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0.1 What is Ptolemy

PTOLEMY is a prototype subsystem for the automatic setup of the numerical
solution of Partial Differential Equations (PDEs) via sinc-collocation.

PTOLEMY is a symbolic computing package written in Maple. It does not
pretend to advance to the field of computer algebra. PTOLEMY’s primary con-
tribution is to demonstrate the feasibility of a new kind of Problem Solving
Environments (PSEs), one which combines symbolic computing, numerical com-
puting, geometric computing, and a graphical interface. Although current PSEs-
tend to combine numerical computing, geometric computing, and graphical in-
terfaces significantly integrating symbolic computing with such PSE’s advances
the state of the art.

However, PTOLEMY is not a complete PSE, it is just the symbolic portion
of that system. It is part of a larger research project and has been used in
more complete problem solving activities, but many part of the problem solving
process have not been fully integrated with PTOLEMY. The notable omissions
are:

A parallel numerical linear algebra solver. As part of this research project
the author developed such a solver in C++. In fact this represented roughly
one third of the research effort. Unfortunately, changes in the symbolic
algorithms used by PTOLEMY have compromised the ability of the “back-
end” to work well with PTOLEMY. In addition improvements in packages
such as MatLab make it possible to use PTOLEMY without a tightly inte-
grated numerical linear algebra solver.

A symbolic visualization mechanism. Maple is not a graphing package and
does not provide vary sophisticated visualization tools. Nevertheless, the
ability to symbolically describe the desired visualization allows the user
construct visualizations which are richer in meaning for the same level of
visual quality. The author has developed some modules to demonstrate
the potential of hybrid visualization. However, their operation is vary sen-
sitive to the operation of the parallel numerical linear algebra solver and
their quality is limited by Maple’s graphical capabilities.
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A graphical symbolic geometric specification mechanism. The mathe-
matics for graphically specifying symbolically well behaved geometries is
well understood. Until recently the investment in code required to create
a custom Graphical User Interface (GUI) was well beyond the resources
available to this author. However, recent advances in higher level and
more portable GUI prototyping environments (particularly TcL TK and
Java), suddenly make such an effort feasible.

In spite of these omissions, PTOLEMY may be fairly construed as a the core
portion of some futuristic symbolic-centric PSE.

The primary numerical advantage of hybrid computing is that it makes the
application of more powerful numerical methods practical to a more general
class of problems. Numerical methods more powerful then those currently used
in state of the art computational engineering systems have been well understood
and even frequently applied for most of this century. However, these methods
are not part of the mainstream in computation engineering because they are
not practical for industrial engineering applications. Most often this is because
they require several person years of development effort to apply the method to
each new problem. Given the choice between years of effort to apply a powerful
numerical method and an hour to apply a weak method, the weaker method
is usually the better choice. Of course, the obvious solution is to develop tools
which automate and simplify the problem solving process. This approach has
gradually made Finite Element Method (FEM) more prevalent then Finite Dif-
ference Method (FDM) in computational engineering. Prior to the development
of powerful grid generation tools, the grid adaptation (which is necessary to re-
alize the potential of FEM) was often just too difficult to justify. The primary
impediment automating even more powerful methods has been the large amount
of symbolic math associated with most such methods. By automating the sym-
bolic math parts of the problem solving process it should be possible, in time,
to create PSEs which dramatically improved numerical performance.

PTOLEMY demonstrates this approach for sinc-collocation. For this partic-
ular method the primary symbolic operation is mapping the problem’s subdo-
mains (i.e., performing changes of variable) so that the convergence of sinc-
collocation is O(exp(—c \/ﬁ), where ¢ is a constant and n is the size of the
linear algebra system to be solved. PTOLEMY actually performs this mapping
in several steps. The result is that much of the package is devoted to mapping.

0.2 Why Maple

PTOLEMY is based on Maple V. It is assumed that the human users are proficient
at manipulating Maple data structures.

Maple makes PTOLEMY surprisingly general, by supporting a wide range of
mathematical function. Rewriting PTOLEMY in C++ would not be especially
challenging as long as the set of supported mathematical functions was quite
limited, but the result would dramatically limit the ways in which the user
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could model the problem. Providing even minimum support for the number of
mathematical functions supported by Maple is a significant development effort.

Another significant advantage to using Maple is that it provided fast proto-
typing during the research phase of this project. During much of the develop-
ment of this project, I only clearly understood a portion of the design. If the
cost of trying things had been so high as to preclude the possibility of imple-
menting something that might latter be found to be wrong, I would have never
finished this project. To some extent it is only possible to see how to better
implement this in C++ now that it has been done once in Maple.

Finally, it is not clear that rewriting this in C++ is a particularly good
idea. The interpreted implementation of Maple makes PTOLEMY somewhat
slower then a fully compiled implementation of PTOLEMY Although this loss of
efficiency is two to three orders of magnitude for numerical operations, it is only
about a factor of two for the symbolic operation. The strategy employed by
PTOLEMY is to only perform symbolic operations in Maple and to perform any
costly numerical operations in C++. This method works fairly well. The primary
price of using Maple is the relatively primitive capabilities for interfacing with
other applications and the limitations of Maple’s graphics.

0.3 Who Was Ptolemy

PTOLEMY is named after the well known Greek scholar. There are several
parallels between this work and the primary contributions of this scholar:

e Ptolemy was the father of Geography. He wrote a 13 volume treatises
on geographic method that remained the quintessential reference on geo-
graphic method well into the Renaissance. In this work he:

1. Systematize the use of mathematical maps for cartography. It is as
a result of this work that in contemporary English “charts” are most
often referred to as “maps.” Although he was not the first to use such
maps, he was the first to reduce the use of such maps to a systematic
method.

2. Provided several sample mathematical maps for use in constructing
charts of larger portions of the earth. Assuming that the world was
spherical much of the work struggles to minimize the distortions of
scale so common in cheaper 20t* century maps of the world.

3. Made one of the more prominent early attempts to chart the world.
However, due to an over reliance on hear-say, many of the details of
this map were inaccurate. It never-the-less represented a significant
contribution to the representation of the world.

e Ptolemy was also the prominent astronomer of his day. He wrote a 21 vol-
ume treatises on the motion of the planets. In this work he:

1. Made one of the first applied uses of a Fourier Series to approximate
observational data.
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2. Credited Augestous of Purga (known as “The Great Geometer”) with
first inventing the mathematics of such a series. Because the book,
The Spherics, in which Augestous is reported to have documented
this development is extinct, it is only because of Ptolemy’s success
at applying this bit of mathematics that we know of Augestous’s
discovery of this result.

For the benefit of those who are unfamiliar with sinc-research the parallels
are a bit surprising:

The systematic remapping of physical problems to rectangular domains is
at the heart of the PTOLEMY software package. Just as the man Ptolemy
was not the first to use this method, PTOLEMY the software package is not
the first to use this approach. The software is a direct result of the first
attempt to reduce the process to our modern equivalent of a systematic
method, a computer program.

The Ptolemy software package attempts to provide a set of standard map-
ping procedures for practitioners of sinc-collocation in a way that is anal-
ogous to the mathematical maps which the man Ptolemy provided for the
cartography community.

The software package PTOLEMY grew out of an effort to chart the new
unexplored field of automatic setup for sinc-methods. Although this may
not really be analogous to attempting to map the world, in my first year
of graduate school the metaphor seemed strong. In a vary real seance the
software package PTOLEMY was conceived with aspirations of achieving a
very coarse chart of the whole world PSEs for sinc-methods.

Although the Fourier series used by Ptolemy the man to describe the
motion of the planets was of very low order, the approach is exactly the
same as the modern use of sinc-methods. This equivalence has not been
published in the sin literature. I first recognized this equivalence as a
direct result of this project.

Finally, I suspect that the way future generations will remember early sinc-
research will not depend primarily on the elegance of the great mathemaiti-
cians, or even on the prolificness of the lesser mathematicians. Instead it
will depend on the success or failure of efforts to apply sinc-methods to
contemporary engineering problems. This research effort aspired to make
the latter kind of contribution.

I have been surprised at the level of scorn many have for Ptolemy the man.
Many seem unable to forgive him for the Papal use of his name in its effort
to suppress Renaissance science. Naming this software after Ptolemy is not an
endorsement of the ill-treatment of Galileo or others who eventually replaced
the “Ptolemaic System.” I have found no evidence which suggests that Ptolemy
would have approved of the way others used his name for unrelated purposes

nearly a millenia and a half after his death.
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Sure the Ptolemaic System was wrong, but so were the heliocentric models of
his day. I do not believe that many of the methods employed by PTOLEMY the
software package will stand the test of time. I can already see how to do many
things better. I would suggest that even the life work of the greatest researchers
in history have not been great because they archived truth but rather simply
because they proved useful. If PTOLEMY can prove useful to sinc-researchers I
will have archived some miniscule measure of greatness.

0.4 About This Manual

One of the major purposes of this manual is to provide maintainers of PTOLEMY
with sufficient information to evolve the “product.” Originally, the manual con-
tained much more length descriptions of the high level mathematics and con-
cepts behind this software. However, over time much of this high-level material
was extracted into other writing (notably my dissertation). The result has be-
come a more or less traditional programmers manual. However, since at this
time using PTOLEMY involves a kind of programming the manual is really a
programmer/user manual.

Readers who consider themselves more users then maintainer or developers
of the package can safely read Chapter 3 to Chapter 6. Sinc researchers familiar
with Maple should find most of this this manual self contained. The primary
exception is a description of SB-notation which can be found in [7]. Readers
new to sinc methods will probably benefit by simultaneous reading parts of [5]

r [12]. And readers new to Maple will almost currently benefit by first reading
large portions of [3].
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Glossary

automatic data type An organizational unit for source code that implicitly
defines a data structure by explicitly defining the operations that may be
performed on the data structure. The actual implementation of the data
structure is not visible outside the automatic data type. Standard usage
in computer science.

bases defined to be an orthonormal spanning set for a specified linear field.
In this context the bases is explicitly specified and the field is implicitly
defined as the space spanned by the bases. More specifically the bases are
the functions used to approximate the state-variables and the field is the
set of functions which can be exactly represented by a linear combination
of these bases. Standard usage in numerical analysis.

basis components If a specific n-dimensional basis can be represented as the
product of n one-dimensional functions, then each of these one-dimensional
functions is a bases component. In this document as a matter of con-
vention all n-dimensional bases are constructed to be the product of n
one-dimensional bases components.

basis component groups For the class of problems considered in this docu-
ment each dimension would typically have tens of bases components. This
document partitions the bases components in each dimension into groups
according to the way they behave with respect to differentiation. In partic-
ular all of the sinc bases components in a specific dimension are grouped
together in the zeroth group. Spline bases components are all assigned
other unique groups. Those spline bases components corresponding to
collocation points near the lower end of the interval are assigned negative
numbers and those corresponding to collocation points near the higher
end of the interval are assigned positive numbers.

bases groups Bases are grouped according to the bases component groups of
the bases components used to construct the bases. Each bases group is
assigned a coordinate that is the cartesian product of the bases component
group numbers of the bases components used to construct the bases within
the group.

Xv
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block order The order of the matrix of blocks representation of a block matrix.
A block order of n x m means that the matrix has n rows of blocks each
containing m blocks. For a square matrix the order is sometimes expressed
as a single number.

block column A column in the matrix of blocks representation of a block
matrix.

block matrix A matrix where the rows and columns of the matrix have been
partitioned. Each block of the matrix is the collection of elements in the
same row and column partition. It is sometime useful to to think of a
block matrix as a matrix of blocks. Standard usage in computer science.

block row A row in the matrix of blocks representation of a block matrix.

boundary orientation The change in parameter order and direction occur-
ring between two equivalent parameterizations of the same boundary.
Sometimes used to express the change between a specific parameteriza-
tion of a boundary and a standard reference parameterization of the same
boundary.

Note: a parameterized boundary is not altered by changes in the order
in which the parameters are specified or by the direction in which the
parameters are traversed.

cartesian ordering An ordering of a set that is the cross product of several
sets constructed by specifying both an intraset and an interset ordering for
the sets used to form the cross products. A cross-product is in cartesian
order if its elements are ordered according to the component from the first
set, if for all the elements with the same component from the first set are
ordered according to the component from the second set, and if this nested
ordering is continued for all the sets used to construct the cross product.

collocation point The geometric point at which a collocation equation is eval-
uated. Standard usage in numerical analysis.

collocation equation The evaluation of one of the equations in the system of
PDEs at a specific collocation point using the approximation for each of
the state-variables that appear in this equation.

collocation event The pairing of a collocation point and a collocation equa-
tion. For PDEs with only one state-variable there exists a one-to-one
correspondence between collocation events and collocation points, but for
systems of PDEs the same collocation point will typically be used for each
of the collocation equations.

column major ordering An ordering of the cross product of row and column
data which is a cartesian order in which the column set is the first set of the
cartesian ordering. Usually used to refer to the ordering of the indices of a
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matrix. Common usage when talking about Fortran, somewhat historical
reference in most other contexts. Standard usage in computer science.

component A connected subgraph. That is a portion of a graph that is closed
with respect to connectivity. Standard usage in computer science and
math.

dynamic scoping A scheme for nesting local variables scopes where the scopes
are nested according to the nesting of the procedure calls. This scheme
typically causes the scoping hierarchy to change during program execu-
tion. Implicitly provided by Maple’s “environment variables.” Standard
computer science usage.

interpret The act of executing source code by directly performing the actions
specified by the code. Interpreting is performed by another program called
an interpreter. This is usually understood in contrast to the more common
technique of compilation. Standard usage in computer science.

lexical scoping A scheme for nesting local variables scopes in accordance with
the nesting of the source code. The type of scoping employed by Pascal.
Standard computer science usage.

module An organizational unit of source code in which the scope of reference
may be more restrictive then the scope of existence. Standard usage in
computer science, more specialized then the common usage in other fields.

override equations A collocation equation which replaces the default collo-
cation equation at a specific group of collocation points.

row major ordering An ordering of the cross product of row and column
data which is a cartesian order in which the row set is the first set of the
cartesian ordering. Usually used to refer to the ordering of the indices of a
matrix. The default ordering for matrices in most programming languages.
Standard usage in computer science.

scope The region of source code in which variables either exist or may be
referenced. Standard computer science usage.

sinc maps The portion of the conformal map used in sinc approximation which
maps an oriented parallelepiped to the an infinite space. Typically chosen
for the region of the complex hyper-plane mapped to Dj.

transformation A “function” from n-space to m-space where n,m € ZT.
Standard mathematical usage.

type expression An expression which defines a collection of types. Standard
usage in computer language analysis.
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Chapter 1

(General Information

In describing the implementation some pseudo-standard typographical conven-
tions are employed. These conventions are described in the first section of
this chapter. The rest of the chapter describes some Maple conventions used
throughout the implementation. These conventions, like the typographical con-
ventions, are similar to the conventions used by others but can are not standard
either because of special needs or, as is more often the case, because of the lack
of an established standard.

1.1 Typographic Information

Computer manuals typically have a very large number of words which within
the context of the manual have some special meaning. In more literary styles
of prose, where such technical terms are far less frequent, such words might be
enclosed in quotes to indicate that a special meaning is intended. However, this
practice is rarely followed in computer manuals. One reason is that the number
of quoted words would become excessive and cumbersome, but probably the
more important reason is that the connotations conveyed by using quotes in
literary prose are somewhat different then the connotations associated with
using technical terms. As a result computer manuals typically continue to use
quotes in a way similar to their use in literary prose, but invent other ways
of distinguishing technical terms from the nontechnical words with the same
spelling.

To see why this might be, consider a manual that used the word “sum” to
mean the aggregating of parts, a variable name or argument name in a procedure
interface, the name of a procedure for performing summations, the name of a
file in which partial sums or running sums are stored, and a user command to
be typed in response to a prompt in order to indicate that now is the time
to perform a particular summation. Without some kind of indication of how
“sum” is being used, it would often be confusing to the reader exactly what
was meant. To resolve this problem computer manuals have a long history of
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inventing typographical constructs not only to indicate that a word is a technical
term but also to give the reader some indication of which of several possible
technical meanings are intended.

Within this tradition, quoting is preserved more or less as it occurs in non-
technical writing. For example, in the sentence, “If the building burns then
the accounts will have to be ‘summed’ by hand,” the quotes around the word
“summed” indicate that the process being eluded to is actually more than (or
otherwise slightly different) than literal summation.

Due to editorial pressures (real or perceived), I have attempted to avoid
some of the excesses of this tradition, such as the use of underlining or special
colors. However, I have found it useful to invoke some of the more common
conventions of this tradition.

Normal prose is set in the Computer Modern Roman (CMR) font and look
like most of the text on this page. Within the context of normal prose italics are
used for emphasis. For example the word “not” in the sentence, “It might seem
like ..., but this is decidedly not the case,” is italicized to stress or emphasize
the word. This use of italics is common to most modern semitechnical writing.
In addition to this typographical construct this manual uses a special font to
indicate that a word or phrase is: 1) the name of a program variable, 2) a type
name, 3) a procedure name, 4) a library file name, 5) a general filename or a
program name, or 6) some other kind of “computer syntax” (e.g., I/O code
fragments, and the like).

Computer variable names are set in the Teletype Font and look like var name.
Type names are set in a slanted variation of Sans-Serf Font and look like
type_name. Procedure names are set in the bold variation of the CMR font, and
look like proc_name. Library file names are set using the bold-italic variation
of the CMR font and look like lib_file_name. All other file names (excluding
lengthy path names which are treated as general computer syntax), program
names, and system names are set in a slightly enlarged small-caps variation of
the CMR, font and look like PTOLEMY or .MAPLEINIT. Notice that the size
difference between the letters indicates the case, so the first and second ‘S’s
in SOLVESYS are capitalized whereas SOLVE_SYS contains no capital letters.
Finally, all other computer syntax, such as input commands and code frag-
ments, are set using the Teletype Font, and look like Sum := subs(N = Name,
readlib(’N’));.

Notice that in the last example the typographical information helps make it
clear that the semicolon is part of the input sequence being specified and not
part of the punctuation of the enclosing sentence.

Further notice that the font used to indicate that a word is a program vari-
able is the same as the font used for nonspecific computer syntax. A distinct
font could have been used to distinguish program variables form other code
fragments. The distinction is usually clear by context and the potential prob-
lems associated with failing to correctly distinguish these two classes of technical
terms are minor. In the end it was my opinion that the added typographical
clutter was not justified.
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1.2 Code Structures in Maple

PTOLEMY is a Maple package just like plots or linalg. A Maple package simu-
lates a separate name space for the global variables of the package. In actuality,
however, Maple only has one name space, so packages are really a coding con-
vention for simulating the effect of separate naming spaces.

Packages

The key idea of this coding convention is that global variables in the package
are assigned names of the form package name/var name, where package name
is the name of the package and var name is the nominal variable name. The
result of this convention is that global variables in one package cannot conflict
with global variables in another (unless, of course, the package names conflict).
This frees the package implementor from the impossible task of worrying about
whether his variable names conflict with the variable names of some other pack-
age implementor.

Because names containing slashes must be enclosed in back-quotes, typing
the variable names of a package is particularly awkward. Since at least some
of the package’s global names must be intended for external reference, in at
least some cases this awkwardness will impact the package user. To reduce
this inconvenience, each package has associated with it a table with entries
that reference some of the global variables of the package. This allows the
user to type package name[var name] when referencing these global variable
package name/var name. This table is assigned to the global variable with the
package name, and is referred to as the package table.

Because it is slightly faster to avoid going through the package table to
reference its global variables from within the package, the global variables of
the package are usually references directly by their full global name. So it is
useful to include entries in the package table only for package elements that the
user is expected to directly use. In fact, this concept is usually taken one step
further and the package table is used to specify which elements are intended for
external use.

Sometimes if a particular package will be used frequently the user may find it
more convenient to reference the global variables of the package by their nominal
names. Of course, this makes sense only if the nominal name, in question, does
not conflict with any currently defined global names. When this is the case the
user could enable direct use of the nominal name with the following assignment,

var name := ’package name[var name]’

In fact this is actually what the Maple’s with command does. The on-line help
page for with creates the impression that the command loads portions of the
package. This is the intended purpose for creating the command, but loading
is actually accomplished by assigning the nominal name to the value of the
corresponding package entries, so that the corresponding Loadable Library File
(LLF) will be loaded when the nominal name is next fully evaluated.



4 CHAPTER 1. GENERAL INFORMATION

Another important feature of the with command is that it will automatically
execute any initialization procedure defined by the package table. If a package
table entry is defined with the index init then it must specify the package
initialization procedure. The package designer may perform any operation in
this package initialization procedure; PTOLEMY uses the initialization procedure
to define new types used by the package.

See Maple’s on-line help page titled “with” for more information on the with
command.

In computer science the word “module” is often used as a technical term
to define a specific language feature. See [11] for an informal introduction to
this formal meaning of the word “module.” Packages may be thought of as
closely approximating this formal kind of module. The package table defines
those global variables that are to be exported by the module, and the user of
the package may import some or all of the variables exported by the module by
using the with command.

However, this analogy can be carried only so far. Maple does not, at this
time, have lexical scoping (version 5.5 is expected to support lexical scoping).
The result is that the with command imports the package’s global variables into
the dynamically defined global scope, whereas modules import the package’s
variables into a lexical scope. In fact the distinction associated with scoping is
greater than just that Maple packages use dynamic scoping and that modules use
static scoping. Maple does provide limited support for dynamic scoping, of the
type found in Lisp, thru what Maple calls “environment variables.” However,
in Maple,when a package is loaded, the definitions of nominal names are not
defined as environment variables. As a result these definitions persist forever,
and do not disappear once the dynamic scope is exited. The result is that
loading many packages starts to seriously pollute the name space. A plausible
workaround would be to implement an unwith command.

Another major distinction between packages and modules is that modules
restrict access to the package’s components to just those variables that are
explicitly exported. This allows the package designer to create private variables
with a global scope of existence and a local scope of reference. Again Maple
does provide limited concept of protected global variables, but this concept
is not integrated with the package concept. As a result part of the coding
convention of packages must be that users of the module simply do not access
any of the package’s global variables that are not found in the package table.
Unfortunately, Maple does not enforcing this convention.

Another problem with thinking of Maple’s packages as modules is that if
the user accesses the package’s global variables through the package table the
package’s initialization procedure may not have been executed. For cultural
reasons it seems untenable to propose that part of the coding convention of a
Maple package should be that all package elements must be “imported” with the
with command before they can be accessed. As a result the package designer
has to take responsibility for ensuring that the initialization procedure has been
executed before the user performs any kind of package access whose result is
dependent on the initialization procedure. PTOLEMY achieves this by including
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a wrapper function in all table entries that performs package initialization if it
has not already occurred. Most of the system packages avoid using a package
initialization procedure, to avoid having to deal with this problem.

Library Files

Because much of Maple’s functionality is implemented in the Maple language
and all Maple code can be loaded dynamically, the Maple system can be loaded
incrementally only as needed. In fact, much of the Maple system is not initially
loaded, but rather is loaded on demand.

Maple defines the granularity of code that can be loaded to be the portion of
the code within one dot-‘m’ file. Usually there is a one-to-one correspondence
between dot-‘m’ files and source files; however, on occasion some developers will
combine several source files to create one dot-‘m’ file. The name used to describe
the collection of code placed in one dot-‘m’ file varies slightly throughout the
Maple literature. I have chosen to consistently refer to it as the minimum code
unit which can be dynamically loaded as a LLF. PTOLEMY source file names all
have a ‘‘m’ extension; executing the source (i.e., in Maple) will produce a file
with the same name as the source but with a ‘.m’ extension. The contents of the
resulting dot-‘m’ file will be the code defined in the source file. Because there
is a one-to-one correspondence between source files and dot-‘m’ files, in this
manual the term LLF refers to the logical entity corresponding to this physical
pair of files.

LLFs may be loaded with the read command or the readlib command. The
primary advantage of the readlib command is that it allows the path name
to be specified relative to the library path list defined by the global variable
libname. However, Maple places an unusual restriction on LLFs that can be
loaded with readlib; specifically, the library file must define a global variable
with the same name as the relative path name of the file. Although this re-
striction is at times cumbersome, the advantages of using relative path names
outweigh the drawbacks and PTOLEMY defines only readlib-able LLF's.

This works reasonably well if one of the global variables defined by the
LLF is of paramount significance within the LLF. In this case it is usually not
difficult simply to make the (relative) file name the same as the prominent
global variable. If the prominent element of the LLF is an exported element
of the package, this implies that the relative file name must be of the form
package name/var name. This is easy to do as long as there is a one-to-one
correspondence between exported package elements and LLFs, since the LLF
will all occur in a subdirectory of the library path with the package name.
However, if either several package elements or no package elements are defined
within a single LLF, it becomes unclear which file name is most appropriate.
PTOLEMY avoids the case of loadable library modules that define more than one
prominent package element by never defining more than one exported package
element within a single LLF.

However, PTOLEMY does have some source files that do not define any ex-
ported package element. Usually such LLF's define a collection of related support
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procedures which are used by more than one of the exported package elements.
In these cases, rather than arbitrarily picking one of the globally defined vari-
ables to be the file name, PTOLEMY chooses a descriptive file name and defines
a “no-op” procedure with the same name as the file name. This is done purely
to avoid having to use confusing file names but still be able to readlib all of
the LLF. One benefit of this approach is that it is easy to check if a particular
LLF has been loaded; simply check if the global variable with the same name
as the file name is of type procedure.

Table 1.1 lists all of the PTOLEMY modules that contain a no-op primary
procedure.

1.3 Loading and Initialization

The loading and initialization portion of PTOLEMY creates definitions that have
little use by themselves but without which the package as designed will not work.
These definitions mostly facilitate dynamic on demand loading, and create types
required for interfacing with the package. There are only three LLFs in this
portion of the package, ptolemy, init, and types.

The ptolemy LLF defines the package table. The entries of the package
table are not initialized to point to the global variables of the package as might
be suggested by way the package table is used. Rather the package table entries
are initialized to a command for loading the LLF which defines the associated
package variable. This means that all of the components of the package remain
unloaded until they are actually referenced. The ptolemy LLF also defines a
procedure, ptolemy/load, to make the defining of the package table entries
easier.

The #nit LLF defines the package’s initialization procedure. Package initial-
ization primarily involves defining types needed to interface with the PTOLEMY
package, but also establishes the default values of the exported global variables

Table 1.1: Modules With “No-Op” Primary Procedures.

b_ops Procedures for manipulating B-notation.

comb_ops Procedures for numbering the combinations of ex-
tra bases that occur in B-notation.

kron_ops Procedures for converting expressions in SB-
notation to expressions in the Kronecker product
notation.

map_info_ops Procedures for manipulating Map/nfo Types.

order_ops Procedures for manipulating SubOrderTypes, Or-
derTypess, and OrderSpecTypes.

proc_dimen_ops | Procedures for determining the dimension of a
mapping type of procedure.

types Definition of all of the package-specific types.
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SimpProc and OneDRange. If part of PTOLEMY is loaded using the with com-
mand, then the initialization procedure will automatically be executed at that
time. In addition if the ptolemy /load procedure is executed, presumably be-
cause one of the package table entries was evaluated, the initialization procedure
will be executed at the same time.

The types LLF defines all of the PTOLEMY-specific types. These types might
be needed in order to run some user created code to manipulate PTOLEMY
defined objects even if no part of the package is used.

Though a significant effort is made to ensure that the initialization procedure
will be executed before any of the package’s components are evaluated, there
are times when a user will want to explicitly initialize the package. This can
be done with the command ptolemy[init] (). An example of when this might
be necessary is if the user performs some lengthy problem defining computation
prior to the first usage of a PTOLEMY procedure and as part of this defining
computation it is necessary, or convenient, to use some of the PTOLEMY specific
types.

In fact, it is this occasional need to explicitly load the package types without
actually using the package, that motivates making the package initialization
procedure explicitly visible. Without this need, each component of the package
could “secretly” ensure that any structures that it requires are defined as part
of its execution.
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This LLF defines the package table. As mentioned in the introduction to this sec-
tion the entries of the PTOLEMY package table are actually commands for loading the
appropriate LLF and defining the appropriate global variable.

This LLF defines one global variable, ptolemy, and two procedures,

load_proc(NomName: name)
check_init(NomName: name)

The global variable ptolemy is the package table. The load_proc procedure and the
check _init procedure are used to define the package table. Specifically the load _proc
procedure loads the procedure with the nominal name NomName, and the procedure
check_init checks that the package has been initialized as part of the reference to
exported global variable NomName.

of Dynamic Loading

All the information for loading the PTOLEMY LLFs is defined in the package table. From
the definition of the package table each entry in the table must evaluate to a reference
to the variable in the package with the nominal name of the entry’s table index. See
Section 1.2 for more information on Maple Packages, but the PTOLEMY package table
entries are not direct references to the appropriate package variables. Instead they are
commands that when executed load the LLF in which the package variable is defined
and then return a reference to the variable.

This allows the package components to be loaded only when they are referenced.
Often this avoids unnecessary work, since referencing every PTOLEMY LLF in the same
session would be the rare. More importantly, it helps reduce response time by dis-
tributing package loading over many user interactions (waiting for I/O is the biggest
component of response delay for most Maple interactions).

The Package Table At this time the package table exports only the global variables

presented in Table 1.2.
Each package table entry corresponding to an exported procedure will equal an
expression of the following form

‘ptolemy/load proc‘(nominal name)

This implies that fully evaluating the table entry will execute load_proc with the
nominal name as its argument. The procedure load_proc must be responsible for
performing all the necessary operations. These operations are enumerated in the next
subsubsection.

