The Multi-scale R-tree

Edward P.F. Chan
Kevin K.W. Chow
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
epfchan@emap.uwaterloo.ca

October 24, 1999

Abstract

An important requirement in geographic information systems is the ability to display numer-
ous geometric objects swiftly onto the display window. As the screen size is fixed, the scale
of a map displayed changes as the user zooms in and out of the map. Spatial indexes like
R-tree variants that are particularly efficient for range queries are not adequate to generate
large maps that may be displayed at different scales. We propose a generalization for the
family of R-trees, called the Multi-scale R-tree, that allows efficient retrieval of geometric
objects at different levels of detail. The remedy offered here consists of two generalization
techniques in cartography: selection and simplification. Selection means some objects that
are relatively unimportant to the user at the current scale will not be retrieved. Simplifica-
tion means that, given a scale, the display of objects are shown with sufficient but not with
unnecessary detail. These two together reduce the time required to generate a map on a
screen. A major obstacle to the effectiveness of a Multi-scale R-tree is the proper decom-
position of geometric objects required by the simplification technique. To investigate the
problem, a Multi-scale Hilbert R-tree is designed and implemented. Extensive experiments
are then performed on real-life data and a general and simple design heuristic is found to
solve the decomposition problem. We show that, with the proposed design heuristic, the
Multi-scale R-tree is a desirable spatial index for both querying and display purposes.

1 Introduction

In applications such as Geographic Information System (GIS), a database comprises a collec-
tion of thematic maps and users commonly query geometric objects within a specific region in
a database. These queries are typically referred to as range or window queries and the result is
displayed on a screen as a map. Numerous spatial indexes have been proposed in the literature
for range queries. See for instance [8, 1, 15, 10]. A good survey on spatial indexes can be found
in [7]. With the exception of PR-file and Reactive-tree, existing spatial indexes are primarily

concerned with the efficient retrieval of geometric objects within a specific region. They, how-

ever, are not adequate in applications where geometric objects are displayed interactively and
in arbitrary scales.

Each map has a scale associated with it. A scale is the ratio of distances represented on a
map to their true lengths on the Earth’s surface. A scale of 1:25000 indicates that a unit of
distance on a map corresponds to 25000 of the same unit on the ground. A map of scale 1:x is
said to be a large scale (small scale) if = is small (large, respectively). Informally, objects in a
large scale map appear larger when compared to a small scale map.

The zoom and pan operations are indispensable in displaying the so-called scaleless and
seamless map. As a user zooms out a map, the scale of the displayed map decreases and more
geometric objects intersected with the query region. Thus, to display a map with a very small
scale, most of the geometric objects in a thematic map are retrieved and displayed. Displaying
too many objects will reduce the user’s effectiveness in perceiving the relevant information.
Moreover, some retrieved geometric objects may become too small to be displayed meaningfully
on the screen. For example, in a small scale map, a polyline with several hundred segments
may occupy only a pixel on the display, but the system will retrieve all these segments from
the secondary storage and then draw them onto the screen. This is not only a waste of CPU
time, but also results in many useless secondary disk accesses. This problem becomes more
severe for applications where the dataset is large and the map is viewed in real-time. Thus, it
is important to have a spatial index that can efficiently store, retrieve and display geometric
objects at different levels of detail. This type of index structures are known as reactive data
structures in the literature [3, 16].

One possible solution is to store the same map in different scales. Thus, a geometric object
will be stored as multiple copies in a database; each with a different level of detail. This method
not only introduces a high degree of data redundancy, but also has the potential problem of
update anomaly. Even if this method is adopted, one needs to know how many scales are
required. Another alternative is to store geometric objects in their entirety as usual, and apply
a line simplification algorithm, such as the Douglas-Peuker algorithm [5], to obtain the desired
scale. This is certainly a more efficient method than the previous approach, as the system needs
to store only one copy of the geometric object, which avoids the problem of update anomaly.

However, this approach still retrieves more data than necessary.

In this paper, we describe a generalization of the R-tree family called the Multi-scale (Ms)
R-tree for efficient storage, retrieval and display of geometric objects. A Ms R-tree shares the
same indexing structure as its R-tree counterpart. The main difference is that geometric objects
in a Ms R-tree are decomposed and stored as one or more sub-objects in the main data file but
without any data duplication. In this respect, our design is similar to the PR-file [1]. Storing
a geometric object as multiple objects allows the same object be displayed in different scales
effectively. However, a major problem with this approach is how to decompose objects in the
main data file. To investigate this problem, a Multi-scale (Ms) Hilbert R-tree is designed and
implemented. Extensive experiments are then performed with real-life data to gain insight into
the problem. A general and simple heuristic is found to solve this problem.

Hilbert R-trees, due to its ability of clustering geometric objects well together, are an
efficient indexing structure for range queries, spatial joins as well as for nearest neighbor queries
[4, 10, 18]. Hilbert R-trees, however, are not designed for displaying geometric objects at
different scales. Since a Ms Hilbert R-tree has the same indexing structure as a Hilbert R-tree,
it inherits the above-mentioned desirable properties. As a result, the proposed spatial index can
be used not only for query processing but also for efficient display. The price for such a design
is that when the whole geometric object is retrieved, such as in refinement and/or evaluation
steps in query processing, more disk accesses are required.

This paper is organized as follows. The next section surveys related work. Section 3 presents
the Ms Hilbert R-tree, and gives algorithms for searching as well as insertion. The experimental
results that compare Ms Hilbert R-tree with Hilbert R-tree can be found in section 4. Section

5 gives the conclusions and directions for future research.

2 Previous Work

In view of the need to display maps interactively and in different scales, a number of the so-
called reactive data structures have been proposed in the literature. A reactive data structure
is defined as a geometric data structure with detail levels, intended to support sessions of a
user working in an interactive mode [3, 16]. A good survey of this subject can be found in [16].
A Ms R-tree is a spatial index as well as a reactive data structure. In this section, we briefly

survey some work that are particularly related to our design. This includes Douglas-Peuker

line simplification algorithm [5], BLG-tree, Reactive-tree [16, 17] and PR-file [9, 1].
2.1 Douglas-Peuker Algorithm

The Douglas-Peuker line simplification algorithm is used to reduce the number of points needed
to represent a numerically recorded line, while at the same time, preserve the important features
in the original line [5]. The algorithm is based on the idea of tolerance and selects a set of suitable
vertices to represent the original line. This algorithm accepts a sequence of points which denotes
a polyline and a tolerance value as the parameters.

Algorithm Douglas-Peuker (P, ¢, U)

Input: A sequence (P ...P,) of points representing a polyline P and a tolerance value ¢, where
n>2 and t>0.

Output: U - A simplified version of P.

Method: Initially, the algorithm chooses two points as the anchor and the floater, which defines
a line segment. In each iteration, the algorithm will adjust the anchor and the floater according
to the maximum distance from the intermediate points to the line segment (anchor, floater).

The algorithm will terminate if the anchor is moved to the last Upoint of the original polyline.
Each point that has been chosen as an anchor will be stored in U.

1. Let anchor be 1 and floater be n.
2. If anchor = n, insert P, into U and return.

3. For each point P;, where floater > i > anchor, calculate the perpendicular distance from
P; to the line segment (Ponchor, Pficater). Let Pmig be a point which has the greatest
perpendicular distance to the line segment (Pgnchor, P fioater)-

4. Let d be the perpendicular distance from P, to the line segment (Ponchors P fioater)s if
Pniq exists and d=0 otherwise.

5. If d > i, then let floater = mid. Go to step 3.

6. If cl§2t7 then insert Pupnenor into U. Let anchor be floater and let floater be n. Go to
step 2.

The first and last points of P are always in the simplification. The important property of
the simplification r generated for a tolerance t is that given a point p in the original line, there
is a segment ¢ in r such that the perpendicular distance of p from ¢ is less than ¢. This simple
algorithm turns out to be very effective. Its preeminence has been confirmed in several studies

11, 20, 12, 13].

