number of samples taken and the minimum, maximum, average and standard deviation of both
the length of the difference position at each point and the normal difference, as defined above.
Sample output from the Print Continuity Information function appears in Figure 4.1. Note that
the position differences reported are not normalised in any way. When sampled approximate
continuity values are reported in Chapter 5, the size of the composite surface is given as a frame

of reference.
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Corner 1 normal difference: 1.8275e-03

Corner 2 normal difference: 4.5950e-04

Corner 3 normal difference: 4.8986e-03

Corner 4 normal difference: 4.1460e-04

Continuity sampled at 400 points
Position length differences:

min: 7.602457e-05
max: 4.,340427e-02
avg: 1.479329e-02

std dev: 1.238206e-02
Normal differences:

min: 1.560127e-06
max: 2.903743e-02
avg: 5.480401e-03

std dev: 7.662064e-03

Figure 4.1: Format of Approximate Continuity Qutput



Chapter 5

Empirical Results

In this section I discuss the results obtained when surfaces are pasted using the standard surface
pasting technique, Q°-pasting, Q!-pasting, and standard surface pasting with knot insertion. I
present both numerical and visual data comparing the quality of the boundary between a feature
and its base surface. Unless explicitly stated otherwise, all surfaces discussed in this section are
bicubic and features are not parametrically aligned with their base surfaces. Continuity sample
information provided was generated by sampling each feature edge at 10 different positions for
each domain interval in the u or v parametric direction, whichever was greater, with a minimum

of 100 samples taken no matter the number of domain intervals.

Figure 5.1 shows the result of pasting a bicubic surface with [6 x 6] subpatches, on a bicubic
base, using standard surface pasting method and using Q®-pasting. Note that the gap between
the base and feature surfaces in Figure 5.1(b) is greatly reduced, relative the gap in Figure 5.1(a).

Approximate continuity statistics gathered from both composite surfaces appear in Figure 5.2.

Figures 5.3(a) and 5.3(b) show the composite surfaces presented above, but from a slightly
different angle. The gap between the feature and the base is still visible in the former image,
and is all but eliminated from the latter, but another interesting artifact is revealed. The cross-
boundary derivative fields of the feature and base match more closely in the composite surface that

was constructed using standard pasting than in the Q°-pasted surface. The statistics reported in
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Corner 1
Corner 2
Corner 3
Corner 4

(a) Standard Pasting

Figure 5.1:

normal difference:
normal difference:
normal difference:
normal difference:

(b) Q°-Pasting

Standard and Q°-Pasting Example

4.224112e-04
1.347006e-04
1.118903e-03
1.162927e-04

Continuity sampled at 400 points
Position length differences:

min:
max:
avg:

3.736685e-05
1.572044e-02
5.392649e-03

std dev: 4.397894e-03

Normal
min:
max:
avg:

differences:
6.496074e-06
7.198891e-03
1.108036e-03

std dev: 1.718773e-03

(a) Standard Pasting

Corner 2 normal difference: 1.500367e-05
Corner 4 normal difference: 1.339990e-06
Continuity sampled at 400 points

Position length differences:

min: 1.145530e-09
max: 2.570768e-03
avg: 2.581981e-04

std dev: 5.765663e-04
Dot product of normals:

min: 6.777174e-09
max: 2.341422e-01
avg: 2.608988e-02

std dev: 5.590261e-02

(b) Q°-Pasting

Figure 5.2: Sampled Continuity Information — opposite base corners are separated by 1.414 units
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Figures 5.2(a) and 5.2(b) regarding the dot product of the normals reflect this lack of continuity.

(a) Standard Pasting (b) Q°-Pasting

Figure 5.3: Cross-Boundary Agreement Example

As mentioned earlier, the cross-boundary derivative field is determined by the difference be-
tween control vertices in the outermost row of the surface and their neighbours in the next
outermost row. In traditional surface pasting, all control vertices in the two outermost rows of
the feature surface are placed on the base surface. Thus, the vector between adjacent control
vertices is a difference of positions, which is a reasonable approximation of a scalar multiple of
the cross-boundary derivative. Therefore, the cross-boundary derivative field of the feature that
was pasted using the standard method is often a close approximation to the corresponding base
derivative field.