Referencing the package variable SimpProc requires package initialization, but does
not require that any LLFs be loaded. As a result its package entry is equal to

‘ptolemy/check_init‘(’SimpProc?)

Version 0.4
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Table 1.2: The Global Variables Exported by the PTOLEMY Package.

| init See page 14

ClipPlot See page 191. MakeRecMap See page 76.

CollocateRec See page 117. MultiToRec See page 96.

CollocateMultiRec  See page 129. MultiSToLinKron See page 152.

Linear See page 142. SolveLinKron See page 165.

LogRatioMap See page 105. SToLinKron See page 146.

LogSinhMap See page 113. ToRec See page 87.

MakeTradMap See page 79. Warp See page 69.

GridInvMap See page 181. PlotDomBound See page 176.

GridMap See page 187. sinc See page 197.

PlotBound See page 173.

SimpProc A global variable used to specify the simplification
procedure is to be used.

OneDRange A global variable used to specify the range used
for graphing 1D grids.

The procedure check_init is similar to the procedure load_proec, except that it does
not try to load the corresponding LLF.
In the source code the actual table entries are of the form

eval(nominal name = ’‘ptolemy/load proc‘(nominal name)’

or
nominal name = ’‘ptolemy/check_init‘(nominal name)’

so that when the source is “compiled” the load_proc and check_init are merely refer-
enced, not executed.

Importing Ptolemy Variables The with procedure assigns the variable proc name

to the result of
eval (package name [proc_name],1)

and executes the result of evaluating package name[init] if that result is a procedure.
The with command does not actually load any LLFs. This is especially counterintu-
itive, since it is common to refer to the act of executing a with command as “loading
package components.” Technically, the result of executing a with command is to create
definitions such that evaluating either the package table entries or the variable name
“loaded from the package” will cause the associated LLF to be loaded.

This causes a problem if the with command is used to assign the nominal variable
name a command sequence for loading the associated LLF and then the nominal variable
name is used as a symbol. Since Maple does not fully evaluate variables that reference
procedures, a variable that is assigned a procedure may be used either as a name or as a
procedure, depending on the context. So had the nominal variable name been assigned
a procedure instead of a command that eventually evaluates to a procedure, it would
be valid to use the nominal variable name as a symbol. Unfortunately, the commands
for loading a procedure from an LLF cannot be used as a name.

Version 0.4
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To remedy this problem load_proc must check if the nominal variable name has
been assigned to the result of

eval (package name [proc_ name],1)

If this has happened then load_proc must reassign the nominal variable name to the
procedure which it is loading, after the procedure has been loaded.

The load_proc Procedure and the check_init Procedure The load proc
procedure will:

e Check if the package initialization procedure has been executed. If it has not been
executed, then execute it.

e Check if the associated nominal variable name has been assigned the value found
in the specified table entry. If it has, then the nominal variable name will be
modified whenever the table entry is modified.

e Assign the specified package table entry to directly reference the full name of the
procedure that will be loaded.

e Use the readlib command to load the LLF with the same relative path name as
the full variable name.

e Assign the nominal variable name the procedure and return the result, if the
nominal variable name is assigned to the value that use to be in the table entry
then. Just return the procedure if this is not the case.

This prevents load_proc from being reexecuted on subsequent references to either the
same package table entry or the same nominal variable name.

Because subsequent evaluations of the same package table entry will directly eval-
uate to the full procedure name, there is rather little overhead caused by referencing
package components through the package table and there is no overhead associated with
referencing the procedure via its nominal name after the with command was used to
import a procedure.

The check_init procedure performs the same operations as load_proc, except that
no LLFs are loaded. This is useful when referencing global variables of the package that
do not have an associated LLF.

However, because using the with command to load portions of the package may
cause naming conflicts, it should never be used by code within the PTOLEMY package.
Furthermore since loading LLFs through the package table is more expensive then di-
rectly using the readlib command this method is never used by PTOLEMY procedures
to load other portions of the package that it might need. Finally, if it is known that
the necessary LLFs have been explicitly loaded there is little reason not to reference the
procedures directly by their full names. In short, the package table is intended to create
a view of the package’s exported variables for the outside world, it is not intended for
use internal to the package.

The init Procedure Because the with command makes nontrivial internal use of ref-
erences to ptolemy[init], using this mechanism to load the initialization procedure
can lead to a self reference within the with command which leads to an infinite loop.
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As a result PTOLEMY always pre-loads the init LLF. Specifically, this LLF is loaded
during the compilation of the ptolemy LLF and the init procedure is assigned di-
rectly to ptolemy[init]. However, the two source files are kept separate to facilitate
experimentation with other design options.

An Example

| Start of Maple Worksheet

> interface(verboseproc=0);
> eval(ptolemy,1);
readlib('ptolemy’ )

> ptolemy;
ptolemy

> eval(ptolemy,1);

table([
MultiSToLinKron = ptolemy /load_proc( ' MultiSToLinKron')
Collocate MultiRec = ptolemy /load_proc( ' Collocate MultiRec)
OneDRange = ptolemy /check_init( ' OneDRange')
SimpProc = ptolemy /check_init (' Simp Proc’)
GridInvMap = ptolemy /load_proc(' GridInvMap')
Clip Plot = ptolemy /load_proc(’ Clip Plot’)
LogRatioMap = ptolemy /load_proc( ' LogRatioMap' )
LogTanMap = ptolemy /load_proc( ' LogTanMap')
LogSinhMap = ptolemy /load_proc( ' LogSinhMap')
MakeRecMap = ptolemy /load_proc(’' MakeRecMap')
MakeTradMap = ptolemy /load_proc(' Make TradMap' )
MultiToRec = ptolemy /load_proc( ' MultiToRec)
PlotBound = ptolemy /load_proc('PlotBound')
SToLinKron = ptolemy /load_proc(’SToLinKron')
SolveLinKron = ptolemy /load_proc(’SolveLinKron')
GridMap = ptolemy /load_proc(' GridMap' )
should = ptolemy /load_proc( ' should' )
sinc = ptolemy /load_proc(’sinc’)
init = (proc ...end)
Linear = ptolemy /load_proc( ' Linear’)
ToRec = ptolemy /load_proc(’ ToRec')
Warp = ptolemy /load_proc(’ Warp')
MakeMappedMap = ptolemy /load_proc( ' MakeMappedMap' )
CollocateRec = ptolemy /load_proc(’ CollocateRec’)

Version 0.4 11
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PlotDomBound = ptolemy /load_proc( ' PlotDomBound')
)

VVVV

VVVV

OldLoad := eval(‘ptolemy/load‘);
OldLoad := ptolemy/load

‘ptolemy/load‘ := proc(Index: name)
print (‘Executing load‘, Index);
0l1dLoad (Index)

end;

ptolemy/load := proc ... end

01dInit := eval(ptolemy[init]);
OldInit := proc ... end

ptolemy[init] := proc()
print(‘ Executing package initialization‘);
01dInit ()
end;
ptolemy, ., := proc ... end

eval (ptolemy[LogRatioMap],1);
ptolemy /load_proc(' LogRatioMap')

eval(‘ptolemy/types‘);
ptolemy [ types

ptolemy[LogRatioMap] (0,1,x,y);
Ezecuting package initialization

=1 m — e’ = (z,1 )
T n a— — ., T T — T
1— = ' Y 1+e97 9

eval(‘ptolemy/types®);
proc ...end

eval (ptolemy [LogRatioMap],1);
ptolemy/ LogRatioMap

ptolemy[LogRatioMap] (0,1,x,y);

—1 9: — ¢’ = (z,1 )
T n| —— — T T —
1— = ' Y 1+eyv 9

with(ptolemy, LogSinhMap) ;
Ezecuting package initialization

[ LogSinhMap)|

eval (LogSinhMap,1) ;
ptolemy /load_proc(’ LogSinhMap')

12
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LogSinhMap(0,LOW,x,y);
[z — In(sinh(z) ),y — arcsinh(e” ),z — (sinh(z),sech(=z

)]

eval (LogSinhMap,1);
proc ... end
LogSinhMap;
LogSinhMap
eval (ptolemy[LogSinhMap], 1);
ptolemy [ LogSinhMap

ptolemy[LogSinhMap] (0,LOW,x,y) ;
[z — In(sinh(z) ),y — arcsinh(e” ),z — (sinh(z),sech(z))]

LogSinhMap (0,LOW,x,y);
[z — In(sinh(z) ),y — arcsinh(e” ),z — (sinh(z),sech(z))]

End of Maple Worksheet

Version 0.4
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This procedure loads the types LLF, defines the &K operator, and initializes the
global variables ptolemy/SimpProc and ptolemy/OneDRange if they are not already
defined.

Many Maple packages do not have an initialization procedure; instead each procedure
in the package assumes responsibility for guaranteeing the existence of any definitions
which it requires. PTOLEMY chooses, as a matter of design, to have an initialization
procedure. The primary reasons are:

e Without an initialization procedure, PTOLEMY types can not be used to specify
argument types as part of the parameter definition. Instead the procedure would
have to first check that the requisite type had been defined; if not, it would then
have to define the type, and then explicitly check the type of the parameter.
PTOLEMY’s design allows procedures to assume that all PTOLEMY types have
been defined prior to the procedure’s invocation.

e Occasionally the user will need to assign global variables or package types before
the first call to any of package’s procedures. This might happen if the global
variable were being set in order to pass information to a procedure or if the user
wrote involved procedures to construct the problem elements.

e Finally, it is simply better programming practice to place all of the initialization
operations together in one LLF than to distribute them throughout the package.
This is especially true since making each procedure in charge of ensuring proper
initialization would either involve duplicating much of the initialization code or
would be equivalent to having a hidden initialization procedure.

In the current design of PTOLEMY the only declarations that are performed as part
of the initialization procedure are the package types and the package’s global variables.
The package’s procedures can be defined only as part of some loading operation, either
using the with command, by evaluating a package table entry, or by explicitly executing
a readlib command.

Explicitly loading an LLF with a read1ib command would usually not be done by an
interactive user, but it is sometimes desirable within a program. If part of the package is
explicitly loaded via a readlib, then the user or programmer must ensure that package
initialization has been performed before executing any of the package’s procedures.
Within any package procedure this is a nonissue, since all package procedures can assume
that package initialization has occurred before they are executed. In a procedure that
is not part of the package it may be necessary, in this case, to explicitly initialize the
PTOLEMY package.

The PTOLEMY package initialization procedure can be explicitly executed at any
time with the command

ptolemy[init] ()

The initialization procedure is idempotent so reexecuting it does not cause any problems,
but a PTOLEMY coding practice is to decide if package initialization has been performed
by checking if ptolemy/types is of type procedure. Since the package initialization in-
volves loading the TYPES LLF, this is usually a reliable indication of package initializa-
tion. Of course, confusion may occur if the user explicitly assigns ptolemy/types to a

14
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procedure or unassigns ptolemy/types after package initialization has occurred. Users
should not redefine any package elements, unless they first consider the repercussions
of such redefinition.
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1.6 Overview of User-Level Modules

All of PTOLEMY’s exported procedures are listed and summarized in Table 1.3.
This table groups these procedure according to the chapters in which they are
described.

Using PTOLEMY to setup the solution to a PDE consists of successively con-
verting the problem definition from one problem representations to the next in a
sequence which eventually leads to a numerical matrix problem representation.
PTOLEMY defines four primary problem representations:

1. A PDE defined over a collection of any subdomains that can be represented
in PTOLEMY’

2. A PDE defined over a collection of parallelepiped subdomains.

3. Representation of the collocation equations, over infinite domains, in terms
of the tensor product of 1d basis components.

The notation used for this representation is unique to PTOLEMY and is
referred to as SB-notation. SB-notation is defined in [7] .

4. Representation of the problem as a matrix problem. Symbolically the
matrix is represented as the product of a diagonal matrix and the Kro-
necker product row and column vectors and special matrices denoted in
“I”-matrix format. This notation is common to much of the sinc-literature.

The procedure init is the package’s initialization procedure. It loads all of
the PTOLEMY-specific types and initializes the exported global variables.

The conversion between the general problem representation and a prob-
lem representation over parallelepiped domains primarily consists of applying a
mapping the problem statement. This is equivalent to performing a change of
variable. This step is typically performed with the procedure ToRec or Mul-
tiToRec. The procedure Warp allows the user to perform a change of variable
on individual equations (or systems of equations). The user need not ever use
Warp to setup the solution of a PDE but it is imagined that users would find
many uses for this function, such as performing the operations of ToRec or
MultiToRec by hand in order to customize the process.

The conversion from the representation over parallelepiped domains to the
representation of the collocation equations in SB-notation involves the selection
of bases, collocation of the equation using these bases, and remapping the prob-
lem onto the m-dimensional cartesian product of strips in the complex plane
about the real line. This second mapping of the problem is called “the sinc-
map.” The sinc-map is designed to transform the region of analyticity in the
complex plane. Because the number of collocation equations is potentially large,
i.e., one per basis, it is important to use SB-notation to represent many equations
with equivalent symbolic structures using a single symbolic result.

For linear problems the conversion from SB-notation to the matrix problem
is largely a parsing problem. The procedure Linear checks to see if a prob-
lem, specified in SB-notation, is linear. The conversion to a matrix problem
representation is done by either LinToSKron or MultiLinToSKron. The
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Table 1.3: A summary of the exported procedures.

Warp Maps a collection of equations from one domain
to another.

MakeRecMap Constructs a map from a rectangular domain
to another rectangular domain.

MakeTradMap Constructs a map from a traditional domain
definition to a rectangular domain.

ToRec Maps a problem defined over an arbitrary do-
main to a problem defined over a rectangular
domain.

MultiToRec Maps a problem defined over a collection of ar-
bitrary domains to a problem defined over a
collection of rectangular domains.

LogRatioMap Constructs a MaplInfoTypes for various sinc-

LogTanMap maps.
LogSinhMap &
IdentityMap

CollocateRec Collocates a problem defined over a single rect-
angular domain.

CollocateMultiRec | Collocates a problem defined over a collection
of coupled rectangular domains.

Linear Checks the collocated form of a problem to see
if it is linear.

SToLinKron Converts the collocated form of a problem to a
matrix problem.

MultiSToLinKron | Converts the collocated form of a problem to a
matrix problem.

SolveLinKron Writes a matrix problem to disk and calls the
external executable to solve it.

PlotBound Plots a collection of parameterized boundaries.

PlotDomBound Plot the boundary of a domain.

GridInvMap Used to visualize a mapping in the original do-
main.

GridMap Used to visualize a mapping in the mapped-to
domain.

ClipPlot Clip any two-dimentional Maple plot to rectan-
gular region.

sinc Defines the sinc function, its integral, and its

derivative.
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procedure SolvLinKron writes this matrix representation to disk and invokes
a user defined “back-end” procedure to solving the problem.

The procedure PlotBound produces a Maple plot corresponding to a col-
lection of boundaries. It assumes that all of the boundaries are of the same
dimension. The procedure PlotDomBound will produce a plot of the bound-
aries of a collection of arbitrary domains; it relies on PlotBound for the actual
plotting. The procedures GridInvMap and GridMap are used to visualize a
mapping. The procedure GridInvMap creates a uniform grid on the mapped-
to domain, uses the inverse map to map this back to the original domain, and
plots the result. The procedure GridMap creates a uniform grid in the original
domain, applies the map to this grid, and produces a plot of the result. The
procedure ClipPlot will clip any two-dimentional Maple plot to an arbitrary
rectangle. Finally, the procedure sinc defines the sinc-function which is useful
for plotting sums of sinc bases, but is not directly used by any other part of the
package.

1.7 Installing Ptolemy

Because PTOLEMY is not part of the standard Maple distribution, at the be-
ginning of each session the user must instruct Maple where to find PTOLEMY
and how to load it. This is easily done by adding one or two commands to the
user’s Maple initialization file; suggested commands are presented in the next
subsection.

Instructing Maple where to find PTOLEMY is easily done by setting the
variable 1ibname to include the path in which the package resides. Directing
Maple to dynamically load the package whenever it is first referenced is easily
done by assigning the global variable ptolemy to a readlib command which
will load the package whenever the global variable is fully evaluated.

The Libname Variable

The global variable 1ibname specifies an ordered sequence of path names which
Maple searches when loading library files with the readlib command. In general
this variable must be modified in order to load and use PTOLEMY, but since this
variable is also consulted when loading system libraries the user will generally
not want to simply assign 1ibname to the path name where PTOLEMY resides.
Instead the path name where PTOLEMY resides should added to the front or
back of the sequence already assigned to libname, using a command like

libname := libname, ‘/new/path/name‘.

Because most of the readlib commands will operate on a name of the form
ptolemy/lib file name where 1ib_file name is one the LLF names, the path
added to the libname sequence should actually be the path containing a direc-
tory named PTOLEMY which contains most of the dot-‘m’ files.
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For example, if libname points to
/usr/local/share/contrib/maple
then the PTOLEMY package table is setup to look for the LLFs in the directory
/usr/local/share/contrib/maple/ptolemy

Similarly, if the variable 1ibname points to /home/grad/jdoe then most of the
LLFs must be stored in the directory /home/grad/jdoe/ptolemy.

Once the 1ibname variable is defined so that readlib’s can load PTOLEMY’s
library files, the global variable ptolemy should be assigned the expression

’readlib(’ptolemy’)’

This will load the LLF which defines the package table, whenever the global
variable ptolemy is fully evaluated. The result of this readlib is the global
variable ptolemy defined in the LLF, so the result of evaluating the variable
ptolemy (the first time) is the package table defined in the LLF. A side effect of
this readlib is to redefine the global variable ptolemy reference be the package
table. This means that subsequent evaluations of the global variable ptolemy
will not execute the readlib; instead they will merely evaluate the result of the
first readlib.
The intent is that users of the PTOLEMY package should add two lines similar
to
libname := libname, PtolemyDir:
ptolemy := ’readlib(’ptolemy’)’:
in their .MAPLEINIT file. If the user already has a .MAPLEINIT file the
incremental cost upon startup of these two lines is negligible. If the user does
not already have a .MAPLEINIT file the incremental cost is slight, but may be
detectable on some systems because one extra disk access will be added to the
Maple startup sequence.
On the University of Utah College of Engineering facilities, PTOLEMY is
already installed in the path

/usr/local/share/contrib/maple/ptolemy.
So users on these systems should add the

libname := libname, ‘/usr/local/share/contrib/maple‘:
ptolmey := ’readlib(’ptolemy’)’:
to their .MAPLEINIT files.

Downloading Ptolemy

On systems where PTOLEMY is not centrally installed users may easily install
it in their own accounts. GNU-zipped tar files can be downloaded from the

World Wide Web at

http://daisy.uwaterloo.ca/~kparker/ptolemy
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Downloadable files exist both with and without the Postscript version of this
manual (the version without the manual is much smaller).
To “unzip” the file use the Unix shell command

gunzip ptolemy.tar.gz
To “untar” the file use the Unix command
tar xf ptolemy.tar

This will unpack all of the library files into the subdirectory named PTOLEMY
of the current directory.

If the library files are “untarred” into the path named $ (HOME) /1ib/ptolemy
then file named DOT_MAPLEINIT, included in the distribution, will suffice as a
.MAPLEINIT file. This file will add the pathname $ (HOME) /1ib to the 1ibname
sequence. This dot file is especially convenient for first time Unix users, but in
order to get the value of this Unix environment variable it is necessary to spawn
a subprocess, so this file is significantly slower than if the path names are hard-
coded into the initialization file. It is suggested that users consider other long
term solutions, such as hard-coding the path names or using m4 to insert the
path name into the Maple initialization file. Users who do not already have
Maple initialization files may simply copy this file to their home directory (with
the appropriate name change). The Unix command for doing this is:

cp ptolmey/dot mapleinit $(HOME)/.mapleinit



Chapter 2

Type Declarations

PTOLEMY creates quite a complicated taxonomy of types. A working knowledge
of these types is probably the primary component in a less superficial under-
standing of how to use PTOLEMY, but simply cataloging the PTOLEMY types,
as is done in the bulk of this chapter, may not be sufficiently motivating. The
reader who has sufficient conceptual understanding of PTOLEMY will benefit
from a deeper contemplation of the material in this chapter. The reader who
lacks a mental model of the way PTOLEMY works may be better advised to
regard this section more as reference material, deferring involved consideration
until after mastering the material in Chapter 3 and Chapter 4.

2.1 Different Typing Concepts

Maple’s concept of typing is sufliciently different from the concept employed by
more traditional programming languages that it is useful to discuss typing con-
cepts in the abstract, before enumerating the Maple types defined by PTOLEMY.

Structural Types

Maple supports only 37 elementary types. These elementary types are directly

implemented by the kernel. All Maple objects are created by nesting this small

set of elementary types. It is easy to extend this concept of type to apply to

any Maple object, by defining the type of any expression tree to be the “type

tree” whose nodes are the type of corresponding nodes in the expression tree.
For example the type of the Maple object

[1,’LOW?,°V’ = 0] (2.1)

is shown graphically in Figure 2.1. Such type-trees can also be represented
typographically. For example, this type would usually be denoted as

[INTPOS,NAME,EQUATION(NAME,INTPOS)]

21
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LIST

(iInTPos ) (NAME) (EQUATION )

(name)  (INTPOS )

Figure 2.1: The Structural Type of the Maple Expression in Equation 2.1

Notice that Maple has two different elementary types for representing integers,
one for “positive” integers and one for “negative” integers. The words positive
and negative must be interpreted loosely since zero can be represented using
either of these elementary types. However, the parser will create an object of
type INTPOS when it encounters a zero.

Though in computer science this way of defining the type of a complicated
object is the most common, it is not the only reasonable way of doing it. This
type concept is sometimes called structural typing. The major point of this
section is to contrast this concept of type with other typing concepts, specifically
logical typing and attributed types.

Logical Types

In Maple, structural types are often overly narrow. For example in many ap-
plications the programmer does not wish to distinguish between positive and
negative integers. It is easy to imagine an application in which the program
would accept any number, but in Maple the structural type of a number can be
an INTPOS, an INTNEG, a RATIONAL, or a FLOAT. Checking all of the possi-
ble structural types in this case would not be prohibitive, but if this much work
is required for such a simple example it should be clear that for complicated
objects simply enumerating all of the admissible structural types could become
prohibitive.

To remedy this problem Maple uses a completely different typing concept,
logical typing, defined by a test that can be applied to an object. The set of
objects which pass the test are of the prescribed logical type. In the previ-
ous example the programmer could use the system-defined logical type numeric
which is defined as the test of whether the object is of the logical type integer,
the structural type RATIONAL, or the structural type FLOAT, where the logical
type integer is the test to see if the object is of the structural type INTPOS or
INTNEG.

The Maple command type checks the logical type of a Maple object. Vary
rarely can this be directly related to the structural type of the object. For
example Maple defines logical types named posint and negint, but neither one
of these can be used to determine if the structural type of the object is INT-
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POS or INTNEG, since zero is excluded from both type posint and type negint,
but can in theory be represented with either the structural type POSINT or
NEGINT. Determining the structural type of a Maple object typically requires
the use of the disassemble command. In fact, to indicate the specialness of
structure types a previous version of the manual, i.e., [2], used uppercase names
for structural types; the PTOLEMY manual has adopted this convention.

The primary limitation of the logical type concept is that the logical type
is not an attribute of the object; it is merely a test which can be applied to an
object. The important implication of this is that it is easy to ask,“Is this object
of a particular logical type?”, but it is not possible to ask, “What is the logical
type of this object?” In most cases this question is not even meaningful. Given
a set of logical types an object might not be any of these logical types or it
might be many of them. Even if the object is only one of the logical types and
the set of possible logical types is enumerated, the only general way to answer
this question is to test the object against each of the logical types. Typically
this would be too inefficient to be of much practical interest.

Attributed Types

A key point about structural types is that because they directly reflect the
structure of the implementation, they are a unique immutable property of the
object. In contrast the logical type is a computational result which is considered
to be a type for the purpose of simplifying the code.

Sometimes is would be useful to associate a specific logical type with an
object. This manual will refer to this typing concept as the attributed type. An
attributed type is the logical type of the object that was intended when the
object was created.

An example of the need for this typing concept is when fairly diverse logical
types may be manipulated by a single procedure, but one of the required meth-
ods for manipulating these object varies among the collection of logical types.
In more complicated cases it may be difficult to figure out which method should
be used without knowing which logical type was the intended when the object
was created.

Maple provides no support for the concept of attributed types, so the pro-
grammer who wishes to use this concept must explicitly tag the object with
an attributed type indicator. PTOLEMY does not add attributed type fields to
any of its type definitions, but in some cases, like the DomainTypes, PTOLEMY’s
design would probably be improved by doing so. Clearly, this is the high level
concept being invoked.

2.2 Records in Maple

Maple does not provide any direct support for “record” types. However, there
are three common ways of emulating records: 1) using tables, 2) using inert
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functions, and 3) using lists. Each method has some advantages and some dis-
advantages. At this time PTOLEMY uses lists for all of its record types, although
the result is sometimes not intuitive. To help make PTOLEMY’s type definitions
a little less confusing it is probably helpful to first consider the common methods
for implementing records in Maple.

Records Implemented with Tables

Semantically and syntactically the best way to emulate records in Maple is
by using tables. Each index can correspond to the name of a field and each
field value can be stored in the table entry, indexed by the field name. Run-
time checking of field names can be enforced by using an “indexing function”
(the keyword indexfcn in Maple’s on-line help system has more information
on indexing functions). The problem with this approach is that Maple’s im-
plementation of tables is based on hashing. Hashing is perhaps inherently too
inefficient for implementing large numbers of small records no matter how it is
done, but Maple’s implementation of tables uses fixed size hashing tables which
are particularly poorly optimized for this particular operation.
To illustrate this consider the following example:

Start of Maple Worksheet

Create a record with two fields named ‘x’ and ‘y’. This could be an implementation
of a two-dimensional point type.

> ‘index/PointType‘ := proc(Field,Table)
> if (op(Field) <> ’X’) and (op(Field) <> ’Y’) then
> ERROR( ‘Invalid field name for record PointType*)
> fi;
>
>  if nargs = 2 then
> Table [op(Field)]
> else
> Table[op(Field)] := args[3..nargs]
> fi;
> end:
> A := table(PointType);
A := table( Point Type, |
)

> A[D’X’] := 1;

Ax =1
> A[’Y’] := 0;

Ay =0
> A[’Z°] := 3;

Error, (in index/PointType) Invalid field name for record PointType
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> op(op(4));
PointType,[ X = 1,Y = 0]

The first element (i.e., the 5) indicates that the object is of type NAME. This is
because references to tables do not fully evaluate so this command is examining the
internals of the variable A. The second element is a pointer to the object assigned to
the variable. The third element encodes the character string for the variable name.

> Var := [disassemble(addressof(4))];
Var := [5, 1074137236, 1090519040]

The first element (i.e., the 28) indicates that the object is of type TABLE. The
second element is a pointer to the indexing function. The third element is a pointer
to the array bounds information. The fact that this is a table and not an array is
indicated by pointing to the symbol false. The final element points to the table.
> Table := [disassemble(Var[2])];

Table := [ 28,1074114476, 1074092944, 1074141660 ]

> disassemble(Table[2]);
5,0,1349478766, 1951693168, 1694498816

> whattype (pointto(Table[2]));
string

> pointto(Table[2]);
PointType

> disassemble(Table[3]);
5,2, 1717660787, 1694498816

> whattype (pointto(Table[3]));
string

> pointto(Table[3]);
false

The first element (i.e., the 37) indicates that the object is of type HASHTAB. All but
two of the entries do not point to a hashing bucket. The two nonzero entries point to
the two hashing buckets associated with this hash table.

> HashTab := [disassemble(Table[4])];

HashTab := [37,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1074109532, 0,
0,0, 1074110008, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

> nops (HashTab) ;

257
> NonZero := NULL:
> for i to nops(HashTab) do
> if HashTab[i] <> 0 then NonZero := NonZero,i fi
> od;
> NonZero;

1,130,134

The first element of each hash bucket (i.e., the 36’s) indicates that each of these
objects is of type HASH. The rest of the elements in each structure are paired so that
each pair defines a table entry. The first element in each pair points to the index, and
the second element points to the table entry.

> Bucketl := [ disassemble(HashTab[NonZero[2]]) 1;
Bucket = [36,1074115584, 1074063288, 0,0,0,0]

> Bucket2 := [ disassemble(HashTab[NonZero[3]]) ]1;
Bucket2 := [ 36, 1074115620, 1074063272, 0,0,0,0]

> Index1 := disassemble(Bucketi[2]);
Indez1 := 5,0, 1476395008

> pointto(Bucket1[2]);
X

> Valuel := disassemble(Bucket1[3]);
Valuel := 2,1

> Index2 := disassemble(Bucket2[2]);
Indez? := 5,0, 1493172224

> pointto(Bucket2[2]);
Y

> Value2 := disassemble(Bucket2[3]);
Value2 := 2,0

End of Maple Worksheet

Ignoring the Maple overhead of the indexing function, which is not dupli-
cated for each instance of this record, this representation of the record takes
285 words of memory (i.e., 1140 bytes on a 32-bit machine). An efficient
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representation in Maple should reasonably take just seven words of memory
(28 bytes). By comparison the same record would probably be represented in
C++ in 2 words (8 bytes).

The memory overhead of implementing records with this mechanism are
acceptable only for unusually large records.

Records Implemented with Inert Functions

Within the Maple, library records are represented using inert functions. For
example the record which contains information about plots is implemented using
the inert function named PLOT. The record’s fields are stored as the arguments
of the inert function. The field names are indicated by the use of additional
functions, and the field values are the arguments of these inert arguments.