2.2 Binary-Line Generalization Tree

Given a goemetric object and a tolerance, one can always apply a line simplification algorithm,
like the Douglas-Peuker algorithm, to obtain a simplification. In a database environment where

an object may be retrieved numerous times with different tolerances, repeated computation on

an object to obtain a simplification may be too inefficient. The Binary-Line Generalization tree
(BLG-tree) was developed to overcome this problem [16|. The idea behind this data structure
is to store the result of simplification on a geometric object in a binary tree. Consequently,
no application of line simplification is required once the tree is constructed for an object, no
matter how many times the object is retrieved and displayed. This data structure, together
with the Reactive-tree which is going to describe later, form the core of a multi-scale GIS [17].

For a polyline (Py,...,P,), the line segment (P1, P,) represents the most coarse approxi-
mation of the polyline. Let P be the point which has the largest perpendicular distance from
(P1, Py), for all the points between P1 and P,. Py will be stored in the root of the BLG-tree
along with its perpendicular distance from (P, Pp).

The next approximation is formed by two line segments (Py, Py) and (Pg, P,,). The root
node will have two subtrees: left subtree and right subtree which correspond to (Py, P) and
(Pg, Py), respectively. We repeat the same process to the line segments (P, Py) and (Pg, Py)
until all points in the original polyline are stored in the tree. To retrieve a polyline with a
certain tolerance, the algorithm only needs to traverse down the BLG-tree until the required

accuracy is met [16].

2.3 Reactive-tree

A Reactive-tree assigns an importance value to each geometric object, and each object will be
stored in a level according to its importance value [15, 16|. An importance value represents
the smallest scale map in which the geometric object is still present. Less important objects
get lower values while the more important objects get higher values. Importance values can
be assigned by an application program or generated by some mathematical function. During
searching, the tree will only retrieve those objects of high enough importance. Thus, the search
performance of the system will not be affected by unimportant objects. Recently, an approach
that is very similar to the Reactive-tree has been advocated in [6].

Like a R-tree, a Reactive-tree is a multi-way search tree, where each node contains a number
of entries. Each node corresponds to one physical disk page. The maximum number of entries
that can be stored in a node is denoted as M. Except for the root node and the so-called pseudo
roots , each node contains between M/2 and M entries. The root node has at least two entries,

unless it is a leaf node.

Entries are of two types: object entries and tree entries. An object entry has a minimum
bounding rectangle (M BR), an importance value, and an object id. An object id is a reference
to an object, and a M BR is the smallest axis-parallel rectangle that bounds the object. The
importance value is the importance of the object that is referred to by the object entry.

A tree entry has a M BR, an importance value, and a child pointer. The child pointer
contains a reference to a sub-tree, and the M BR bounds all the objects in the sub-tree. The
importance value of a tree entry is equal to the importance of its child nodes incremented by 1.

Object entries can be stored in any level of a Reactive-tree, in contrast to the R-tree, where
object entries can only reside in the leaf nodes. An internal node can have object entries, tree
entries, or both. Entries in the same node must have the same importance value, and all nodes
in the same level are of the same importance. Nodes with higher importance values are stored
in higher levels of the tree. Since the importance of a tree entry is equal to the importance
of its sub-tree incremented by 1, therefore, along any path from the root to a leaf node, the
importance values are ordered consecutively in a decreasing order. For example, if the root
node of a Reactive-tree has an importance value of 10, then every node in level one will have
an importance value of 9. The importance of the nodes in level two will be 8, and so on. The
nodes in the lowest level will have importance value of 1.

In a Reactive-tree, an object entry can be stored in a non-leaf node. This implies that the
tree cannot be optimally balanced, because not all leaf nodes are in the lowest level of the
tree. Thus, the tree’s height is not at its minimum. However, since the more important objects
can be accessed with less cost in a Reactive-tree, searching can be very efficient if the more
important objects are accessed more frequently. A Reactive-tree is particularly efficient if the
number of objects has a ‘hierarchical distribution’ over the importance values. That is, the
number of objects in an importance level is 1 or 2 orders of magnitude larger than the number
of objects at the next higher importance level [16]. Figure la shows a Reactive-tree for a set
of objects which has a hierarchical distribution. There is 1 object of importance 3, 3 objects
of importance 2 and 27 objects of importance 1. The tree’s height is about 3 and is well-filled
and balanced.

If the data do not have a hierarchical distribution, the tree can become unbalanced. Fig-
ure 1b shows a Reactive-tree with a set of spatial data that do not have a hierarchical distribu-

tion. In figure 1b, there are 27 objects of importance 3, 3 objects of importance 2 and 1 object

lelo] | [mloled | [ededed] beded] [olonod] [lonled] [edoto]] [seloded] | [l]

a) A Reactive-Tree with a hierarchical distribution of data.

|

b) A Reactive-Tree without a hierarchical distribution of data.

Figure 1: Two Reactive-trees with same number of data but different distribution over the

importance value

of importance 1. The Reactive-tree in figure 1b has a height of 5, while the tree in figure la
has a height of 3. Moreover, none of the objects in the Reactive-tree in figure 1b are stored in a
higher level than any object in figure la. Thus, searching in the Reactive-tree is very inefficient
if the data do not have a hierarchical distribution.

Since there is a one-to-one correspondence between the level and the importance value, the
number of importance values cannot be too large or the tree will become too tall. Another
restriction is that the importance values must be ordered consecutively.

In short, the performance of the Reactive-tree not only is data dependent but also relies
on how well the program assigns importance values to geometric objects. To create a good
importance value generator, the designer must have some prior knowledge about the data and

the application. In most cases, it is difficult for the designer to have this information in advance.

2.4 Priority Rectangle File

The Priority Rectangle File (PR-file) was designed to efficiently store and retrieve geometric
objects in arbitrary scales. It is based on the design of R-File [9]. Unlike the Reactive-tree, an
object in a PR-file is not stored as an atomic unit. The PR-file makes use of a line simplification
algorithm, which will select some of the line segment endpoints from a polyline according to
the desired scale. For each vertex, the PR-file will assign a generalization index to indicate the
smallest scale in which the vertex is selected. Vertices with the same generalization index value
from the same object are clustered together to form a new geometric access structure. Each
vertex is assigned with a sequence number to indicate its position in the original object. To
obtain an object of a larger scale, the PR-file will merge vertices of the object at a smaller scale
with other vertices in the larger scales. The merged vertices are obtained by sorting on their
sequence numbers.

Although a geometric object in a PR-file is partitioned into different parts, to simplify our
discussion, let’s still refer to each part of the object as an ‘object’. Each object has a priority
number, which is equal to the generalization index value of the vertices within the object. Each
priority number corresponds to a scale in the map. A lower priority number corresponds to
a smaller scale map, while a higher priority number corresponds to a larger scale map. For
a relatively small scale map, queries will only return those objects of relatively low priority;
objects of higher priority are omitted. For example, if priority number 2 corresponds to a 1:100
map, a query for a 1:100 map will only retrieve those objects which have a priority number 1 or
2. Objects with priority 3 or higher will not be retrieved. If an object of priority 1 and an object
of priority 2 contain vertices that originally come from the same object, these vertices will be
merged together and then sorted by their sequence numbers to obtain the original object. To
facilitate the search process, data blocks and directory blocks are arranged in certain way so as
to minimize the block accesses. Interested readers please refer to [1] for detail of insertion and
deletion as well as splitting and merging of data blocks and directory blocks.

In a PR-file, a geometric object is broken into multiple objects and each object is assigned
with a priority value. Each priority value corresponds to a map scale. For each scale, objects
which have a higher priority value than the priority corresponding to the map’s scale will not
be retrieved. Objects which have higher priority values than the required priority contain the

unnecessary detail and are not retrieved from the disk. This differs from a Reactive-tree in

which the whole object is retrieved if its important value meets the retrieval criteria. In a
Reactive-tree, the simplification is generated with the help of a BLG-tree while in a PR-file it
is generated by merging points with the same object id.