In Q°-pasting the second row of control vertices is placed just as in the standard method, but
the outermost layer is placed differently. In general, Q°-pasting places these control vertices off
the base surface. Thus, the vectors formed by control vertices in the outermost rows of the feature
and their neighbours in the next row have no relationship to the base’s cross-boundary derivative
field. As a result, features pasted using Q-pasting are not expected to have a high degree of

correspondence between the cross-boundary derivative fields of the base and feature.
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Figures 5.4(a) and 5.4(b) reveal the results of repasting the feature using Q!-pasting. The
gap between the base and the feature is significantly reduced, as in the Q°-pasted example, and
the cross-boundary derivative fields between the feature and base match much more closely than
when the feature is Q°-pasted. The continuity statistics generated from this composite surface

reveal the high degree of approximate C° and C' continuity, as can be seen in Figure 5.5.

(a) Q!-Pasting (b) Q-Pasting Cross-Boundary Example

Figure 5.4: Q!-Pasting Example

Table 5.1 contains a summary of sampled continuity statistics. In addition to the information
that has been provided in this chapter, three extra rows have been included. The last three
rows contain information about the approximate continuity that results when a feature surface
is refined according to the refinement operation described in Chapter 5 and then pasted using
standard surface pasting. I have provided data for a feature that has been refined once and then
pasted, and also for features that were refined twice or three times before being pasted.

The table reveals that the Q!-pasted feature has superior approximate C° and C! continuity,
compared to that of a feature that was pasted using the standard method after zero or one refine-
ment operations have been applied. The feature that had the refinement operation applied twice

before being pasted using standard surface pasting displays superior C° approximate continuity



79

Continuity sampled at 400 points
Position length differences:

min: 7.843729e-11
max: 1.864818e-03
avg: 1.413118e-04
std dev: 3.853936e-04

Dot product of normals:

min: 3.050893e-13
max: 4.842428e-05
avg: 3.109586e-06
std dev: 8.310277e-06

Figure 5.5: Sampled Continuity Information, Q'-Pasting — opposite base corners are separated
by 1.414 units

and C! continuity that is nearly comparable to that of the Q!-pasted feature. Note, however that
the doubly refined feature has 729 control vertices compared to 81 for the Q'-pasted feature, and
requires 30618 affine combinations to perform the pasting, compared to only 3030 for the Q*-
pasted feature. Thus, for this example, 10 times the computations would have to be performed
using standard pasting in order to obtain a composite surface that has quality comparable to the

Q'-pasted surface.

Mean Maximum | Maximum | # Control # Affine
Pasting Mode Position Position Normal Vertices | Combinations
Difference | Difference | Difference

Standard 5.392e-03 | 1.572e-02 | 7.198e-03 81 3402
Q° 2.581e-04 | 2.570e-03 | 2.341e-01 81 3822
Q! 1.413e-04 | 1.864e-03 | 4.842¢-05 81 3030
Standard, 1 Refinement 1.543e-03 | 4.550e-03 | 1.670e-03 225 9450
Standard, 2 Refinements | 4.089¢-04 | 1.149e-03 | 3.847e-04 729 30618
Standard, 3 Refinements | 1.049¢-04 | 2.891e-04 | 9.641e-05 2061 109242

Table 5.1: Feature Continuity and Complexity Statistics

Empirical data were also gathered that measured the reduction in the largest C° discontinuity
along a feature boundary. Specifically, a bicubic feature surface was pasted onto a C? bicubic base

surface in such a way that the feature’s parametric domain directions were not aligned with the
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base’s domain, using both standard and Q° surface. The maximum position differences between
the feature boundary and the base surface were sampled for each pasting surface. This procedure
was repeated several times, and at each step the feature surface was refined one more level than

for the previous step. These data appear in Table 5.2.

