Evaluating Tests for Input Stuck-at Faults in
Word-Oriented Static Random-Access Memories*

Piotr R. Sidorowicz

Department of Computer Science
University of Waterloo

Waterloo, Ontario, N2L 3G1
Canada

Abstract

An evaluation of well-known tests: MATs+, MATs++, MARCH Y
and MARCH C- with respect to input stuck-at faults in a n-word by
I-bit static CMOS random-access memory (SRAM) array is presented.
First, an SRAM cell’s behavior is analysed at the transistor-network,
event-sequence, and finite-state machine (FSM) level. Then, an input
stuck-at fault model for an SRAM is defined. We show that the word
oriented extensions of the above-mentioned tests detect reliably at most
znn‘:ﬁl -100% of faults in our fault model, which for large n constitutes
roughly 50% of faults. We propose a DFT enhancement that would
increase this coverage to 100%.

Keywords. CMOS, design for testability, fault modeling, MARcH C-,
MARcH Y, MATs+, MATs++, SRAM, stuck-at faults, testing.

1 Introduction

Word-oriented static random-access memories are well-known storage de-
vices. Though their bit densities are not nearly as great as those of DRAMs,
their speed and reliability makes them currently the proper choice for em-
bedding in larger ASICs. One application of this type of memory is the
implementation of the data field in caches.

*This research was supported by the Natural Sciences and Engineering Research Coun-
cil of Canada under grant No. OGP0000871.

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 2

In this report we investigate the testability properties of a word-oriented
SRAMs based on the cell shown in Figure 1(a).

The formal approach used in this report has been originally developed
for modeling faults in content-addressable memories (CAMs) [5], and it has
been successfuly utilized to evaluate exsisting CAM tests [6]. The input
stuck-at fault model, also introduced in [5], consists of any stuck-at fault
which affects the input lines of a memory cell.

The focus of this report is the evaluation of well-known tests, MATS+,
MaTs++, MARCH Y and MARCH C-, with respect to the input stuck-at
fault model of an n-word by I-bit SRAM. Here, we demonstrate that any test
that uses ‘read’ and ‘write’ operations can reliably detect at most 50% of the
faults in our fault model. We also show that MATsS+ has even worse fault
coverage. Finally, we propose a hardware modification that would allow for
100% fault coverage.

The remainder of this report is organized as follows: An analysis of an
SRAM cell’s behavior at the transistor-network, event-sequence and FSM
represenation levels is presented in Section 2. The fault model is presented
in Section 3. In Section 4 the MATs+, MATS++, MARCH Y and MARCH C-
tests are evaluated. A design-for-testability modification facilitating an im-
provement of the fault coverage is proposed in Section 5. Section 6 contains
some concluding remarks.

2 Analysis of an SRAM cell

The following behavioral analysis has been previously applied to CAMs.
Since an SRAM cell constitutes only the storage section of a CAM cell, a
simplified analysis is presented here.

2.1 Transistor-Network Level

The circuit of the cell is shown in Figure 1(a). It consists of two cross-coupled
CMOS inverters, differential bit lines (bit/bit) used for reading and writing
data into a column of cells, and a word select line (WL) that enables these
operations in a row of cells. In a quiescent state WL is driven low, the bit/bit
lines are driven high and the cell stores either 0 or 1. During a ‘write 1’ or
a ‘write 0’ operation, the bit/bit lines are driven to a true/complementary
representation of the desired bit value. Raising and then lowering WL stores
the bit in the cell. Changes of the cell’s state, when writing a 1 to a cell
containing a 0, for example, are a result of the dominant influence of stronger
pull-down transistors. (Weaker pull-up transistors maintain quiescent states

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 3

bit bit

=g
—-T|

_ word select (WL)

o> =-—
o> =-—

(a) (b)
Figure 1: (a) SRAM cell, (b) its model.

of the cell.) A ‘read’ operation is performed by isolating both bit/bit lines,
and then raising WL, thus causing one of the bit/bit lines to discharge. The
resultant voltage differential between the bit/bit lines is detected by sense
amplifiers that re-create the contents of the accessed word.

Altogether, three operations can be performed on a SRAM cell: ‘write 0,
‘write 1’ and ‘read’.

2.2 Event-Sequence Level

To model input stuck-at faults, we have to understand how they affect the
internal operation of the cell. Since no clock signal is supplied to individual
cells, a single SRAM cell can be viewed as an asynchronous sequential circuit,
whose behavior can be modeled by the finite-state machine of Figure 1(b).
Since bit/bit lines are used for both input and output in the circuit, they are
represented by separate variables in the model. For brevity we use b, b, w
for bit/bit, WL. Now, b and b are inputs and b and b are outputs. Although
WL is not usually meant to provide any output, monitoring the state of this
line, if possible, might improve the SRAM’s testability. For this reason, we
generalize our model to include this line; w for input, and @ for output.

The total state of the cell is defined by the values present on the input
and output lines of the cell, and by its internal state s. It is represented by
the 7-tuple: R

Cr = (w,b,b,s,w,b,b).

However, it turns out that in the correct cell, as well as in the presence of
input stuck-at faults, the output values are identical to those of the inputs;
hence, we omit them for simplicity. The simplified total state is symbolically

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 4

represented by C = w bb - s, where the input variables have been separated
by a space for readability and the symbol - has been inserted to separate
the input variables from the internal state.