This method actually has the widest range of advantages. The primary
advantage of this approach is that a special printing procedure can be defined
for all objects of the prescribed record type (see the keyword print in Maple’s
on-line help system). This is in fact done for the PLOT record type. Another
advantage of this approach is that the intrinsic function name can be used to
define an attributed type. In addition the memory overhead of this method,
although still a problem when implementing very small records, is acceptable
for most records.

The following session reveals the internal structure of Maple’s PLOT “record
type.” Notice the use of seven different inert functions in this example alone.

Start of Maple Worksheet

> Temp := plot([[0,0], [2,1/2], [1,1], [0,0]],
> scaling=constrained, tickmarks=[5,3]);

Temp := PLOT(CURVES([[0,0],[2.,.5000000000 ], 1.,1.],[0,0]],
COLOUR( RGB,0,0,0)), AXESTICKS(5,3), AXESLABELS(, ),
TITLE( ), SCALING( CONSTRAINED)),

VIEW( DEFAULT, DEFAULT))

> print (‘print/PLOT¢);

proc(pin) ... end

> Temp;
See Figure 2.2

End of Maple Worksheet

The primary disadvantages of this approach is that manipulating field values
within the record is exceedingly painful and mildly inefficient.
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Figure 2.2: A Maple Plot of a Triangle

Records Implemented with Lists

PTOLEMY uses lists to implement records. The order of the fields is fixed and
the list of field values is simply stored as a list. This is the way of implement-
ing records in Maple which most nearly mimics the way in which records are
implemented in more traditional languages. An immediate consequence, is that
this implementation choice is also the most efficient.

However, implementing records with lists result in a Maple object which is
less recognizable as a record then the results of using either tables or intrinsic
functions. A serious manifestation of this problem is that the field names are
never explicitly used. The field name is implicitly determined by the position
of the field value within a sequence of all field values.

For example if the PointType illustrated earlier is this section were imple-
mented as a list, the ‘Y’ field value of a record named Point would be referenced
as Point [2]. Referencing the field as Point [Y] would be much more readable;
however, referencing the field if the record where implemented in a manor analo-
gous to the PLOT record would require the much more complicated, less efficient,
and even less readable expression

subs(map(T -> op(0,T) = op(T), Point), Y)

A minor disadvantage of using lists to implement records is that none of
the fields are optional. With both the table implementation and the intrinsic
function implementation it is easy to leave some of the field values unspecified.
Of course, there are ways of extending the list implementation of records to
include optional fields, but the result is more cumbersome. This is not a serious
disadvantage since record types with optional fields are rare and “optimizing
for the common case” is a good design principle.
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2.3 Types Checking versus Data Checking

Because logical types are simply tests that can be applied to an object, it is
possible to define logical types such that all of the data checking is performed
as part of the type checking. In some cases this is even appropriate, but this is
poor design strategy.

In cases when the cost of checking the validity of the data is significant
compared to the cost of the computation, the program should check the validity
of the data only once. It is also often desirable to check the type of all arguments
passed to all procedures in order to alert the developer of minor errors. In many
cases this will result in the type of some objects being checked more than once.
This inefficiency can be tolerated only if the cost of the type checking is small
compared to the cost of the computation.

Consequently, the desirable design strategy is to separate data checking from
type checking except when the two operations are equivalent. For logical types
it is not always clear which checks are part of validating the type and which
are part of validating the data. Clearly, checks of the object’s structural type
are part of the type validation and not part of data validation. It would be
reasonable to argue that all other checking is data validation. This point of
view effectively defines logical types as a computational method of defining
ensembles of structural types.

It is my opinion that this point of view is too restrictive. It would disallow
Maple’s logical type, POSINT, since checking for nonzeroness is really data
checking. Yet, much of the power of logical typing is that the programmer can
separate the logical type definition from the implementation, and defining a
type such as posint (or nonzeroinit) is in some cases a reasonable use of logical
types.

PTOLEMY attempts to use the following rules to decide which checks should
be included in the type definition:

e Checking the structural conformity of the object should always be part of
the type definition.

e Checking the structural consistency of the object should also be included
as part of the type definition.

e Checks which take a significant amount of time to perform, compared to
checking the structural validity, are part of data validation, not part of
the type definition.

e Types should have general meaning beyond the specific purposes of the
immediate application. Any checks that do not appear to have such gen-
erality are part of data validation.

Maple provides a powerful type expression syntax for defining structural
conformity. Almost all PTOLEMY types first compare the object against this
type expression specification. In some cases this is sufficient, but in a signifi-
cant portion of cases, verifying the structural consistency of the object requires
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additional computation. In fact, Maple lacks any particularly good technique
for performing checks such as, “The size of each list in a collection of lists must
be the same.” Only a few PTOLEMY types perform additional checks beyond
these two classes of structural checks.



Types Miscellaneous Types

Miscellaneous Types

nonzeroint
This type checks that the object is an integer and that it is not zero.

EndType

This is an enumeration type. Variables of this type must be assigned the values *LOW’
or HIGH’. Typically, variables of type EndType specify which end of a range is being
referenced.

BoundType

This type is used to specify a parameterized boundary.

Assume that the boundary is defined in an n-dimensional space. Then the associated
BoundType must be a list with 2n — 1 elements. The first n-elements must be of type
algebraic and express functions for the coordinate values. The last n — 1 elements must
be of type name=range and define the parameters of the parameterization.

For example:

[x*cos(Pi*x), x/\2%y, x*sin(Pi*x), x = 0..2, y = -1/2..1/2];

describes the boundary illustrated in Figure 2.3.

Figure 2.3: A Segment of a Three-Dimensional Cylindrical Spiral

In the xz-plane the boundary curls through the range of angles from 0 to 27 radians.
In the y-dimension the boundary thickens from a point when the angle is 0 units to a
line segment of width 4 units when the angle is 27.
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MapInfoType

The type MapinfoType defines the information about a sinc-map typically required by
PTOLEMY.
The type equation for this type is:

{[procedure, procedure], [procedure, procedure, procedure]}

The first element of the list defines the map, the second element defines the inverse
map. If the list has three elements then the third element defines the weight, also called
the nullifier function, associated with this map. If the map is denoted by ¢ then the
weight is defined to be 1/¢’.

If a factorization of the weighting function is known, the third procedure will return
a sequence of two results, one for the factor corresponding to the LOW end of the interval
and another for the factor corresponding to the HIGH end. When the factorization of the
nullifier is not known the procedure will return just one result specifying the unfactored
weight. The LLF MAP_INFO_OPS contains procedures for using the information in
objects of type map_info.
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Collection Types

The types documented in this subsection are used to describe collections of ho-
mogeneous Maple objects. These types are similar to Maple’s list and set types, but
less specific about the kind of relationship imposed among the various objects in the
collection.

Maple’s built in collection types, i.e., list/set, enforce two interobject relationships:
uniqueness and ordering. It would be better if Maple offered greater orthogonality of
these properties; for example by supporting “ordered sets” and “unordered lists.” In
addition to these two obvious new collection types other less obvious collection types
could be created based on other interobject relationships. Probably the only other fully
general interobject relationships that could be imposed are graph based relationships.
However, discovering compelling applications for data dependent relationships, such as
partial orders or less trivial mutual exclusion rules, is much easier.

This section does not define new collection types, but merely provides types for
abstracting the collection concept for whatever collection constructs are supported else-
where. Currently these collections only support sets and lists, but the next version of
PTOLEMY will probably add support for “unordered lists” and “ordered sets” and make
it easier for users to integrate their own collection types with the package.

The need for abstracting the “collection of objects” concept for various other types
is motivated by the fact that procedures perform an operation on each object in a
collection without caring about the interobject relationship. For example Maple’s map
command will perform some operation on each element of a list, a set, or an expression
tree. The result is the same type as the input, but each element or node is the result of
applying the prescribed operation to the corresponding input element or node.

However, map functional syntax is often difficult to use. The collection types allow
procedures to specify that some of its arguments will be treated in a map-like fashion.

Each collection type described in this section is actually a parameterized type; that
is, it is actually a type function requiring an argument that specifies a subtype and return
a fully instantiated type. It is only in the sense that all of the objects in each collection
must be of the specified (logical) subtype that these collections are homogeneous. That
is, each of the objects in the collection must be instances of the specified logical type,
but may otherwise be quite dissimilar.

Collection

Objects of this type may be either sets or lists of the specified subtype. That is, the
type expression for the type Collection(SubType) is:

{set(SubType), list(SubType)}

It would be trivial to make the subtype argument optional. In effect, the type
Collection could be defined to be equivalent to Collection(anything). This is not done
for consistency with the collection type, where the use of the type collection(anything) is
strongly discouraged. The user who wishes to omit the subtype should instead use the
definition Collection(anything).
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collection

This type function is similar to Collection except that it also allows an isolated object
of the specified subtype. The type expression for the type collection(SubType) is:

{SubType, set(SubType), list(SubType)}

The collection structure is often more convenient for interactive users than Collection,
because a single instence of the item need not be enclosed in a list or set. However, it is
easier to write code to manipulate elements of a Collections because the structural type
will always be a SET or a LIST.

Also, using collection can result in ambiguity when instances of the subtype might,
or might not be, lists or a sets. In such cases it may not be possible to distinguish an
isolated object that is a set or list from a set or list of objects each of which is of the
specified subtype. Even when this ambiguity can be resolved, the code for doing so
is generally less efficient and often more complicated. In addition, almost all code for
manipulating collections is more complicated than the analogous code for manipulating
Collections, because the meaning of the map command is different when applied to a list
or set of objects than when applied to an isolated object. The result is that an extra
conditional is often required in order to handle the case of an isolated object differently
than lists or sets of the object.

Since all objects are trivially of type collection(anything), simply by virtue of being
of type anything, use of the type collection(anything) is strongly discouraged. Usually in
cases where the the collection(anything) seems appropriate what is really needed is the
type collection(NotListOrSet), where the type NotListOrSet is defined to be of any type
except for a list or a set.

CollectStruct

This type function defines a type that is a specified number of nesting of the type
Collection. Unlike the other “types” defined in this section, this type function has two
arguments, i.e., a subtype specification and a depth of nesting specification.

The type expression for CollectStruct(SubType,Depth) is

Collection(...Collection(SubType)...)

where there are exactly Depth, Collection functions in the type expression.

collectStruct

This type function defines a type that is an arbitrary nesting of the type collection. The
type expression for the collectStruct(SubType) is,

{SubType, Collection(collectStruct(SubType))}

Another way of defining this type is that each subtree in the the object’s expression
tree must be of either type SubType or Collection(Sub Type.
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Example Usage

| Start of Maple Worksheet

> ptolemy[init]();

> A := [1, 2, 3];
A:=[1,2,3]

> type(A,collection(posint)); type(A,Collection(posint));
true

true

> B := {3,2,1};
B:={2,3,1}

> type(B,collection(posint)); type(B,Collection(posint));
true

true
C:=3

> type(C, collection(posint)); type(C, Collection(posint));
true

false

> Notd := [1,2,[3,4]1];
NotA :=[1,2,]3,4]]

> type(NothA,collection(posint));
false

> A := [[1, 0], [[3, 11, [4, 011, {[2, 21, [5, -2]3}1;
A::[[170]7[[371]7[470]]7{[272]7[57_2]}]

> type(A, collectStruct([posint,integer]));
true

> type(4, CollectStruct([posint,integer],2));
false

> B := [{[1,0], [2,3]}, [[3,-111, {[4,11, [5,-21, [6,0]1}]1;
B::[{[170]7[273]}7[[37_1]]7{[57_2]7[471]7[670]}]

> type(B, CollectStruct([posint,integer],2));
true
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End of Maple Worksheet
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Order Types

The types documented in this subsection are used to describe the order (with respect
to differentiation) of an approximation. This is important both in problem specification,
for expressing the required order of approximation of the solution, and in solution
reporting, for reporting the order of approximation achieved.

The order of an approximation is defined to be the order of the highest derivative
“accurately” approximated. So a zeroth order approximation, accurately approximates
the function, but not any of the function’s derivatives. Similarly, if f is a first order
approximation of f, then not only does f(:v) ~ f(z) (for all z in the region of approxi-

mation) but af(z)/dz ~ 8f(z)/0z.

SubOrderType

This type specifies the order of approximation for a single-dimensional approximation.
The type expression for this type is

{nonnegint, [nonnegint,nonnegint]}

If an object of this type is a nonnegative integer then it indicates the order of ap-
proximation. On the other hand, if an object of this type is a list of two nonnegative
integers it indicates the order of the approximation at the low end and high end (re-
spectively) of the implicitly defined interval of approximation. In this case the order of
approximation in the interior of the region is at least the minimum order at the ends of
the interval, but is otherwise unspecified by this data structure.

For sinc methods the order of approximation becomes very large at the point in
the domain which maps to zero. In fact in the limit as N goes to infinity the order
of approximation becomes infinite at this point, but the order of the approximation
will decrease towards the ends of the interval of approximation to no more than that
guaranteed by the suborder type.

OrderType

This type indicates the order of approximation for a parallelepiped region. The type
expression for this type is
list(SubOrderType)

Each element of the list indicates the order of approximation in the corresponding
coordinate direction. The number of elements in the list implicitly defines the dimen-
sionality of the region of approximation.

Assume that the following Maple fragment

Speci := [[1,2], 0];

indicates the order of an approximation of f over the domain [£1, h1] X [£2, k2] and that
the coordinate names are denoted by z1 and z3. Then f and 8f/0z; are accurately
approximated over the entire domain. It also indicates that the 2 f/dz2 is accurately
approximated along the upper boundary of the domain (i.e., where 1 = hq), but is not
accurately approximated near the lower boundary of the domain (i.e., where z; = £1).
Finally, it indicates that the 0f/0z is not guaranteed anywhere in the domain.
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OrderSpecType

This type serves the same purpose as the type OrderType, except that it associates a
state-variable with the order information. The type expression for this type is

[name, OrderType]
The Maple fragment
ttv, [1,111, [p, [0,0117;

defines two OrderSpecTypes. They indicate that V', and it is first partial derivate are
accurately approximated over the entire domain, but that only the function value of P
is accurately approximated over the domain. That is, none of the partial derivatives of
P are guaranteed to be accurately approximated anywhere in the domain.

MultiOrderSpecType

This type defines order information over a collection of parallelepiped domains and
assoclates all of the order specifications with a single state-variable. This is a preferable
representation to a list of OrderSpecType’s, because the equivalence of state-variables
across domains is unambiguous.

The type expression for this type is:

[name, list(OrderType)]

The multi_spec_to_list and the spec_list_to_multi procedures in the ORDER_OPS
LLF can be used to convert between a list of MultiOrderSpec Types and a list of lists of
OrderSpecTypes. This essentially converts order specification information between a
representation for each individual domain in the collection and one representation for
the whole collection of domains. The procedure spec_list_to_multi also provides data
checking to ensure that the state-variable names are consistent across all the domains.
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2.7 Domain Types

Domain types provide a geometric description of a problem domain or of a
collection of problem subdomain.

Unlike most other types defined by PTOLEMY domain types are actually
Automatic Data Types (ADTs). See [1] for an authoritative introduction to
ADTs. The domain type must not only define a data structure describing the
domain geometry but it must also define two specific operations for that data
structure. In the language of Object Oriented Programing (OOP) a domain type
definition is not complete unless it also defines two associated methods. The
required methods for a domain types construct a smooth map and its inverse
from the domain to an arbitrary finite parallelepiped.

It is easy to create data structures that unambiguously define many kinds of
geometric regions, but a significant investment is required to construct classes of
geometric regions that can be easily mapped to a parallelepiped and for which
the inverse of the resulting maps can be symbolically expressed. This is the
reason that, at the moment, PTOLEMY support such a limited set of domain
types.

At the moment, all supported domain types are of arbitrary (but fixed) di-
mensionality. When the mathematics allows nearly trivial, Maple makes it easy
to implement such generality, but there is nothing in PTOLEMY that requires
domain types to have this generality. All that is required is that the domain
representation have the right dimensionality for the problem definition in which
it is used.

Because Maple does not directly support ADTs or true objects, PTOLEMY
uses a naming convention to associate the methods with the type. Domain
types are given names of the form ThisDomainType where This is a distinguish-
ing mnemonic for the specific domain type. Currently PTOLEMY defines three
domain types, named RecDomainType, TradDomainType, and MappedDomain-

Type.

Restrictions on the Map

The maps associated with each domain type should satisfy the following prop-
erties:

1. Both the map and its inverse must be representable by a finite symbolic
expression, which Maple can differentiate.

2. The map from the domain to the parallelepiped must be a bijection.
3. The map should be “smooth.”

A paragraph is required to rigorously explain what is meant by smooth in this
context. First notice that the except for one-dimensional problems mapping is a
transformation from C* to C*, not a function. The desired smoothness property
is that each coordinate function of the transformation be conformal with respect
to each coordinate at every point on the interior of the domain. That is, if the
mapping is

M(z1,...,20) = (fl(:cl,... 90 T N €2 ,:Bn))
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then

1. For all j,k € {1,...n} the 0f;/ 0z exists at every point, (z1,22,...,2Zp)
on the interior of the domain.

2. For all j,k € {1,...n} the 0f; /0z); # 0 at any point on the interior of the
domain.

3. The map from the domain to the parallelepiped is a bi-junction.

This smoothness requirement is confusing and sometimes hard to test. For-
tunately, it is rather natural for the map to satisfy this requirement if the map
satisfies the other two requirements. The most practical implications of this
smoothness requirement is that any sharp corners in the boundary of the do-
main must map to the corners of the parallelepiped and that any sharp edges
in the boundary of the domain must map to the edges of the parallelepiped.

The more troubling difficulty is constructing maps with closed form inverses.
This difficulty is primarily what has prevented the development of more domain
types.

PTOLEMY is designed to work with maps that satisfy these requirements, but
only the first two requirements are necessary. Researchers intimately familiar
with sinc-methods may, on occasion, wish to use maps that do not satisfy the
smoothness property. The resulting sinc approximation will typically still con-
verge, but the error of approximation will not decrease exponentially. In some
cases an “almost smooth map” may actually give slightly better performance
for “small N” (i.e., a small number of sinc points).

In addition it is possible for the researcher who is willing to either modifi-
cation PTOLEMY or who can employ special insight into the current problem
to relax the first requirement. One way of doing this would be to use a fi-
nite symbolic approximation of either the map or its inverse. The adequacy of
the symbolic approximation would either have to be guaranteed by the user or
PTOLEMY would have to select the appropriate truncation of an infinite sym-
bolic form.

Maps that do not satisfy all three of these requirements are expected to be
well outside the range of normal usage.

Multidomain Types vs Domain Types

When several subdomains are defined over the same space it would be possible
to allow for the use of different coordinate names in each subdomain. However,
much of PTOLEMY’s code is simplified if the same coordinate names are used
in all of the subdomains within a particular problem. Because of this many of
PTOLEMY’s procedures require that the coordinate names be the same across
all of the subdomains within a particular problem.

If a list of DomainTypes were used to specify a list of subdomains then user
errors would arise because of failure to satisfy this requirement. In addition
to check for these errors a significant amount of extra code would need to be
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distributed throughout the package. To circumvent these problems PTOLEMY
defines “multidomain” types that allow a list of domains types to share a single
specification of the coordinate names. If the domain type name is ThisDomain-
Name, then the corresponding multidomain type is be named MultiThisDomain-
Type.

Because each of the domain types currently supported by PTOLEMY involves
lengthy procedures for checking the validity of the representation, PTOLEMY
attempts to use one procedure for validating both the components of a mul-
tidomain type and the corresponding domain types. In order to facilitate this
PTOLEMY separates the purely structural part of a domain type definition from
all of the other computations needed to check the type.

For each domain type PTOLEMY defines a structural type that embodied
the structural requirements of the type, except for the field that defines the
coordinate names, and defines a procedure for checking the validity of this type.
The name of the both the type and validation procedure can be derived from
the name of the domain type. If the domain type name is ThisDomainType then
the name of the data checking procedure will be ptolemy/check this_domain,
and the name of the type that captures the structural essence of the domain type
will be ThisDomainStruct. This name is intended to emphasize the distinction
between a purely structural type and a logical type (which in Maple is the
standard kind of type).

The logical domain type must: 1) include the specification of the coordinate
names, 2) include fields needed to construct the associated structural type, and
3) contain information that is accepted by the associated validation procedure.

All of this may sound like a contradiction of the idea espoused in Section 2.3
that “data checking” should not be part of the logical type definition. The data
validation included as part of the current set of domain types, checks for misuse
of coordinate names. This kind of validation can be performed quickly (even
though it involves a fair amount of code) and it seems more like the symbolic
equivalent of range checking than like the analog of checking the rank of a
matrix.
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Domain Structs

PTOLEMY currently supports only three domain types: 1) RecDomainType, i.e., ori-
ented parallelepiped domains 2) TradDomainType, i.e., domain of the type traditionally
used in the sinc-literature, and 3) MappedDomainType, i.e., domains that are implicitly
defined by explicitly specifying the map, its inverse, and the parallelepiped onto which it
is mapped. Each of these domain types has an associated “struct” type and a validation
procedure.

RecDomainStruct

The type RecDomainStruct is equivalent to
list(range)

Each element of the list corresponds to a coordinate and defines the range of that
particular coordinate. The order of the range specification is important, since the
coordinate range being specified is determined by the order of the coordinates.

The limits of each the range can be finite, infinite, or a symbolic constant, but the
ranges may not depend on any of the coordinates.

check _rec_domain(Coord: list(name), Struct: RecDomainStruct)

This procedure checks that all of the limits are independent of all of the coordinate
names.

TradDomainStruct

The type TradDomainStruct is defined to be
list(name=range)

Each element is a range specification for one of the coordinates. Unlike the RecDomain-
Type, the coordinate ranges need not be specified in the order of the coordinates. As a
result in order to tell which coordinate is being specified, each range specification must
have the coordinate name on the left hand side (LHS) of the equation. However, the
order of the range specifications is not unimportant; the limits of each range may be
defined in terms of any of the previously defined coordinates, but not in terms of the
coordinate currently being defined or in terms of any of the yet undefined coordinates.

check_trad_domain(Coord: list(name), Struct: TradDomainStruct)

This procedure first checks that the number of range definitions matches the number of
coordinates. Then it checks each of the range specifications in order, keeping track of
which coordinates still need to be defined. At each step the procedure ensures that the
coordinates currently being defined are in the set of still undefined coordinates. Then
it uses the Maple indets command to quickly build a set of intermediate expressions
occurring in the limits of current range specification. The subset of intermediate ex-
pressions that are of type name are extracted to form the set of free variables. Each
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free variable is then checked to see if it is in the set of coordinates names still to be
defined. Finally, the coordinate name currently being defined is removed from the set
of coordinate names still to be defined.

MappedDomainStruct

Mapped domains implicitly specify a domain by specifying the mapping from the domain
onto a specified parallelepiped. This provides a user with the ability to employ problem
specific domains of a type for which automatic map generation is not currently possible.
Of course, this capability requires the user to explicitly specify both the map and its
inverse.

The type MappedDomainStruct is defined to be

[RecDomainStruct, procedure, procedure]

The first element specifies the region onto which the domain is mapped, and the second
and third arguments define the map and its inverse.

check_mapped_domain(Coord: list(name), Struct: MappedDomainStruct)

This procedure first calls check _rec_domain to validate the first element, then it checks
that both procedures are from C* to C* where n is the number of coordinates. The
dimension of the range and domain of the procedure are checked by calling range_dim
and domain_dim from the LLF proc_dim. The possibility of range_dim returning
UNKNOWN is also handled. The range dimensionality is assumed to be correct unless it
can be conclusively determined to be wrong. That is, results equal to UNKNOWN results
are assumed to be correct, because they can not be proven to be incorrect (even though
they can not be proven to be correct).
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Domain Types

RecDomainType and MultiRecDomainType

The conceptual framework for these types is presented in the subsubsection labeled
“RecDomainStruct” on page 42.
The type expression for RecDomainType is

[list(name), range,..., rangel

The first element is a list of the coordinate names. The rest of the elements in the list
are the range specifications corresponding to each dimension.
For example, the following code fragment

[[x1,x2,x3], 0..1, O..infinity, -n..nl;

is a three-dimensional RecDomainType specifying the region shown in Figure 2.4.
The type expression for MultiRecDomainType is

[list(name), list(range),...,, list(range)]

The first element defines the coordinate names and each list of ranges defines one of the
subdomains.
For example the code fragment

[[x,y] [0..1,0..1], [1..2,0..1], [1..2,1..2]]

defines an object of type MultiRecDomainType that defines the three subdomains shown
in Figure 2.5.
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Figure 2.4: A Three-Dimensional Semiinfinite Parallelepiped

This domain extends from the z1-z3 plan in the direction of increasing z2, forming a
rectangular cylinder.
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% i 5

Figure 2.5: The ‘L’-Domain Divided into Rectangles

TradDomainType and MultiTradDomainType

The conceptual framework for these types is presented in the subsubsection titled “Trad-
DomainStruct” on page 42.
The type expression for TradDomainType is

[list(name), name=range,..., name=range]

The first element is an ordered list of the coordinate names and the other elements

are the range specifications. An ordering list of the the coordinates is vital in order to

construct a usable map from the domain to an arbitrary parallelepiped. If an unordered

list of coordinates would suffice it could be extracted from the range specifications.
The code fragment

[[x,y], y=0..1, x=sin(2*Pi*y)/2 .. sin(2*Pixy)+1];

is of type TradDomainType and specifies the two-dimensional domain illustrated in Fig-
ure 2.6.
The type expression for MultiTradDomain Type is

[list(name), list(name=range),...,, list(name=range)]

The first element defines the coordinate names and each subsequent element defines one
of the subdomains.
For example the code fragment

[[x,y], [x=0..1, y=0..2-x], [y=1..2, x=2-y .. y+1], [x=2..3, y=0..x-1]]

defines an object of the type MultiTradDomain Type, which defines the three subdomains
shown in Figure 2.7.
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Figure 2.6: The Fat ‘S’ Domain
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Figure 2.7: Three Trapezoidal Subdomains
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MappedDomainType and MultiMappedDomainType

The conceptual framework for this type is presented on page 43.
The type expression for MappedDomainType is

[1ist(name), RecDomainStruct, procedure, procedure]

The first element specifies the coordinate names and the rest of the elements are the
elements of the corresponding type MappedDomainStruct.

The following simple example illustrates using a MappedDomainType and a map
that converts from cartesian to polar coordinates to define a domain that could not be
represented as a TradDomain Type.

Start of Maple Worksheet

> with(ptolemy,PlotDomBound) ;

[ PlotDomBound]
> Rec := [[r,thetal, 1/2..1, Pi/6..11%Pi/6];
1 1 11
Rec := |[r,0], E..l, c™ 5"
> Map := (x,y) -> (sqrt(x"2 + y~2), arctan(y,x));
Map := (z,y) — (sqrt(:n2 +4° ),arctan(y, z))
> InvMap := (r,theta) -> (r*cos(theta), r*sin(theta));

InvMap := (r,8) — (rcos(8),rsin(8))

> Domain := [Rec, eval(Map), eval(InvMap)];

. 1 1 11
Domain := [[[r,@], 5..1, s™ % |

(z,y) — (sqrt(:EQ—l—y2 ),arctan(y,z)),(r,8) — (rcos(9),rsin(9)):|

> PlotDomBound(Domain, -1..1, -1..1, tickmarks=[5,5]);
See Figure 2.8

End of Maple Worksheet |

The type expression for MappedTradType is

[list(name), [list(range), procedure, procedurel,...,

[list(range), procedure, procedure]]

The first element defines the coordinate names and each subsequent element defines one
of the subdomains.

The following example shows the use of a MultiMappedDomainType to define a rather
complicated set of subdomains that could not be defined using TradDomain Types.

Start of Maple Worksheet
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%% i > 3

Figure 2.8: A ‘C’-Shaped Domain

> with(ptolemy, PlotDomBound);
[ PlotDomBound]

> MakeMapPair := (CentX,CentY) ->

(subs (Result =
(sqrt ((x-CentX) "2 + (y-CentY)"2), arctan((y-CentY), (x—CentX))),
(x,y) -> Result),

subs (Result = (r*cos(theta)+CentX, r*sin(theta)+CentY),
(r,theta) -> Result));

VVVVYV

MakeMapPair := ( CentX, CentY ) — (subs (Result =
(sqrt ((m — CentX )2 +(y— CentY)Q) ,arctan(y — CentY,z — CentX )) ,
(z,y)— Result) ,
subs( Result = (rcos(8) + CentX,rsin(8) + CentY ),(r,8) — Result)

)

Domain := [[x,y],
[[1/2..3/2, 0..Pi], MakeMapPair(0,0)],
[[1/2..3/2, -Pi..0], MakeMapPair(-2,0)],
[[1/2..3/2, -Pi..0], MakeMapPair(2,0)],
[[5/2..7/2, 0..Pi], MakeMapPair(0,0)]];

Domain = [[m,y], Hl 3 0..71'] () > (Vo2 o2, arctan(y, ) ,

5..2,

VVVVYV

(r,0) — (rcos(@),rsin(@))] : H%g—ﬂ'O] ,
(z,y) — (\/m,arctan(y,w—i—Z)) ,

(r,6) = (rcos(8) —2,rsin(9))] : H%g—ﬂ'O] ,
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(z,y) = (\/m,arctan(y,m—Z)),
(r,0) = (rcos(9)+z,rsin(9))] : Hgg(m] ,

(z,y)— (\/m2+y2,arctan(y,m)) ,(r,0) — (rcos(@),rsin(@))”

> type(Domain, MultiMappedDomainType) ;
true

> PlotDomBound(Domain, axes=boxed);
See Figure 2.9.

| End of Maple Worksheet

DomainType and MultiDomainType

The type DomainType is simply the intersection of all of the domain types known to
PTOLEMY. As has repeatedly been stated, at the moment there are only three domain
types, RecDomainType, TradDomainType, and MappedDomainType. Nevertheless, for
software engineering purposes, programmers should still use the type named Domain-
Type rather than enumerate the current list of supported domains.