For a Reactive-tree, there is a one-to-one correspondence between the tree’s level and the
importance of the objects. Thus, a Reactive-tree can become grossly unbalanced if the ob-
jects do not have a ‘hierarchical distribution’ over the importance value. A PR-file overcomes
the problem by using a directory split operation that can dynamically adjust to the different
distribution of data. In a PR-file, directory entries of different priorities can be stored in the
same node, and hence, there is no one-to-one correspondence between the tree’s level, and the
priority of the object. Nevertheless, the resulting tree is not, in general, height-balanced.

Although a PR-file has some advantages over a Reactive-tree, it has its own drawbacks. In
order to achieve its desirability, the overall structural design as well as insertion and deletion
algorithms are rather complex. Moreover, a PR-file is based on a R-file, and hence, it inherits
the R-file’s problems. More specifically, objects that fall on the center line and the center point
of a map have to be taken care of in a different way. As geometric objects are partitioned into
objects, and these objects are retrieved and regenerate by merging the sets of points involved.
These all imply higher storage and processing cost. Another problem of the PR-file is the size
of its directory entry. A directory entry in a PR-file has a M BR, a reference, a cell border
and a priority number. In contrast, a tree entry in a Reactive-tree has a M BR, a reference
and an importance value. The larger directory entry implies that there is lower fan-out in a
PR-file, which can make a PR-file less efficient. Finally, the effectiveness of a PR-file hinges on
the proper assignment of priority values to objects. This important problem, however, is not

addressed by the authors.

3 Multi-scale Hilbert R-tree

Members of R-tree family consist of an index and a main data file which stores the actual
geometric objects. See for instance [8, 19, 2, 10]. To illustrate how a Ms R-tree is designed,
we shall concentrate on a variant called Ms Hilbert R-tree in the rest of the discussion. Hilbert
R-trees have an advantage over other R-tree variants in its ability to cluster objects well in a

2D space [10]. Although a specific variant is used as an illustration, it should be clear from the

subsequent discussion that the techniques employed are applicable to other variants as well. In
fact, the selection and simplification techniques discussed later not only are applicable to other
R-tree members but also to file structures like the PR-file as well.

In an environment where geometric objects are retrieved and displayed in arbitrary scales,
it is essential to retrieve the right number of data points so as to minimize secondary accesses.
Clearly, it is imperative that the simplification generated is visually identical to the original
object when it is displayed on the screen. In a Ms Hilbert R-tree, to minimize disk accesses,
points in objects are partitioned and stored as multiple pieces. These pieces are totally ordered
with the higher level represents simplifications in a smaller scale map. A simplification of a
geometric object at a larger scale map can be obtained from the simplification at a smaller
scale map by adding in more points from pieces at lower levels. The partitioning and the
total ordering enable efficient retrieval of points to generate a simplification based on a given
resolution. The term resolution here refers to the units per pixel when displaying a map onto
a screen. Let us look at an example. Assume a geometric object is denoted by a polyline in
Figure 2. This polyline is denoted by a sequence of 11 points, where P1 and P11 are (125,306)
and (189,306), respectively. In a large scale map, every detail of this object may be required
to be displayed. However, in a small scale map, say when the resolution is larger than half its
width, displaying every detail becomes unnecessary. Instead, certain subset of points should be
selected and displayed with no visual difference than if all points were used.

As an illustration, let us partition the points into two sets:{ P1, P4, P8, P11} and {P2, P3,
P5, P6, P7, P9, P10}, with the first set at the highest level. Given a resolution ¢ and assume
further that all points in the second set are within distance ¢ from the polyline formed by the
points in the first set. The simplification r generated with points in the first set is adequate and
thus the second set is not required. On the other hand, if there is some point in the second set
the distance of which from r is greater than or equal to ¢, we may want to generate the whole
object instead. This can be done by merging the two sets together, provided we keep track of
the position of points as in the original object.

Ms R-trees decompose and store geometric objects as multiple sub-objects in the main data
file. The data points in the sub-objects partition points in the original object. This is the same
as what the PR-file proposes. However, Ms R-trees differ from PR-files in other respects and

the differences highlight how Ms R-trees overcome some of the problems of PR-files.

10

(161324)

(147 3247

185 310
(1653169 (183410)

(160 3107

{125 306 £ 189 306

Il Iz T3 4 3 o 7 re s o I
64,00 14 14 1200 9000404 049614 z 126054 255744 505064 il

Figure 2: A polyline and the result returned by the MDP algorithm

Ms R-trees have the same index structure as their corresponding R-tree variants; they differ
only in the way objects in the main data file are stored. Thus, Ms R-trees are always height-
balanced. The insertion and deletion algorithms of Ms R-trees, compared to those of PR-files,
are much simpler and easier to implement. In a PR-file, objects that fall on the center line and
the center point of a map are taken care of in a different way. Ms R-trees do not have this
problem as all objects, no matter where they are, are treated in a uniform manner. Directory
entries in PR-files require the cell border be recorded as part of the entry. As this is not needed
in Ms R-trees, this implies fan-out of PR-file’s directory is lower than that of Ms R-tree’s.
Finally, we study the important problem of how to decompose objects into sub-objects and
give algorithms for their construction. We also perform extensive testing with real-life data to

verify the desirability and drawback of Ms R-trees.

3.1 Design Overview

We are primarily concerned with three kinds of geometric objects: points, polylines and poly-
gons. A point is denoted by (z, y) while a polygon and a polyline are represented by a sequence
of points in the form (vy,vs,vs,...,v,). The position of a point in a polygon or polyline is
called its sequence number.

The Ms Hilbert R-tree employs two techniques in cartography: selection and simplification.
Selection means that for a small scale map, some objects which are relatively unimportant will

not be displayed. In our case, the importance of an object is determined by its size relative to

11

the current resolution. Simplification means objects will be displayed with less detail in a small

scale map than in a large scale map.

3.1.1 Selection

A Reactive-tree selects objects based on an importance value assigned to each object. Objects
of high importance values are stored higher up in the tree and will be selected even in a small
scale map. In a Ms Hilbert R-tree, a simple technique is used to disqualify selection of objects.
If the M BR of an entry in an index node is less than or equal to certain threshold, the search
on that subtree is terminated and a point centered at the M BR is returned. This simple and
inexpensive technique achieves the objective desired. As this technique will benefit the retrieval
and display of objects and is easily adaptable to Hilbert R-trees with no cost, it is incorporated
into the Hilbert R-tree in the experiments conducted in Section 4. To distinguish it from the
original Hilbert R-tree, let’s call this index structure the Hilbert R-tree with selection. Thus the
experimental result reported in this work is for Ms Hilbert R-trees and Hilbert R-trees with
selection. From now on, to simplify the notation, we refer to the Hilbert R-tree with selection

as just the Hilbert R-tree.

3.1.2 Simplification

Ms Hilbert R-trees use a modified version of the Douglas-Peuker algorithm to simplify polylines
and polygonal objects. In section 2.1, there is a description of the Douglas-Peuker algorithm.
The algorithm takes a polyline, or a polygon, and a tolerance distance to compute a simplified
line, or a simplified polygon.

The Douglas-Peuker algorithm is simple and easy to use, but it may not be efficient for
some applications. For instance, in the case where we want to compute simplified lines for a
polyline over a set of tolerance values, we will have to run the algorithm once for each tolerance
value. Given that the algorithm has the worst case running time of O(n?), it is not efficient for
such an application.