The domain of each variable in state C is the set Y = {0,1,0,1,I}. The
values 0 and 1 represent lines driven to the logic values 0 and 1 respectively,
while 0 and 1 denote lines that were first discharged and then isolated (floated
low) or precharged and then isolated (floated high). Symbol I stands for an
intermediate logic value, which is caused in a CMOS circuit when both pull-
up and pull-down transistors simultaneously conduct. The SRAM cell has
two possible initial states: C =011-0and C =0 11-1.

Table 1: Read and write operations in a fault-free SRAM cell.

Read operations

(s=0) | (s=1)
Description w bb-s w bb-s
initial state 0110 0111
float bit/bit 01i-0 | 0111
raise WL 1110 1111
bit or bit discharges! 1010 1101
read bit/bit & lower WL | 0 01-0 0101
raise bit/bit 0110 | 0111

Write operations (s = 0)
wo w1
Description w bb-s w bb-s
initial state 0110 011-0
set bit/bit 0010 | 0100
raise WL 1 01-0 1100
new state 101.0 110-1
lower WL 0010 010-1
raise bit/bit 0110 | 0111
Write operations (s = 1)
wo wun

Description w bb-s w bb-s
initial state 0111 0111
set bit/bit 0011 | 0101
raise WL 1011 110-1
new state 101.0 110-1
lower WL 0 01-0 010-1
raise bit/bit 0110 | 0111

The behavior of a cell is represented by sequences of events that take
place during the three operations. Table 1 lists events that occur during

'There is a connection from bit to Vyq when s = 0 and from bit to Vyg when s = 1.
But this connection is through a weak p-transistor and an n-transistor, and drivers for the
bit/bit are not used. Hence, we still represent these cases as floating values.

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 5

these operations. By events we mean changes in the value of the total state
C'. The occurrences of these events are ordered from top to bottom. Note
that each operation starts in (top entry) and returns to (bottom entry) an
initial state.

Example: ‘Write 0’ operation.
Initial state of the cell: 0 11 - 1. First, b is lowered: 0 01 -1. Then w
is raised: 1 01-1. As a result, the state s changes: 1 01-0. Next, w is
lowered: 0 01-0. Finally, both b and b are raised: 0 11 - 0.

If it were possible to control any input and observe any output, testing
would be a trivial process: if a simple comparison of the state of each line to
its expected value were made, detection of any disagreement would indicate
a fault. Unfortunately, it is not possible to monitor any real circuit at this
level of detail and, thus, a more abstract model of an SRAM cell is needed.

2.3 FSM Representation Level

Most testing algorithms utilize sequences of ‘read’ and ‘write’ operations
as input, and observe the resulting output. Accordingly, we introduce a
sequential machine model of an SRAM cell. This model is derived from the
event-sequence model of Section 2.2.

We represent the behavior of a fault-free SRAM cell as an FSM, which
is shown in Figure 2(a). The input @ of this FSM comprises all three oper-

W
@ @m

(a) (b)

Figure 2: (a) Simplified behavioral model (b) Behavior of a fault-free cell.

X —* S R r/0

ations of a SRAM cell, and the output y comprises the responses to these
operations. State s represents the value stored by the cell. Formally, a
fault-free SRAM cell is a Mealy sequential machine M = (Q, X,Y,4,A),
where Q = {0, 1} is the set of states, X = {r,wg, w1} is the set of input
symbols, Y = {0,1,8$} is the set of output symbols, where $ is a formal
symbol denoting lack of output during ‘write’ operations, and the transition

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 6

function é and the output function A are defined by

q, ife=r,

6(g,z) =4 1, ifz=wy, and A(gz)= $. otherwise.

q, otherwise,

0, if z = wy, {

This FSM is depicted in Figure 2(b), where the symbol $ has been omitted
for clarity.

Example: For ‘write 1’ in state 0, §(0,w;) = 1 and A(0,w;) = $.

In an faulty SRAM cell FSM, the faulty set of states Q' = Q U {I}
and the faulty set of output symbols Y/ =Y U {I}, where I represents an
“indeterminate” logic value.

3 Input Stuck-at Faults in an SRAM cell

A event-sequence analysis has been performed for all six input stuck-at faults
under a single-fault assumption; these analyses are presented in Appendix A.
Subsequently, FSM models for each of these faults have been developed.
The resulting faulty SRAM cells are presented in Figure 3, where incorrect
operations and outputs are in bold type.

Example: ‘Write 0’ operation in the presence of the b-sa-0 fault. Initial
state: 0 10- 1. First, b is lowered: 0 00 -1. Then w is raised: 1 00 - 1.
Since both b and b are low, s becomes indeterminate: 1 00 - I. Next,
w is lowered: 0 00 - I. Finally, both b and b are raised: 0 10 - 0|1, and
eventually s becomes either 0 or 1.

From the event-sequence model we construct an FSM. In this example,
operations wy and r are incorrect, but w; is correct; hence we get
Figure 3(c).

The reader should note that the b-sa-0 and b-sa-0 faults increase the
state set () by the “indeterminate” state I. This state can be interpreted in
two ways. From the “asynchronous” perspective it represents a temporary,
metastable state, where the cell holds some indeterminate logic value. This
interpretation is important when dealing with multi-port SRAMs, where
simultaneous operations are possible. From the “synchronous” standpoint
it represents the loss of information about the current state of the cell, since
the outcome of metastable states is non-deterministic. In either case, state
I is not considered as an initial state.