The MultiDomain Type represents a collection of subdomains each of which may be
in any of the domain classes. The type expression is

[1ist(name), DomainStruct,..., DomainStruct]

The following example illustrates the use of the MultiDomain Type to mix subdomains
from different domain classes.

N =

3 210 1 2 3

Figure 2.9: Four Arc Sector Subdomains with Different Centers
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Start of Maple Worksheet

> with(ptolemy, PlotDomBound);
[ PlotDomBound]

> Doma = [[x,y]1,

> [ =-1 0 x=- 3/2+y/2 ..o -1,

> [[1 2 P1/2 .Pi],

> (x, y) >(sqrt((2*x + 1)°2 + y°2), arctan(y,2*x+1)),
> (r,theta)->(r*cos(theta)/2 - 1/2,r*sin(theta))],

> [-1/2..1/2, 1..2],

> [[1..2, 0..Pi/2],

> (x,y)->(sqrt((2*x - 1)°2 + y~2), arctan(y,2*x-1)),
> (r,theta)->(r*cos(theta)/2 + 1/2,r*sin(theta))],

>

[y=-1..0, x=1 .. 3/2-y/211;

. 3 1 1
Domain := [[m,y], [y =-1..0,z = — 3 + JY- 1:| R [[1..2, 3 7r..7r:| ,

(z,y) = (sart (22 +1)° +¢*) ,arctan(y, 22+ 1)),
(r.0) > (%rcos(@)—%,rsin(@))],[_71..%,1..2],[
[1 .2,0..= ],(m,y)—>(sqrt((zm—1)2+y2),arctan(y,zm—n),
(r,@)—)(%rcos(@)—l— ,rsin(9)>:|,[y:—l..O,m:l..;—% H

> type(Domain, MultiDomainType) ;
true

> PlotDomBound(Domain, axes=boxed);
See Figure 2.10.

End of Maple Worksheet
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2 -1 0 i 2

Figure 2.10: Five Subdomains of Three Diferent Types
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Problem Types

Problems defined over multiple subdomains require inter-subdomain coupling equa-
tions and geometric information indicating which subdomain boundaries are connected
to each other. The resulting extra notational complexity is significant enough to be
awkward when defining a problem over a single domain. As a result, PTOLEMY usually
defines different types for corresponding problem elements of a single domain problem
and a multidomain problem. In such cases, the corresponding types have the same name,
except that the prefix Multi is prepended to the type name of the type corresponding
to a multidomain problem.

This section describes the types required to define the various kinds of problem
descriptions over a single domain. The next section titled, “MultiProblem Types” on
page 57 describes the types required to define problems over collections of subdomains.

BoundCondType, BoundTagType, and BoundForm-

Type

The type BoundCondType describes a boundary constraint, whereas BoundTag Type de-
scribes a tagged expression to be evaluated on the boundary, and BoundForm Type is the
union of the two types.

The type expression for BoundCondType is

[posint,’EndType’, equation]

The first two elements of the list indicate the boundary along which the constraint is
to be applied and the third element specifies the constraint.

The first two elements only indirectly specify a boundary in the original domain;
instead they directly specify a boundary of the parallelepiped onto which the domain
will be mapped. The first element indicates the dimension perpendicular to the edge
and the second element specifies which limit of the range of this particular dimension
comprises the boundary.

For the case of a RecDomainType the correspondence between boundaries of the
original domain and the mapped-to domain is trivial, so the specification can easily be
thought of as directly specifying a boundary in the original domain. In the case of other
domain types the correspondence in still unambiguous, but it may not be intuitive. To
minimize the resulting confusion the maps created by the TradDomainType ADT avoid
reflections and rotations. See the section titled “MakeTradMap” on page 79 for a more
complete description of these maps.

The type expression for BoundTagType is

[posint,’EndType’, algebraic, anything]

The first two elements describe the boundary along which the expression is to be eval-
uated (in the same manor as for BoundCondType). The third element is an arbitrary
expression to be evaluated along this boundary. The typical use of this type is to equate
two different expression evaluated along two different boundaries; in such applications
it is useful to associate a label with each expression, referred to as “the expression tag”
in this manual. The fourth element specifies this tag.
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The type expression for BoundFormType is

{’BoundCondType’, ’BoundTagType’}

ProbType

This type defines a PDE in its most natural sense over a single domain defined by a
DomainType field.
The type expression for this type is

[collection(equation),
collection(’BoundCondType’),
’DomainType’,

collection(’0OrderSpecType’)]

The first element defines the PDE(or system of PDEs), the second element defines
the boundary constraints, the third element defines the domain over which the PDE is
applied, and the final element defines the requested order of approximation of the final
solution.

For example the potential in the interior of the resistive conductor shown in Fig-
ure 2.11 can be determined by solving a rather simple PDE. The following code shows
how the PDE might be defined using a ProbType structure.

Start of Maple Worksheet

> Top := (x+2)*(x-2)*cos(Pi*x)/3 + 1/2;

Top ::%(m—l—Z)(m—Z)cos(ﬂ'm)—l—%

Maple Worksheet Continued on Next Page
Nearly
infinite
resistivity

low

low
resistivity resistivity
conductor conductor

Nearly
infinite
resistivity

Medium/high
resistivity

Figure 2.11: A Fuse Like Conductor
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> Bottem := (x+2)*(x-2)*cos(Pi*x)/3 - 1/2;

Bottem := L z+4+2)(z—2)cos(mz)—

3 (

DN | =

> Domain := [[x,y], x=-2..2, y=Bottem..Top];

Domain := |[z,y],z = —2..2,

y==(z+2)(z—2)cos(wz)— % (m+2)(m—2)cos(ﬂ'm)+%

W=
W=

> Laplacian := D[1,1]1(V) + D[2,2](V) = 0;
Laplacian := D11(V )4+ D22(V) =0

> NormDir := [diff(Bottem,x), -1];
NormDir := [

1 . . 1 . . 1 . .. .
g(m—Z)cos(ﬂ'm)—l—g(m—l—Z)cos(ﬂ'm)—g(m—l—Z)(m—Z)sm(ﬂ'm)ﬂ',

|

> BoundCond :=

> [[1,L0W, Vv=V1], [1,HIGH, V=Vh],

> [2,L0W, NormDir[1]*D[1](V) + NormDir[2]*D[2] (V) = 0],
> [2,HIGH, NormDir[1]*D[1](V) - NormDir[2]*D[2](V) = 0]];

BoundCond := [[1,LOW,V = V1],[1, HIGH,V = Vh], [Z,LOW, (

. . 1 . . 1 . . .
(m—Z)cos(ﬂ'm)—l—g(m—l—Z)cos(ﬂ'm)—g(m—l—Z)(m—Z)sm(ﬂ'm)ﬂ')

w|

Di(V)—Dy(V) o) ,[2,HIGH,<

(z—2)cos(mz)+

w|

(:B—|—2)COS(7T:B)—%($+2)($—2)Si1’1(7‘l’$)7‘l’)

| L
w|

Di(V)+Dy(V)=0 ]
> Prob := [Laplacian, BoundCond, Domain, [V, [0,0]11];

Prob := [DM( V)4 Dya(V) =0, [[1, LOW,V = VI],[1,HIGH,V = Vh], [
2,LOW,<

($—2)COS(7T:B)—|—%($+2)COS(7T:B)—%($+2)($—2)Sin(ﬂ'$)ﬂ'>

w|

Di(V)—Dy(V) :0] , [Z,HIGH,(

. 1 . 1 \ .
($—2)COS(W$)+§($+2)COS(7T:B)—§($+2)($—2)Sln(ﬂ'$)ﬂ'>

w|
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Di(V)+Da(V) :o” , [[m,y],:ﬂ = 2.2,

(.'6—1—2)(:6—2)cos(71'$)—|—l ,

y= 5

W[~

1 . 1
§($+2)(:L‘—2)COS(7T$)—5..

V. [0.0]]

> ptolemy[init]();
> type(Prob, ProbType);
true

| End of Maple Worksheet

RecProbType

This type specifies a PDE problem over a single rectangular domain. Its definition is
exactly the same as ProbType except that the third element must be of type RecDo-
mainType.

OverRideType

This type specifies an override equations. Override equations specify some alternative
to the default equations for a specific group of collocation events.
The type expression for this type is

[equation, name,list(integer)]

The first element is the override equation, the second and third element’s specify the
group of collocation events at which this override equations should supersede the default
equation.

PTOLEMY identifies collocation events by specifying the associated state-variable
and the collocation point “number.” The collocation point “number” is always defined
relative to the set of collocation points needed to approximation the associated state-
variable.

In each dimension the collocation points are numbered from — (N + n;) to N + np,
where N is the sampling parameter, n; is the number of extra collocation points on the
low end, and ny, is the number of extra collocation points on the high end. In more than
one dimension, collocation points are “numbered” by the tuple whose elements are the
index number of the projection of the collocation point onto each of the dimensions.

Since PTOLEMY also associated a unique collocation point with each bases, collo-
cation events can also be identified by specifying a bases. In addition, since bases are
grouped into groups whose linear combination can be symbolically manipulated as a
single entity (see [7]), it makes sense to group collocation events in the same manner.
It is this grouping of collocation events that is specified by the OverRideType.

The bases group number is similar to the collocation point number except that all of
the sinc bases are in group 0, the high-end extra collocation points are number from 1 up,
and the low-end extra collocation points are numbered from -1 down. This is illustrated
in Figure 2.12.
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X2
A Group (-2,2) Group (0,2)
/ _—
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Figure 2.12: Examples of Collocation Group Numbers

SProbType

This type specifies a collocation system over a single (rectangular) domain using SB-
notation.
The type expression of this type is:

[collection(equation),
collection(OverRideType),
list(name),
list(MapInfoType),
collection(OrderSpecType)]

The first element contains the collocation equations; there is a one-to-one correspon-
dence between these equations and the governing equations of the original PDE. The
second element specifies override equations, which are typically derived from the original
boundary constraints. The third element is a list of the coordinate names. (Typically
these coordinate names are distinct from the coordinate name of the original problem
definition.) The fourth element is a list of the sinc-maps used in the collocation pro-
cess; these maps will be needed in the next stage of the solution process to determine
weighting functions. The fifth, and final, element contains the order of approximation
actually achieved by the collocation process.
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MultiProblem Types

Multidomain problems are similar to the single domain problems discussed in the
last section, but they require several additional constructs for specifying the way in
which subdomains are coupled.

In the original problem definition it is necessary to define which boundaries are
shared between subdomains. The CoupleType is used for this purpose.

After each subdomain is mapped to a parallelepipeds, it is no longer required that
(or even always possible), for shared parallelepiped boundaries to actually exist at the
same position in space. The result is that the relative orientation of coupled subdomains
can not be inferred once each subdomain has been mapped to a parallelepiped. This
information, combined with the coupling information present in the original problem
statement, is preserved in structures of type CoupleOrient Type.

Associated with each coupled pair of boundaries is a list of coupling equations, used
to preserve the needed order of smoothness across the boundary. This list of coupling
equations and the coupling orientation information is combined into a record of type
CoupleEqType.

Finally, when collocation is performed these coupling equations are converted into
SB-notation. The list of collocated coupling equations and the coupling orientation
information is stored in a record of type CoupleOverType.

These types are used, in conjunction with types used to define single domain problem
types, to define multidomain types analogous to ProbType, RecProbType, and SProb-

Type.

CoupleType and CoupleOrientType

Both of these types indicate that two boundaries of mapped-to subdomains were a
single shared boundaries prior to mapping. This is necessary because each subdomain
may be mapped to an arbitrary parallelepiped so that it is no longer obvious how the
subdomains connect. In fact, it is not always possible to choose the parallelepipeds so
that the shared boundaries in the original domain are shared once each subdomain is
mapped to a parallelepiped. This can be seen by considering the four subdomains in
Figure 2.13.

The difference between the Couple Type and the CoupleOrient Type is that the Couple-
Orient Type includes information about the way in which the two mapped domains must
be oriented in order for the boundaries to match up. This orientation information can
be determined by knowing the maps for each of the subdomains, but once these maps
are no longer part of the problem specification it is no longer possible to reconstruct
the orientation information from other problem elements. So the orientation informa-
tion must be extracted from the original domain specifications and combined with the
coupling information in order to fully define each coupling.

This is the justification for the CoupleOrientType. The argument that this type
should not be used in the original problem definition (i.e., the justification for also having
a CoupleType) is that the orientation information is implicitly defined in the domain
specifications. Letting the user define redundant information is not only unnecessary,
but also results in more user errors.

It is important to realize that both of these types are defined with respect to ori-
ented parallelepipeds, that is with respect to the mapped-to subdomains. So for an
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Domain 4
Domain 2

Figure 2.13: Four Domains that Cannot be Mapped to Parallelepipeds While Preserving
Connectivity

n-dimensional domain the boundaries are an oriented parallelepiped that varies in ex-
actly n — 1 of the dimensions.

CoupleType The type expression for this type is:

[posint, posint,’EndType’] = [posint, posint,’EndType’]

Each side of the equation specifies one subdomain boundary. The first element of either

boundary specification indicates the subdomain number. The second element indicates

the dimension that is perpendicular to the boundary, and the third element indicates

which of the two boundaries that are perpendicular to this dimension is being specified.
For example the two TradDomainType’s

[[x,y], y=0..1, x=0..2-y]

and
[[x,y], x=1..2, y=2-x..2]

share a common boundary, as shown in Figure 2.14. The mappings of these two domains
to parallelepipeds is determined by the procedure MakeTradMap except for dilation
and translations. An illustrative mapping of these two subdomains to parallelepipeds
is shown in Figure 2.15. Clearly, the shared boundary in first subdomain is specified by

[1,HIGH] and in the second subdomain by [2,L0W]. So the corresponding Couple Type
is

[1, 1,HIGH] = [2, 2,LOW]

CoupleOrientType The type expression for this type is:

[posint, posint,’EndType’, list(nonzeroint)] =
[posint, posint,’EndType’, list(nonzeroint)]
Each side of the equation specifies a boundary orientation. The first three elements of

each boundary orientation specification are exactly the same as the boundary specifi-
cation in CoupleType. The last element, however, specifies how the boundary must be
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Domain 2
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Figure 2.14: The Two Canonical Subdomains of the ‘L’-Problem
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Figure 2.15: Representative Maps for the Subdomains in Figure 2.14

This figure shows the way in which a grid on the original domain appears after being
mapped to two parallelepipeds domains. The dashed line is the map of the original
boundary between the subdomains. Notice that it appears in each of the subdomains.
The grid lines where 1/4 unit a part in the original domain, so the distortion of scale
introduced by the maps can be visualized by the distortion of the grids.
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oriented in order to match an implicitly defined mapping of the original shared boundary.
Specifying how to orient each subdomain so that the boundary matches some implicit
mapping of the boundary indirectly specifies how each subdomain must be oriented in
order to match each other along the shared boundary.

It would perhaps be less confusing if the structure defined the orientation of the
subdomain on the right hand side (RHS) in terms of the mapping of the boundary in
the LHS subdomain. In practice this convention is employed by MultiToRee, but the
extra generality (and associated confusion) is supported because during the building
of the matrix systems the boundary coordinates are assigned distinct names. The
implicitly defined mapping of the shared boundary defines the correspondence of the
boundary coordinates to the domain coordinates. This allows users to explicitly control
the assignment of coordinates to the boundary, by manually creating (or editing) the
coupling orientation information.

The intent of the orientation information is to describe the required manipulation in
a translation and scale invariant manner. That is, the orientation information describes
a particular mapping (in this case the mapping required to align two boundaries) ezcept
for some translation and and scaling. In this case all of the boundaries are aligned with
the coordinate system and lie on an (n — 1)-dimensional subspace. This means that any
mapping between boundaries will be a transformation of the form:

(Y1, n)i=M(z1,...,2q) = (alibil—i—bl,...anazin —}—bn))

where a; = 0 for the value of k for which y; is constant in the mapped to boundary.
As a result the transformation may be simplified to

Y1 = a1%i, + b1

Yhe1 = Ok—1Ti,_, +br_1
Yo = by
Ye+1 = Qk41 Tipyy + brg1

Yn = An T4, + by

Since the translation defined by the b’s and the scaling is defined by the absolute values
of the a’s all of the orientation information is completely defined by the signs of the
a terms and the 7; values. This information is encoded in the last element of the
CoupleOrient Type in the form

[sign(al) i1,...sign(ag_1) ig—1, sign(agr+1) e +1, sign(an) zn]

In more direct terms the orientation indicates, for the subset of coordinates that
vary over the mapped to boundary, which coordinate in the form the original domain
matches it rather the direction of the coordinate is reversed.

So in the example illustrate in Figure 2.14 and Figure 2.15 the CoupleOrient Type
could be either:

[1, 1,HIGH, [2]]

[2, 2,L0W, [-1]]

or

[1, 1,HIGH, [2]1] [2, 2,L0Ww, [-1]]
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CoupleEqType

This type defines all of the required coupling information once the subdomains have been
mapped to parallelepipeds. That is it specifies both coupling orientation information
and a list of coupling equations.

The type expression for this type is:

[’CoupleOrientType’, list(algebraic=algebraic)]

The first element contains all of the geometric information about the coupling, whereas
the second element contains a list of all of the coupling equations.

CoupleOverType

This type defines all of the required coupling information once collocation has been per-
formed. That is it specifies the coupling orientation information and a list of collocated
coupling equations. These collocated coupling equations are similar to override equa-
tions except that each side of the equation is applied at a different collocation point,
typically in different subdomains.

The type expression for this type is:

[’CoupleOrientType’, list(

[algebraic,name,list(integer)] = [algebraic,name,list(integer)]) ]

The first element contains all of the geometric information about the coupling, and
the second element contains a list of the collocated coupling equations. Each side of
the representation of the collocated coupling equations represents the expression to be
evaluated in the subdomain corresponding to this side of the coupling. Each expression
is evaluated in its respective subdomains and then equated to form a single collocation
event.

Each side of the collocated coupling equations is analogous to the OverRideTypes
used in the single domain problem types, except that the first element of the list is
an expression instead of an equation. Currently, PTOLEMY reserves collocation events
in both subdomains for this coupling equation. The final conversion to a system of
algebraic equations must, of course, use only one of the two collocation events, but the
type must specify both collocation points in order to specify where each expression is to
be evaluated. It is expected that part of the PTOLEMY system assign collocation events
will be redesigned in the next version of the system primarily to remedy this weakness.

MultiProbType

This type specifies a problem over a coupled collection of subdomains. The problem
must use a single (collection of) governing equation(s) over all of the subdomains. The
collection of subdomains may be heterogeneous.
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The type expression for this type is:

[collection(equation),
list(collection(’BoundCondType’)),
collection(’CoupleType’),
’MultiDomainType’,
collection(’MultiOrderSpecType’)]

The first element is the governing equation (which may be a system of equations). The
second element is a list of collections of boundary conditions; each collection of boundary
conditions applies to the corresponding subdomain. The third element specifies all of the
couplings within the problem. That is it specifies all of the subdomains boundaries that
are an artifact of domain decomposition. The fourth element specifies the collocation of
subdomains. The fifth and final element specifies the requested order of approximation
for each state-variable. The actual order of approximation may need to be greater than
this in order to correctly apply boundary conditions, but it will never be less than this.

It is possible for two boundaries of two different subdomains to physically lie on the
same spatial surface and still not be coupled. Though such problems are nonphysical this
kind of problem definition may be an important part of modeling a physical process.
For example in an electrostatics problem two subdomains might be separated by an
insulator with negligible conductivity and negligible width. Rather then define a gap
between the domains many orders of magnitude smaller then the other dimensions of
the problem, the model might simply define the two subdomains to touch but to be
uncoupled.

However, two boundaries that do not lie on the same surface should not be coupled.
Such coupling might result form some models of physical phenomenon, for example in
steady state heat flow problems two parallel plates might be constrained to be at the
same temperature, within the precision of the model, because of radiation. Coupling
two surface requires the construction of a bijection between the two surfaces. Since such
bijections is not unique it must be explicitly specified by the user or infered by through
some convention. When the two boundaries are really the same surface PTOLEMY can
safely employ the identity bijection. All other cases require manual intervention. The
user who wishes to do this kind of modeling should add hand constructed coupling
equations after the mapping to a collection of parallelepiped has been performed.

MultiRecProbType

This type defines a system of coupled PDE’s, each defined on a RecDomainType. The
governing equations may be completely unrelated from one subdomain to the next.
However the state-variables must be the same across all of the subdomain. In addition
all of the problems must have a common set of coordinate names (which in turn implies
a common dimensionality).
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The type expression for this type is:

[list(collection(equation)),
list(collection(’BoundCondType’)),
collection(’CoupleEqType’),
’RecMultiDomainType’,
collection(’MultiOrderSpecType’)]

The first element is a list of governing equations one per subdomain. Each “governing
equation” may in fact be a system of equations. The second element is a list of collections
of boundary conditions, one collection per subdomain. The third element is collection of
information about each of the couplings in the problem. The fourth element defines the
collection of rectangular subdomains. The fifth and final element specifies the desired
order of approximation for each of the state-variables over each of the subdomains. Just
as in the MultiProbType the actual order of approximation may need to be greater than
this in order to correctly apply boundary conditions, but it will never be less than this.

MultiSProbType

This type defines a system of collocation events, each defined over the cross product of
domains of the type Dq (See [5] for the definition of Dy).

Just as for MultiRecProbType, the governing equations may be unrelated in each
subdomain. However, the state-variables must use the same coordinate names across
all of the subdomains..

The type expression for this type is:

[list(collection(equation)),
list(collection(OverRideType)),
collection(’CoupleOverType’),
list(name),
list(list(MapInfoType)),
collection(’MultiOrderSpecType’)]

The first element is a list of governing equations, one per subdomain. The second
element is a list of collections of override equations, one collection per subdomain. The
third element is a collection of information about each coupling within the problem.
The fourth element is a list of the coordinate names used by all of the subdomains.
The fifth element is a list of lists of the sinc-maps used in the collocation process. Each
list of maps corresponds to a subdomains and contains one sinc-map per coordinate.
The sixth and final element specifies the order of approximation actually used by the
collocation process. This information implicitly defines all of the bases used as part of
the collocation process.
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Linear Kron Types

In the final stage of the problem solution the system of collocation events corre-
sponding to a linear problem is converted into a matrix problem. The representation
of this matrix problem uses Kronecker product notation, which is discussed in greater

detail in [7] and [10].

ParamCompType

This type merely represents a collection of simulation parameters (i.e., N’s and H’s in
the notation of the sinc-literature). The type does not specify the parameters values.
Rather, it is used in PTOLEMY to specify that a collection of N’s (or H’s) all have the
same value.

The type expression for this type is:

collection([posint, posint])

The first element in each pair specifies the subdomain, and the second element specifies
the dimension; the combination uniquely determines either an N parameter, an H
parameter, or the combination depending on the context.

The collection of parameters that must all have the same value is determined by
first constructing a graph where the parameter values are the nodes of the graph and
equivalence constraints from the edges and then extracting the components of the graph.
Thus the type name stands for “parameter component type.”

LinKronType

This type represents a matrix problem in Kronecker Product notation.
The type expression for this type is

[list(list(algebraic)), list(name), list(algebraic),
list(name), list(name),

list(ParamCompType)]

The first element represents a matrix of algebraic terms. The matrix is represented in
row major form, with each of the inner lists representing a row of the matrix. Each
element in the matrix is the Kronecker Product expression for the corresponding block
in the actual matrix problem. The block matrix must be a square matrix with a block
order equal to the number of block variables.

The second element defines a column-vector of block variable names. The block vari-
able names are specially constructed to contain information about the physical quanti-
ties they represent. If the state-variable in the original problem statement was called V,
then

e The block variables V_1, V_2, and so on, represent the scalar multipliers for core
sinc bases corresponding to the state-variable V in subdomain 1, subdomain 2, and
S0 on.
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Linear Kron Types

e The block variables V_1 B1_1, V_1 B1_2, and so on, represent the scalar multipliers
for the bases that are splines only in dimension 1, but are sinc-basis in all the
other dimensions. The numbering of these bases corresponds to the numbering of
the extra bases in dimension 1.

e Finally, block variables of the form V_1 B13_1, V_1 B13_2, and so on, represent
the scalar multipliers for the bases that are splines in dimensions 1 and 3, but
are sinc-basis in all the other dimensions. PTOLEMY provides the procedures
CombineToNum and NumToCombine to assist the user in computing the
correspondence between basses and sequence numbers.

The third element defines a column vector of expressions defining the RHS of the
system. Each expression represents a column vector whose size matches the number of
columns in the corresponding block-row of the block-matrix .

The fourth element defines the coordinate names. The coordinate names appear in
the algebraic expressions in the first and third LinKron Type elements, so they are integral
to the problem definition. The fifth element defines the names of the H parameters
appearing in the algebraic expressions in the first and third element. The order of the
H parameter names must match the order of the coordinates, and is therefore significant.

The sixth and final element is a list of the parameter components. When the final
matrix is built parameter values must be specified for each of these parameter values as
a group.
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Chapter 3

Mapping to Parallelepipeds

The sinc bases are defined as one-dimensional functions, but most problems are
multidimensional. The numerical analysis community realizes that methods for
approximating one dimension function can be generalized with suitable work to
methods for approximation in any number of dimensions. As a result the vast
majority of the sinc literature is devoted to solving one-dimensional problems.

In order to have relevancy as a tool for automatic setup, PTOLEMY must
directly address higher-dimensional problems. To leave the generalization to
two and three dimensions as an exercise for the reader is reasonable if the point
of the work is to convey mathematical insight. If the point of the work is to
enumerate the details essential for automating the setup of a problem class then
this point of view is tantamount to ignoring the common case.

The most common way of generalizing spectral methods to higher dimensions
is to use bases that are the tensor product of the one dimensional bases. For the
unmapped sinc base, i.e., defined for the entire real line and used to approximate
function on the strip Dy, this method works well. However, constructing a
map from the domain of analyticity which we wish to exploit to the higher-
dimensional extension of the strip Dy is quite a bit more involved than for the
one-dimensional case.

A few sinc researchers (see Section 7.4 of [10]) have proposed to tackle this
problem by applying two maps in sequence, the first to map the problem domain
to a parallelepiped and the second to map a desired region of analyticity in the
complex hyper-plane surrounding this parallelepiped to the higher dimension
extension of D4. The final map might be expressed as ¢(z) := ¢1(p2(z)) and its
inverse would be ¢~1:=¢5 1 (#7(2)).

The primary advantages of this two step approach are that:

1. The tensor products of one-dimensional mapped sinc-bases can be used
to directly approximate the function over the parallelepiped region. That
is, the aspects of ¢ which maps the domain to an orthogonal coordinate
system are completely captured in ¢;.

2. The aspects of the map that controls which portion of the complex hyper-
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plan surrounding the domain will be exploited in the approximation are
completely captured by the second map, i.e., ¢s.

PTOLEMY adopts this approach. This chapter describe how to map a problem
defined over a fairly general domain to a parallelepiped.

The result of this mapping to a parallelepiped is an implicitly defined do-
main (or subdomain) specific coordinate system that would map onto the nat-
urally defined coordinate system of the parallelepiped onto which the domain
is mapped. This domain-specific coordinate system is not explicitly utilized by
PTOLEMY but is often useful for simplifying proofs and developing insights.



Mapping to Parallelepipeds Warp

Warp

This procedure performs a change of variable on a collection of equations or equation
parts.

Warp(Eq: collection({algebraic, equation}), Map: procedure, InvMap: procedure)

Warp (Eq: collection({algebraic, equation}), Map: procedure, InvMap: procedure,
StateVar: collection(name)})

Warp(Eq: collection({algebraic, equation}), Map: procedure, InvMap: procedure,
Coord: list(name), NewCoord: list(name))

Warp (Eq: collection({algebraic, equation}), Map: procedure, InvMap: procedure,
StateVar: collection(name)}, Coord:list(name), NewCoord:list(name))

The argument Eq is the “equation” to be mapped. The argument Map and InvMap
should implement a mathematical function from C* to C* for some positive integer n.

If the optional argument StateVar is specified, then it specifies which symbols in
the equation should be assumed to be functions of the coordinates. If the optional
argument StateVar is not specified then the procedure free_var is called to construct
the list of state-variables. The procedure free_var considers any unassigned name in the
“equation” that has not been specified as a constant (using Maple’s assume command),
as a state-variable.

Not specifying the optional argument StateVar will often cause symbolic constants
to be treated as state-variables. Fortunately, since the map of a name is simply the same
name, treating a symbolic constant as a state-variable rarely causes an error. Although,
doing the extra work of mapping a name only to get an output equal to the input is
less efficient than not doing superfluous work.

In addition, a symbolic constant may be used in some ways that would be illegal
for a state-variable. In such cases allowing Warp to treat the symbolic constant as
a state-variable will cause errors. In other cases a particular notation may have two
different meanings depending on whether a particular symbol is a state-variable or not.
In these instances providing the optional argument StateVar is not only more efficient,
but logically necessary.