Q°-Pasting Standard Pasting
Refinement | Max Position | Ratio to | Max Position | Ratio to
Level Error Previous Error Previous
0 2.566e-03 N/A 1.571e-02 N/A
1 3.875e-04 6.62 4.550e-03 3.45
2 8.974e-05 4.31 1.149¢-03 3.95
3 1.206¢e-05 7.43 2.886e-04 3.98
4 9.171e-07 13.15 7.231e-05 3.99
5 2.298e-07 3.99 1.809¢-05 3.99
6 4.312e-08 5.32 4.526e-06 3.99
7 1.712e-10 25.17 1.131e-06 4.00

Table 5.2: C° Error Convergence — Bicubic Feature on a Bicubic Base

Note that in Table 5.2, the maximum C° boundary discontinuity for the Q°-pasted surface is
consistently smaller than the maximum C° boundary discontinuity for the surface created using
standard surface pasting. In addition, the overall rate of convergence of the error is faster for
the Q%-pasted surface. For the samples given, the geometric average of the amount by which the
CO discontinuity is reduced is approximately a factor of 10.0 per refinement, while the average
amount by which the discontinuity in the standard pasted surface is reduced is 3.90.

The table reveals a curious result, however. After two refinements, the amount by which the
C° discontinuity in the standard pasted surface is reduced is consistently near 4. This suggests
that the order of the error is O(h?), where h is the maximum knot difference in one of the feature’s
knot vectors. However, the reduction in the position difference for the Q°-pasted surface at each
step shows no signs of converging, although the theoretical results obtained in §3.8 indicate that
the order of the error is O(h?).

Given the theoretical error bounds, the size of the maximum position difference between the
boundary of the Q%-pasted feature and its base should be reduced by a factor of 8 at each

refinement. I have no theory to account for the uneven reduction in the error for the Q°-pasted
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surface.

I performed another experiment similar to the one that produced the data in Table 5.3. This
second experiment examined the reduction of the position error along a bicubic feature surface
pasted on a biquartic base. The results of the test appear in Table 5.3. The data in this table
reveal that the maximum position difference along the boundary of the standard pasted feature
is reduced by a factor of 4 at each refinement, just as before. The error for the boundary for
the Q°-pasted surface, however, behaves better than in the previous test. The ratio of successive

error values approaches 16, the result indicated by the theoretical error bound of O(h*).

Q°-Pasting Standard Pasting
Refinement | Max Position | Ratio to | Max Position | Ratio to
Level Error Previous Error Previous
0 1.423¢-03 N/A 2.939e-02 N/A
1 1.501e-04 9.48 8.565¢e-03 3.43
2 1.122e-05 13.37 2.163e-03 3.95
3 7.846¢-05 14.30 2.886e-04 3.98
4 1.050e-07 7.47 1.360e-04 3.99
5 6.684¢-09 15.71 3.402¢-05 3.99
6 4.183e-10 15.97 8.509¢-06 3.99
7 2.616e-11 15.98 2.127¢-06 4.00

Table 5.3: C° Error Convergence — Bicubic Feature on a Biquartic Base

Finally, I will demonstrate a situation where Q-pasting gives a noticeably lower-quality surface
than does QQ°-pasting. This situation is an example of the conditions outlined at the end of §3.8,
where I conjecture on instances in which Q?-pasting might not be desirable. In Figure 5.6, the
leftmost feature has been pasted across the boundary of the base and the rightmost feature, which
contains a large C! discontinuity. In the Q-pasted case, the leftmost feature’s cross-boundary
derivatives are forced to agree with the underlying surface. As a result, the second-last control
vertex on the feature boundary can not be set so as to have the boundary most closely approximate
the underlying curve. In the Q°-pasted example, only the first and last control vertices are set to
interpolate the position of the underlying curve, so the remaining vertices are placed to produce

a better approximation of the base curve.
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CHAPTER 5. EMPIRICAL RESULTS