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 7

Wy ,r/0
—
r/OC w @ W
% = ® @ m
* U 9
W Wo Wo, W
(a) (b)
w, r/1
T
@ Wo Qr/l
W\‘@g@ 0@ @
Wo) VgJW_L h <V\2

(c)

220
U

Wo, W

(d)

@:) 1/
()

Wo, W

(e)

Figure 3: Faulty behaviors of a SRAM cell: (a) b-sa-0, (b) b-sa-1, (c) b-sa-0,
(d) b-sa-1, (e) w-sa-0.

The comparison of each of the faulty machines to the fault-free SRAM
cell has led to the derivation of simple tests for four out of six possible faults.
We refer to the shortest test that detects a particular fault in a single cell as
an elementary test; these tests are essential to the detection of the associated
faults. Table 2 lists all the elementary tests for an SRAM cell.

These tests have been generated by the OBSERVER? program for all input
stuck-at faults except the w-sa-1 and the w-sa-0 faults. We refer to the faults
that are detectable in a single cell as independently testable.

The reader should note that in the presence of b-sa-1, b-sa-1 and w-sa-0
faults the ‘read’ operation produces an unreliable output, and also that in

2OBSERVER is a program for diagnosing and testing sequential machines. It is based
on the theory developed in [1] and was written at the University of Waterloo by C.-J. Shi;
additional features were later added by P. Kwiatkowski and P. R. Sidorowicz.

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 8

Table 2: Summary of input stuck-at faults and elementary tests.

Fault H Elementary Test | Faulty Response | Fault-Free Response

b-sa-0 w1T 0 1
b-sa-1 wiWoT 1 0
b-sa-0 woT 1 0
b-sa-1 WowW1T 0 1

w-sa-0 || not testable reliably

w-sa-1 || see Section 3.1.2

the presence of the b-sa-0 and b-sa-0 faults this operation changes the state
of the cell. For instance, in the last example a faulty wg forces the cell to
an indeterminate state I, whereas a good cell would remain in state 0. This
means that a faulty wy does not necessarily sensitize this fault. Fortunately,
the faulty r forces the cell to state 1 and provides a reliable faulty output 1.

The w-sa-0 fault is an instance of an address decoder fault A [3] or a
stuck-open fault [2]. Also, when started in state 0 (state 1) the w-sa-0 fault
is superficially similar to a cell stuck-at-0 (stuck-at-1) fault, however, the
key difference between these faults is that in the case of the w-sa-0 fault
the ‘read’ operations produce an indeterminate faulty output /. Memory
designers often claim that this indeterminate output is resolved preferentially
due to inherently unequal bias of sense amplifiers, and that this fault should
manifest itself as one of the cell stuck-at faults; we, nevertheless, regard this
input stuck-at fault as generally not testable.

The w-sa-1 fault FSM, is identical to that of the fault-free SRAM cell;
therefore, no test exists for a single cell. This fault, however, is a general-
ization of an address decoder fault D [3] (a multiple coupling fault), where
operations on any other word in the memory will affect the faulty word.
Therefore, this fault is detectable in conjunction with other words [3]; this
will be considered later. Consequently, the w-sa-1 fault is the only input
stuck-at fault that is not independently testable.

The b-sa-1 (b-sa-1) fault is similar to a cell unable to undergo the 1 — 0
(0 — 1) transition. This fault is detected by wiwor (wow;7).

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 9

3.1 Extension to n-word by 1-bit SRAM

We now consider an n-bit SRAM where each word consists of a single cell
(a bit-oriented memory). At this point, an assumption must be made about
the functionality of the peripheral circuitry in a fault-free SRAM.

1. The address decoder can raise at most a single word line. Conse-
quently, only one word can be written to or read from at any time.

We model the correct behavior of an n-word by 1-bit SRAM as a Mealy
sequential machine M = (Q, X,Y, 4, A), where Q = {0,1}", X = (Ui, 4i)
with 4; = {r, w},wi}, Y = {0,1,$} and the transition function § and the
output function A are defined by

. (¢*, ... cq"), ifm:wé,
5((q1,...,q1,...,qn),az): (¢4,...,1,...,¢"), ifz =i,
q"), otherwise,

and

. foife=1t
A(gh gy g™)2) =4 L -
((q) aq) aq),J)) { $, otherw1se.
The inputs 7*, w, w? denote the ‘read’, ‘write 0’ and ‘write 1’ operations
on word ?, respectively. As before, the output $ is merely a formal symbol
denoting lack of output.

3.1.1 The w'-sa-0 fault

As stated before, in the presence of a w*-sa-0 fault none of the cells along the
faulty word line can be written to, or reliably read. Moreover, no operation
on any of the remaining n — 1 fault-free words can sensitize the cells along
the faulty word line such that this fault could be detected. Therefore, in an
n-word by 1-bit SRAM, there are n possible w’-sa-0 faults that cannot be
reliably detected by any combination of ‘read’ and ‘write’ operations.