The Modified Douglas-Peuker (MDP) algorithm below takes a polyline object and returns
an array ID. D has the same size as the number of points in the polyline P. Each value D[i] in
the array D represents the largest tolerance value where the point P; will be selected. Thus, to

obtain the simplified version of P for a tolerance value ¢, the algorithm only needs to select each

12

point P; in P where D[i]>t. Hence, once the array D is obtained, we can use it to compute a

simplified line for any scale. There is no need to re-run the Douglas-Peuker algorithm for each

scale. The function of MDP is similar to that of BLG-tree except that a tree is not needed.
Figure 2 shows a polyline and the array returned by the MDP algorithm.

Algorithm MDP (P, D, s, e, p)

Input: A sequence (P1...P,) of points representing a polyline P. D is the array storing the

computed tolerance for each point in the sequence. When this is called, D[s| and D|e] have

been computed. We want to compute the tolerance values for those points in-between P; and

P.. p is the maximum perpendicular distance from the previous call.

bOutplut:tAdn array D) which stores the largest tolerance values from which the points in P will
e selected.

Method: The algorithm will recursively divide a polyline into two pieces by the point which is

the furthest away from the segment (P, P¢). If P; is the point which is the furthest away from

the line with a perpendicular distance of dis, D[i] will be the lesser value of dis and p.

1. For each point, P;, where s > ¢ > e, calculate the perpendicular distance from P; to the
line segment (Ps, P.).

2. Let P,,,;4 be the point which has the greatest perpendicular distance dis to the line segment
(Ps, Pe).

Let D[i] = min(dis,p) and set p — min(dis,p).
If mid > s+ 1, call MDP (P, D, s, mid, p).
If mid < e — 1, call MDP (P, D, mid, e, p).

S oo W

Return.

For a polyline P, the first and last points are assumed to be the most important and are drawn
whenever P is displayed. The tolerance value assigned to these two points is the maximum
distance max between any pair of points in the sequence. The tolerance values for other points
are computed by calling MDP(P, D, 1, n, max), where P is assumed to have n> 2 points.
Given a tolerance t, the simplification r returned by the MDP algorithm consists of those
points P; such that D[i|>t. If t>mazx, no point is returned by the MDP algorithm. This is
different from the Douglas-Peuker algorithm where the first and last points are always returned.
If t<max, r enjoys the same property as the simplification returned by the Douglas-Peuker

algorithm.

Lemma 3.1 Let t<max and let r be the simplification returned by the MDP algorithm. For
each point P; in P, there is a segment q in r such that the perpendicular distance of P; from q

is less than t.

13

[Proof]: Define a binary tree of segments as follows. The tree is constructed by tracing the
recursive calls on the algorithm MDP. If P,,;4 is the point chosen in step 2 of MDP algorithm for
the segment (Pg, Pe), then (Ps, Piniq) and (Poniqg, Pe) are the sons of the (Ps, Pe) in the binary
tree. Define the assigned tolerance for segment (Pg, P.) in the binary tree be the minimum of
D|s] and Dle|. The assigned tolerance will determine if the segment is in the simplification.

Given a tolerance ¢, the simplification returned by the MDP algorithm is precisely the set
of lowest segments in the tree with assigned tolerance greater than or equal to t. Let us show
that the simplification is in fact within ¢. Clearly every point in the simplification is within ¢.
Let P; be a point in P but not in the simplification. That is, D[j|<t. Then there exists the
lowest ancestor edge (Ps, P.) such that s > j > e and its assigned tolerance is just greater than
or equal to t. Such an ancestor segment guarantees to exist. The segment (Pg, P.) is in the
simplification. The sons of (Ps, P.) have an assigned tolerance t', where t'<t¢. By step 1, the
perpendicular distance of P; from (Ps, P¢) is less than or equal to ¢'. Thus, P; is within the
tolerance t. O

For a polygon P, simplifications are generated as follows. A pair (s, €) of vertices the distance
of which is the largest among all pairs of vertices is first determined. Let the maximum distance
be max. P is retrieved only if the resolution is less than or equal to maz. Two sequences of
points from P, one that starts with s and ends with e and the other that starts with e and ends
with s, are constructed. The tolerance values for the first and last points in both sequences are
initially assigned with maz. The tolerance values for the rest are computed by calling MDP

twice with the two sequences as the input.

3.2 Data Organization and Algorithms
3.2.1 Data Structures

A Ms Hilbert R-tree is exactly the same as a Hilbert R-tree except that a data object may not
be stored as one object. A Ms Hilbert R-tree of k scales if geometric objects in the file are
stored in k scales. The k scales are defined by k ranges of values and are totally ordered with
the highest level as level 1.

For a Ms Hilbert R-tree with k scales, where k> 1, the tolerance values for each scale is
defined by k-1 numbers: t[1],...,t[k —1] where ¢[1] > [2] > ... > t[k—2] > t[k—1]|. The ranges
for k scales are [t[1],00), [t[2],t[1]) ,..., [0, t[k — 1]), respectively. The scale or range [t[1],o0)

14

is said to be the highest or the first while [0, t[k — 1]) is the lowest or the k. A point is said
to be in one of the k scales if its computed tolerance value falls into the corresponding range.
A Ms Hilbert R-tree of 1 scale is precisely the Hilbert R-tree. In a Ms Hilbert R-tree, vertices
of an object are organized according to the given k scales. The scales must be specified before
an index tree and a data file are constructed.

The MDP algorithm will run once for every polyline or polygonal object. The result will
be stored in an array denoting the (largest) tolerance value for each point in the object. For
each point P;, it is assigned to a scale in which D]i] belongs. For example, if the polyline P in
Figure 2 is going to be stored in a Ms Hilbert R-tree of 4 scales, and the tolerance ranges for 4
scales are defined by the following numbers: 100, 9 and 1, then the points are partitioned into
following sets, from the highest scale to the lowest: @, {P1,P4, P5, P8, P11}, {P2, P3,P7, P9,
P10}, {P6}.

Thus, in a Ms Hilbert R-tree of k scales, objects are stored as k sub-objects in the main file.
Or equivalently, objects in the file are said to be stored in & scales. A sub-object is denoted by
a tuple (pts, seq#, next, scaleFExist), where pts and seq# are arrays of points and sequence
numbers, respectively. They are of the same size and are the points of the sub-object and their
sequence numbers. next points to the sub-object in the next level. scale Fxist is a boolean
array of size k indicating which scale is empty. scaleFEzist is non-empty exactly at the highest
level. It is used in retrieval to determine if the next, if it exists, points to which lower scale. It
is worth noting that the highest level sub-object always exists even if there is no point in the
sub-object as it always contain a non-empty scale Fxist.

Given a tolerance value or resolution ¢, to generate the simplification of an object within
t, determine the scale s in which ¢ is in and retrieve all non-empty sub-objects in s and its
higher scales. Once they are retrieved, the points are merged to obtain the simplification. Let
us illustrate with the polyline P above. Suppose the current resolution is 5. As 5 falls into
the third scale, then the sub-objects in the first, second and third scale of P are retrieved.
The simplification obtained contains all points except point P6. To facilitate the retrieval, the
k sub-objects are stored in different files and they are linked together as a single linked list.
Figure 3 shows a leaf node of the index in a Ms Hilbert R-tree of 3 scales and its data pages

that store the geometric objects.

15

El_| Ez Es
‘ | | ‘ | ‘ | 4 Leaf Node

L |] | e

| ‘ ‘ ‘ ‘ Scale 2

| ‘ | ‘ ‘ Scale 3

Figure 3: A leaf node and its data pages

3.2.2 Scales Selection

The effectiveness of a Ms Hilbert R-tree depends on the simplification algorithm used and the
choice of scales. The choice of scales depends on many factors such as screen size, characteristics
of objects in the thematic map as well as the scale in which they were digitized. Thus, the major
problem of using the Ms Hilbert R-tree (in fact, the same for PR-file) is to find a general and
simple rule for determining the scales that can store and retrieve objects efficiently. Extensive
experiments have been performed on a set of thematic maps. A general and simple heuristic
is found and is described in Algorithm ScalesGeneration. We are going to demonstrate its
effectiveness in Section 4.