(a) Q'-Pasting (b) Q°-Pasting

Figure 5.6: Q°-Pasting Behaves Better than Q!-Pasting



Chapter 6

Conclusion

6.1 Summary

A number of research projects have concentrated on the uses of surface pasting, including projects
that studied the feasibility of using surface pasting with both domain space [Bar94] and world
space [Cha96] user interfaces, as well as one that studied the behaviour of animated pasted sur-
faces [Tsa98]. Surface pasting has also been incorporated into Houdini, a commercially available
system for developing computer animations. Surface pasting has been demonstrated to be a
flexible tool for interactively constructing composite surfaces that contain areas of local detail.
While surface pasting has a number of strengths, including its flexible modelling paradigm
and the fact that it can be used at interactive speeds on currently available hardware, it has been
criticised for the lack of continuity between a pasted feature and the base. If a feature surface
has a coarse knot structure or is pasted on an area of the base that has high curvature, there can
be a noticeable gap between the feature and the base. I undertook the line of research presented
in this thesis with the intention of developing an alternative pasting technique that reduces the

gaps around the feature surface without unduly increasing the cost of pasting the feature.

In this thesis, I developed a special class of quasi-interpolation operators based on those

proposed by Lyche and Schumaker [LS75]. These Q¢ operators can be used to approximate
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smooth curves with a high degree of accuracy. The approximation is constructed so that, at
the endpoints of the approximation, the position and first d derivatives of the underlying curve
are reproduced. In addition, the Q? operator requires only point evaluation of the underlying
curve, except at the approximation endpoints, where the curve must be evaluated at its first d

derivatives.

When a feature surface is moved on the base surface, the sampling of the underlying curve
must be recalculated, but the coefficients that weight the samples remain fixed. I proposed an
alternative set of linear functionals that may be used to construct the Q7 operators. My set of
linear functionals have a lower evaluation cost than those proposed by Lyche and Schumaker, at
the expense of increasing the computation required to calculate the coefficients that weight the

linear functionals.

Lyche and Schumaker make no mention of the cost of applying their quasi-interpolations
operator. I have developed a method to limit the cost of applying the Q? operators so the total
cost of pasting a feature using my method is not significantly higher than for standard surface
pasting. I reduce the cost of applying the Q¢ operators by grouping the control vertices in the
approximation Q¢ f. Each group of control vertices could contain up to as many control vertices
as the degree of the approximating curve. Each control vertex in the group would then be placed
using the same set of linear functionals; only the coefficients used to weight each linear functional
would differ between vertices in a given group. In addition, by carefully choosing the linear
functionals used in the Q¢ operator, I share some linear functionals between adjacent control
vertex groups. Use of the grouping mechanism that I propose allows the construction of curve
approximations using only slightly more than one linear functional evaluation per control vertex

in the approximation.

The approximation Q?f reproduces f to a high degree of accuracy. The order of convergence
of [D"Q? — D" f| is O(h?*1~") where ¢ is the minimum of the degree of the approximating curve
and the continuity of f over the region to be approximated. A curious result of this convergence
bound is that the error involved when a cubic curve is used to approximate a C> piecewise quartic

curve converges more quickly than when a cubic curve is used to approximate a C? piecewise
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cubic curve. Note that the use of control vertex groups to share linear functionals increases
the coefficient of the approximation’s rate of convergence. Excellent curve approximations were
obtained in empirical tests, but if the higher coeflicient becomes a concern, the maximum number
of control vertices in a control vertex group could be reduced, with a corresponding increase in

the cost of constructing the approximation.

Error bounds were not calculated for the case in which an approximation to a less than C°
curve is generated. In such a situation, the error |Q?f — f| can never be reduced to less than half
of the size of the largest jump discontinuity, so the order of convergence is at best O(1) on any
interval that is less than C°. Despite the lack of mathematical bounds, empirical testing showed

that the approximating curve behaved well, with reasonable errors in the discontinuous region.

I suggested methods by which the Q% operators may be used to place one or more bound-
ary control vertex rings for pasted features. Features constructed using either QU-pasting or
Q'-pasting had significantly reduced C° discontinuities between the feature boundary and the
base surface, relative surfaces obtained from the standard pasting technique. The feature cross-
boundary derivatives of the Q®-pasted surfaces tended to match the corresponding derivative on
the base surface poorly. Usually this correspondence was worse than in the surfaces constructed
using standard surface pasting. The @Q-pasted surfaces exhibited much better cross-boundary

derivative correspondence than surfaces produced using either Q°-pasting or the standard method.