3.1.2 Testing the w'-sa-1 fault

As indicated earlier, w*-sa-1 is not independently testable and affects all the
cells along the faulty WL. However, this fault is detectable in conjunction
with another memory word in the following manner:

Assume w'-sa-1. Since word 7 is always accessed, a ‘read’ or ‘write’
operation may be applied to two words simultaneously. In this case, a ‘write’

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 10

operation is always successful for both words. On the other hand, the result
of a ‘read’ operation will be unreliable if the two accessed words contain
opposing values; this will not, however, disrupt the contents of either word.
A possible test is:

T

w-sa-1 = (wé)iw?(ri)(n—l)uwérn,

where 1 < i < n. The symbol ()* denotes n operations. These can be done
in order either from n to 1 or from 1 to n; hence the §. The symbol ()(»~1)41
denotes the direction of the march element: from n — 1 to 1. Initially, Os
are written into every word. If word u, where 1 < u < n is the faulty word,
then w} will write 1s to both and n. Thus 7*, when i = u, will generate
a 1. Now, let v = 1. If word n is the faulty word, then word 1 is not, so
w} will write 0 to words 1 and n, and the subsequent r™ will generate a 0.
Thus, the occurrence of a 1 during any of the first n — 1 ‘read’ operations
and an occurrence of a 0 due to the last ‘read’, indicates the w-sa-1 fault.

3.2 Extension to a 1-word by I/-bit SRAM

We now consider a single row of cells comprising an SRAM word.

Let B = {0,1}, and to extend this set to represent [-bit words, let ¥V =
B'. The behavior of a 1-word by I-bit SRAM can be specified by a Mealy
sequential machine M = (Q, X,Y,4,A) where Q =V, X = {r} U (U,ey wp),
and Y = YU{$}. For ¢ € V, z € X the transition function § and the output
function A are defined by

) g ifz=r) g ifz=r,
(g, z) = { p, ifz=1w, peV, and - A(g,2) = { $, otherwise.

Faults affecting the bit/bit lines of each of the [cells are detectable by per-
forming the respective tests on all cells in parallel since these faults manifest
themselves with an erroneous I-bit output of the ‘read’ operation. Detection
of the w-sa-0 fault is not possible, as this fault affects the entire word the
same manner.

3.3 Extension to n-word by /-bit SRAM

The combination of both extensions described above yields the specification
for the behavior of a n-word by I-bit SRAM.

Let V be defined as before. The correct behavior of a n-word by [-bit
SRAM is denoted by a Mealy sequential machine M = (Q, X,Y, 8, A), where

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 11

Q =V, X = (UL A) with 4; = {r'}U (Uyepw}), Y = VU {$}. For
1<i<mnandforq¢ €V, zec X, pecV, the transition function § and the
output function A are defined by

L), if:n:ri?
(¢ py-q?), ifz =1,

and . .
¢, ife=1r"1<i<n,
$, otherwise.

)‘((qla---,qi,---,q"),m):{

From the combined fault analysis we conclude that, for the input stuck-
at fault model, only the w’-sa-0 faults cannot be tested reliably. Since in
a n-word by I-bit SRAM, n such faults may exist, the best possible fault
coverage of any test under our fault model is 2’;;411 - 100%, which for an
8k-word by 8-bit SRAM [2] is 50.1%, but for a 32-word by 73-bit SRAM [4]

is 91.01%.

4 Evaluation of Tests

In this section we analyse well-known tests with respect to the input stuck-
at fault model. A complete evaluation of the MATS+ test is given here. The
same approach has been applied to MATs++, MARCH Y and MaARcH C-
and the summaries of these evaluations are given. The complete analyses of
the latter three tests can be found in Appendix B.

4.1 Evaluation of the MATS+ test

The MATs+ test [3] for a n-word by 1-bit SRAM, is of length 5n, and is
presented below:

MATS+ = (wé)i(rl Dyl (pigi)1,

First, all the words are initialized to 0. Then, in the fault-free SRAM, each
w? in the second march element is preceeded by an r* which should produce
a 0. This march element is performed in the direction from n to 1. The rest
of the test sequence is similar, with 0 and 1 interchanged and the march
element direction reversed.

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 12

4.1.1 Evaluation of the MaTs+ test for a single cell

First, we restrict the above test to a single cell. Each cell in this test is
subject to the following sequence of operations: worw;rwg. Table 3 provides
the comparison of the fault-free response with the faulty responses of all
independently testable faults. The deviations from the fault-free response
are indicated in boldface. Tests for individual faults that are included in
MaATs+ are also given. From this table it is clear that the b-sa-1 fault

Table 3: Evaluation of the MATs+ test for a single cell.

MaATs—+ Elementary tests for input stuck-at
Fault WoTW1TWo faults within MATs+
fault-free cell || —0—-1 —
b-sa-0 —0-0-— WTW1TWo
b-sa-1 —-I-1- missing test: wiwor
b-sa-0 —1-1- WoTwirwo
b-sa-1 —0-0-— WoW1Twg

will not be detected reliably, as the elementary test for this fault is not
present in the MATs+ sequence for a single cell. The reader can verify
that for an inverted MATs+ test wirwgrw;, where each cell undergoes the
complementary sequence of operations, it is the b-sa-1 fault that will not be
reliably detected.

4.1.2 Evaluation of the MaTs+ test for n-word by 1-bit SRAM

We verify that MATs+ detects w?-sa-1 faults by showing that it contains

the T, 5,7 test. Given

MATS+ = (wé)i (it)™ (piagd)Hm,
We expand the latter two march elements and get
(wi)¥ rrw? (riwd) (PO plyd(piapd)T pnapn,

We can disregard the (w?)(®~¥ (w})?""~1) and w} operations as, for any
given word, they occur after a ‘read’, and they are not required to sensitize
the faulty word. The sensitization is accomplished first by the w] and then
by the wl. We can also disregard the ™, r! and (ri)zT(“_l) operations, as

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 13

they do not corrupt the contents of the cells® and thus we get
Ty sa-1= (wé)iw?(ri)(n—l)ilw(l)rn,

which completes our proof.