Given a set of objects in a thematic map, there are many ways to partition points in objects
into different scales. Objects in the same file could be stored in the same scales or in different
scales. However, as objects in a window query are going to be displayed in the same scale,
partitioning objects according to the same scales would be a better choice in general. Other
important factors are the average number of segments in an object, the average object size and
the resolution at mazpack. The average number of segments, denoted as segment,ymper is just
the average number of segments of an object in the thematic map. The average object size,
denoted as 0bjg;i,. is just the average width of an object in the thematic map. Let the screen
size to display the map be of certain size, say w*h, measured as units of pixels. Define mazpack
as the operation to display all objects in the map, with area size mw*mh units, onto the screen
so that no more zoom out operation is allowed. Intuitively, the result of mazpack is the smallest

scale map for the objects involved. Then the resolution at mazpack, denoted as res;,qzpack is

16

defined as the maz{mw/w, mh/h}.

Algorithm ScalesGeneration (segment,ymper,0bjsizes T€Smazpack)

Input: segment,ymper is the average number of segments in an object, 0bjg.. is the average
width of an object and res;azpack 1s the resolution when maxpacking all objects in the thematic
map.

Output: k-1 numbers define the k scales for the Ms Hilert R-tree for a thematic map.

Method: A general and simple heuristic for determining k scales for a Ms Hilbert R-tree. First
decide the number of levels needed. Then find the ranges of values.

1. Determine the number of scales for the thematic map as follows: If the segment,mper <
6, just store it as a Hilbert R-tree and return null. If 10 >segment ymper = 7, the number
of scales is 3. If segment, mper > 10, set the number of scales to 4.

2. Having determined the number k of scales, find the scales as follows. As indicated in
subsection 3.2.1, k scales are defined by k-1 numbers and they are determined as follows:
Let quotient be min(objsize, r€Smazpack)- The initial quotient value denotes the resolution

of the smallest scale map in which an object is displayed. Repeatedly divide quotient by
4 to obtain the k-1 numbers. Return the k-1 numbers.

For instance if min(objsize, r€Smazpack) — 100, then the 4 scales are defined by the following
3 numbers: 25,6.25,1.5625.

This algorithm is used in Section 4 to construct the Ms Hilbert R-trees in our experiments.

3.2.3 Algorithms

The insertion and deletion algorithms are very similar to those in the Hilbert R-tree. The main
difference is the way geometric objects are stored in the main data file. In a Ms Hilbert R-tree
of k scales, objects are stored in k scales. Thus, objects are first decomposed into k sub-objects
and insert into the k scales before the index entry is created and inserted.

Insertion and deletion

Algorithm Insert (O)

Input: O-the geometric object that is inserted into a Ms Hilbert R-tree of k scales.

Output: The main data file and the index are updated.

Method: O is first decomposed into at most k sub-objects. The sub-objects are inserted from
the lowest scale to the highest. The highest scale always contains a non-empty sub-object with
a Boolean array scaleFEzist indicating which scale has a non-empty sub-object. Except for the
highest scale, a sub-object is empty if it has zero point.

1. Decompose O into at most & non-empty sub-objects. Points in sub-objects are partitions
of points in O. Points in O are partitioned by first computing the tolerance value for each
point using the MDP algorithm. Depending on the type (either polyline or polygon),

oints are gartitioned into the given k scales according to the algorithm outlined in
ection 3.1.2.

2. Insert the non-empty sub-object starting from the lowest level to the highest so that next
in a sub-object points to the non—em?cy sub-object at the next scale. Let p be the pointer
to the sub-object at the highest level.

3. Insert the leaf entry (p, mbr) into the index, where mbr is the M BR for the object O.

17

The insertion algorithm into the index is the same as in the Hilbert R-tree. The deletion
algorithm is similar to the insertion algorithm.
Searching

The searching algorithm in the Ms Hilbert R-tree is similar to the searching algorithm of
the Hilbert R-tree, except that it accepts one more parameter res. The parameter res is the
resolution of the current display. In our implementation, the threshold for selection in leaf and

2

non-leaf entries are set to 2*res? and 4 * res?, respectively.

Algorithm Search (N, rect, res)

({lnpiit: N is a node in the index, rect a query window and res the resolution in the current
isplay.

Output: Retrieve simplifications of objects that intersect with rect. The simplification returned

is within the tolerance res.

Method: Apply the selection technique to index tree. Then search the qualified leaf entries and
only retrieve those sub-objects that are within the res from the main file.

1. For each entry in node N, if the M BR < threshold, the entry is disqualified and a point
at the entry of the M BR is returned.

2. Recursively call search for those nodes pointed at by the qualified non-leaf entries.

3. For those qualified leaf-entries, retrieve the sub-objects at scale ¢ and up, where 7 is the
S(lz)a.le in which res is in. Merge points in sub-objects retrieved and return the simplified
object.

4 Performance Evaluation

In this section, we are going to evaluate the performance of the Ms Hilbert R-tree against the
Hilbert R-tree. The comparison will be based on various categories, including the response time,
the total number of segments drawn, the total number of bytes read from the secondary storage
and the number of seeks. As both trees use the same selection technique, the number of points
drawn is the same in both case.

A number of randomly generated window queries are used in the experiments. Response
time is the total time for each window query. This includes the time for searching the index,
retrieving objects from the disk and drawing objects onto the display. As the response time
could be influenced by factors outside our control, in all experiments, two identical tests were
conducted and the average is taken as the response time. Total number of segments drawn is
the total number of line segments drawn for each window query. The number of bytes read from
the secondary storage is the total number of bytes read from the main data file. The number of
seeks is the number of times objects in the main data file are retrieved back to main memory. If

geometric objects are stored as atomic objects and if no selection is performed, the number of

18

seeks in a window query is the same as the number of objects intersected by the window query.
However, for Ms Hilbert R-trees where simplification and selection are used, this represents the

number of secondary accesses to the main data file.

Data Set Twype Fo. of Ave no. Sizeas Construction
Objects of Tezt Time

Gegments | File(in [in sec.)
Mbytes) [HRT | s
HET
Building Polyzon 2804 003 2097 423 f5.9
F.oads Poldine 13580 11.15 331 221 1123
Dirainage Poline 15610 27 1329 1203 2905
YW egetation Polygon 4579 21 123 T4 340 .4

Figure 4: Test Data Sets Information

DataBet File Bize
(in Lltwytes)
Building 142
Road 1332
Drainage 7.01
Vegetation 376

Figure 5: Hilbert R-tree Data File Summary

We implemented both Hilbert R-tree and Ms Hilbert R-tree, as well as a display program
with zoom and pan operations in Java. All experiments are run with Sun’s Java Workshop
2.0 on a 300MHz PII 96 Mbyte memory machine under Window 95. As the index structures
are the same in both trees, they are made main-memory resident all the time. The geometric
objects are retrieved from the disk whenever they are needed. There is no buffering on the

main data file.

4.1 Test Data

The four sets of real-life data used in the experiments are provided by the Faculty of Environ-
mental Studies of the University of Waterloo. The area covered has the size of 60000 * 57000
units. These data sets correspond to different thematic maps on the Region of Waterloo and

they are:

1. Building: Buildings in the Waterloo Region.

19

Diata Set Aove, Hrales File Bizein File Bize
Ohject Warious (i
Width Scales Mltrrtes)
(it Mlkeited)
Building 40 10 n.o 2.11
2.5 055
] 066
Road 6350 15 097 30
4 032
1 058
1] 203
Dy aitiage a8 15 148 200
4 115
1 212
1] 424
Wegetation 2628 15 neg 6.9
4 1.09
1 171
1] 3.11

Figure 6: Ms Hilbert R-tree Data File Summary

2. Road: The road system in the Region. It includes all major highways, main as well as

side streets.

3. Drainage: The waterways in the region. It includes streams, creeks, rivers and lakes in

the region.