The use of efficient tensor product B-spline evaluation techniques reduces the cost of forming
pasted surfaces using either of the methods that I propose. The cost of pasting a small bicubic
feature using Q°-pasting is approximately one third higher than pasting the same feature using
the standard method. As the size of the pasted feature grows, the difference in cost between Q°-
pasting and the standard method diminishes. When the sum of the number of rows and columns
of control vertices in a feature reaches 20, the cost of pasting the feature is approximately equal,
and with larger features, Q°-pasting becomes cheaper. Pasting a feature using Q!-pasting is
cheaper than using standard surface pasting for features as small as 7 x 8 control vertices, and
Q'-pasting is comparatively less expensive with increasingly larger feature surfaces. In addition,

if the feature surface is of higher than bicubic degree, the per vertex cost savings of Q°- and
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Q'-pasting is improved.

The cost comparisons mentioned in the previous paragraph assume that the pasting methods
operate on equal-sized feature surfaces. The greatest increase in efficiency in using Q- or Q*-
pasting is not realized by having a lower average cost of placing each feature control vertex. The
greatest benefit to using the new pasting techniques is that the boundaries of the feature surfaces
meet the base with a higher order of approximate continuity than they do when the features are
placed using the standard method. Thus, it is possible to produce a feature surface using Q-
pasting that has an error tolerance comparable to that of a feature produced using the standard
method, but with considerably fewer boundary control vertices. Thus the total number of control
vertices, and hence the cost of pasting, would be greatly reduced relative the standard pasting

method.

The use of a Q?-pasting technique should reduce the amount of user effort required to model
surfaces, relative the effort required to model surfaces using the standard pasting technique.
Empirical testing has shown that when identical features are pasted on a base surface, the quality
of the composite surface is higher if the feature is pasted using Q%-pasting, relative the quality of
a surface constructed using standard surface pasting. The improved surface quality means that
there should be less need to refine a pasted feature to obtain a more attractive composite surface.
The reduction in paste-examine-refine cycles should translate into less effort expended by the user

of the modelling software.

Empirical testing has revealed cases in which the cost of pasting a feature with Q!-pasting is
an order of magnitude less than the cost of refining the feature and using standard surface pasting
to obtain a composite surface with comparable quality. The knot spacing in the feature and base
surfaces, the curvature of the base surface, and other factors combine to affect the quality of
surfaces produced using any surface pasting technique. Thus, the improvement in surface quality

realized when using a form of Q%-pasting over standard pasting will vary.

One last advantage to using either of the new surface pasting techniques is that they should im-
prove the quality of texture mapped composite surfaces. The high order of approximate continuity

between the base and feature surfaces considers the parameterisation of the surfaces. Thus, the
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texture coordinates should not suffer from any “drift” that would be apparent if the approximate

continuity were merely geometric in nature.

6.2 Future Work

There are a large number of variations on the Q¢ operators that might be explored in the future.
In particular, further research should be done to experiment with the placement of the ; ;s.
Perhaps certain non-uniform placements, such as a Tchebychev arrangement, might yield better
results than the uniform placement that I suggest.

In addition, the decision not to use derivative samples when setting the interior control points
of the curve approximation could be examined. Although the coefficients needed to weight the
linear functionals would be more complicated, there might be an improvement in the coefficient
in the error term.

Likewise, the decision to group control vertices and share curve samples should be reviewed. An
alternative method might involve constructing a set of slightly more linear functionals than there
are control vertices, and having a sliding window that dictates which samples are used to place
each control vertex. Otherwise, if the linear functionals are not shared between control vertices
in the approximation, it is possible to choose linear functionals that cause quasi-interpolation
operators to reproduce splines. The error coefficient would certainly be reduced in this case, but
research would be necessary to determine whether the reduction justifies the added cost of using
unshared linear functionals.