We have shown that MATs+ is unable to detect b-sa-1 and w-sa-0 4
faults. We thus conclude that in a n-word by 1-bit SRAM, under the single-
fault assumption, this test can reliably detect 5;34 - 100% possible input
stuck-at faults, which is roughly 50% of faults (for large n) in the input

stuck-at model.

4.1.3 Evaluation of the MaTs+ test for n-word by [-bit SRAM

The word-oriented extension of the MATs + test for a n-word by [-bit SRAM
takes the form:

Mats+ = (w)_o)*(riwi)™ (riw)_o)'T",

where wq. o denotes the writing of an all-0 word, etc. This is often referred
to as a data background [2]. The reader should note that, for input stuck-at
faults, this extended test detects the same faults per cell, as the test for
a single cell. Changing the data background does not affect the relative
number of faults that may be undetected; it does, however, affect the type
of the undetectable faults. There are [possible b7-sa-1 faults, where 1 <
j < lin a l-word by I-bit SRAM, and therefore, under the single-fault
assumption, this word-oriented extension of the MATs+ test will reliably
detect 21:;:34ll -100% of faults under the input stuck-at fault model. Thus,
for the previously mentioned (8k x 8)-bit SRAM, the coverage is 50.05% -
a decrease of 0.05% from the optimal coverage of Section 3.3. However, for
memories with long words, such as the (32 x 73)-bit SRAM the coverage is
only 70.5% - a decrease of 20.51%.

4.2 Evaluation of the MATS++ test

The MATSs++ test [3] is a well-known, bit-oriented test, of length 6n. One
possible word-oriented extension of this test for an n-word by I-bit SRAM
is:

MaTs++ = (wf_o) (r'w] o)™ (riwf_or) '™

3Single fault assumption.
*See Section 3.1.1

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 14

As shown in Appendix B, this word-oriented extension of the MATS++
test will reliably detect all the detectable input stuck-at faults, which con-
stitute 21::-442 -100% of all the faults in the fault model; hence for large n the
fault coverage is roughly 50%.

4.3 Evaluation of the MARCH Y test

Another well-known, bit-oriented test is the MARCH Y test [3], of length
8n. A word-oriented extension of this test is presented below:

Marc Y = (wh_o)H(riwh_yri)™ (riw_or') " (r)P.

This extension of the MARCH Y test will also reliably detect all the
detectable input stuck-at faults, i.e. 221442 -100% of all the faults in the fault
model. This coverage is identical to that of the MATs++, yet the MARCH
Y is longer, as it contains redundant elements with respect to the detection

of input stuck-at faults.

4.4 Evaluation of the MARCH C- test

The MARcCH C- test [3], of length 10n, is also a well-known, bit-oriented
test. A word-oriented extension of this test is presented below:

MarcH C- = (wh_o)*(riwi o)™ (riwp o)™ (rfw])™ (r'wf_o)'™ ().

This extension of the MARCH C- test will also reliably detect all the
detectable input stuck-at faults. This coverage of input stuck-at faults is
identical to that of the MATs++ and MARCH Y, yet the MARcH C- is
longer than either of these two tests.

5 DFT Suggestions

Earlier we have shown that the w'-sa-0 faults cannot be tested reliably
by any combination of ‘read’ and ‘write’ operations. These faults consti-
tute 37057 - 100% of faults in our fault model. In Section 2.2 we men-
tioned that considering word select lines as a source of output @* could im-
prove the SRAM’s testability. By providing an additional output w-low =
NOR(w!,...,@"), depicted as a logic gate in Figure 4, the fault coverage
can be improved significantly. This simple DFT enhancement, by indicating
that none of the word lines is active, can directly detect any w*-sa-0 fault,
increasing the fault coverage of the MATs+4, MARCH Y and MARcH C-
tests to 100% with respect to the input stuck-at fault model.

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 15

| Bit SenselL atch |
o]
B
9]
Addre§> % SRAM Array
g
<
Ty H
‘ Data-In Latch ‘
w-low
(w-sa-0)

Figure 4: DFT suggestions.

6 Concluding Remarks

Using a n-word by [-bit static CMOS SRAM as a basis, we have evaluated
some commonly known tests with respect to a simple class of faults: the
input stuck-at faults. We have demonstrated that these tests may fail to
detect close to 50% of faults (for large n) in our fault model. This poor
performance is attributed to the fact that ‘read’ operations are insufficient
for the detection of all the input stuck-at faults in this type of static CMOS
SRAMs. In order to provide 100% fault coverage some DFT enhancement,
such as the one that has been suggested, is necessary. We have shown that
tests MATsS++, MARCH Y and MARCH C- have the same fault coverage
despite their different lengths, and that the MATSs+ test has an inferior fault
coverage in comparison to the previous three. We have also demonstrated
that if a column-wise fault (eg. a bit line fault) is not detectable by a par-
ticular bit-oriented test, then complementing the data values in the test
will result in a complementary fault not being detected. This property is
magnified when such a test is modified to word-oriented memories, because
different data backgrounds will have a different combination of complemen-
tary types of faults being undetected.