If the optional arguments Coord and NewCoord are used, they specify coordinate
names in the original and the new domains, respectively. If these optional arguments
are not specified then the argument names for Map and InvMap will be used instead.
These names are easily extracted and are typically acceptable choices for the coordinate
names.

However, problems occur if the arguments for Map and InvMap overlap, if any of the
coordinate names are assigned global values, or if the “equation” explicitly references
some of the coordinate names and these names are not the arguments of Map. The
procedure recognizes the first two of these problems and generates an appropriate error.

The simplification procedure specified by the global variable ptolemy/SimpProc will
be automatically applied to the coefficient of the resulting “equation.”

Version 0.9.3
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Example Usage

| Start of Maple Worksheet

> with(ptolemy, Warp,GridInvMap);
[ GridInvMap, Warp ]

> Map0 := x -> 1n(x/(1-x));

Map[):::):—)ln( z )
11—z

> InvMapO := x -> exp(x)/(1 + exp(x));

x

InvMap0 := xz —

1+ e®

> ODE := (Dee2) (V) + (1-x)*D(V) + xxV = K;
ODE:=D®)(V)+(1-z)D(V)+zV =K

> Warp(ODE, MapO,InvMapO);
Error, (in Warp) The Coordinate name(s), x, overlap domains.

>z = 'z7;

> InvMapO := z -> exp(z)/(1 + exp(z));

z

InvMap0 := z — P
> Warp(ODE, MapO,InvMapO);
DO(V)(1ter)t | eV (1+¢) (1) + (e —1) D(V)
(ez)2 1_|_ez (ez)2

=K

> Warp(ODE, MapO,InvMapO);
Error, (in Warp) The coordinate name(s), z, have global values.

> Mapl := (x1,x2) -> (x1, (x2-x1) / (2-x1));

. z2 — x1
Map1 = (z1,22) — 1, —
ap (z1,22) <$,2_$1>
> InvMapl := (y1,y2) -> (yi1,y2x(2-y1) + y1);
InvMap1 := (y1,y2) — (y1,y2(2—y1)+yl)

> GridInvMap(InvMapi, [7,7], [0..1, 0..1], xtickmarks=3);
See Figure 3.1
> Laplacian_2d := D[1,1]1(V) + D[2,2](V) = 0;
Laplacian_2d := D1 1(V )4+ D22(V ) =10
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Warp

2
1. 5///

1
0.5

0 0.5 1

Figure 3.1: Gridding of the First Inverse Map

Maple Worksheet Continued from Previous Page

start := time(): Warp(Laplacian_2d, Mapl,InvMapl); time() - start;
(1 492)Da(V) (1 492)Dia(V)

P 2t -2+ yt DV
N (2—-2y2+y2?)D22(V) —0
(=2+y1)?
2.283

Map2 := (x1,x2) -> (x1/(2-x2), x2);
z1
Map2 := (21,22) — <m,:ﬂ2>

InvMap2 := (y1,y2) -> (yi1*x(2-y2), y2);
InvMap2 := (y1,y2) — (y1 (2 —y2),y2)

GridInvMap(InvMap2, [7,7], [0..1, 0..1], ytickmarks=3);
See Figure 3.2
start := time(): Warp(Laplacian_2d, Map2,InvMap2); time() - start;
y!Di(V) ,ylDia(V) (14 y1* ) Dia(V)
(—2+y2)? -2+ y2 (—2+y2)?
2.650

+D2s(V)=0

Special := D[1,11(V) + D[2,2]1(V) = D[2]1(Q);
Special = D171(V)-|—D272(V) :DQ(Q)
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\
0.5 |

0 0.5 1 1.5 2

Figure 3.2: Gridding of the Second Inverse Map

Maple Worksheet Continued from Previous Page

> Warp(Special, Map2,InvMap2);
9 lel(V) _2y1D172(V) (1—|—y12)D171(V)

(—2+4+y2)? —24y2 (—2+y2)? + Dsp(V) =
D 1 .
- 2L D)

> Warp(Special, Map2,InvMap2, {V});

y1Di\(V) _ylDis(V)  (14y1°)Dia(V) o
(—2+y2)* 2 oz T (—2+y2)? + D22(V) =D2(Q)

> Map3 := (x1,x2) -> (sqrt(x1°2 + x272), arctan(x1,x2));
Map8 := (z1,22) — (sqrt(zl2 + z2? ),arctan(z1,z2))

> InvMap3 := (r,theta) -> (r*cos(theta),r*sin(theta));
InvMap3 := (r,0) — (rcos(8),rsin(0))

> Warp(Laplacian_2d, Map3,InvMap3);
r? (sin(ﬁ’)2 + cos(9)2) Dy(V)
(r? (sin( )2 + cos(6)2))*/>

D32 (V)
(sin(0)? + cos(9)?) r?

+D1,(V)+ =0
> ‘ptolemy/SimpProc‘ := simplify;
ptolemy [ SimpProc := simplify

> Start := time(): Warp(Laplacian_2d, Map3,InvMap3); time() - Start;
csgn(r ) D (V) . Dao(V
() DUV |y DaalV) g
r r
5.484

> assume (R>0);
> Start := time():
> temp := Warp(Laplacian_2d, Map3,InvMap3, [x1,x2],[R,thetal);

D,(V L Dan(V)

)
temp 1= + D V)+ =0
emp R 11(V) R?
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> time() - Start;

4.983
> subs(R = r, temp);
D(V . Dao(V
b(V) )+D1,1(V)+7272§ ):0
r r
> readlib(‘ptolemy/pde_collect‘):
> Map4 := (x1,x2,x3) ->
>  (sqrt(x1°2 + x272 + x372),
> arctan(x2,x1),
> arccos(x3/sqrt(x1°2 + x2°2 + x372)));
Map4 = (z1,22,28 ) — <
sq_rt(zl2 + z2? +-$32),arctan($2,$1),arccos o3
sqrt( 12 + 222 + 237)

> InvMap4 := (r,theta,phi) ->
>  (rxcos(theta)*sin(phi), r*sin(theta)*sin(phi), r*cos(phi));

InvMap := (r,60,¢) = (rcos(8)sin(¢),rsin(8)sin(¢),r cos(¢))

> Laplacian_3d := D[1,1](V) + D[2,2](V) + D[3,3](V) = 0;
Laplacian_8d := D1 1(V )+ D22(V )+ D33(V)=0

> Phi := ’Phi’;
> assume(sin(Phi) > 0);
> ‘ptolemy/SimpProc‘ := simplify;

ptolemy [ SimpProc := simplify

> Start := time():

> temp := Warp(Laplacian_3d, Map4,InvMap4, [x1,x2,x3],[R,Theta,Phi]);
> time() - Start;
Dl(V) D33(V) COS(‘1>~)D3(V) |
temp := 2 — 4 o + : + Dia(V
P R BT icesepre oY)
Dy»(V)
_ S
(=14 cos(®7)?) R
16.633
> templ := subs(cos(Phi)~"2 = 1 - sin(Phi)"2, temp);
Dl(V) D33(V) COS(<}~)D3(V) N DQQ(V)
t 1:=2 . D 14 _—
emp R + R + \/WR~2 +D1:(V)+ (@ )2 B2
=0
> temp2 := ‘ptolemy/pde_collect‘(templ,V, simplify, power);
Dl(V) D33(V) COS(<}~)D3(V) DQQ(V)
t 2:=2 : D (V —
e R T RrR? T am(a)R? (V) + sin(® )2 R?
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=0

> subs(R=r, Theta=theta, Phi=phi, temp2);
9 Dl(V) + D373(V) + COS(‘¢)D3(V)
r r2 sin( ¢ ) r?

| End of Maple Worksheet

. D 14
+D1,1(V)+#=0

of Implementation

Essentially all of the algorithmic operations of this procedure are performed by the low
level procedure fast_map, which is described on page 240. The sole function of the
Warp procedure is to assist interactive users in constructing the arguments required by
fast_map. Since directly calling the procedure fast _map is potentially much faster and
always at least a little faster, programmers are encouraged to call fast_map directly.
However, the use of Warp is encouraged for interactive use, because it checks for several
subtle errors.

Not all of the functionality provided by fast_map may be directly accessed through
Warp. The procedure Warp assumes that all of the state-variables are functions of the
coordinates. When the purpose of the mapping operation is to reduce the dimensionality
of the problem, directly calling fast_ map will be noticeably faster. In addition Warp
will always use the same output state-variable names as the input state-variable names.
When the intent is to perform nontrivial substitutions on the state-variable names as
part of the mapping process then fast_map must be called directly.

This procedure uses the number of arguments to determine which combination of
extra arguments has been specified. If there are exactly three arguments then no extra
arguments have been specified; if there are four arguments then the state-variables have
been specified but not the coordinate names; if there are five arguments then both
sets of coordinate names have been specified but not the state-variables; if there are
six coordinates then both the state-variables and both sets of coordinate names have
been specified. If the state-variables are not specified they are determined by calling
free_var. Similarly if the coordinate names are not specified they are determined by
extracting the argument names from the procedures specified by Map and InvMap.

Next the procedure checks that the specified or defaulted coordinate names are lists
of names and that there is no overlap between the coordinate names in the original
domain and in the mapped-to domain. It then checks that there are no global variables
with the same name as any of the coordinate names. Next it checks that the specified
(or defaulted) state-variables are of type collection(name).

Care is taken to ensure that the argument NewCoordDepend to fast_map specifies
the minimum set of dependencies on the original coordinates. This is done by lexically
checking for coordinate names in each component of the result of applying Map to the
coordinate names.

It is possible for an input coordinate name to appear in one of the coordinates of
Map but for the result not to actually depend on the coordinate. This is rarely a
problem, since this can happen only if some simplification exists that would eliminate
some of the coordinate name from the representation of the map. A great deal of extra
care is applied when simplifying maps. In cases where the simplification process applied
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during the construction of the map was not adequate to eliminate unneeded coordinates
from the map definition but the user possesses problem specific insights that can be used
to prove that some of the coordinate functions do not depend of all of the coordinates
that appear in their definitions, it would be better to use this insight to cause a better
simplification of the map before calling Warp.

Dependencies

As mentioned in the introduction to this section, Warp may invoke free_var in order
to construct an informed guess of the set state-variables. It will also invoke fast_map
in order to perform the actual mapping.

Version 0.9.3
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MakeRecMap

This procedure will construct a map (and its inverse) from one oriented paral-
lelepiped to another.

MakeRecMap(Domain: RecDomainType, Map: name, InvMap: name)

MakeRecMap(Domain: RecDomainType, Map: name, InvMap: name,
NewCoord: list(name))

MakeRecMap (Domain: RecDomainType, Map: name, InvMap: name,
NewDomain: RecDomainType)

The global variable ptolemy/SimpProc indicates the simplification procedure to be ap-
plied to the algebraic expressions used to create the map and its inverse.

Description

The argument Domain describes the mapped-from domain. The arguments Map and
InvMap specify the variable names to which the results will be assigned.

The coordinate names in the mapped-from domain are extracted from Domain. If the
optional argument NewCoord is specified, it indicates the coordinate names to be used
in the mapped-to domain. If the optional argument NewDomain is specified, it indicates
both the mapped-to domain and the coordinate names to be used in the mapped-to
domain. When the coordinate names of the mapped-to domain are not specified the
coordinate names of the mapped-from domain are used. If the mapped-to domain is not
specified, then the oriented unit cube (hyper-cube, square, or interval) such that each
coordinate ranging from zero to one is used.

Because the results are expressed as procedures, the coordinate names (in either
domain) are of limited importance, as long as they are unique and of the correct type
(i.e., the Maple type name). Their primary significance is the human readability of
the printed form of the map. However, other procedures that make use of the map
may (in some circumstances) extract and use these variable names in contexts in which
they assume additional significance. For example Warp will assume that the argument
names of the map are the coordinate names used in the equation(s) being wrapped, if
coordinate names are not explicitly specified. For both of these reasons it is often better
for interactive users to explicitly provide meaningful coordinate names.

Example Usage

| Start of Maple Worksheet

> with(ptolemy,MakeRecMap) ;
[ MakeRecMap]

> Domain := [[x1,x2], -W..W, 0..H];
Domain = [[z1,32],—W..W,0..H ]
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\

MakeRecMap (Domain, ’Mapl’,’Map2’);
> eval(Mapl); eval(Map2);

. 1 z1+W 22
(z1,22) - (W (221 —1),H22)

> MakeRecMap(Domain, ’Mapil’,’Map2’, [y1,y2]1);
> eval(Mapl); eval(Map2);

121 +W 22
(231,:132)—)(5 W ,F>

(y1,92) = (W(2y1 —1),Hy2)
> MakeRecMap(Domain, ’Mapil’,’Map2’, [[y1,y2], -1..1, -1..1]);
> eval(Mapl); eval(Map2);

. z1 222 - H

(y1,y2)— <Wy1,%H(y2+1)>

> MakeRecMap(Domain, ’Mapi’,’Map2’, [[y1,y2], -alphal..betal, -alpha2..beta2]);
> eval(Mapl); eval(Map2);

. 1 —Blal —B1W—alzl +alW 22824+ z2a2—a2H
($1,$2)—><—2 W , Vi
. W(2yl+al—p1) H(y2+ a2)
(yz,yg)—>< Bl +al T ETS

| End of Maple Worksheet |

of Implementation

Without loss of generality (WOLG) let [z1,...,z,] be the coordinates of the mapped-
from domain and let [yi, ..., yn] be the coordinates of the mapped-to domain. Then the
mapped-from domain can be expressed as the cross product of the intervals z; = [4;, h;]
for constant £’s and h’s where ¢ € {1,...,n}. Similarly, the mapped-to domain can be
expressed as the cross product of the intervals y; = [a;, b;] for the same set of i.

Then the map is defined by

(b —ai)(mi — )
vi= hi —4;

+ a;

Because each coordinate function depends only on the corresponding input coordinate,
the inverse map can be computed simply by inverting each coordinate function. The

(hi — &) (yi —a;)

bi — Q;

result is

+4;

r; =

These equations are directly implemented.

Version 0.1
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Restrictions

The mapped-to domain must be finite. It would be possible to relax this restriction,
but a special check would have to be made and a different algorithm would have to
be used for unbounded “ends.” This might seem advantageous since the normal use
of PTOLEMY is to first map from the actual domain onto a finite parallelepiped and
then to map from the finite parallelepiped onto the infinite parallelepiped. However,
doing this mapping in one step would have the adverse affect of fixing the asymptotics
in the unbounded direction. Even though the second map will usually be a product

component of maps of the form
¢i(z) = In (zi__;:>

the ability to change this second map is critical when the performance of this standard
map is inadequate.

Dependencies

This procedure is not dependent on any other part of the PTOLEMY system.
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MakeTradMap

This procedure will construct a map from an arbitrary traditional domain to a
parallelepiped.

MakeTradMap (Domain: TradDomainType, Map: name, InvMap: name)

MakeTradMap (Domain: TradDomainType, Map: name, InvMap: name,
NewCoord: list(name))

MakeTradMap (Domain: TradDomainType, Map: name, InvMap: name,
NewDomain: RecDomainType)

The global variable ptolemy/SimpProc indicates the simplification procedure to be
applied to the algebraic expressions used to create the map and the inverse map.

The calling sequence is the same as for MakeRecMap described on page 76. Of
course, the allowed class of domains is much more general.

Example Usage

| Start of Maple Worksheet

> with(ptolemy, MakeTradMap) ;
[ Make TradMap ]

> D1 := [[x1,x2], x2=0..1, x1=0..2-x2];
D1 :=[[z1,22],22 =0..1,21 =0..2 — z2]

> ptolemy[PlotDomBound] (D1);
See Figure 3.3.

| Maple Worksheet Continued on Next Page

0 0.5 i 1.5 2

Figure 3.3: A Trapezoidal Domain
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> MakeTradMap(D1, ’Map’, ’InvMap’);
> eval(Map); eval(InvMap);

. z1
1,z2 -, 72
(z1,z )—>< _2+$2,$)

(z1,22) = (—(—-2+22)21,22)

> MakeTradMap(Di, ’Map’, ’InvMap’, [z1,z2]);
> eval(Map); eval(InvMap);

z1
1,z2 - ., z2
(z1,z )—)( _2+$2,$)

(21,22) > (—(—-2+22)21,22)

> MakeTradMap(D1, ’Map’, ’InvMap’, [[z1,z2], 0..2, 0..1]1);
> eval(Map); eval(InvMap);

. 1

(21,22) — <—%(—2—|—z2)z1,z2)

> D2 := [[x,y,z], x=0..1, y=x-1..2-x, z=0..2+x+y];
D2 :=[[z,y,2],z=0..1,y=5—1.2—2,2=0.24+z+y]

> Options := axes=boxed, labels=[x,y,z], grid=[15,15], orientation=[-30,50];

Options := azes = bozed, labels = [z,y, z], grid = [15,15],
orientation = [ —30,50 ]

> ptolemy[PlotDomBound] (D2, Options);
See Figure 3.4.

> MakeTradMap(D2, ’Map’, ’InvMap’);
> eval(Map); eval(InvMap);
—y+x—1 z )

(2,9,2) = (m7 3422 244y
(z,y,2) > (z,3y—2yz+z—1,—(-1—2z —3y+2yz)z)

| End of Maple Worksheet

Method of Implementation

WOLG let [21, ... , z,] be the coordinate names of the original domain and let [yy, . .. , yn]
be the coordinates of the mapped-to domain. Then construct i[j]’s such that the coordi-
nate range specifications appear in the order [z;[1], ... , Zi[»)]. Then a more mathematical
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Figure 3.4: A Stylized Modern Office Building
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form of the domain specification is:

zif1] € [f1, ha]
2] € [L2(zif)), ha(zi)]

Tiln] € [ln(Tipa]s - -+ > Tifn—11)s Pa (Zif)s - - - 5 Tifn—1])]

where 4; to £, and hy to h, are functions which give the lower and upper bounds of the
corresponding range specifications.

Now let the correspondence between the z’s and y’s be such that ;) is a linear
parameterization (from zero to one) of the interval [£;j;), hf;]] for each dimension. This
implies that the map is:

iy = il = il

il hipy — 4ify

Ti[2] — Ki[z](mi[l])
if2) (i) — Ligz) (zaa))

Yi[2] = A

Tifn] — Lim] (Ti[1)s - - +» Tifn]) .
i) (®i[)s - -+ s Tifn—1]) — Lin] (®Bipa]s - - -+ Tiln—1])

When each y; actually varies from a; to b;, the result is

(bif1) — airy) (zipy — 4ifa)

Yi[1] = + a1
hifa) — 4ip
_ (bigz — aip2)) (ig2) — iz (®ipa)))
Yi[2] = Tt (@2.00) — L (wara]) + a2
i[2]\T i i[2]\Ti[1] (3.1)
it = — i = i) @) — bitz) (i i)
ilnl hipa)(Tipa]s - -+ 5 Tign—11) — Lif2)(Tifa]s - - - 5 Tifn—1]) ilnl

Because for each j, ;] depends only on the coordinates z;;) for k € {1,...,j}
and the dependency of y;z) on z;[;) is linear, the entire system may be inverted by
substitution. The result is in the same form as Equation 3.1, but with the a’s and b’s
swapped with the role of the £’s and h’s.

(hirn) — Lipn) (Yin) — @iay)
bia) — aia)
(hipy (o) — Lify)(zia))) (Wiry) — @if2))
bifz) — ai[2)

+ fi[l]

Lil) =

+ fi[l] (wo)

Ti2] =
(3.2)

(hz[n](wm sy wn—l)) - Ki[n](wm ey xn—l))(yz[n] - ai[n])
iTn] = 4; ey T
iln] bifn] — Gi[n] F (o ant)
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The straightforward implementation of Equation 3.2 would be to construct a sym-
bolic representation of Equation 3.2, then substituting the result for z;;;) into the re-
sults for z;[5) through z;[,), then substituting this result for z;[5) into the results for z;[3
through z;[,), and so on. Finally all of these results would need to be correctly ordered.
The implementation actually used in MakeTradMap is less direct in order to make
the total number of substitutions required linear in n, instead of quadratic. Specifically,
the symbolic form of z;[,] is substituted into the list of the coordinate names, then the
symbolic form of z;[,_1) is substituted into this result, and so on. This sequence of
substitutions is actually performed with a single subs command.

Restrictions

Just as for MakeRecMap the mapped-to domain must be finite. See Section 3.2 for a
justification of this restriction.

Dependencies
This procedure is not dependent on any other part of the PTOLEMY system.
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MakeMappedMap

This procedure will extract and manipulate the map (and its inverse) from one
mapped domain type.

MakeMappedMap (Domain: MappedDomainType, Map: name, InvMap: name)

MakeMappedMap (Domain: MappedDomainType, Map: name, InvMap: name,
NewCoord: list(name))

MakeMappedMap (Domain: MappedDomainType, Map: name, InvMap: name,
NewDomain: MappedDomainType)

The global variable ptolemy/SimpProc indicates the simplification procedure to be
applied to the algebraic expressions used to create the map and its inverse.

The calling sequence is the same as for MakeRecMap described on page 76. Except
that the default mapped-to domain is not necessary the cross product of the intervals
[0, 1]; instead the default domain is the parallelepiped used to define the original domain.

Example Usage

| Start of Maple Worksheet

> with(ptolemy,MakeMappedMap,PlotDomBound) ;
[ Make MappedMap, PlotDomBound |

Domain :=
[[x,yl, [1/2..1, 0..Pi],
(x,y) -> (sqrt(x"2 + y~2), arctan(y,x)),
(r,theta) -> (r*cos(theta),r*sin(theta))];

VVVV

Domain := [[m,y], [%..1,0..71’] J(z,y) — (Sqrt(:l:2 +9° ),arctan(y, z)),

(r,8) — (rcos(@),rsin(@))]

> type(Domain,MappedDomainType) ;
true

> PlotDomBound(Domain) ;

See Figure 3.5
> MakeMappedMap (Domain, ’Map’,’InvMap’);
> eval(Map); eval(InvMap);

(z,y) = (sart(z” +y* ), arctan(y,=))
(r,0) = (rcos(8),rsin(0))
> MakeMappedMap (Domain, ’Map’,’InvMap’, [z1,z2]);

> eval(Map); eval(InvMap);
(z,y)— (sqrt(:n2 442 ),arctan(y, z))
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-1 -0.5 0 0.5 1

Figure 3.5: An Arc Sector Domain

Maple Worksheet Continued from Previous Page

(21,22) — (21 cos(22),z1sin(22))

> MakeMappedMap(Domain, ’Map’,’InvMap’, [[z1,z2], 0..1, 0..1]);
> eval(Map); eval(InvMap);

. t )
() = (2 2ty -1, A an(y’“)

™

(21,22) — (%(zl —|—1)cos(7rz2),%(z1 —|—1)sin(7rz2))

| End of Maple Worksheet

Method of Implementation

If the optional argument NewDomain is not specified then the map used to define the
domain is the map returned by the procedure. If the map’s argument names are not
the same as the coordinate names they will be changed so that they are. Similarly if
the optional argument NewCoord is specified but the inverse-map’s argument names do
not match then the argument names of the inverse-map will be changed so that they
do match.

If the optional argument NewDomain is specified then the process is the same but the
result is composed with a map of the type formed by MakeRecMap which maps the
parallelepiped used to define the domain to the requested output parallelepiped.

Restrictions

Just as for MakeRecMap the mapped-to domain must be finite. See Section 3.2 for a
justification of this restriction.
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Dependencies
This procedure is not dependent on any other part of the PTOLEMY system.
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ToRec

This procedure maps an entire problem specification from its natural domain to a
parallelepiped domain.

ToRec(Prob: ProbType, Coord: list(name), MapInfo: name)
ToRec(Prob: ProbType, Coord: list(name), MapInfo: name,
OutRec: RecDomainStruct)

The argument Prob defines the PDE to be mapped, the argument Coord defines the
coordinate names in the mapped-to domain, the argument MapInfo specifies the name of
the variable to which the map information will be assigned, and the optional argument
OutRec defines the mapped-to domain. If the mapped to domain is not specified it
defaults to the unit cube ranging from zero to one in each dimension, unless Prob is of
type MappedProbType. In this case the mapped-to domain defaults to the parallelepiped
used to define the problem domain.

Example Over Rectangular Domain

When Prob is of type RecDomainType the problem is already specified over a paral-
lelepiped domain. The procedure ToRec will still map the problem from one rectan-
gular domain to another. This was not the intended use of ToRee, but it is important
to maintain consistent behavior for all of the subtypes of ProbType.

Start of Maple Worksheet

> with(ptolemy,ToRec);
[ ToRec]

> Domain := [[x1,x2], 0..W, 0..H];
Domain :=[[z1,22],0..W,0..H]

> Possian := D[1,1]1(V) + D[2,2]1(V) = (1-exp(x1)) * (1 - exp(x2));
Possian 1= D171(V)—|—D272(V):(l—ezl)(l—ezz)

> BC := { seq(seq([i,End,V=0], End=[LOW,HIGH]), i=1..2) };

BC :={[1,LOW,V =0],[1, HIGH,V =0],[2, LOW,V = 0],
[2, HIGH,V = 0]}

> RecProb := [Possian, BC, Domain, [T, [0,0]1] ];
RecProb := [Dl,l(V)JrDQ,Q(V):(1—e“)(1—e12),{[1,L0W,V=0],
[1, HIGH,V =0],[2,LOW,V =0],[2, HIGH,V = 0]},
[[zl,z?],O..W,O..H],[T,[0,0]]]

> type(RecProb,ProbType);
true

Version 0.4
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> ToRec(RecProb, [y1,y2], ’MapInfo’);

D V) D \’8
[ 1;\7(2 )+ 2712{(2 ):(e(wyl)_l)(e(HyQ)_1)7{[17L0W7V20]7
[1,HIGH,V =0],[2,LOW,V =0],[2, HIGH,V = 0]},

[[y1,y2],0..1,0..1],[T,[0,0]]]

> eval(MapInfo);
zl 2

[($1,$2)—> (W’ﬁ) (yl,y2) - (Wyl, Hy2)

| End of Maple Worksheet

Example Over Traditional Domain

Consider the two-dimensional problem defined over the traditional domain
z1 =1[0,2] and =z =1[0,1+ /=]

See Figure 3.6 from the example Maple session at the end of this subsection for an
illustration of this domain. Assume that the governing equation over this domain is the

Laplacian, i.e.,
o?T  9°T
doz3 = 0zl
Also assume that the boundary constraints are T' = 1 along the left edge of the domain,
T = 0 along the right edge of the domain, and VT - 74 = 0, where 7 is the unit normal,

along the top and bottom boundaries.
The traditional map from this domain to the unit square [0, 1)? is

=0.