One technique that could be used to improve the agreement between the feature boundary
and the underlying base curves would be to detect the knot lines on the base and adjust the
knot values for the feature surface. This method can be applied to the standard surface pasting
method and would, with the additional constraint that features be parametrically aligned with
their base and have equal or higher degree, allow the feature boundaries to exactly reproduce the
underlying base curve. If this technique is applied to a Q?-pasted surface, it would be possible to

arrange the knots so the feature’s boundary control vertices are placed to interpolate each of the
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polynomial sections of the base curve. Thus, the order of approximation would be increased to
the maximum based on the degree of the feature boundary. Likewise, if the feature surface were
parametrically aligned with the base, the knot vectors matched properly, and the feature surface
had equal or higher degrees in each direction, exact reproduction of the base curves would occur.

One further optimisation applies only to Q! or higher pasting. If the cross-boundary derivative
field on the base is being sampled, only one more affine combination is required to sample the
derivative along the boundary as well. This additional derivative could be used to place the
outermost ring of control vertices, effectively doubling the base samples that are available for this
purpose. One possible scenario would have each sample of the boundary derivative paired with
the corresponding position sample. Thus, the size of the interval spanning the support of the
linear functionals used to set a control vertex would be nearly halved, which would reduce the
coeflicient in the error bound significantly.

Finally, it would be interesting to extend quasi-interpolated surface pasting to apply to the
interior control points of pasted features as well. The Q?-pasting techniques that I have developed
only attempts to cause the boundary of the pasted feature to approximate the base surface. By
placing each interior control vertex using quasi-interpolation techniques, it would be possible to
have the entire pasted feature more closely approximate the ideal displacement mapped feature.
A naive implementation of whole surface quasi-interpolated pasting would use (degree, + 1) x
(degree, + 1) linear functionals per pasted control vertex, possibly reduced by a sharing technique
similar to the one I describe in this thesis. However, it likely would be desirable to retain the
current Q?-pasting methods for the outer rings of control vertices.

The theoretical justification for quasi-interpolation is that the B-spline curves do form a basis
for polynomial curves of the same degree. Therefore, a major drawback to whole surface Q9-
pasting is that tensor product B-splines surfaces do not form a basis of polynomial surfaces.
I anticipate, however, that whole surface Q?-pasting would produce results that would closely

approximate analogous displacement mapped surfaces.



Appendix A

Verifying Corner Consistency

A.1 Corner Consistency in Q’-pasting

In this section I provide a verification that the corner control vertices of a QC-pasted feature
surface are set consistently. The material in this section directly references the contents of §3.6.1.

I will show that control vertex Py is set consistently; the proof that the other three corners
are set properly is similar.

Control vertex Py o contributes to the boundary curve corresponding to parameter value u =
Upm—1, and to the boundary v = wv,_;. These boundaries are constructed by approximating
the curves Sy, _,(v) = Sp(T(tum-1,v)) and S,,_,(u) = Sp(T(u,vn_1)), respectively. Thus,
Sr(u,vn-1) = Q°S,,_, (u), and Sp(um—1,v) = Q°Su,._, (v).

Since Sp is a tensor product surface whose end knots have full multiplicity, S (tm—1,vn—-1) =
Py 0, so it suffices to show that the two boundary curves agree on a single value of Sp(tm—1,vn-1).

Consider the feature boundary curves evaluated at the beginning of their domains: by the defini-

tion of @,

QOSvn_l(um—l) == Svn_l(um—l) = SB (T(um—lavn—l))a and
Qosum_l(vn—l) = Sum_l(vn—l) = SB(T(um—lavn—l))-
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Thus, using the Q° operator to set the boundary control vertices of a feature results in a consistent

setting for the corner control vertices of the feature.

A.2 Corner Consistency in Q!-pasting

In this section I provide a verification that each group of four corner control vertices of a Q'-pasted
feature surface is set consistently. The material in this section directly references the contents of
83.6.2.

I will show how the control vertices Py o, Po,1, P10, and P13 are set consistently when the
adjacent boundaries are constructed; the proof that the other three groups are set consistently is
similar.