The effect of other types of faults on the operation of this SRAM cell is
the topic of continuing research.

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 16

Acknowledgments

I thank my supervisor Janusz Brzozowski for suggesting the application of
our methodology to SRAMs, and for his insightful comments and suggestions
regarding this report.

References

[1]

J. A. Brzozowski and H. Jiirgensen. A model for sequential machine
testing and diagnosis. Journal of Electronic Testing: Theory and Appli-
cations, 3:219-234, 1992.

R. Dekker, F. Beenker, and L. Thijssen. A realistic fault model and test
algorithms for static random access memories. IEEFE Transactions on
Computer-Aided Design, 9(6):567-572, June 1990.

A. J. van de Goor. Testing Semiconductor Memories. John Wiley &
Sons, 1991.

S. Kornachuk, L. McNaughton, R. Gibbins, and B. Nadeau-Dostie. A
high speed embedded cache design with non-intrusive BIST. In Records
of the IEEE Workshop on Memory Technology, Design and Testing,
pages 40-45. IEEE, August 1994.

P. R. Sidorowicz and J. A. Brzozowski. An approach to modeling and
testing memories and its application to CAMs. In IEEE VLSI Test
Symposium, pages 411-416. IEEE Computer Society Press, April 1998.

P. R. Sidorowicz and J. A. Brzozowski. Verification of CAM tests for
input stuck-at faults. In Records of the IEEE Workshop on Memory
Technology, Design and Testing, pages 76-82. IEEE Computer Society
Press, August 1998.

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 17

A SRAM Fault Analysis

In this section operations observably affected by input stuck-at faults will
be discussed. The behaviors of operations not listed here may differ slightly
from their fault-free counterparts in the event-sequence model; however in
the FSM model these differences cannot be observed.

b-sa-0 fault. This fault does not affect operations where the b line is nor-
mally driven to 0. This includes wy and r in state 0. Table 4 describes
the faulty behaviors in the presence of this fault. Deviations from the
fault-free behavior are indicated by bold type.

Table 4: SRAM cell operation with b-sa-0 fault.

Read operation

G=1

Description w bb-s
initial state 0011
float b/b 00i-1
raise w 1011
b or b discharges 10i-0
read b/b & lower w | 0 01-0
raise b/b 0 01-0

Write 1 operation
=0

Description w bb-s
initial state 001.0
set b/b 0 00-0
raise w 1 00-0
new state 1 00-I
lower w 0001
raise b/b 0 01-0[1

Write 1 operation

=1

Description w bb-s
initial state 0011
set b/b 0 00-1
raise w 1 00-1
new state 1 00-I
lower w 0001
raise b/b 0 01-0[1

During r in state 1, the grounded b line forces the s node to ground
(and hence node § to Vyq), causing the cell’s state to change before
the b line has a chance to fully discharge. Afterwards 5 drives b throug

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 18

the pass transistor. Since b is already 0, the sense amplifiers will
always detect a 0. During w;, when the w line is asserted, both 5/
lines are 0, causing both pull-up transistors to conduct which, in turn,
results in a metastable state. Once the w line is de-asserted one of the
pull-down transistors dominates over the other and the cell eventually
reverts back to one of the two quiescent states. Since the state of
the cell cannot be predicted after wq, this operation must be followed
immediately by » which will force the cell into a determinate but faulty
state.

Analogous behavior is exhibited in the presence of the b-sa-0 fault.

b-sa-1 fault. The reader can verify that only » and wqg are affected by this
fault. This is because either the b line is always 1 by definition, as in
the case of w; or as in the case of wg in state 0, when the fact that
the b line is stuck-at 1 does not alter the cell’s state. Table 5 describes
the faulty behaviors of an SRAM cell affected by the b-sa-1 fault.

Table 5: SRAM cell operation with b-sa-1 fault.

Read operation

=0

Description w bb-s
initial state 0110
float b/b 0110
raise w 1110
b or b discharges 1110
read b/b & lower w | 0 11.0
raise b/b 0110

Write O operation

G=1

Description w bb-s
initial state 0111
set b/b 011-1
raise w 1111
new state 1111
lower w 011.1
raise b/b 0111

An r in state 0 will be misinterpreted by the sense circuitry because
both &/b lines remain high; therefore, r is not a reliable source of
output. When the cell is in state 1, wq fails, because b does not force
node s to ground and initiate the state transition.

Analogous behavior is exhibited in the presence of the b-sa-1 fault.

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 19

w-sa-0 fault. Since this fault affects the w line, it alters the behavior of
all operations. Table 6 describes the faulty behaviors of an SRAM cell
in the presence of a w-sa-0 fault. From this table, we see that r will

Table 6: SRAM cell operation with w-sa-0 fault.