4. Vegetation: Various types of vegetation in the Region.

Information on these data sets are summarized in Figure 4. These data sets include both
polylines and polygons and have distinct characteristics. The building data set is relative small
and simple and has the lowest average number of segments while the drainage and vegetation
are large and complex data sets. The road data set is somewhere in-between the two extremes.
The construction time is the time in building the index tree and the main data file from the
raw data file. The raw data file is a text file recording the coordinates of points in objects. A
disadvantage of Ms Hilbert R-tree is the insertion cost. As shown in the figure, the time to
construct a Ms Hilbert R-tree in Java ranges from 50% more to 300% more compared with a
Hilbert R-tree. The construction time increases with the average number of segments in an

object. This is primarily due to the higher cost in running the MDP algorithm to obtain the

tolerance for each point.

20

For the Hilbert R-tree, the main data file is summarized in Figure 5. For the Ms Hilbert R-
tree, the scales are generated with the scalesGeneration algorithm in Section 3.2.2. The display
window size is 1000*800 pixels. Thus when maapacking a map, the resolution (resmozpack) is
about 72 unit per pixel. The information is summarized in Figure 6. The average width is
obtained by randomly sampling 500 objects from the corresponding file. A Ms Hilbert R-tree
incurs some extra storage cost when compared to a Hilbert R-tree. The total storage is about
20% to 50% more. The extra storage is due primarily to storing the sequence number of points
in various scales as well as pointers to the next scale. Note that all these files are stored in

binary format, not in text format.

ey Set Lo Of Size Range
Cueries (as a fracton
of the whole
map]
251 a00 0005 1o oM
D52 200 002 to 0l
55 100 01 to 0333
254 a0 02101
1355 20 N3 ta 25
58 30 dtad
57 20 Stol

Figure 7: The Query Sets

4.2 Correctness Tests

To verify the correctness of the Ms Hilbert R-tree, it is first compared visually with the Hilbert
R-tree in different scales to see if there are any noticeable differences. The resolution passed into
the window query algorithm is the current display resolution. There is no noticeable difference
that we can detect when we pan and zoom the two maps. Some snapshots in various scales are

shown in Figures 22, 23 and 24.

4.3 Test Queries

To evaluate the effectiveness of a Ms Hilbert R-tree, a number of window queries of various
sizes are randomly generated. To facilitate the presentation, these queries are grouped into

seven query sets denoting queries of various sizes. The query sets are summarized in Figure 7.

21

Building

--#- Ms HRT CPU Time --a - Ms HRT Bytes Read --¢-- Ms HRT # Segments
—— HRT CPU Time —— HRT Bytes Read —— HRT # Segments

1000000
100000
10000
1000
100 -
10
1
10 82 382 930 2469 3851 5459
- - ¢- - Ms HRT CPU Time 46 130 409.5 687.5 1735 13975 1451
- - &~ - Ms HRT Bytes Read | 2060 12169 49170 86224 152668 | 185439 | 166524
- - ®- - Ms HRT # Segments 93 554 2258 3910 7040 8547 7869
——HRT CPU Time 2 94 362 7545 13955 1822 1958
—4—HRT Bytes Read 1567 12194 58100 134334 | 257913 | 337497 | 325408
—&—HRT # Segments 93 726 3466 8024 15481 20274 19674

Ave. No. Of Objects Per Query

Figure 8: Building Data Set Results

The Size Range column records the range of the sizes of queries in the set as a fraction of the
area covered by all objects in these thematic maps. These query sets represent large window
queries (QS7) to small window queries (QS1). In general, a smallest window query, on average,
intersects up to a dozen of objects whereas a large window query could encompass half of the

total area.

4.4 Results

The test results on the four data sets are shown in Figure 8, 9, 10 and 11. The results for
Hilbert and Ms Hilbert R-tree are showed in the graph as solid and dotted lines, respectively.
The diagrams summarize results on response time, number of bytes read as well as number of
segments drawn onto the display. The x-axis represents an average window query in each query
set. The number shown on the x-axis is the average number of objects that intersect with a

window query in the set. As the query sets represent a smallest to a largest window query on

22

Road

-4 - MsHRT CPU Time --a - Ms HRT Bytes Read --o-- Ms HRT# Segments
——HRT CPU Time —a— HRT Bytes Read —e—HRT # Segments

10000000
1000000
100000
10000
1000
100
10
1
19 121 652 1469 4405 6698 9237
- - #- - MsHRT CPU Time 52 149.5 626 10215 22115 3209 3938
- -4 - Ms HRT Bytes Read | 3334 11562 52889 92693 209839 305973 358696
--®- - Ms HRT# Segments | 150 473 2100 3666 5000 12151 14359
——HRT CPU Time 4.5 178.5 7575 1513 3836 5677 7465.5
—4—HRT Bytes Read $92 26741 141726 281108 738735 1119197 | 1433736
—&—HRT # Segments 278 1618 8579 16999 44704 67852 87029

Ave. No. Of Objects Per Query

Figure 9: Roadway Data Set Results

these thematic maps, these graphs show how a Ms Hilbert R-tree performs compared with a
Hilbert R-tree over all possible window queries. It is worth noting that the y-axis of all graphs
are in logarithmic scale. There are several general observations made on these results.

Firstly, except for some cases where the window query size is small, the Ms Hilbert R-tree
performs consistently much better than the Hilbert R-tree. Secondly, the curves in the Ms
Hilbert R-tree plateau off much faster than the Hilbert R-tree. Lastly, the improvement is most
impressive with vegetation and drainage data sets, followed by road and then by building data
set.

Let us now look at the numbers more closely. Figure 12 shows the ratio of number of bytes
read by an average query with a Hilbert R-tree to that of a Ms Hilbert R-tree. This represents
the number of bytes read by a Hilbert R-tree for a byte read by a Ms Hilbert R-tree in an
average query. Figures 13 and 14 show the same ratio for number of segments drawn and

response time, respectively.

23

Drainage

--#- Ms HRT CPU Time --a-- Ms HRT Bytes Read --o-- Ms HRT # Segments
—— HRT CPU Time —&— HRT Bytes Read —e—HRT # Segments

100000000
1000000
10000
100
1
19 182 561 1635 3366 5153 7728
- - ¢- - Ms HRT CPU Time 925 3345 745 1512 2150 30395 £77
--4-- Ms HRT Bytes Read | 8304 37024 88696 185064 263787 372463 474437
--®-- Ms HRT # Segments | 418 1765 4176 8601 12165 17230 71955
——HRT CPU Time 79 163 13465 3485 6663 93715 14192.5
—4—HRT Bytes Read 10591 88779 283819 755566 1510714 | 2313879 | 3439771
—&—HRT # Segments 653 5474 17351 46670 93407 143176 212946

Ave. No. Of Objects Per Query

Figure 10: Drainage Data Set Results

Except for the building data set with QS1, a Ms Hilbert R-tree has a better performance
with respect to bytes read and segments drawn in all queries and data sets. The performance
improves as the window query size increases. For number of segments drawn, a Hilbert R-tree
requires at least as many as in a Ms Hilbert R-tree and up to 9-10 times more in the worst
case. For number of bytes read, a Ms Hilbert R-tree again has a better performance except for
building data set with @S1. In that case, a Ms Hilbert R-tree requires to read about 33% more
than a Hilbert R-tree. In all other cases, a Hilbert R-tree requires up to 7 times the number
of bytes read by a Ms Hilbert R-tree. These results demonstrate the superiority of the Ms
Hilbert R-tree in minimizing data retrieved. The desirability of the Ms Hilbert R-tree is further
supported by results on response time, as shown in Figure 14. Except for)S1 on all data sets,
and for QS2 and)S3 on the Building data set, the time required to display an average window
query is longer with a Hilbert R-tree than with a Ms Hilbert R-tree. It ranges from 15% up to

4 times longer to display an average window query result with a Hilbert R-tree. It should be

24

Vegetation

--#- Ms HRT CPU Time --a-- Ms HRT Bytes Read --o-- Ms HRT # Segments
—— HRT CPU Time —&— HRT Byrtes Read ——HRT # Segments

100000000
1000000
10000
100
1
6 57 181 485 1075 1605 2411
- - ¢- - Ms HRT CPU Time 68.5 2015 $1.5 848.5 12425 1760 2337
- - &~ - Ms HRT Bytes Read | 10302 38013 931011 178029 262342 377000 483623
--®-- Ms HRT # Segments | 554 2000 4859 9718 13430 19317 24698
——HRT CPU Time 58.5 266 765 1907.5 4094 5936 8722
—&—HRT Byrtes Read 13032 88122 268366 682805 1446966 | 2211819 | 3317095
—&—HRT # Segments 811 5482 16693 2464 89980 137573 206335

Ave. No. Of Objects Per Query

Figure 11: Vegetation Data Set Results

pointed out that the time required to display smaller window queries is small (less than half a
second).