I will first describe how the four control vertices are set when the boundary v = uy,_1 is
constructed, and then compare this to how they are set when the boundary v = v,_; is con-
structed, to show that the vertex positions are the same. I constructed Q! so the position
and first derivative at the endpoints of an approximation, Q' f, to a base curve f match those
of the base curve. Thus, when boundary u = u,_; is constructed, Pyo and Py, are set so

SF(um—lavn—l) == Sum_l(vn—l) == SB(T(um—lavn—l))v and

0 0 0

a_vSF(um—lavn—l) = a_vsum_l(vn—l) = dv*

S (T (tm—1,Vn-1))

where v* is the image, under T, of Sp’s parametric v direction at (u,v). Since Sg is a tensor

product surface whose end knots have full multiplicity, the restrictions on Py and Py ; mean that

Pyo = Sp(T(um-1,vn-1)) and (A.1)
Vp — Vp_1 O
Py = Poo+ TIBU*SB(T(um_l,vn_l)). (A.2)

Q' is used to place Py o and P;; as well, using values obtained from

0

BTSB (T(um—la Un—l))-
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Specifically, Py ¢ is set so

0 0
_SF(um—la vn—l) = ou*

ou

S (T (tUm—1,Vn-1))-

This requires that

Uy — Um—1 O

Py o= Pyo+ B S5 (T (um—1,n-1)).
Furthermore, P; 1’s position must be such that
d 0 0 0
A A m—-1yVn—-1) = S5~ T (wm— s Un— s
v BUSF(U 1 ¥n-1) Ov* Ju* S8 (T (Um-1,v-1))

which translates into the following restriction:

Uy — Um—1 O

P =Py + p T SB(T(um—1,vn-1))
Vp — VUp—1 O
+ 5 S5 (T umo1, 0no1))
Uy — Uy—1 U — Um—1 O O .
+ - p= 0 D S (T (tm-1,vn-1)), since
Um — Um—1 O
P =Pyo + 71_5}?‘(“711—171%—1)
m ou
Vp — Vp—1 O
+ fla_vsﬁ'(um—lavn—l)
Up — Vp—1 Um — Um—1 O O
+ 1 1__SF(Um—1avn—1)-

n m Ov Ou
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I now consider how Py, Po 1, P10 and P;; are set when the feature boundary v = v,_; is

constructed. Define S, _

1

and S, _ similarly to Sy, _,

and S,

-1

Sv,_ (w) = Sp(T(u,vn-1))

. 0
Svn_l(u) = B?SB(T(Uavn—l))
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Py and Py are set 50 Sp(tum—1,Vn-1) = Sv,_1 (tm-1) = SB(T (tm—1,vn-1)), and

0 0 0

_SF(um—lavn—l) = a_usvn_l(ufn—l) = u*

ou

S (T (tm—1,n-1))

Since Sg is a tensor product surface whose end knots have full multiplicity, the restrictions on

Py and P; o mean that

-POO = SB(T(um—lavn—l)) and (A5)

7
Uy — Um—1 O

Pio = Poo+ e

)

S5 (T (tm_1,vn_1)) (A.6)

Q' is used to place Py; and Py as well, using values obtained from S, _ (u). Specifically,

Py ; is set so

i} 0

a_vSF(um—lavn—l) = Sl (Um_l) = dv*

S (T (tm-1,Vn-1))-

Vn—1
This requires that

Vp — VUp—1 O
Poy = Pyo+ ——21 90"

S5 (T (thm_1,v—1))- (A7)

Furthermore, Py 1’s position must be such that

a0 0 4]
B_UB_USF(um_l’vn_l) = 3—

u* Vn—1

, o 0

(um—l) = B?B?SB (T(um—la vn—l))a

which translates into the restriction that

Vp — Vp_1 O

Py =Pyo -+ - BU*SB(T(um—lavn—l))
Um — Um—1 O
+ Tlau*SB(T(Um—lvvn—l))
b YmUmeate Ztam1 0 0 g p ) (A.8)

m n ou* Jv*

Equations (A.1) and (A.5), (A.2) and (A.7), (A.3) and (A.6), and (A.4) and (A.8) show that
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the four control vertices Py o, Py 1, P10 and Py ; are set consistently. Similar arguments show that

the other three corner control vertex groups are set consistently.
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