Y1 = 12z 1 =2y
_ 2:132
o 2 + z1

Y2 2 = y2(1 + 1)

Applying the multidimensional form of The Chain Rule yield,

OT _ 0T oy | OT Oy (3.3)
8131 o Byl chl Byz chl )
and
o _
oz3
aZ_T % 2_|_ o°T aﬂ % _|_8_T82y1_|_ (34)
dy? \ 0z1 Oy10y> \ Oz1 0z dy1 0z? )
OT (o) (0y) , &°T (03" 9T &y
Oy20y1 \ Oz 0z Y2 \ 0zq dyz 0z3
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Since
O _ 1 Oy 22 -
dz; 2 Oy (24 21)2  2(1+ )
Py 0 Py dzy
oz} 0z (2+21)%  2(1+4+w)
it follows that
8*T 1 0T Ya 0T Y2 0T Ya oT

- - + + -
dz?  40y?  2(1+4 1) 010y A(1+y1)2 9y20y1 - 2(1 + y1) Oy2

The expansion of §2T/dz2 is similar to Equation 3.4, but since

oy1 oy 2 1
dzy dzy 24z 14wy
azyl_ azyz_o
oz oz

all the terms are zero except the term involving 82T/dy3. It follows that

’r__ 1 oT
0z (L4 y1)? 0y

(3.6)

Combining Equation 3.5 and Equation 3.6 yields the mapped form of the Laplacian.
The boundary constraints T'= 1 and T' = 0 are unaffected by the mapping. Along

the lower boundary 7 equals the vector (0, —1) and along the upper boundary # equals

the vector (—1/v/5,2/+/5). As a result these boundary constraints may be rewritten as

_a_wz:()

_Llor 20T _
\/58331 \/gaibz_

Using an expansion analogous to Equation 3.3, i.e.,

OT _ 9T 0yr , OT 0y>
a$2 a Byl a$2 Byz ng
the lower boundary constraint becomes
-1 T
=0

1+y 0y2
Using Equation 3.3 and Equation 3.7, the upper boundary constraint becomes

10T | 2(4-w) 0T
2v/50y1 - 2v/5(1 + 1) O

Since y, = 1 along this entire boundary, this may be rewritten as

oT

1T, 5 or_
W50y 2v/5(14y1) 01

Version 0.4
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The following example uses ToRec to produce these results. Notice that the upper
and lower boundary constraints have been scaled by v/5 and -1 (in the problem specifi-
cation), respectively, to simplify the algebra. This simplification is not material to the
example.

| Start of Maple Worksheet

> with(ptolemy,ToRec);
[ ToRec]

> Domain := [[x1,x2], x1=0..2, x2=0..1+x1/2];

, 1
Domain := |[z1,22],71 =0..2,z2 = 0..1 + 3 z1

> ptolemy[PlotDomBound] (Domain, scaling=constrained);
See Figure 3.6

> Laplacian := D[1,1]1(T) + D[2,2](T) = 0;
Laplacian := D1 1(T )+ D22(T) =0

> BC := {[1,L0W, T=1], [1,HIGH, T=0],
> [2,L0W, D[2]1(T)=0], [2,HIGH, -D[11(T) + 2%D[2](T) = 01};

BC = {[I,LOW,T =1),[1,HIGH,T =0],[2, LOW,D,(T)=10],
[2. HIGH, ~D:(T) +2 Ds(T) = 0]}
> TradProb := [Laplacian, BC, Domain, [T, [0,0]]1];

TradProb := [DI,I(T) +Dys(T) =0, {[1, LOW,T =1],[1, HIGH,T = 0],

Maple Worksheet Continued on Next Page |

2,,

1.5¢

0. 57

0 0.5 i 1.5 2

Figure 3.6: An Trapezoidal Domain
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[2,LOW , Da(T ) = 0],[2, HIGH, —Dy(T) + 2 Ds(T) = 0]},

[[z1,$2],$1 —0.2,02 = 0.1+ %m] AT, [o,o]]]

> type(TradProb,ProbType) ;
true

> start := time(): ToRec(TradProb, [yl1,y2], ’MapInfo’); time() - start;

[l(y22+4)D272(T)_lDlyz(T)yQ 1y2D2(T)_0 {

1
4 (1+y1)2 2 1+ yf +ZD1’1(T)+§(1+y1)2_

[1,LOW,T =1],[1, HIGH,T = 0], [Z,LOW, ?:(Tl) :0] ,
Y

[ 5 Dy(T)

1 .
2, HIGH, - —=Di(T)=0 1,921,0..1,0..1
] 72 1+y1 9 1( ) :|}7[[y7y ]7 ) ]7

T, [o,o]]]
4.367

> eval(MapInfo);

1 2
21,72) = (> 21,2 —
2

2+ z1

),(yl,yf?)—>(2y17(1+y1)y2)

> ToRec(TradProb, [yi1,y2], ’MapInfo’, [-1..1, -1..1]);
[(y22+2y2+17)D2,2(T) o, Dia(T)(y2+1)

+ D11 (T)

(34+y1)? 3+ yl ’
(v2+1) Ds(T) :0,{[1,L0W,T= 11,[1, HIGH,T = 0],
(3+y1)

[Z,HIGH,IO Dy(T) —Dy(T) :0] , [2,L0W,4M :0]},
34yt 34yt

[[y1,y2],_1..1,_1,_1],[T,[0,o]]]

> eval(MapInfo);

—4$2+2+$1>

|:($1,$2)—> <$1 -1,-
24+ z1

(vt.02) = <1+y1’i(3+y1)(y2+1))]

| End of Maple Worksheet

Example Over Mapped Domain

This subsection illustrates the use of ToRec with a MappedProbType.

| Start of Maple Worksheet

Version 0.4 91



ToRec Mapping to Parallelepipeds

> with(ptolemy,ToRec);
[ ToRec]

> Laplacian := D[1,1]1(T) + D[2,2](T) = 0;
Laplacian := D1 1(T) 4+ D22(T) =0

> Map := (x,y) -> (sqrt(x"2 + y~2), arctan(y,x));
Map :=(z,y) — (sqrt(:::2 +4° ),arctan(y, z))

(r,theta) -> (r*cos(theta), r*sin(theta));
InvMap := (r,8) — (rcos(@),rsin(0))

> InvMap :

> Domain := [[x,y], [1/2..1, -Pi/4..Pi/4], eval(Map), eval(InvMap)];

. 1 1 1
Domain := [[m,y], [E..l,— 177 7r:| ,

(z,y) — (sqrt(:):2 +47 ),arctan(y,z)),(r,8) — (rcos(@),rsin(0))

> type(Domain,MappedDomainType) ;
true

> ptolemy[PlotDomBound] (Domain, 0..1, tickmarks=[6,7]);
See Figure 3.7

> BC := {[1,LOW, T=1], [1,HIGH, T=0],
> [2,Lo0W, -D[11(T) - D[2I(T) = 0], [2,HIGH, -D[11(T) + D[21(T)= 01};

Maple Worksheet Continued on Next Page

1.5¢

0.5

0 0.5 115 2
Figure 3.7: An Arc Sector Domain
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BC = {[1,L0W,T =11,[1, HIGH,T =0],[2, LOW,—Dy(T ) — D+(T) = 0],

[2, HIGH,~Di(T ) + D2(T) = 0]}

> MappedProb := [Laplacian, BC, Domain, [T, [0,0]]1];

MappedProb := [Dl,l(T) 4+ Dya(T) =0, {[1,L0W,T 1],
[1, HIGH,T = 0],[2, LOW,—Dy(T) — Do(T) = 0],
1 11

[2, HIGH, —Dy(T) + Do(T) = 0]}, [[m,y], [5“1’_ Zw..zw] ,

(z,y) — (sqrt(:»:Q—l—y2 ),arctan(y,z)),(r,8) — (rcos(@),rsin(@))]

;[T,[0,0]]

> type(MappedProb,ProbType);
true

> ToRec(MappedProb, [r,thetal, ’MapInfo’);
2 0)? in(6)?) Di(T
r? (cos(#) sin )*) __13(2)+D171( " 1272,2(.1’) - {
(r? (cos(0)? +sin(9)?)) / (cos(6)% +sin(0)2) r
V2Dy(T) _ 0]
r b)

V2Dy(T) _

r

[Z,HIGH, ] , [2, LOW,—

3

[1,LOW,T =1],[1, HIGH,T = o]}, [[r,@], %..1,— 2 EW] ,

[T,[0,0]]

> eval(MapInfo);
[(z,y) = (sqrt(:n2 +4° ),arctan(y,z)),(r,8) — (rcos(8),rsin(9))]

> ‘ptolemy/SimpProc‘ := simplify;
ptolemy [ SimpProc := simplify

> ToRec(MappedProb, [r,thetal, ’MapInfo’);

[—ngn(rlDl(T) +Dia(T) + D2+§T) = 0,{[2,HIGH, LD;(T) = 0] ,
[Z,LOW,— % = 0] (1, LOW,T =1],[1, HIGH,T = o]},
[[r,@],%..l,— %ﬂ'..iw] ,[T,[0,0]]]

> eval(MapInfo);
[(z,y) = (sqrt(:n2 +4° ),arctan(y,z)),(r,8) — (rcos(8),rsin(9))]
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> assume(r>0);
> ToRec(MappedProb, [r,thetal], ’MapInfo’);

Dys(T) _

[%JFDM(T)Jr = o,{[z,Low,_%zoy

[Z,HIGH,M :0] ,[1,LOW,T = 1],[1, HIGH,T :0]},
T

|:[r~,9], %..1,— %ﬂ'..iw] T, [0,0]]]

> eval(MapInfo);

[(9372/) - (Sql“t(iﬂ2 —I—y2 ),arctan(y,m)),
(‘r758) = (‘r"cos(8),'r *sin(0))]

> assume(z1>0);
> ToRec(MappedProb, [z1,z2], ’MapInfo’, [0..1, 0..1]);

Dy(T) D22(T) . _
[41+z1~+4D1,1(T)+167T2(z1~2+2z1~+1)_0,{[1,L0W,T_1],
[1, HIGH,T =0], [2,LOW,—4% = o] ,
V2Dy(T) ]} B
[2,HIGH,47F(1+ZIN) =0|},[[21,22],0..1,0..1],[T,[0,0]]

|

> eval(MapInfo);

1 4arct .
|:($7y)_><2 $2+y2_17§ arCan(y7$)+7T)7(gz1~é7z2)_><
iy

1 1 1 1 1 1
Esin (571'2:2—1-271') ‘z1~‘—|—§sin (EWZ2+Z7T>,

1 1 1 1 1 1
_ECOS <§7rz2—|—z7r> f217¢ — ECOS <§7rz2+z7r>):|

| End of Maple Worksheet

Method of Implementation

The procedure first evaluates the arguments in order to extract information about both
the mapped-from and the mapped-to domain. Then, if the domain type used in the
problem definition is not a mapped domain the procedure constructs the map between
the two domains. The procedure MakeRecMap or the procedure MakeTradMap is
called for this purpose.

Then, the procedure Warp is called repeatedly (with the constructed mapping in-
formation) to map the governing equation and each of the boundary constraints. Next,
the coordinate in the mapped-to domain that is constant along the boundary on which
the constraint is applied is replaced with the appropriate value. Finally, pde_collect is
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called on each mapped boundary constraint just in case the specification of the constant
coordinate allows for additional simplifications.

Dependencies

This procedure is dependent on Warp and pde_collect. If the domain of the problem
is of type RecProbType, then the procedure also depends on MakeRecMap; similarly,

if the domain is of type TradDomainType then the procedure also depends on Make-
TradMap.

Version 0.4
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Mapping to Parallelepiped

MultiToRec

This procedure maps a multidomain problem onto a collection of rectangular do-
mains.

MultiToRec(Prob: MultiProbType, NewCoord: list(name), MapInfo: name)
MultiToRec(Prob: MultiProbType, NewCoord: list(name), MapInfo: name,
OutRec: list({ RecDomainStruct, 'DEFAULT'}))

The argument Prob defines the PDE to be mapped to a collection of parallelepipeds,
the argument NewCoord defines the coordinate names of the mapped-to domain, and
the argument MapInfo specifies the name of the variable to be assigned to the list of
maps used.

The result assigned to MapInfo will be of type list(MapinfoType). Unlike the Mapin-
foType’s used to represent the one-dimensional “sinc maps” these MaplnfoTypes do not
include the associated weights.

If the optional argument OutRec is provided it specifies the parallelepipeds onto
which each subdomain is to be mapped. The symbol DEFAULT may be used in place
of any output domain specifications; this indicates that the mapped-to domain for this
subdomain should be the default for the subdomain type.

Example Usage

| Start of Maple Worksheet

> with(ptolemy,MultiToRec, PlotDomBound) ;
[ MultiToRec, PlotDomBound |

> Domain := [[x1,x2], [x2=0..1, x1=0..2-x2], [x1=1..2, x2=2-x1..2]1];

Domain :=
[[z1,22],[z2 =0..1,z1 = 0..2 — z2],[z1 = 1..2,32 = 2 — z1..2]]

> PlotDomBound(Domain) ;
See Figure 3.8

> Domain2_Bad :=
> [[x1,x2], [x2=0..1, x1=0..2-x2], [x1=1..2, x2=2-x1-sin(Pi*x1)/10..2]];

Domain2_Bad := |:[$1,$2],[$2 =0.1,z1 =0..2 — z2],
1 . .
[zl =1.2,22 =2 — 1 — o sin(m z1 )2:|:|

> PlotDomBound (Domain2_Bad, scaling=constrained) ;
See Figure 3.9

BC := [ {[1,L0W, V=11, [2,L0W,D[2](V)=0], [2,HIGH,D[2](V)=01},
{[1,L0W, D[1](V)=1]1, [1,HIGH,v=0], [2,HIGH,D[2](V)=01} 1;

vV Vv

BC := [{[1,L0W,V =11,[2,LOW,Ds(V ) =0],[2, HIGH,D>(V ) = 0]},

96
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1. 57

0. 57

0 0.5 1 1.5 2

Figure 3.8: Two Subdomains of the ‘L’-Problem

1. 57

0. 57

0 0.5 1 1.5 2

Figure 3.9: Incorrectly Specified Subdomains of the ‘L’-Problem
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{[2, HIGH, D»(V ) = 0],[1, LOW, Dy(V) = 1],[1, HIGH,V = 0]}]

> Laplacian := D[1,1](V) + D[2,2](V) = 0;
Laplacian := D11(V )4+ D22(V) =0
> Prob := [Laplacian, BC, [1,1,HIGH] = [2,2,L0W], Domain, [V, [[0,0], [0,0]1]1];
Prob = [DM(V)—FDM(V) :o,[
{[1,LOW,V =1],[2,LOW,D,(V) =0],[2, HIGH,D,(V ) = 0]},
{[2, HIGH,D,(V ) =0],[1,LOW,D:(V) =1],[1,HIGH,V = 0]}] ,

[1,1, HIGH] = [2,2, LOW ],
[[#1,22],[22 =0..1,z1 =0..2 — z2],[z! = 1..2,22 = 2 — z1..2]],
[V,

[10,01,0,0]]]]

> type(Prob, MultiProbType);
true

> Prob_Bad := [Laplacian, BC, [1,1,HIGH] = [2,2,L0W],
> Domain2_Bad, [V, [[0,0], [0,0]1]11];

Prob_Bad := [Dl,l(V) +Dya(V) =0, [

{[1,LOW,V =1],[2, LOW,D5(V ) =0],[2, HIGH,D»(V ) = 0]},
{[2, HIGH, D»(V') = 0],[1, LOW, Dy(V) = 1], [1, HIGH,V =0]}] ,

[1,1, HIGH] =[2,2,LOW ], [[$1,$2],[$2 =0.1,01 =0.2 — z2],
[zl —1.2,22 =2 — 21 — ll—Osin(ﬂ'zl )..2” ,[V,[[0,0],[0,0]]]]

> type(Prob_Bad, MultiProbType) ;
true

> Start := time():
> RecProb := MultiToRec(Prob, [yl,y2], ’MapInfo’);
> time() - Start;

RecProb := [[
(y12-|—1)D171(V) lel(V) _ Dlyz(V)yl _
(_2+y2)2 +D2,2(V)+2(_2+y2)2 2 _2+y2 —07
(y2 —1)Dy(V) v, (922 =292 4+2)Dan(V)
it T ou(+ (y1+1)2
_ZDLQ(‘;)EFyf_”=0],[{[z,LowéDl(V)yz+DQ(V)=0],

2. HIGH, Dy(V') 1 + Da(V) =0, [1. 50w,V =11} {

[1, HIGH,V =01],[1,LOW,D:\(V )+ (—y2 + 1) D2(V) = 1],
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o 200}
[1,1, HIGH,[2]] = [2,2, LOW,[1]],

[V:V,é\/EDQ(V)— V2D (V) _ V2D (V) +;\/§D1(V)H}’

—2 4 y2 yl +1

[[y1,42],[0..1,0..1],[0..1,0..1]], [V, [[070]7[070]]]]

10.534

> type(RecProb, MultiRecProbType) ;
true

> MapInfo;
H(z1,z2)—> (—ﬁ,z?) ,(y1,y2)—>(—(—2+m2)y1,y2)],[

w—2+m>
- < k)

($1,$2)—>($1—1, —

(yLyQ)%%yl+14wy1+y2+1—ylﬂ]

> MultiToRec(Prob_Bad, [y1,y2], ’MapInfo’);
Error, (in MultiToRec) Sides don’t match, [1, 1, HIGH] = [2, 2, LOW]

| End of Maple Worksheet

Method of Implementation

The operations performed by MultiToRec are divided into three parts. The first is to
construct maps from each subdomain to the appropriate output domain and then use
these maps to map the governing equation for each domain and all of the the boundary
constraints. This part is equivalent to the implementation of ToRec. The second part
is to construct the coupling orientation information for each of the couplings. The third
part is to construct the coupling equations and map each half these coupling equations
according to the map for the subdomain in which that half is applied. In the final result
the coupling equations for each coupling are combined with the coupling orientation
information to form a CoupleEqType.

Coupling Orientation Information After mapping, the boundary will have dimen-
sionality one less then the problem. For pedagogical reasons the coordinates of the
boundary could be named something other than the coordinate of either mapped-to
domain. For example if the mapped-to coordinate are (y1,¥2,ys) then the boundary
coordinate might be thought of as (y4,¥5). The coupling orientation information tells
how to relate boundary coordinates to the mapped-to coordinate of each domain partic-
ipating in the coupling. In terms of the example, the coupling orientation information
tells how to relate (yq,¥s) to (y1,¥2,y3) in each of the domains that participate in the
coupling.
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This is done by computing the boundary in terms of the mapped-to coordinate for
each domain. In effect, this is a parameterization of the boundary in terms of the
subset of the coordinates in the mapped-to domain that vary along the boundary. Each
domain will yield a different parameterization, but the components of each side must be
equal since there is only one side shared between two domains. For an n-dimensional
problem, this yields n equations in terms of 2(n — 1) unknowns (i.e., the coordinate of
the mapped-to domain in each domain which varies over the boundary in question).

The coordinates of the mapped-to domain do not necessarily match in each subdo-
main that participates in the coupling. A point on the boundary with a y; value equal
to k in one subdomain may have the y; of the same point equal to 1 — k in the other
subdomain, or the y1 values in one subdomain may match the y2 values in the other
subdomain. This is the point that necessitates the coupling orientation information.
The coupling orientation information can be constructed by solving for the y-values in
one subdomain in terms of the y-values in the other subdomain.

The procedure MultiToRec accomplishes this by 1) using different names for the
coordinate names in each subdomain, 2) using Maple’s solve command to solve for the
coordinates of the first subdomain in terms of the coordinate of the second subdomain,
and 3) using the coordinate of the first domain as the coordinate of the boundary.

As pointed out previously this system is overconstrained. Nevertheless, as long the
boundaries of the two subdomains actually do correspond to one “surface” in space the
system will be consistent, and solve will be able to solve the system. If, however, the
two boundaries of the two subdomains that are supposed to participate in the coupling
do not correspond to the same surface then the system of constraints will be inconsistent,
which will be detected by solve’s inability to solve the system. So a useful benefit of
computing the coupling orientation information in this fashion is that the geometric
“correctness” of the problem is checked as a side-effect.

Coupling Equations The coupling equations couple the subproblems defined on each

subdomain so that the solution is the same as the solution to the original problem
defined over the union of the subdomains. Specifically, all of the derivatives up to some
order in the direction normal to the boundary must be the same on each side of the
boundary. Each directional derivative (i.e., half of a coupling equation) must then be
mapped to its respective output domains.

For isotropic equations, the number of coupling equations should be equal to the
order of the governing equation, denoted by . Since the first coupling equation equates
the zeroth order derivatives (i.e., the function values) this means the maximum order
derivative that should be equated across the boundary is of order u — 1.

More generally, the number of coupling equations needs to be equal only to the
maximum order of derivative in the governing equation which is not parallel to the
boundary at atleast one point along the boundary. Typically, even for anisotropic
equations this is the order of the equation. For each boundary MultiToRec checks
that coordinates are fixed along that boundary, and then determines the maximum order
derivative of each state-variable in the governing equation with respect to any nonfixed
coordinate. The order of the governing equation (in each dimension) is determined once
by calling pde_order. So determining the order of the directional derivatives that must
be equated can be done in linear time as a function of both the number of dimensions
and the complexity of the governing equations.

Determining which coordinates vary on a given boundary is performed by a helper
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procedure, varies_over, which returns a list of boolean values indicating whether or
not the coordinate varies over the specified coordinate.

varies_over(Coord: list(name), Struct: StructType, DimNum: posint, End: EndType)

Once the maximum order of coupled derivative has been determined, the procedure
unit_normal is invoked to determine the direction normal to the boundary. The mt®

order derivative in the direction (dq,ds,...,d,) is simply
omv omv omv
d d coitdy——
! oz to oz teet ozm

This expression is then mapped using the procedure Warp and the maps for each
subdomain. The value of the one coordinate in the mapped-to domain, which is fixed
on the boundary, is substituted into the result. Finally, the procedure pde_collect is
called a second time (the first time implicitly by Warp) to simplify this result. These
steps are performed for each domain participating in the coupling and the results are
equated to form the final mapped coupling equation.

Dependencies

This procedure depends on Warp to map the governing equations in each domain, to
map the boundary conditions, and to map each half of each coupling equation.

The procedure pde_collect is used in an attempt to further simplify mapped bound-
ary constraints and mapped coupling equations after the value of the one fixed coordi-
nate has been substituted into the result.

The procedure pde_order is called to determine the maximum order of the governing
equation in each dimension.

Finally, the procedure unit_normal is called to facilitate constructing the coupling
equations.

Version 0.3
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Chapter 4

Collocation on
Parallelepipeds

The procedures described in this chapter perform collocation of PDEs defined
over parallelepiped domains.

A significant part of this process is applying the sinc-map to the problem.
The sinc-map is the portion of the overall mapping process that is designed to
control the region of analyticity and the asymptotic behavior of the solution.
These two factors control the rate of convergence of the approximation.

PTOLEMY defines the multidimensional “sinc-map” to be the tensor product
of one-dimensional sinc-maps. The primary implication of this design decision
is that the exploited region of analyticity (i.e., the portion mapped to the multi-
dimensional analog of Dg) has a certain “boxiness.” For any single point in the
real domain the portion of the exploited region whose real components match
the point in question will form a parallelepiped. In addition a slice of the region
of utilization that is aligned with any single complex plane will be the same no
matter where the slice is taken in the region. The first restriction is usually
of minor practical importance; however, the second restriction often means the
exploited region of analyticity must be reduced to that dictated by the worst
case slice. However, the simplification allowed by this restriction is dramatic.

Collocation is the process of substituting a parameterized form of the selected
approximation into the equation and solving for the parameters which cause
the equations to be satisfied at the collocation points. In order for the resulting
system of constraints to be properly constrained, the system must have the same
number of collocation points as the number parameters in the approximation.
In order to actually solve the resulting system of equations a great deal more is
required than to merely have the same number of equations as parameters.

In the case of sinc methods the approximation is always a linear combination
of the bases. The result is that there is a trivial bijection between the set of
bases and the set of parameters. The fact that the number of collocation points
must equal the number of parameters suggests that it might be useful to pair
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collocation points with parameters.

For reasons based on sampling theory PTOLEMY always uses collocation
points that map to the uniform grid (i.e., after the sinc-map is applied). Strictly
interpreted, sampling theory allows for other choices of collocation points but
places rather stringent limits on show much the points can spread out or bunch
up in the mapped-to domain. PTOLEMY assumes uniform sampling because it
is much simpler and more natural for the sinc bases. See [12] for an introduction
to nonuniform sampling theory.

So a consequence of PTOLEMY’s choice of collocation points is that the sinc
bases are orthonormal at the collocation points (i.e., in the discreet sense). As
a result there is an extremely natural bijection between the subset of bases that
are sinc-bases and most of the collocation points. This pairing of collocation
points with bases can be easily extended to include all of the spline bases.

This results is a four way isomorphism between 1) collocation points, 2) un-
knowns in the formulation of the approximation, 3) bases, and 4) elements of
the system of equation resulting from the collocation process. Comfort with this
isomorphism is key to understanding the collocation process, but it can lead to
some confusing descriptions, such as referring to the location of a bases or the
state-variable of a collocation point. To help avoid some of this confusion with-
out making the prose overly cumbersome, this manual introduces a new phrase,
collocation event. Corresponding to every bases is a collocation event, but each
collocation event has associated with it not only bases but also a collocation
point and both an equation and an unknown in the final system of equations.

In order to improve the efficiency of symbolic manipulation it is important
to group bases which behave in the same fashion with respect to the relevant
symbolic manipulations (typically differentiation). This allows for the creation
of a compact notation for representing and manipulating whole groups of bases.
This grouping then leads to a similar grouping of collocation points, equations
in the system of equations, and unknowns in the final system of equations.

Finally, for programming purposes is important to “number” (literally label
with a tuple) each collocation event and all of the groups of collocation events.
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LogRatioMap

This function creates a MaplnfoType for the standard “log-ratio map.”

LogRatioMap(Low, High, X, Y)
LogRatioMap(Low, High, X, Y, Zero)

The argument Low specifies the low end of the interval, High is the high end of the
interval, X is the coordinate name, and Y is the coordinate name in the mapped-to
domain. The optional argument Zero indicates the point that maps to zero.

Definitions

The log-ratio map is defined to be

#(z) ==In <3 ;:i)

where the constant, s, may be thought of as the skew and the constants ! and A indicate
the low and high ends of the interval, respectively. It follows that

h-e*—s-4
-1 _
¢ (z) o s+ e*
and that ) ( o )
T — —z
(@)= T h_—¢
@ h—1¢
This particular weighting function has only one factorization
z—4
Left Factor = ——
eft Factor = -—
h—z
Right Factor =
ight Factor = - —
The point which maps to zero (called the zero-point) can be found by solving
h—s-4
=0 = —
¢(zo) = To 1T s
This implies that
h — o
§ =
o — Y4

From this it follows that:
e When s = 1 the zero-point will be in the center of the interval.

e When s > 1 the zero-point is to the left of the center of the interval. The larger
the value of s the closer the zero-point gets to the left edge of the interval; in the
limit as the skew goes to infinity the zero-point approaches the left endpoint.

e When s < 1 the zero-point is to the right of the center of the interval. In the limit
as the s goes to zero (from the right) the zero-point becomes the right endpoint
of the interval.
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e When s = ¢ (for any positive constant) the zero-point is the same distance from
the center of the region as when s = 1/¢, but on the opposite side of the center.

Changing the zero-point allows the user to balance the constants associated with
later truncating the left and right tail of the mapped function.

The intended use of this feature is for functions f(z) such that f(z) — ao(z — a)®
as ¢ — am and f(z) — bo(b— z)* as z — b, where ag # bo. In this case when s = 1
the mapped function F(z):= f(¢~1(z)) will behave like F(z) — age®* as  — —oo and
F(z) = boe”®* as © — oo. Changing s will not change the exponential rate of decay of
either tail of F, but it will change the constant term.

It is possible for a specific value of N to shift the zero-point in order to balance
the errors due to later truncation of the tails even when rates of decay of the tails
are different, for example when f(z) — z% as z — at, f(z) — z? as z — b~ and
a # . By setting s to a symbolic constant that is not replaced by a numerical value
until near the end of the setup process it is even possible to avoid redoing most of the
symbolic computations whenever N changes. However, this practice may case a loss of
simplification and is considered something of a “dirty trick.”

Example Usage

| Start of Maple Worksheet

> with(ptolemy, LogRatioMap);
[ LogRatioMap ]

> LogRatioMap(0,1, x,z);

x e” .
|:‘.Z'—>h'l <m> s 2 — H—ez,ﬂ';—)(lﬂ,l—m)]

> LogRatioMap(0,1, x,z, 1/2);

T e”
[m—)ln (—1_$>,z—> —1+ez,m—>(m,1—$)]
> LogRatioMap(-a,a, x,z);

[$_>1n<x+a)7z_>ae —ozﬂ)j_> (l(:ﬂ—ka).\/i
e

a — T

> LogRatioMap(-a,a, x,z, a/2);

. 1
ae® — —a )
$_>1n<l$+a)7z_>1737$_>(l(x'i'a)\/i

3a—=x

> LogRatioMap(a,b, x,z, c¢);

(b—c)(z—a) —be*c+be*a—ab+ac
r—=ln| ———"——~2],z—
(e—a)(b—1x) —b+c—e*ct+ae*

<:1:—a b—x>:|
r — .
vVb—a Vb—a

k)
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| End of Maple Worksheet

Mapped Region

The log-ratio map maps symmetric circular portions from above and below the plane
to the the strip D4. The circular portion above the real line has a center at 0+ 7 C and
a radius of R where

C = —1/5(b — a) cot(d)
R = 1/5(b — a) csc(d)

These regions are illustrated in the Figure 4.1. Notice that the entire complex plane is
mapped to the strip D .

Dependencies

The procedure does not depend on any other part of the PTOLEMY package. It does,
however, use Maple’s procmake LLF.

Figure 4.1: The Hierarchy of Regions Mapped by the Log-Ratio Map to the Hierarchy
Dy
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LogTanMap

This function creates a MaplnfoType for the “log-tangent map.”

LogTanMap(Low: :{numeric, name}, High: :{numeric, name}, Coord: :name,
NewCoord: :name)

LogTanMap(Low: :{numeric, name}, High: :{numeric, name}, Coord: :name,
NewCoord: :name, Zero: :{numeric, name})

The argument Low specifies the low end of the interval, High is the high end of the
interval, X is the coordinate name, and Y is the coordinate name in the mapped-to
domain. The optional argument Zero indicates the point that maps to zero.

Definition

The log-tangent map is defined to be

$(z) :=1In (s-tan (g 2:9)

where the constant s may be thought of as the skew and the constants ! and A indicate
the low and high ends of the interval, respectively. It follows that

2
e

1 2 ™ x—2L\ . (71 z—4

w(w): ;(h—f)cos <§'h—£> sin <§'h—€>
Unlike the log-ratio weighting function can be factored in many different ways. It
has zeros at all of the integers. It would probably be advantageous to construct a
factorization such that all of the zeros to the left of the interval are part of the left

factor and all of the zeros to the right of the interval are part of the right factor.
However, for reasons of symbolic simplicity this is not what is done by this procedure.

Instead,
. T xz—4
Left Factor = 4/ — (h — £) sin (5 BT E)

T z—4
h—t T.
7 )C°S<2 h—é)

The point that maps to zero (called the zero-point) can be found by solving

¢ (z) (h —£)tan~(se’) + £

and that

N |

| Do

Right Factor =

#(zo) =0 = w0:2/7r(h—£)tan_1(s)—|—£

_y s zo— £
s = tan 5 7 )

The intuitive interpretation and intended use of s is identical to that for the log-ratio
map. See page 105 for a discussion of these issues.

This in turn implies that
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Example Usage

Mapped

| Start of Maple Worksheet

> with(ptolemy,LogTanMap) ;
[ LogTanMap|

> LogTanMap(0,1, x,y);

R
[_,Hln (m Gm)),y%M,
m

om(35) (35
™ ’ VT

r —

> LogTanMap(-1,1, x,y, -1/2);

v 1
|:9:—>ln <3tan<%w(m+1)>),y—>4w,

™

con (3 2L221)) o (3rte21)
NG ; I

z— |2

| End of Maple Worksheet

Region

This map is very similar to the log-ratio map described on page 105, except that it only
maps regions in the complex plane to strips Dy for d < m/2. For smaller values of d
the difference is that the log-tangent map uses more of the the complex plane directly
above and directly below the real interval.