In a Ms Hilbert R-tree, objects are decomposed into a number of sub-objects to try to
reduce the secondary accesses. If objects are decomposed into more sub-objects, the amount
of data will be reduced but the number of seeks will increase. Thus the &k scales chosen will
severely affect the performance of a Ms Hilbert R-tree. Figure 15 shows the average number of
seeks per object retrieved in each query set. As expected, in a small window query where more
detail of an object is displayed, the number of seeks is much larger than one. For middle and
large queries, however, the number of seeks required by a Ms Hilbert R-tree is about or less
than one. The exceptionally small numbers in the large window queries for the Building data
set are primarily due to the selection technique employed in a Ms Hilbert R-tree and because
the building objects are small.

In sum, the Ms Hilbert R-tree has a better, and in some cases, significantly better perfor-

25

Chaery Set Building Foad Dyrainiage W egetation
21 0.7a 138 1.28 1.26
Qa2 1.00 2351 2.40 232
Qa3 1.18 268 3.20 288
254 1.56 303 408 384
] 1469 352 573 352
]l 1.82 366 f.2l 387
Qa7 195 4.00 725 686

Figure 12: Bytes Read Comparison

Chaery Set Building Foad Drainage W egetation
231 1.00 185 1.56 1.46
Q32 131 3.42 3.10 274
Q33 1.53 409 415 3.44
Q=4 205 464 543 441
Q335 2.20 204 Pl .70
D34 237 357 231 712
Qa7 2.50 06 Q70 2335

Figure 13: Number of Segments Drawn Comparison

mance than the Hilbert R-tree when displaying objects in various scales. The only cases where
the Ms Hilbert R-tree has a consistently worse performance is when the query window size
is small, such as those in query set)S1. As Q)S1 represents very small window queries, the
amount of data retrieved from the disk and the time to display such a small window is small.
Thus the extra cost required by the Ms Hilbert R-tree is negligible. On the other hand, as
window size increases, it takes much more secondary accesses and much longer time to display
objects; the saving with the Ms Hilbert R-tree is significant, especially when the map is dis-
played interactively. It is expected that the improvement is even more noticeable if the window

query result is shipped via a network.

4.5 Display Window Changed

The scales used in the experiments in the previous section is derived based on the assumption
that the size of the window display is 1000*800 pixels. A related question is how the change
in the window size affects the performance. Series of similar experiments were performed by
displaying the image onto a 500¥400 pixel window. The results are summarized in Figures 16, 17

and 18. The numbers in these figures show the ratio of response time, bytes read, segments

26

Chaery Set Building Fload Dirainage Vegetation
231 091 028 085 085
Q52 0.7 1.19 138 133
233 0.88 1.21 121 169
234 1.15 148 230 225
Q35 123 1.73 3.10 329
Q36 131 1.77 3.07 337
Qa7 137 1.90 332 3.73

Figure 14: Response Time Comparison

Chaery Set Building Foad Drainage W egetation
231 240 221 270 387
Q32 1.82 163 1.93 230
Q33 1.46 1 4% 1.59 209
Q=4 1.04 1.12 1.1% 1.59
Q335 0.a4d 0z1 0.&1 1.13
D34 0.49 0.7% 0.73 1.08
Qa7 0.2E 064 0.0 023

Figure 15: Number of Seeks per Object in a Query

drawn with the Hilbert R-tree to that of the Ms Hilbert R-tree.

The performance of the Ms Hilbert R-tree has improved slightly in these tests compared to
the case where the window size is larger. As discussed in the previous section, the Ms Hilbert R-
tree performs worse for small window queries. Or equivalently, the Ms Hilbert R-tree performs
worse when displaying a large scale map. This is due primarily to less simplification can be
done on the objects. When the display window size reduces by half, the resolution in a query
doubles. That is with the same window query, the map displayed is a smaller scale map when
displayed in a smaller window. Thus more simplification can be performed and fewer details
are shown. These all benefit the Ms Hilbert R-tree. Conversely it can be expected that when
the window size is made larger, the performance of the Ms Hilbert R-tree will degrade slightly.
Nevertheless, it can be expected that the Ms Hilbert R-tree is still a better choice for displaying
geometric objects in a spatial database even if the display window size is double in size. The
change in size of display window does not seem to have a significant impact on the Ms Hilbert

R-tree performance.

27

Chaery Set Building Fload Dirainage Vegetation
231 0.88 0.9z 092 1.06
Q52 1.05 1.29 1.57 1.20
233 1.18 1.56 257 3.03
234 132 171 333 363
Q35 128 192 3.34 3.58
Q36 137 2.20 388 383
Qa7 1.36 224 391 4.08

Figure 16: Response Time Comparison for a 500*400 pixel Window

Chaery Set Building Foad Drainage W egetation
231 0EE 191 1.55 1.54
Q32 1.2%8 273 3.03 284
Q33 1.53 338 524 4823
Q=4 185 3 2d 627 f.10
Q335 191 4.1% 673 f.1g
D34 194 4 .56 FF3 £33
Qa7 2009 314 202 T .04

Figure 17: Number of Bytes Read Comparison for a 500*400 pixel Window

4.6 Whole Objects Retrieval

As the index of a Ms Hilbert R-tree is identical to a Hilbert R-tree, it can be used not only for
display purpose, but also for query processing in which the whole geometric object is retrieved.
In such an application, however, there will not be as efficient as using the Hilbert R-tree. To
retrieve the whole object in a Ms Hilbert R-tree, the resolution or tolerance passes into the
query must be set to zero. This forces the search algorithm to retrieve the whole object.

Figure 19 summarizes the retrieval time (but not display) whereas Figures 20 and 21 com-
pare the number of bytes read from the secondary storage and the number of seeks performed,
respectively. The time denote the ratio of the average time in retrieving objects in a window
query using a Ms Hilbert R-tree to that of using a Hilbert R-tree. Similarly for number of bytes
read and the number of seeks.

In general, the time in retrieving the whole object in an average query using a Ms Hilbert
R-tree ranges from 50% more to 115% more when compared to a Hilbert R-tree. The amount
of data read from disk is about 15% to 32% more than a Hilbert R-tree. The number of seeks
performed in a Ms Hilbert R-tree is s times that of a Hilbert R-tree, where s is less than

the scale of the tree. The larger the average size of objects in a thematic map, the closer s

28

Chaery Set Building Foad Dyrainiage W egetation
21 115 275 1.93 1.79
Qa2 168 4132 396 338
Qa3 2.00 517 a.ee 594
254 2.40 586 839 740
] 2.44 651 802 747
]l 2.48 f.86 10.22 241
Qa7 257 T haE 10.52 252

Figure 18: Number of Segments Drawn Comparison for a 500*400 pixel Window

is to the scale of the tree. All road, drainage and vegetation objects are of scale 4; and the
average number of seeks to retrieve the whole object increases with the average size of these
thematic maps. This is due to the fact that the number of empty sub-object in the main data
file decreases as the average size of the object increases. Recall that some of the k sub-objects

of a geometric object could be empty in a Ms Hilbert R-tree.