Read operations

(=0 (+=1)

Description w bb-s w bb-s
initial state 011-0 0111
float b/b 0ii.o0 | 0ii1
raise w 01i.0 0111
b or b discharges 01iio 01i1
read b/b & lower w | 011.0 | 01i.1
raise b/b 0110 | 0111
Write operations (s = 0
w1
Description w bb-s
initial state 011-0
set b/b 0 10-0
raise w 0 10-0
new state 0 10-0
lower w 010-0
raise b/b 011-0
Write operations (s = 1
wo
Description w bb-s
initial state 011-1
set b/b 001-1
raise w 001-1
new state 0011
lower w 001-1
raise b/b 011-1

fail, since neither 4/b line is allowed to discharge. Lack of differential
voltages on the b/b lines yields an unpredictable response of the sense
circuitry. Again, r is not a reliable source of output. Since the w line
is never asserted, w; from state 0 and wg from state 1 are also affected,
as they do not result in a transition to the desired state. Neither wq
from state 0 nor w; from state 1 are affected, as they effectively “do
nothing”.

w-sa-1 fault. As the reader can verify using Table 1, in the presence of
this fault, despite minor differences in the sequence-of-events model,
all operations are correct in the FSM model of a single cell.

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 20

B SRAM Test Analysis

Here we present the complete analyses of the MATs++, MARCH Y and
MARCH C- tests. The reader is reminded that these analyses were performed
under the single-fault assumption.

B.1 Evaluation of the MATS++ test

The MaTs++ test [3] for a n-word by 1-bit SRAM, is of length 6n, and is
presented below:

MATs++ = (wh)H(riw})™ (riwhri) ",
First, all the words are initialized to 0. Then, in the fault-free SRAM, each
w? in the second march element is preceeded by an r* which should produce
a 0. This march element is performed in the direction from n to 1. In the
third march element the first r* should produce a 1. It is followed by a w}

and a second 7* producing a 0. The third march element is performed in the
direction from 1 to n.

B.1.1 Evaluation of the MaTs++ test for a single cell

Each cell in this test is subject to the following sequence of operations:
worwirwer. Table 7 provides the comparison of the fault-free response with
the faulty responses of all independently testable faults. The deviations from
the fault-free response, as well as the elementary tests within MATSs++ are
indicated in boldface. From this table it is clear that all independently

Table 7: Evaluation of the MATS++ test for a single cell.

MaTs++ Elementary tests for input stuck-at
Fault WoPWLrWOT faults within MATS++
fault-freecell | —0—-1-0
b-sa-0 —0-0-0 WeTW1TWoT
b-sa-1 -I-1-1 WoTW1TWoT
b-sa-0 —-1-1-1 WorwiTwor
b-sa-1 —0—-0-0 WoTW1TWoT

testable faults will be detected reliably. The reader can verify that for
an inverted MATS++ test where each cell undergoes the complementary
sequence of operations wirworw; 7, all independently testable faults will also
be detected.

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 21

B.1.2 Evaluation of the MaTs++ test for n-word by 1-bit SRAM

It is easy to verify that MATs++ detects w'-sa-1 faults by noting that
MATs++ is an extension of MATS+. Since MATS+ has been shown to de-
tect w’-sa-1 faults, and since we can insert any number of ‘read’ operations,
as they do not corrupt the contents of the cells, we conclude that MATS++
also detects these faults.

Given that the w’-sa-0 faults are not reliably detectable®, we conclude
that in a n-word by 1-bit SRAM this test can reliably detect "+4 -100%
possible input stuck-at faults, which is roughly 50% of faults (for large n)
in the input stuck-at model.

B.1.3 Evaluation of the MATs++ test for n-word by [-bit SRAM

The MATs++ test can be extended for a n-word by [-bit SRAM in the
following manner:

MaTs++ = (wé...o)i(riwli...1)n¢1 (Tiwé...ori)mna

where wq_ ¢ denotes the writing of an all-0 data background, etc. Since, this
extended test detects the same faults per cell, as the test for a single cell
and that changing the data background does not affect fault coverage.
From the above analyses we conclude that a word-oriented extension of
the MATSs++ test will reliably detect all the detectable input stuck-at faults,
which constitute 2t4L . 100% of all the faults in the fault model; thus for

2n+4l
large n the fault coverage is roughly 50%.

B.2 Evaluation of the MARCH Y test

The MARCH Y test [3] for a n-word by 1-bit SRAM, is of length 8n, and is
presented below:

MaRcH Y = (wf)*(r'wir’)™! (rwfr!) 1" ().

First, all the words are initialized to 0. Then, in the fault-free SRAM, each
w? in the second march element is preceeded and succeeded by an r where
the former should produce a 0 and the latter a 1. This march element is
performed in the direction from n to 1. The third march element is similar,
with 0 and 1 interchanged and the march element direction reversed. In the
last march element each 7* should produce a 0.

5See Section 3.1.1

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 22

B.2.1 Evaluation of the MARCH Y test for a single cell

Each cell in this test is subject to the following sequence of operations:
worwirrworr. Table 8 provides the comparison of the fault-free response
with the faulty responses of all independently testable faults. As before,
the deviations from the fault-free response, as well as the elementary tests
within MATS++ are indicated in boldface. From this table it is clear that all

Table 8: Evaluation of the MARCH Y test for a single cell.

MARCH Y Elementary tests for input stuck-at
Fault WoPW1TTWTT faults within MARcH Y
fault-free cell || — 0 — 11— 00
b-sa-0 —0—-00-00 WTW1TTWoTT
b-sa-1 -I-11-11 WQTW1TTWQIT
b-sa-0 —1-11-11 WoITWiTWor?r
b-sa-1 —0—00-00 WoTW1TTWoTrT

independently testable faults will be detected reliably. It is worth noting that
for our fault model MARCH Y is a redundant test, as the additional ‘read’
operations (in comparison with MATs++) do not increase the fault coverage
and their removal would not decrease the existing coverage. The reader also
can verify that for an inverted MARCH Y test where each cell undergoes
the complementary sequence of operations w;rwgrrw;rr, all independently
testable faults will also be detected.