The domains mapped to strips of various width are shown in Figure 4.2.

For problems where the region of analyticity exploited by the log-tangent map is
more desirable then the region exploited by the log-ratio map, using the log-tangent
will result in a slight improvement in the rate of convergence. If the approximation
error for the log-ratio map is of the form cre_c‘/N (where N is the number of sample
points), and d < /2, then the approximation error for the log-tangent will be of the
form cte_c‘/ﬁ where ¢; < ¢,. It is doubtful that this effect would be dramatic for most
physically based problems. This is in part because most of the vertical strip exploited
by the log-tangent map that is not exploited by the log-ratio map is mapped to regions
very close to the boundary of Dr/;. This is visualized in Figure 4.3. Even worse,
when the log-ratio map can be used for d > 7/2 the result will be a better exponential
convergence rate than can be archived for by the log-tangent map.

The log-tangent map is included in this manual, not because of its compelling impor-
tance, but rather to illustrate the ease of adding new customized sinc-maps to PTOLEMY.
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Figure 4.2: The Hierarchy of Regions Mapped by the Log-Tangent Map to the Hierarchy
D4
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A

1/ 0.9999 w2

2 — R
4 0.999 2

T\ 0.999 172
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Figure 4.3: The Logarithmic Growth of D4 as a Function of the Size of the Mapped
Region for the Log-Tangent Map
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Dependencies

The procedure does not depend on any other part of the PTOLEMY package. It does,
however, use Maple’s procmake LLF.
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LogSinhMap

This procedure creates a MaplnfoType for various forms of the “log-sinh map.”

LogSinhMap(Edge: {numeric, name}, End: EndType, X: name, Z: name)
LogSinhMap (Edge: {numeric, name}, End: EndType, X: name, Z: name,
DistToZero: {algebraic})

The argument Edge specifies the location of the edge of the semiinfinite interval (which
is the domain of the map). The End argument specifies rather Edge specifies the low
end or the high end of the interval. The arguments X and Y are the coordinate names
in the original domain and the mapped-to domain, respectively.

The optional argument DistToZero specifies the distance between the edge of the
interval and the point that maps to zero. If this value is not specified it defaults
to sinh_l(l) ~ 0.8814. Maximal symbolic simplicity of the result occurs when this
argument is some whole number multiple of sinh_l(l).

Definitions

When End = LOW, the log-sinh map is defined as
¢(z) = In (sinh (y(z — a))) (4.1)

where v :=sinh~'(1)/4, a is the location of the edge, and £ is the distance between the
point that maps to zero and the edge.
From this definition it follows that

#72(2) = (1/2) sinh ™2 (¢") + a
and that 1
(@) = (1/7) tanh (v(z — a))
Just as in the case of the log-tangent map there is more than one way to factor this

weighting function. However, unlike the weight for the log-tangent map there appears
to be only one reasonable factorization

1
Left Factor = —sinh (y(z — a
Nl (v(z — a))

1
ight Factor = — sech (y(z — a
Rig i (7(z — )
All of these equations assume that £ € RT.

All of these formula can be used irrespective of rather the semiinfinite interval is
negative going or positive going, but these formula probably should not be used for
negative going intervals (i.e., when Edge = HIGH). This is because when a is actually
the high edge of the interval the equations map a to negative infinity (instead of positive
infinity). This causes a confusing inversion of the low and high ends.

So when Edge = HIGH the procedure uses the definition

$(z):=—1In (sinh (% (b— w)) )

Version 0.3

113



LogSinhMap

Collocating on Parallelepipeds

where b is now used to represent the edge. (So just as in the LogRatioMap « repre-
sents the low end of the interval and b represents the high end of the interval, but
here sometimes the low end is the edge and sometimes the high end is). Letting
4:=sinh™! /(b — o) reduces this to a form similar to Equation 4.1, i.e.,

#(x) =~ In (sinh (5 (b - 2))). (42)
The inverse of this map is

#72(2) = b— (1/4) sinh = (e")
and the resulting nullifier function is

1
g(fb) = (1/4) tanh (§(b — z))
This minus sign on Equation 4.2 can be removed by converting the sinh function
to a csch function. However, since both 1n(x) and csch(x) have singularities at z =0
Maple struggles to correctly evaluate and symbolically manipulate Inocsch near the
origin. In some cases the symbolic problems can be overcome by using the assume
mechanism. Because this mechanism is relatively week and expressions derived from
the sinc-maps are extensively manipulated by PTOLEMY this solution is explicitly not
recommended. So although the use csch and arcccsh makes the expressions appear
cleaner, the result is much less useful.

Example Usage

| Start of Maple Worksheet

> with(ptolemy, LogSinhMap) ;
[ LogSinhMap)|

> LogSinhMap(0,LOW, x,z);
[z — In(sinh(z) ),z — arcsinh(e” ),z — (sinh(z),sech(z))]

> LogSinhMap(0,LOW, x,z, 1);

arcsmh( )

[m — In(sinh(arcinh(1)z)),z — ST —

arcinh(

(\/J sinh ( arcinh( \/J sech(arcinh(1)z )>:|

> LogSinhMap(1,HIGH, x,z);

[zt — —In(—sinh(-1+=z)),z > 1— arcsinh(e(_z) )
z — (sinh(1—z),sech(1—z))]
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> LogSinhMap(A,LOW, x,z, B);

2 — 1o (s arcinh(1)(z — A) 7Z_)arcsu.lh(e )B—i—A,m—)
B arcinh( 1)

\/Esmh (arcinh( 11)3(9;—,4)) 7
/arcijlu) - (arcinh( 11)3(x_A))>]

> LogSinhMap(B,HIGH, x,z, A);

. \ o . (—z)>
2 = —In  sioh arcinh(1)(B —=z) 7Z_>B_arcsmh.(e ‘ )AJ;_)
A arcinh(1)

msmh <arcinh( 131(3%)) 7
/arcirﬁl(l) - <arcinh(1jl(3 —:1:))):|

| End of Maple Worksheet

Mapped Regions

The log-sinh map maps what is sometimes referred to as a bullet shaped region to strips
about the real line. These regions are illustrated in Figure 4.4.

Dependencies

The procedure does not depend on any other part of the PTOLEMY package. It does,
however, use Maple’s procmake LLF.
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Im(x)

w2

Figure 4.4: The Hierarchy of Regions Mapped by the Log-Sinh Map to the Hierarchy
Dy
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CollocateRec

This procedure applies collocation to a PDE defined over a parallelepiped domain.

CollocateRec(Prob: RecProbType, NewCoord: list(name), ExtraBases: name)
CollocateRec(Prob: RecProbType, NewCoord: list(name), ExtraBases: name,
MapInfp: list(MaplinfoType))

This procedure converts the problem specified by the argument Prob to SB-notation.
This conversion is equivalent to performing collocation. A key part of this process
is mapping the domain to an infinite domain. The argument NewCoord specifies the
coordinate names in the mapped-to domain. The argument ExtraBases specifies the
name of a variable that will be assigned a doubly indexed table of extra bases functions.
The first index of this table will be the state-variable name and the second index will
be an integer indicating the dimension. The entry will be a list of the extra bases
components for this dimension.

The procedure CollocateRec does not apply any weighting. Weighting only affects
the conditioning of the problem, not the solution. As a result, it seems more appropriate
to apply weighting when the problem is converted to a matrix equation. (See the section
titled “SToLinKron” on page 146 for a discussion of converting SB-notation to a matrix
equation.)

A Simple Example

Consider Poisson’s equation where V is the state-variable, z; and z are the coordinates,
and k is a constant,
o’V 9*v
doz3 = 0z

Assume that this equation is applied over the region [0, W] x [0, H] and that V = 0 on
the boundary of the region and that only a zeroth order approximation is required (i.e.,
an approximation to the solution, but not an approximation to the solution’s derivatives,
is required).

A reasonable choice of sinc maps is

=K

T1

z1 = ¢1(z1) =In (m> and 2z = ¢a(z2) =In (HJZ—Z:m)

The inverses of these maps are

_ Wex d _ Hex
_1+6z1 an $2—1+ezl.

T1

The sinc bases in each dimension are
sinc(k, h1) o ¢1(z1) and sinc(4, hz) o ¢a(z2)

where k € {—Ny,...,N1} and £ € {—Ns,...,N>}.
Because the boundary conditions are homogeneous there is no need for any spline
bases in this example. If the boundary constraints had been V = f(z1, z2) then spline
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bases would be required. In both cases the boundary constraints are zeroth order.
PTOLEMY could check to see if the boundary constraint implies that any of the deriva-
tives are of the state-variables are identically zero along any boundary and avoid using
the corresponding splines. For zeroth order constraints this is relatively easy, but for sys-
tems of higher order constraints this requires quite a bit of extra code. The value of this
complication is limited because: 1) a few unnecessary boundary splines do not increase
the order of the final matrix system significantly, 2) in realistic engineering problems
homogeneous constraints are reasonably uncommon, and 3) when symbolic constants
are used within the constraints it is often not possible to determine rather a particular
spline bases is necessary without knowing the values of the symbolic constants. As a
result this version of PTOLEMY only uses the order of the boundary constraints for de-
termining the spline bases. Sometimes, as in this example, this causes a small amount
of extra work, but it is always sufficient.

So for this problem the spline bases in the z; dimension are 1 — z; and z; and the
spline bases in the 25 dimension are 1 — x5 and z5. The boundary constraints will cause
the coefficients associated with these bases to be identically zero, but PTOLEMY still
includes them in the problem formulation.

The resulting approximation of V is:

V =Cl=(N1+ 1), —(No + D)W — 21)(H — z2) +
21: Clk,— (N2 + 1)](sinc(]<:, hi) o qﬁl(wl)) (H—z2)+
C[N1 +1,=(Na+ 1)]z1(H —z2) +

Z Cl— (N1 + 1), f)(W — z1) (sinc(4, ha) o ¢2(z2)) +

21: E Clk, l smc (k,h1) o qﬁl(wl))(sinc(K, hz) oqﬁz(acz)) +

—N; £=—N.
%2: C[N1 + 1, £]z1(sinc(4, ha) o ¢2(z2)) +
C[l—:(;\g2+ 1), N2+ 1]- (W — z1)z2 +
%1: Clk,N; + 1](sinc(k, hi) o qﬁl(wl)):nz +
E=—N,;

C[Nl + 1,N2 + 1] s r1T2

where C'is a (2N7 + 3) x (2N3 + 3) array of constants indexed over —(Ny 4+ 1)..Ny + 1
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by —(Nz + 1)..Nz + 1. The derivative of V with respect to z; is

O Ny + 1) ~(Na 4 1)) (H—22) +
N1
Y Clk,—(Nz + 1)]¢' (1) (sinc’ (k, h1) © ¢a (1)) (H — z2) +
k=—N;

C[N1 +1,—(Na + D)](H — z2) +

E —C[~ (N1 + 1), £](sinc(£, ha) © ¢a(z2)) +

1

Z Z Clk,l]¢ s1nc'(k, hi) o qﬁl(ml))(sinc(& ha) o ¢2(z2)) +

3 C[N1+ 1,4 (sinc(£, hy) o pa(22)) —

£=—N,
C[—(Nl + 1),N2 =+ 1].’!32 =+
Ny

Z Clk, N> + 1]¢'($1)(sinc'(k, hi) o qﬁl(xl)):cz +

k=—N;
C[N1+1,Nz + 1]z,

where ¢’ and sinc’ represent the derivatives of ¢ and sinc. Similarly the second derivative
is
BV

9o, Z Clk, = (N2 + 1)](¢' (1)) (sinc” (k, hy) © ¢1 (1)) (H — z2) +

-N;

Z Clk, —(Ny + 1)]¢" (1) (sinc (k, hy) o ¢1(z1)) (H — z2) +

2 Z Clk, 1)(¢'(21))?(sinc” (k, h1) o ¢1(21))(sinc(4, ha) o da(2)) +

—N; £=—N;

E Z Clk,1]¢" (z1)(sinc’ (k, h1) o ¢1(z1))(sinc(, ha) o pa(z2)) + (4.3)

—Ni=—

Z Clk, —Ny — 1](¢(21))?(sinc” (k, h1) o ¢1(21))z2 +
k=—N;

N1

N Clk, =Ny — 1]¢] (1) (sinc’ (k, h1) © $1(w1)) 22

k=—N;

The derivatives of ¢; are

— Wy e

21 (W — 1) and - ¢y(z1) = 23 (W — z1)2
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Substituting z; = ¢7*(21) into this equation yields

w (14 e1)?
I _ —
¢1($1) - :El(W — xl) T W e2a
"(z1) = W(W —2z1) (14 ¢e*1)3(1 —e™)
1= 23(W —21)2 W e221

(4.4)

Substituting Equation 4.4, z; for ¢1(z1), and zz for ¢2(z2) into Equation 4.3 yields:

~ N .
ov L (14 e*1)*sinc” (k, h1)(21) H
— = k, —(N- 1 .
0z, k—E—:N Clk, ( 2+ )] W2e2a1 1+ ez +
N .
(14 e*1)3(1 — e*')sinc’(k, h1)(21) H
C[k, —(N: 1
k:z:N o= (e + 1) W2e2:1 1+e* *
il (14 e*1)*sinc”(k, h1) .
E Z Clk,1] R sinc (£, h2)(z2) +
i W32e2#1
N .
Al : (1 1—e*t "(k, h
Z Z C[k l + €* ) ( 6‘2 )ZSIHC( l 1)(21) -sinc(f, hz)(zz) +
N e W32e2#1
N .
(1 +e*1)*sinc” (k, h1)(21) He™
k, N. 1] - .
k_X_:N ol Mo+ W2ea T+es '
N, M
(1 +e*1)*sinc” (k, h1)(21) He™
k, N- 1] - .
k—z_:N Clltla 1 W2ea 1+ e

The expression for 32V /dz3 is similar.

In addition to the governing equation, the problem’s boundary constraints must be
incorporated into the collocation equations. The boundary constraints are handled by
overriding the constraints derived from the governing equation with special equations at
the “boundary collocation points.” In this case, this means that V must be zero along
the outer ring of collocation points.

Consider collocation point number (—(Ny+1), —(N2+1)). All of the (two-dimensional)
bases are zero at this point except the bases (1 — z1)(1 — z2), z1(1 — z2), (1 — z1)z2,
and z1 z3. So the “override equation” at this point is:

Cl=(N1+ 1), =(Nz2 + D)J(1 = 21)(1 — z2) +
C[N1+1,—(N2+1)]I1(1—I2)—|— (45)
C[—(Nl =+ 1),N2 + 1](1 - $1).’B2 + C[Nl + 1,N2 + 1].’!31 o = 0

Of the four nonzero bases, the z1(1 — z3), (1 — z1)z2, and z; z2 are very close to zero
at this point. As a result, it is not uncommon to approximate Equation 4.5 with

(1 — $1)(1 - ZBz) =0.

PTOLEMY allows this type of approximation to the full collocation to be used by pro-
viding an optional argument to collocate_bound. However, this is not the default

120 Version 0.10



Collocation on Parallelepipeds CollocateRec

behavior; none of the examples in this section include this additional approximation.
Equation 4.5 will also be the “override equation” for the points (N; + 1, —(Nz + 1)),
(—(Nl + 1),N2 + 1), and (Nl + 1,N2 + 1)

Now consider the points numbered (—(Ny + 1), —Nz),...,(—(N1+1), N3). At each
of these points the only nonzero (two-dimensional) bases are:

(I—z)(l —=22), z1(l—z2), (1-=z1)22, z1202,
(1 — z1)sinc(£, ha) o $(z2), and zpsinc(4, hz) o ¢(z2)

for £ € {—N,,...,N2}. So the “overriding equation” will be:

Cl-(N1+1),=(Nz2 + ](L = z1)(1 — @2) +
C[Nl + 1, —(N2 + 1)]$1(1 — :Bz) +
Cl—(N1+1),Na + 1](1 — z1)z2 + C[N1 + 1, N> + 1]z 25 +
Ny
S Cl-Ny — 1,4(1 - z1) sinc(£, ha) o ¢(z2) + (4.6)
l:];:\’z
Z C[—=N1 — 1, £]zq sinc(£, hz) o p(z2) =0
£=—N,

This is also the override equation for the points (N1 + 1, —N3),..., (N1 + 1, N2). How-
ever, a different but strictly analogous equation is applied at the points along the upper
and lower edges of the domain.

The following example uses CollocateRec to compute this result. Especially no-
tice how compact the SB-notation is and that the computation takes of the order of
10 seconds on an average, circa 1994-95, workstation-class machine.

Start of Maple Worksheet

> with(ptolemy, CollocateRec);
[ CollocateRec]

> Sys := D[1,1](V) + D[2,2]1(V) = K;
Sys :=D11(V)+D2a2(V)=K

> Bound := {[1,L0W, V=0], [1,HIGH, V=0], [2,LO0W, V=0], [2,HIGH, V=0]};

Bound = {[1,LOW,V = 0],[1, HIGH,V =0],[2, LOW,V = 0],
(2, HIGH,V = 0]}

> Domain := [[x1,x2], 0..1, 0..1];
Domain := [[z1,22],0..1,0..1]

> OrderInfo := {[V, [0,0]1};
OrderInfo := {[V,[0,0]]}
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> Prob := [Sys, Bound, Domain, OrderInfo];
Prob := [Dl,l(V) 4+ D2a(V) = K, {[1,LOW,V =0],[1, HIGH,V = 0],
[2,LOW,V =0],[2, HIGH,V =0]},[[2,22],0..1,0..1],
{[vi[0,0]]}]

> type(Prob, RecProbType);
true

> start := time():
> SProb := CollocateRec(Prob, [z1,z2], ’ExtraBases’);

D (V_S1)(1+e ) V_5S2

SProb := ()2

D(V_S1)(e —1)(1+e )P V.S2 DE(V_S1)(1+e)" %1

+ (ezl)2 + (ezl)2
D(V.S1)(e” —1)(1+e” )P %1  V_.S1DP(V_52)(1+e*)

+ (ezl)2 + (e12)2
V.S1D(V.S2)(e® —1)(1+e*)  %2DP)(V_S52)(14e*)*

(622)2 + (e12)2

2D(V.S2)(e® —1)(1+e*)

4 72D )5212)2 )+ ) gy

[%2 V_52 + %2 %1 =0,V,[-1,0]],[ %2 %1 = 0,V,[1,1]],
[%2 %1+ V_51%1=0,V,[0,1]],[%2%1 =0,V,[— 1—1]],
[%2 %1+ V_51%1=0,V,[0,-1]],[ %2 %1 = 0,V,[—1,1]],
[%2 V_S2 + %2 %1 =0, V[1,0 ],[‘72%1_0 V,[1, ]]},

[z1,z2],|:|:$1—>ln< 1+ Zl,$1—>($1,1—$1):|,

[$2 —1n <1 z1$1> 22 = m,w - (21,1 — a1 )H [[V,[o,o]]]]

1:=V_B2
% < ezz’ 1+ez2>
2:=V_B1
% <1—|—e”71—|—e”>
> time() - start;
8.450
> eval (ExtraBases);
table([
(V,1)=[1—a1,21]
(V,2)=[1-22,22]
)

> type(SProb, SProbType);
true
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End of Maple Worksheet

This same example can be easily redone with a different choice of map. Trying many
different maps on the same problem would be prohibitive if setup were being done by
hand. Notice that the computational time is more than slightly longer. This is due to
the use of the “more heavyweight” simplification procedure. Also notice that whereas
the result is more complicated it is still surprisingly similar. Each coefficient is a low
order rational function in terms of e*! and/or e*2. This form is the direct result of the
asymptotics of the sinc-map which is the same in both examples.

Start of Maple Worksheet

> with(ptolemy, CollocateRec, LogTanMap) ;
[ CollocateRec, LogTanMap ]

> Sys := D[1,1](V) + D[2,2]1(V) = K;
Sys = D171(V) +D272(V) = K
> Bound := {[1,LO0W, V=01, [1,HIGH, V=01, [2,LOW, V=0], [2,HIGH, V=0]};

Bound := {[1,LOW,V = 0],[1, HIGH,V =0],[2, LOW,V = 0],
(2, HIGH,V = 0]}

> Domain := [[x1,x2], 0..1, 0..1];
Domain := [[z1,22],0..1,0..1]

> OrderInfo := {[V, [0,0]1};
OrderInfo := {[V,[0,0]]}

> Prob := [Sys, Bound, Domain, OrderInfo];
Prob := [Dlyl(V) +D2s(V)=K,{[1,LOW,V =0],[1, HIGH,V =0],

[2,LOW,V =0],[2, HIGH,V =0]},[[21,22],0..1,0..1],
{v;[0,0]1}]

> type(Prob, RecProbType);
true

> Mapl := LogTanMap(0,W, x1,z1);

Map1 = [ml —In <tan <%

w 1 7wzl w 1 7wzl
””H(‘ﬁ 7C°S(5w_$1)*‘/§ 7C°S(5w_$1)>]
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> Map2 := LogTanMap(0,H, x2,z2);
1722 H arctan( e
Map2 := |22 — In | tan T ,ZQ%Z&(),
2 H
1 Tzl
2 =
oo (T (5725 oy T (5725 )
> ‘ptolemy/SimpProc‘ := simplify;
ptolemy [ SimpProc := simplify
> Start := time():
> SProb := CollocateRec(Prob, [z1,z2], ’ExtraBases’, [Mapl,Map2]);

1(14e2#7))2 g2 e(=221) 09 D(2) (1 _871)
z 7
D(V_S1)(14+e?#))x? (—14e(72%1) ) %2
W2
(14 e(222) )2 g2 e(222) D(2) (v _82) V_S1
H2
V_SID(V_S2)(1+4e(222) g2 (—14el~222))
H2
(1—|—e(2Z2) )271'2 e(_QZQ)D(Q)( V_52)%1
H2
%1D(V_52)(1+e222) ) g% (—14el~272))
H2
(14e(221))2 g2 e(=221) v 59 D(2)(V_S1)
W2
D(V_S1)(14e?#))x? (—14e(72#1) )V _S2
W2

1 1 1 1
B1 <— 3 %3, 3 %3) %2+ %1V _B2 <— 3 %4, 3 %4)

n

v

-

QS

o~
I

I N N N - T N e N e N N

—+

+

—+

—+

4 V_S1V.B2 <— %%4, % %4) +V.B1 <— %%3, % %3) V_S2 = K,{

%1%2 + V_S1%2=0,V,[0,1]],[%1%2 =0,V,[-1,1]],
%1%2 + V_S1%2=0,V,[0,-1]],[ %1 %2 =0,V,[1,1]],
%1%2 =0,V,[-1,-1]],[%1%2 =0,V,[1,—1]],
%1%2 + %1 V_S2 =0,V,[-1,0]],

— — — —

[%1%2 + %1 V_52 =0,V,[1,0]1},[ 21, 22], H

1 wal W arctan (e’ )
z1 > In (tan (5 W >) , 21 %27,

:EH(W W eor () vy Yo (zwﬂflﬂm |

z1
22 — In <tan <; 71'[:_1[:2)) 22 — 2 7Harctan( ),

o2 (f\/7 <2 Hﬂj22> f\/7 <z Hﬂf;»”
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(
3:=
% W2(1+3e21 +3e(221) e(321))
(

71_2(612_1)(1_1_62;2))

4 := -
% H2(1_|_3ez!2 +36(222)+e(312))

> time() - Start;
13.066

| End of Maple Worksheet

Less Trivial Boundary Constraints

The example in this subsection solves the same problem but with a mixture of zeroth
order and first order boundary constraints. Specifically, VV - 7o = 1 along the left and
right edge. Although this problem may be physically meaningless, it is straightforward
to collocate. It illustrates several ways in which the complexity of this problem grows
compared to the previous problem.

Notice that the order of the actual approximation must be greater than the requested
order of the approximation in order to accurately approximate the partial with respect
to 1 of the solution on the left and right edges of the domain. This causes the sinc
bases to be slightly more complex, but more significantly, it causes the boundary splines
to be higher order. These higher order boundary splines yield both more complicated
terms and more terms in the governing equation than in the previous example. Also,
the corner regions now have two different override equations.

In spite of all theses extra complications the operation still takes roughly the same
amount of time. This is because the bulk of the time is spent simplifying intermediate
results and the amount of effort required for this part of the problem is not substantially
different in the three examples of this section.

Start of Maple Worksheet

\

with(ptolemy, CollocateRec, LogRatioMap);
[ CollocateRec, LogRatioMap |

> Sys := D[1,1](V) + D[2,2]1(V) = K;
Sys = D171(V)+D272(V):K

BC :=
([1,L0w, D[11(V) = 1], [1,HIGH, D[1]1(V) = -1],
[2,L0W, V=x1x(1-x1)], [2,HIGH, V=sin(Pi*x1)/Pil];

VvV VYV
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BC := [[1,L0W,D1(V) =1],[1, HIGH,D:(V ) = —1],

™

[2,LOW,V =11 (1—21)],|2, HIGH,V = M”

BC := [[1,L0W,D1(V) =1],[1,HIGH,D:(V) = —1],[2, LOW,V = 0],

[2, HIGH,V = o]]

> Coords := [x1,x2]; NewCoords := [z1,z2];
Coords := [z1,z2]

NewCoords := [z1,22]

> Domain := [[x1,x2], 0..1, 0..1];
Domain := [[z1,22],0..1,0..1]

> OrderInfo := {[V, [0,0]1};
OrderInfo := {[V,[0,0]]}

> Prob := [Sys, BC, Domain, OrderInfo];

PTOb = |:D171(V) +D272(V) = I{7 [[I,LOW,Dl(V) = ].]7

[1,HIGH,D,(V )= —1],[2,LOW,V = 21 (1 — 21)],

[Z,HIGH,V: M” [[21,22],0.1,0.1],{[V,[0,0]]}
T
> type(Prob, RecProbType);
true
> start := time():
> SProb := CollocateRec(Prob, NewCoords, ’ExtraBases’);
SProb:=|—-2V_S1V_.52 -2V_51%1
et —1 _ —24¢7 el —1 _ —142¢e"
VB1{6 — 1
+ < 14+e’” 14e 7 " 1+4e’" 1+4e >%
4V B1 6e” -1, 24" -1 142" v 59
14+es’" 14e ' " 14es’" 14e h
%2D(V_52) (e —1)(14+e*)® (1+e)?%1D?)(V_S1)
+ (ez!? )2 + ezl
el —1)(14e)%1D(V_81) e (1+e2)' D) (V_52)V_S1
- +
ezl (1 + ezl )2 (612 )2
N el (e —1)(1+e*)°D(V_52)V_S1 N %2D2)(V_S2)(1+e*)!
(1+ezl )2(612 )2 (612 )2
N (1+4e” ) V.SeDB)(V.S1) (e —1)(1+¢”)V.S2D(V.S1)
ezl ezl -
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K,{[%3%1+%3 V_S2 =-1,V,[2,0]],
. ﬂ_ezl
S111 m
%2%l=———"—2V,
™

[%3%1+%3 V.52 =1,V,[-2,0]],

191 V_S1 e”!
[%2%1-1— (1+ zl) (1—1—611)27 7[07_1]]7
z1
[%z%lz(1;*7)2,%[1,—1]],[%3%1=—1,v,[z,—1]],
sm<i)
(%3%1 = 1.V, [-2.1]], | %2 %1 = —— L v

[%3%1 = _17‘/7[271]]7

sin —ﬂ-ell
e %1 V_51 1+ e?!
2%1 = V,[0,1

%%+(1+e“)2 p 17[1]7

z1
[%3%L = 1,V,[—2,~1]], [%2%1 - (1;*7)2,%[—1,—1]]},

1 z1
[z1,z2],[[$1 —>ln<1f$1> ,21 — 1—7— — 21 = (21,1 —al ):|

[zz —1n (1f1$1) 22 = li%,z,@ = (21,1— a1 )H ,[[‘/,[1,0]]]]

%1 ::V_BZ<1—|—61271—|—e12>
%2 — VBl 3611 +1 ezl (ezl )2(3+ezl) 3 (ezl )2
_|_ 21)37 ]__|_ezl)37 (1+ezl)3 ’ (1+ezl)3
_1+2e11 ezl ezl (_2+ez1)
3:=VB1 6 - - -
% ( ]__i_ezl)Q7 (1—1—611)27 (1—'—611)27 (1+ezl)2

> time() - start;
11.833

> type(SProb, SProbType);
true

> eval (ExtraBases);

table([

(v,1)
[(221 +1)(—1+a1)* 0t (—1+a1)*,—21® (=3 +2a1),21° (—1+ 21 )]
(V,2)=[1—-22,22]

)

Version 0.10 127



CollocateRec

Collocation on Parallelepipeds

Method

| End of Maple Worksheet

of Implementation

The procedure first determines the minimum order of approximation required to both
apply all of the boundary conditions and meet the minimum requested order of approxi-
mation. This is done by calling required _order. In doing this, the procedure is careful
to consider only the order of the derivatives occurring in boundary constraints that are
perpendicular to the boundary.

Next, CollocateRec calls the procedure collocate main to collocate the governing
equation. Then it calls the procedure collocate bound to form sets of collocated
boundary constraints. Finally, it calls assign_bound on each set of override equations
to assign each equation to a specific group of collocation points.

Dependencies

If maps are not explicitly specified via the optional argument MapInfo this procedure
will call LogRatioMap to construct the maps.