Duery Set Building Road Dt ainage Vegetation
a1 1.20 1.83 1.74 1.50
Qa2 2035 2.16 1.26 1.58
Qa3 203 203 191 1.57
Q54 1.00 203 2.04 1.53
Qa5 1.91 207 2.15 1.53
QE6 1.04 1.94 1.04 1.36
Qa7 1.84 1.93 1.91 1.57

Figure 19: CPU Time Comparison for Whole Object Retrieval

ety Det Buil ding Road Draitiage YV egetation
251 1.31 125 1.20 1.15
2 1.32 127 1.21 1.14
B 1.32 127 1.20 1.16
224 1.32 127 1.30 1.14
255 1.31 127 1.21 1.16
a6 1.32 127 1.21 1.14
287 1.32 127 1.21 1.16

Figure 20: Number of Bytes Read Comparison for Whole Object Retrieval

29

Chuery Get Building Foad Dirainage Wegetation
51 240 268 337 433
N 285 269 335 3585
33 462 267 3.3 385
0354 262 264 3.32 394
35 24l 262 3.31 393
S]] 262 283 3.30 394
a7 262 283 3.30 394

Figure 21: Number of Seeks Comparison for Whole Object Retrieval
5 Conclusion

We proposed a fully dynamic spatial indexing structure which is able to store and display
geometric objects in different scales with no data duplication. The new indexing structure is
a generalization of the R-tree family called the Multi-scale R-tree (Ms R-tree). The Ms R-tree
uses two techniques in cartography: selection and simplification. Selection means some objects
which are relatively small will not be displayed. This is basically accomplished by setting a
threshold on the size of M BR’s in the index. Simplification means objects will be displayed in
less detail in a small scale map. Simplification is realized with a line simplification algorithm
and by partitioning points in an object into one or more levels.

A major obstacle in using a Ms R-tree is how to decide on the number as well as the scales
used. To evaluate the proposed index structure, we implemented both the Hilbert and the
Ms Hilbert R-tree in Java and tested with a number of real-life thematic maps. FExtensive
experiments were then performed on the Ms Hilbert R-tree and an algorithm for constructing
scales for a thematic map was proposed in this work. The algorithm is simple and yet seems
to be general enough for a wide variety of thematic maps. For the real-life data tested, the
suggested scales perform consistently well over all but small window queries. The Ms Hilbert
R-tree is particular valuable when the map and/or the number of segments or points in a
geometric object is large. It is interesting to see if this algorithm is applicable to the PR-file as
well.

One drawback of the Ms Hilbert R-tree is its high insertion cost, which could range from
50% more to several time more than the Hilbert R-tree. The insertion cost increases with the
number of segments per object in a thematic map. As a Ms Hilbert R-tree has the same index as

in a Hilbert R-tree, it can be used in spatial query processing [4, 18]. However, our experiments

30

show that it requires up to a third more data retrieval and could take twice as long to retrieve
an object than a Hilbert R-tree when implemented in Java. If efficient spatial query processing
is an important requirement, data duplication may be required. A related question is if and
how the scale information stored in a Ms R-tree be used in refinement and/or evaluation steps

in spatial query processing.

31

References

1]

2]

[15]
[16]

[17]

Becker, H-W Six and Widmayer, P., “Spatial priority Search: An Access Technique for
Scaleless Maps,” Proceedings of 1991 ACM SIGMOD, Denver, Colorado, pp. 128-137.

Beckmann, N., Kriegel, H.P., Schneider, R. and Seeger, B. “The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles.” Proceedings of ACM SIGMOD
International Conference on Management of Data, Atlantic City, NJ, pp. 322-331, 1990.

Bos, J. Van Den, Naelten, M. Van, and Teunissen, W., “IDECAP interactive pictorial
information system for demographic and environmental planning applications,” Computer

Graphics Forum, 8, 1984, pp.91-102.

Brinkhoff, T., Kriegel, and Seeger B., “Efficient Processing of Spatial Joins Using R-Trees,”
Proceedings of ACM SIGMOD, Washington, D.C., 1993, pp.237-246.

Douglas, D.H. and Peucker, T.K., “Algorithms for the Reduction of Points Required to
Represent a Digitized Line or its Caricature,” Canadian Cartography, Vol. 10, 1973, pp.
112-122.

Horhammer, M. and Freeston, M., “Spatial Indexing with a Scale Dimension,” Proceedings
of Symposium on the Design and Implementation of Large Spatial Database, Hong Kong,
China, pp. 52-71, 1999.

Gaede, V. and Gunther, O., “Multidimensional Access Methods,” ACM Computing Sur-
veys 80(2), June 1998, pp. 170-231.

Guttman, A., “R-trees: A Dynamic Index Structure for Spatial Searching,” Proceedings of
ACM SIGMOD International Conference on Management of Data, Boston, Ma.,1984, pp.
47-57.

Hutflesz, A. Six, H-W, and Widmayer, P., “The R-File: An Efficient Access Structure for
Proximity Queries,” Proceedings of IEEE 6th International Conference on Data Engineer-
ing, Los Angeles, CA, 1990, pp. 372-379.

Kamel, I. and Faloutsos, C., “Hilbert R-Tree: An Improved R-Tree Using Fractals,” Pro-
ceedings of 20th VLDB, Santiago de Chile, Chile, 1994, pp. 500-509.

Marino, J.S., “Identification of Characteristic Points Along Naturally Occurring Lines: An
Empirical Study,” Canadian Cartography, Vol. 16, pp. 70-80, 1979.

McMaster, R.B., “The Geometric Properties of Numerical Generalization,” Geographical
Analysis, Vol. 19(4), pp. 330-346, October 1987.

Monmonier, M.S., “Towards a Practical Model of Cartographic Generalization,” Proceed-

ings of Auto Carto, London pp. 257-266, 1986.

Oosterom, P.V. and van den Bos, J., “An Object-Oriented Approach to the Design of
Geographic Information Systems,” Proceedings of Symposium on the Design and Imple-
mentation of Large Spatial Database, Santa Barbara, CA, pp. 255-269, 1989.

Oosterom, P.V., “The Reactive-tree: A Storage Structure for a Seamless Scaleless Geo-

graphic Database,” Proceedings of Auto-Carto 10, pp. 393-407, 1991.

Oosterom, P.V., Reactive Data Structures for Geographic Information Systems, Oxford
university Press Inc. 1993.

Oosterom, P.V. and Schenkelaars, V., “The development of an Interactive multi-scale GIS,”
International Journal of Geographic Information Systems, 1995, pp.489-507.

32

[18] Roussopoulos, N., Kelley, S. and vincent, F., “Nearest Neighbor Queries,” Proceedings of
ACM SIGMOD, San Jose, CA, 1995, pp.71-79.

[19] Sellis, T., Roussopoulos, N and Faloutsos, C., “The R"-tree: A Dynamic Index for Multidi-
mensional Objects,” Proceedings of the 13th International Conference on VL DB, Brighton,
England, 1987, pp. 507-518.

[20] White, E.R., “Assessment of Line-Generalization Algorithms Using Characteristic Points,”
American Cartographer, Vol. 12(1), 1985, pp.17-27.

33

+ HRTree: Spatial database
File Options

Figure 22: Hilbert & Ms Hilbert R-tree Maxpack on Road and Building
34

« HRTree: Spatial datahase

N ‘1"*

o o
eed

|Zoom Sp :

Figure 23: Hilbert & Ms. Hilbert R-tree Zoom in on Road and Building
35

+ HRTree: Spatial database [1]
File Options

J

i axpack |Zoom Speed:

] o

Zoom Out | Il 3xpack |Znom Speed: g

Figure 24: Hilbert & Ms Hilbert R-tree Further Zoom in on Road and Building
36