B.2.2 Evaluation of the MARCH Y test for n-word by 1-bit SRAM

It is easy to verify that MARCH Y detects w’-sa-1 faults by noting that
MARCH Y is an extension of MATS+. Since MATS+ has been shown to de-
tect w*-sa-1 faults, and since we can insert any number of ‘read’ operations,
as they do not corrupt the contents of the cells, we conclude that MARCH
Y also detects these faults.

Given that w'-sa-0 faults are not reliably detectable, we conclude that
in a n-word by 1-bit SRAM this test can reliably detect 2’1;44 -100% possible
input stuck-at faults.

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 23

B.2.3 Evaluation of the MARCH Y test for n-word by [-bit SRAM

The combination of the two extensions yield a possible MARCH Y test for a
n-word by [-bit SRAM is presented below:

March Y = (wh_o)(riwd o) (rwf_or') (),

where wg._ o denotes the writing of an all-0 data background, etc. As before,
this extended test detects the same faults per cell, as the test for a single
cell and that changing the data background does not affect fault coverage.

The results of the above analyses indicate that a word-oriented extension
of the MARCH Y test will reliably detect all the detectable input stuck-at
faults, which constitute % -100% of all the faults in the fault model. This
coverage is identical to that of the MATS++, yet the MARCH Y is longer,
as it contains redundant elements (for our fault model).

B.3 Evaluation of the MARCH C- test

The MARCH C- test [3] for a n-word by 1-bit SRAM, is of length 10n, and
is presented below:

Marcn C- = () (rfw]) ™ (ruh)™ (rieh) 7 (riaof 7 (o).

First, all the words are initialized to 0. Then, in the fault-free SRAM,
each w! in the second march element is preceeded by an r* where it should
produce a 0. This march element is performed in the direction from n to
1. The next three march elements are similar, with 0 and 1 interchanged
and/or the march element direction reversed. In the last march element
each ' should produce a 0.

B.3.1 Evaluation of the MARCH C- test for a single cell

Each cell in this test is subject to the following sequence of operations:
worwyrworwirwor. Table 9 provides the comparison of the fault-free re-
sponse with the faulty responses of all independently testable faults. From
this table it is clear that all independently testable faults will be detected
reliably. It is worth noting that for our fault model MArRcH C- is also a
redundant test, as every elementary test is repeated at least twice. The
reader also can verify that for an inverted MARCH C- test where each cell
undergoes the complementary sequence of operations wy rworwirworw;r, all
independently testable faults will also be detected.

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 24

Table 9: Evaluation of the MARCH C- test for a single cell.

MarcH C- Elementary tests for input stuck-at
Fault WTWLTWoTWLTWQT faults within MArcH C-
fault-freecell | —0—-1-0—-1-10
b-sa-0 —0-0-0—-0-0 WTW1TWeT W1 TWoT
b-sa-1 - I-1-1-1-1 WOTW1TWoIrW1TWoT
b-sa-0 -1-1-1-1-1 WorwiTWolrwiTWorl
b-sa-1 —0-0-0—-0-0 WQTW1TWoTW1TWoT

B.3.2 Evaluation of the MarcH C- test for n-word by 1-bit SRAM

It is easy to verify that MARCH C- detects w’-sa-I faults by noting that
MarcH C- is an extension of MATs+. In fact, the first, second and fifth
match element of MARCH C- constitute MATs+. It suffices to show that
the removal of march elements three and four from MARCH C- is possible.

After the second march element the memory is filled with 1s. The third
march element fills the memory with 0, and the fourth fills it back with 1s
again. Since the effects of march elements three and four cancel each other,
i.e. the contents of the memory cells after the fourth march element in
MARCH C- is in the same as it was after the second march element, march
elements three and four can be removed. By removing these two march
elements, as well as the sixth one, from MARCH C-, we obtain MATS+.
Since MATSs+ has been shown to detect w’-sa-1 faults we conclude that
MaARcCH C- also detects these faults.

Since MARCH C- test cannot reliably detect w*-sa-0 faults, we conclude
that in a n-word by 1-bit SRAM, this test can reliably detect 5;‘:14 -100%
possible input stuck-at faults, which is roughly 50% of faults (for large n)
in the input stuck-at model.

B.3.3 Evaluation of the MarRcH C- test for n-word by [-bit SRAM

The combination of the two extensions yield a possible MARCH C- test for
a n-word by I-bit SRAM is presented below:

Marct C- = (wh_o) (riwh_y)™ (Fiwh o)™ (riw ,) " (riuh o)™ (r)Y,

where wq. o denotes the writing of an all-0 data background, etc. The reader
should note that, for input stuck-at faults, this extended test detects the

Evaluating Tests for Input Stuck-at Faults in Word-Oriented SRAMs 25

same faults per cell, as the test for a single cell and that changing the data
background does not affect fault coverage.

The results of the above analyses indicate that a word-oriented extension
of the MARCH C- test will also reliably detect all the detectable input stuck-
at faults, which constitute 5;&;442 -100% of all the faults in the fault model.
This coverage of input stuck-at faults is identical to that of the MAaTS++

and MARCH Y, yet the MARCH C- is longer than either of these two tests.