The procedure will call required_order to determine what order of approximation is
required in order to ensure that all of the boundary constraints are well approximated.
It then calls make_bases to construct the main bases and the extra bases for each
domain.

Finally, the procedures collocate_main and collocate_bound are called to perform
the primary collocation operation.
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CollocateMultiRec

This procedure is equivalent to CollocateRec except that it requires a problem of
type RecMultiProbType, instead of RecProbType.

CollocateMultiRec(Prob: RecMultiProbType, NewCoord: list(name),
ExtraBases: name)

CollocateMultiRec(Prob: RecMultiProbType, NewCoord: list(name),
ExtraBases: name, MapInfo: list(list(MapinfoType))

This procedure converts the problem specified by the argument Prob to SB-notation.
This conversion is equivalent to collocation. As part of this process each rectangular
domain must be mapped to an infinite domain. The argument NewCoord specifies the
coordinate names in the mapped-to domain. The argument ExtraBases specifies the
name of a variable that will be assigned a doubly index table of extra bases functions.
The first index of this table will be integers corresponding to the “domain number,”
i.e., the sequence number within the list of subdomains.

If the optional argument MapInfo is specified then it specifies the mapping to be
used. The outer list ranges over the subdomains and the inner list ranges over the
dimensions. If the map is not explicitly specified the procedure will construct the
required log-ratio-map.

This procedure does not apply any weighting. Weighting affects only the condition-
ing of the problem, not the solution. As a result, it seemed more appropriate to apply
weighting when the problem is converted to a matrix equation. (See the section titled
“MultiSToLinKron” on page 152 for information on conversion to a matrix equation.)

The L-Problem Example

Continuing the example from the section titled “MultiToRec” on page 96; the author
hand checked this result and found a bug not “exploited” by any previously tested
examples. However, hand checking this result is extremely tedious that can take a full
day of effort; for most readers it is not a recommended exercise.

Start of Maple Worksheet

\

with(ptolemy,MultiToRec) ;
[ MultiToRec]

> Domaini := [[x1,x2], x2=0..1, x1=0..2-x2];
Domainl :=[[z1,22],22 = 0..1,z1 = 0..2 — z2]

[[x1,x2], x1=1..2, x2=2-x1..2];
Domain2 :=[[z1,22],21 = 1..2,z2 = 2 — 21..2]

> Domain?2 :

BC := [ {[1,LO0wW, V=11, [2,LO0W,D[2](V)=0], [2,HIGH,D[2](V)=0]},
{[1,L0wW, D[11(V)=0]1, [2,HIGH,D[2](V)=0], [1,HIGH,V=01} 1;

vV Vv

BC := [{[1,L0W,V =11,[2, LOW,Dy(V ) =0],[2, HIGH,D»(V ) = 0]},
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{[1, HIGH,V = 0],[2, HIGH, Ds(V') = 0], [1, LOW, Dy(V ) = 0]}]

> Laplacian := D[1,1]1(V) + D[2,2](V) = 0;
Laplacian := D11(V )4+ D22(V) =0

> Prob := [Laplacian, BC, [1,1,HIGH] = [2,2,L0W],
> [Domainil,Domain2], [V, [[0,0], [0,0]11];

Prob:= [Dia(V) + Daa(V) =0, |
{[1,LOW,V =1],[2, LOW, D2(V ) = 0], [2, HIGH, Ds(V ) = 0]} ,
{[1, HIGH,V = 01,[2, HIGH, Do(V') = 0],[1, LOW, Dy(V ) = 0]} ,
(1,1, HIGH] = [2,2,LOW |, [[[#1,22],22 = 0.1, 21 = 0.2 — 2],
[[a1,02],01 = 12,22 = 2 — 51.2]L[V,[[0,0], [0,0]]]

> type(Prob,MultiProbType) ;
true

> RecProb := MultiToRec(Prob, [[y1,y2], [yl,y2]], ’MapInfo’);

RecProb := [[
y1D12(V)  (1+y1?)Dia(V) y1 Dy(V) ‘
’ : 2 4+ D2x(V) =0,
-2+ y2 (232 T2i24gz)y *P22(V)
(y2 —1)Di1x(V) Voo (¥8—1)Dy(V)
’ Dii(V)+2 :
vl +1 +Di1:(V)+ (vl + 1)

e o |

_|_

2,L0W,%D1(V)y1 4 Dy(V) :0] ,

(2, HIGH, Dy(V )yt + Do(V ) = 0],[1, LOW,V = 1]},{
D

Y J

[1, HIGH,V :o]}] ,{[[1,1,HIGH,[2]] =[2,2, LOW,[-1]],

I\-/I
[—
N——

[[yl,y2]7[0--170--1]7[0--170--1]]7[V,[[0,0]7[070]]]]

> type(RecProb, RecMultiProbType) ;
true

> MapInfo;

H(z1,z2)—> (— %jzg,zg) ,(y1,y2)—>(—(—2+m2)y1,y2)],[
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_ 22 4 ot
(21,22) — <x1—1,w>,

z1

(y1,y2)—>(y1+1,y2y1+y2+1—y1)”

> with(ptolemy, CollocateMultiRec);
[ Collocate MultiRec]

> Start := time():
> SProb := CollocateMultiRec(RecProb, [z1,z2], ’ExtraBases’):
(=" —2(e” ) +2(e”)*—1) (1+e*)*%1D( V_S1)
SProb := || — - -
(1—1—611 )ezl (2+ez2)2

e’ (1+e*2)%3D(V_S1 e’ (1+e*%)%2%3
+2 ((1——||——e“))(2—|—(elz) ) (1—(|—ej;)(2)+e12)+%4%5
el (14+e*)D(V_S2)%2 (1+e*)? D) (V_52)%4
+2 (1—1—611)(2-1—612) + ez?
(¥ —1)(14¢®)%4D(V_52)
ezQ

e (—2—|— (ezz )2 — e 4 2% ezz) (1+ e” )D(V_52)V_51
(1+ezl )2612(2-1—612)
e %8 D2 (V_S1) V_S2 N e’ (1+e*)2 D (V_S2)V_S1

+ (24 e22)2 2! e?2 (1 + el )2
e (e 1) (14+e®)R3V ST e %5V 51
(1+e)2(2+e%2) (1+et)2

e N8%TV.S2 , ((¢¥) —2) " %2V.82
(24e2)2(14el)2 (24+e2)2(14e)

(_612 _4(611 )2 _ezl ez2 +2(ezl )2 (612 )2 +2(ezl )3 ez?) D( V_S_Z) V_S2
e (14”2 )D(V_S2)D(V_S1)
(14+e*)(24e?)

/((2+ez2)2ezz(1+ezz )) 42

e (1+e”) %2 %1
(2-}-612)2(1-}-611)
(1+e” +3(e)?) (1+e*)* V_S1 %1
(2+e12)2(1+e11)2 +2(
_2(611 )2e12 +(ezl )2(612 )2 _2e11 _z(ezl )2 _Gezl ez? _2(612 )Qezl _ez2
14¢*)? %8 %1 D) (V_S1)
(2—1—612 )2€Z1

—2%4V_52+42

-2

) V_52 V_sz/((2+e’2)2(1+e“ 7) +

(1+e” ) %8%7 %1
(2—1—6’2)2(1—1—6’1)2 ’
(ell e +2 (ell )2 e —2¢e*! — elz) (1+ e’ )D(V_51)V_52
- (14 e2)2el (2e*1 +1)
. (1+e” ) %4 %3 +2(1+e”)%3D(V_51)
(1+e2)(2e? +1)2 (2e#7 +1)(14e22)
(2(e* ) —1) %3 V_S1
(1+e2)(2e +1)2 -

_|_
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(—Zell _2ezz+4(ezz )2ezz+(ez2 )2ez1 +(ez:2 )gezz) D( V_SQ) V.51 /(
(B3+e”® +(e?)?) (1+e)* %4 V_S2
(1+ezz)2(2ezl _|_1)2
+(1+e“‘2e12 V_SQD(Q)(V_SJ)_i_e” %6 D(?)(V_S2) V_S1
ezl(l+ez2)2 (Zezl _1_1)2612

(e’z—l)(l—i—e”)%ZV_SQ_i_ e”! %6 %5 V_S1
(1+ez2)2(2611 _|_1) (1—1—612)2(2611 +1)2

(14+e*)2%6 D2 (V_S2)%4 e V_S2%7

(zezl+1)2(1+e12)ez2) —9

-2

_|_

(zezl+1)2622 (1_|_ez2)2
N (14e*)2%1D2)(V_S1) (e —1)(14¢*)%1D(V_S1)
ezl - ezl

(—2+2eZ2—|—(e12)2—|—(e12)3) (1—|—ell)2D( V_52)%4
(1_|_ez:2)ez:2(2ezl_|_1)2

(1+¢”")%2%3 (1+e”)D(V_52)%2
(2e#" +1)(1+4e%2) (2e#T +1)(14e%2)
14+e”)D(V_S2)D(V_S1)

(2e#" +1)(14¢€%2)

(1+e)* %6 %4 %5

(1_|_ez:2)2(2ez1 +1)2
(—1+2e11+2e12+2(e11 )2+6elle12—|—2(ell )2e12+(e12)2e21) V_S9

V-Sl/((l—}-ezz)Q(Ze” +1)%) :0],[{

+2

+ %7 %1

—2V_51%1—|—2(

[ %2 %1 ™

W+%3%4_0,V,[2,1]],

B 9 1 z1

%msm:o,m—z,z]],[%4%1=1,v,[—z,1]],

[1 %2 %1e

LV2ZRLET | i30ha = 0,V,[ -2, 2]| [ %4 %1 = 1,V,[ -2, ~1]],

12 14 e

[1 %2 %1e” 1 %2 %1e”

_Ew+%3%4_0,‘ﬂ[2,—1]:|,[Ew+%3%4

4 e” %3 V_S1 L1 ! %ID(V.S1) 1 (e —1)e” %1V .S1 _

(1+4e%)? 2 1+ e#! 2 (14 e )? 7

%2%1e” e’ %1D(V.S1) &' %3V_St

‘/’[0’_2]]’[%3%4_‘_ 1+ ezt 1+ e#! (1+e11)2

(1) BRIV ST

owioal].

(14 e1)?
:%4%1+% :1,1/,[—2,0]]},{
_w :0,\/,[2,2]] %4 %1 =0,V,[2,1]],
:%4%1+ % :o,v,[z,o]],
i%i?’j +%1%2=0,V,[—2,—1]] : [i%jf’j + %1 %2
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(e —1)V_.52%4 e*V_S2%2 %4D(V._S52)
E :07‘/7[_270] s
(1+ez2)2 (1—1—612)2 1_|_ezf2
[ %3 %4
e +%1%2_0,V,[—2,2]:|,
(14" )%3%4 3 _ 3
e = OV 1| %% =0,V 2 1],
r z1 z1
(1+e )%3%4+ e %3V_51 __0,v,[0,2] 7
2e*1 41 (2e#? +1)(1+4e?")

[LLHIGH’[Z]] = [2727L0W7[_1]]7|:

[%4 %1, V,[1,2]] = [%4%1,V,[-1,-2]],

:%\/5%4 oa 4 Y201 ;iil%Z %1,"7[27—2]] =
:%4%1+%,‘6[170]] =
:%4%1+%,‘6[07—1]],

e /2 V_52 %2

(24+e2)(1+e2)
1 1v2(e® —1)V_52%4
~V2%4%3 — =

+2f% %3 - 3 e

V2 (14 ) %3 %4
2el 41
1V2(e —1)%1V_51 e’ v/2%3 V_S1
2 1+ et (2e# +1)(1+4e")

" %.\5%1 D(V_51),V, [07—2]] ;

[%4 %1, V,[1,~2]] = [%4%1,u[1,—z]],[

V2 (1+4e*)%2%1
2+ e*?

_|_

n %.\5%4]3( V_SQ),V,[%O]] = [

+;ﬁ%z%1—

V2 (1+e*)%2 %1
2 + e#?

%ﬁ%4%3+' ,‘6[272]]2

(V2 (14 e ) %3 %4
2e# 41

+ %-\/5%2%1,‘/,[—27_2]]” o[21,22]; [[

- 21 -
yl e
-y1 —)h’l( v >,Zl—>1_|_v,y1—)(yl,].—yl)-7

z1 17
€
,z2—>1+7,y2—>(y1,1—y1) 7|:

- ) B :
y1—>ln< y >,z1—>1j_ﬁ,y1—>(y1,1—y1),

z1 11
e :
722—>m792_>(y171—y1) ]7
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(71_V_B2 3ez2+1 ez2 (612)2(3-1—612) 3 (612)2

oL = (1_1_612)37(1_1_612)37 (1—1—612)3 ’ (1+ez2)3
ezl Zezl -1 ezl ezl(ezl _2)

2:=VB1l|-6 -, — - - -

% < (1+ez1)2’ (1_1_611)27 (1_1_611)27 (1+ezl)2 >
ez2 2612_1 612 612(612_2)

3:=VB2|-6 —, — - - -

% ( (1_1_612)2’ (1_1_612)2’ (1-1—612)27 (1-1—612)2 )

(74_V_Bl 3611-1—1 ezl (ezl )2(3+ezl) 3 (ezl )2

0% = (]__i_ezl)3’(1_1_611)37 (1+ezl)3 ’ (1+ez1)3

e?—1 _e? -2 -1 _2e%-1
5:=VB2(6 —
% < 1_1_6127 1+6127 ]__i_ez.?7 1+612>

%6 ::2—|—2612+(612)2

z1 z1 z1 z1

e’ —1 e —2 e’ —1 2" —1
7:=VB1|(6 2 —6 2
% ( ]__i_ezl7 ]__i_ezl7 ]__i_ezl7 1+ezl )
%8 :=142¢" +2()°

> time() - Start;

57.167
> type(SProb, MultiSProbType);
true
> eval (ExtraBases);
table([
1 = table([
(V71):
[(2y2 +1)(y1 —1)% 91 (y1 —1)*, —y1*(=3+2y1),y1%(y1 —1)]
(V72):
[(292 +1)(y2—1) 92 (y2 —1)*, —y2* (-3+2y2),y2% (y2—1)]
D
2 = table((
(V71):
[(2y14+1)(y1 —1)*,y1 (y1 —1)* —y1? (=3+2y1),y1”(yl —1)]
(V72):
[(292 +1)(y2—1)% 92 (y2 —1)*, —y2?® (—3+2y2),y2° (y2—1)]
D

| End of Maple Worksheet |

Method of Implementation

The procedure first checks for the presence of the MapInfo argument. If it is missing
the procedure calls LogRatioMap repeatedly to construct its default value.
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Next the procedure calls multi_spec_to_list (from the order_ops LLF) in order to
organize the order information for each domain as a list of OrderSpecTypes.

Then the procedure performs a process analogous to that performed by Collo-
cateRec for each of the subdomains. The process is complicated by the fact that
coupling equations have to be assigned collocation points along with the boundary con-
straints.

So for each subdomain the first step is to search the entire list of coupling equations
and extract equation-halves that are applied in the current domain. For each equation-
half applied in the current domain a BoundTagType is constructed, where the tag-
information is the sequence number of the coupling equation from which the equation
half was extracted. After this the list of BoundTag Types is combined with the list of
BoundCondTypes from the same domain to make a list of BoundForm Types.

This collection of boundary forms is used with the order information for the cur-
rent subdomain in a call to the required_order to determine the minimum order of
approximation required for this domain. Then make_bases is called to construct the
main-bases and the extra-bases for this order. Then collocate main is called to col-
locate the governing equation for this domain. Next collocate_bound is called to
collocate all of the boundary forms. Results that were derived from the BoundCond-
Type will be of type OverRideType; these results are separated from the results that are
derived from BoundTagType. The former will be used directly to construct the override
equations in the final result. The latter are stored in a table, indexed by the domain
number, for further processing.

Once this process has been completed for every subdomain, the table of collocated
halves of the coupling equations is used to match halves from different domains to form
all of the OverCoupleTypes. This reconstruction is performed by copying each half into
a table indexed in such a way that any halves that have the same index match. When
an equation half is copied into a table element already containing a equation half, the
two halves are combined into an OverCouple Type.

Matching Halves of the OverCoupleTypes Each half of a coupling equation is

applied in only one region in its subdomain. Determining which region in the other
subdomain matches this region is particularly tricky.

To understand the problem it is useful to recognize that the CupleCondTypes are de-
fined over the entire boundary of a domain whereas OverCouple Type is defined for only
one region on the boundary. This means that, except when the problem is one dimen-
sional, each coupling equation will result in many OverCouple Types. This is illustrated
in Figure 4.5.

The procedure collocate_bound takes care of generating many OverRideForms for
each BoundFormType, so CollocateMultiRec does not have to worry about this. How-
ever, it is no longer sufficient to match halves that have merely have the same tags. This
would match only results originate from the same coupling equation, not necessarily ap-
plied in matching regions. Results must originating from the same coupling equation
and be applied in matching regions in order to be halves of the same OverCouple Type.
The regions are matched by converting the region number for the actual subdomain
(i.e., the region number returned by collocate_bound) to the matching region number
in the implicitly defined boundary specified by the CoupleOrientType. If two regions
map to the same region on this surface then they map to each other.

Version 0.2
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g
,'(_l,_l) /:L/l,/
Domain 1 Domain 2

Figure 4.5: The Regions on the Boundary Between Two, Three-Dimensional Domains

Notice that there is one plane between the two domains but this plane is divided into
nine regions (i.e., three per dimension). Each domain is divided into 27 regions but
most these regions are not shown in order to keep the complexity of the illustration
manageable.

Dependencies

If maps are not explicitly specified via the MapInfo argument then this procedure will
call LogRatioMap to construct a map. It also calls the functions multi_spec_to list
and spec_list_to_multi (from the LLF order_ops) to convert between the type Mul-
tiOrderSpecType’s and the equivalent list of OrderSpecType’s.

The procedure required_order is called once for each subdomain to determine the
order of approximation required for that domain. Then make_bases is called (also
once per subdomain) to construct the main-bases and the extra-bases. Finally, the
procedures collocate_main and collocate_bound are called to perform the primary
collocation operations.
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Chapter 5

Numerical Solutions

This chapter describes procedures designed for obtaining numerical solutions to
the system collocation equations. The functionality provided in this version of
PTOLEMY for numerically solving the matrix system resulting from collocation
is limited. Support is provided for expressing linear systems of collocation equa-
tions as a block matrix problem using Kronecker product notation. A portable
application-independent text-based notation is defined for specifying the type
of matrix problems that arise in sinc-collocation. The chapter concludes with a
brief description of a collocation of C++ classes and a few C++ programs that
can be used to read a problem description in this format, interpret! the func-
tions found in the description, and build the double precession matrix described
in the file.

These capabilities are limited compared to the large number of tools which
a user might reasonably want. Obvious extensions include procedures for lin-
earizing nonlinear problems, solvers and problem description formats for directly
solving some nonlinear problems, a resolver that can avoid repeating unneces-
sary work when only a portion of the matrix description has changed, and a
distributed parallel solver.

Provided that a linear solver exists these extra feature could be implemented
as obvious extensions. However, such added features represent a significant
investment in development time. For these reasons this version of PTOLEMY
provides only numerical tools for linear problems.

5.1 Linearizahion

A PDE is considered to be linear if it is linear with respect to all of the state-
variables and all of the state-variables derivatives and if all of the boundary
constraints are linear in the same sense. The coeflicients of the various state-
variables (or their derivatives) in a linear PDE may be arbitrarily complicated
functions of the domain coordinates. As a result a linear PDE will remain
linear after it is mapped to a new domain. In addition, collocating a linear

IHere the word “interpret” is used in the formal computer science sense of the word and
is contrasted with compilation based alternatives.
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PDE (defined on a parallelepiped) yields a linear system of algebraic equations
which can be rewritten as a matrix problem.

This implies that the collocation of any linear PDE results in a matrix prob-
lem. In this case defining “setup” as transforming the PDE into a matrix prob-
lem seems easily justified. It is still necessary to solve the matrix problem but
it is reasonable to define that as outside the scope of “setup.” Since a nonlinear
PDEs cannot be reduced to a matrix problem it is less obvious that procedures
provided by PTOLEMY actually complete the setup problem in these cases. In
fact, I maintain that without the addition of a few more features PTOLEMY does
not perform the “setup” for nonlinear PDEs.

Fortunately the setup of nonlinear problems follows directly from the linear
case. There are two ways of solving nonlinear PDEs: 1) apply an iterative solver
to the continuous problem and 2) apply an iterative solver to the nonlinear
algebraic problem. Either approach can be added to PTOLEMY; the former is
probably easier and yields more useful information about the solution process
while the latter is probably faster. In both cases the iterative solver needs to be
able to solve linear equations and evaluate (but not solve) nonlinear expressions.
Another way of saying this is that all of the nonlinear solvers iterate and on each
iteration they linearize the problem about the current guess of the solution. As
a result they only need to “solve” linear problem forms.

5.2 Block Matrices

Block matrices are discussed extensively in contemporary tutorials of matrix
computations; see [8] for a focused introduction. They have acquired a cen-
tral importance in contemporary computing because of their locality and the
dominating importance of memory performance in modern computational envi-
ronments.

PTOLEMY uses a block matrix representation to report the matrix formula-
tion of the problem, but this is primarily done for logical rather than perfor-
mance reasons. The matrix is organized in such a way that each block contains
internal consistency which allows it to be expressed symbolically without the
use of case constructs.

Each unknown in the matrix problem is a parameter of the approximation.
Because the approximation is a linear combination of the bases, each unknown
corresponds directly to a particular bases. These unknowns are grouped in
the same way that the bases were grouped during the collocation process; this
grouping of the unknowns is in fact a partition of the unknowns and is used to
directly define the partition of the columns of the matrix.

In order to facilitate bookkeeping about the system of equations each con-
straint is placed in the row number that matches the column number of the
collocation point at which the constraint was applied. That is corresponding to
every row is a column; corresponding to every column is a basis associated with
the unknown corresponding to this column, corresponding to every basis is a
collocation point, and the equation in every row is the constraint applied at this
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collocation point. An immediate consequence of this is that the row partition
of the matrix is the same as the column partition. A less obvious consequence
of this convention is that it facilitates the symbolic expression of the matrix.
One additional complication is that each grouping of unknowns is repre-
sented by a single symbol called the “stack variable name.” The ordering of
the stack-variable names does not totally define the ordering of the unknowns,
but it is still necessary to define the order of the unknowns within each group.
The convention employed here is that the unknowns within each “stack” are or-
dered using the natural cartesian ordering of the coordinates of the collocation
points associated with each unknown. It is because the intergroup ordering of
unknowns is cartesian and the same for both rows and columns that each block
of the matrix can be expressed as the Kronecker product of special matrices.

5.3 Kronecker Products and 7-Notation

The notation used to represent the block matrices is an extension of that which
is common in the sinc literature. In addition to a few extensions the notation
has undergone a slight translation in order to be expressed using Maple syntax.
The commonly used family of special matrices, denoted I(™) (for m € Z) in the
sinc literature, is represented in PTOLEMY by the names I.m. For example in
the matrix I(1) is be represented as I1.

The following is a list of the definitions of the special matrix used by PTOLEMY:

[ f(=Nh) 0 0 i
0 f(-WN-1)h)
Diag(f(z)):= :
FUN =1)h) 0
L0 0 f(Nh) |
Jém) 6§-m) 6](Vm)
B )
I.m:= i i .
5N 5(_(1)\7_1) o™
5 g gm
I.m. rev:= . .
§m) ()(m_)l (51(\71)

(m)

where J§;, ' is the mtP-derivative of the sinc function evaluated at k for k € Z.

Crev=C:=[1 1 --- 1]
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and

where z is the relevant coordinate name and h is the step size parameter.

Kronecker product notation is widely used in the sinc-literature, but for the
sake of completeness the briefest possible summary of the notation is included
here. Give two matrices A and B the Kronecker product of A and B, denoted
A ® B, is the matrix where each element of A, a; ;, is replaced by a; ; B. For
example

ai1,1 41,2 41,3 ] ® [ b1,1 51,2 ] —

d21 d22 423 52,1 bz,z

ai1bia ai,1 bl,z ai,2 b1,1 ai2b1o a1,3 b1,1 a1,3 bl,z
ai1ba1 ai,1 bz,z ai,2 b2,1 ai,2by a1,3 b2,1 a1,3 bz,z
az1b11 az,1 bl,z az,2 b1,1 az2b1 0 42,3 b1,1 az,3 bl,z
az1b21 az,1 bz,z az,2 b2,1 a2 b0 az.3 b2,1 az.3 bz,z

Notice that the Kronecker product is not a communicative operation, but it is
assoclative.

5.4 Parameter Components

The symbolic representation of the matrix block does not specify the size of each
block. In addition the matrix definition depends on the sample rate. Before a
fully numerical matrix may be instantiated both the block sizes and the sample
rates must be specified.

The sample rates are called H-parameters and denoted, hi,...,h,, where
n is the dimension of the domain. The size of each special matrix is determined
by the number of samples associated with sinc bases in each dimension of the
corresponding subdomain; that is, the number of samples not counting samples
corresponding to extra bases. In each dimension the sinc-bases components are
numbered from —N; to N; for N; € Z. The collection of constants Ny,..., N,
are called the N-parameters.

Because the current version of PTOLEMY does not construct matrices that
interpolate the sinc approximation onto another set of samples, the number of
samples and the sampling rate must be the same in corresponding dimensions
for the inner group of collocation points as for the group of collocation points
along the boundaries of the subdomain. That is in each dimension the N and
H parameters must be the same on each boundary and in the interior of the
domain.

For a single domain problem this restriction does not result in a unnatural
requirement. However, when two subdomains are coupled along a boundary
then in order to apply the coupling constraint the parameters must be the
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same in each of the subdomains participating in the coupling. This can cause
a sequence of equivalency constraints across several subdomains which in turn
can yield nonobvious constraints on the choice of parameters. For example the
five traditional subdomains in Figure 5.1 are coupled in such a way that in
Domain 1, N; must equal to N5 and that H; must equal to Hs.

Upon careful inspection this is not difficult to deduce, but the opportunity for
specifying inconsistent parameter sets is significant. To minimize this problem
PTOLEMY groups all of the parameters that must be equal and requires the user
to specify parameters once for each group of equivalent parameters.

Another consequence of the fact that PTOLEMY does not build matrix blocks
that interpolate an approximation at points other than the sinc points is that
each subdomain all of the parameters for all of the state-variables must be the
same. This combined with the fact that the same equivalency constraints apply
to both the N-parameters and the H-parameters implies that all that is required
is to determine which domain-dimension pairs must have the same parameters.

PTOLEMY determines all of the groups of parameters that must be equivalent
by constructing a graph in which the domain-parameter pairs are the nodes and
the coupling constraints are the edges. It then computes all of the graph’s
components (see [9] for a description of graph components). The node of each
component are a group of parameters that must be the same. These components
are then ordered and reported to the user who must specify the N and H
parameter for each component.

Domain 5 Domain 4

Domain 1
Domain 3

Domain 2

Figure 5.1: Five Coupled Subdomains that Exhibit Interesting Parameter Con-
straints
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Linear

This function checks to see if a problem statement in SB-notation is a well-formed
collocation of a linear PDE.

Linear(Prob: {SProbType, MultiSProbType}})

In order to be a well-formed result of collocating a linear expression an expression must
be the linear combination of “terms” such that each term is the collocation of a single
state-variable. Collocating a single state-variable in an n-dimensional domain will result
in the product of n SB-variables, one from each dimension of the domain.

So the collocation of a linear expression is linear with respect to each SB-variable,
but the requirement that the expression be the result of collocating a linear differential
expression is also much more restricted than this. For each term all of the SB-variables
must be derived from the same state-variable and there must be a one-to-one correspon-
dence between these SB-variables and the dimensions of the domain.

Example

| Start of Maple Worksheet

> with(ptolemy, Linear, LogRatioMap);
[ Linear, LogRatioMap)|

> Map := LogRatioMap(0,1,y,2);
Yy e’
Map := |y > In | — 5> — Y= 1—
ap [y n.<1 y)’z 1 ezvy (y7 y)

> Splinel := exp(z2) / (1 + exp(z2)); Spline2 := 1 / (1 + exp(z2));

ez2

Splinel .= ———
P 14 e??
1

Spline2 .= ————

pline 1107
> Probil :=
> [(Dee2) (V_S1)*V_S2 + D(V_S1)*V_S2 + V_S1x(D@e2) (V_S2) + D(V_S2)*V_S1 = 0,
> [V_S1#V_B2(Splinel,Spline2) = z1°2, V,[-1,0]]1, [z1,=z2],

> [Map,Map], [[V,[0,111]1];

Prob1 := [D“)( V.S1)V_S2+D(V_S1)V_52+ V_51 D'*)(V_52)
+D(V_§2)V_S1=0,
[ e*? 1

1+e2’1+4e2

V_SJV_B2< > =z12,V,[—1,0]],[z1,z2],[

[ Y e* :
y—>ln<m>,z—> 1+e:7y_>(y71_y):|7

v (1) 5o 2o )| vion]]]
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> Linear(Probl);
true

> Prob2 := subsop(2 = [V_S1xV_B1=K, V,[-1,0]], Probi);

Prob2 := [D(Q)( V.S1)V.S2+D(V.S1)V_52+ V_S1D*(V_52)
+D(V_S2)V_S1=0,[V.S1V_Bl = K,V,[—1,o]],[z1,z2],[
Yy e oy
y—>ln<1_y),z—>1+ezyy—>(y71 y)],
w2 as =y (mi-w||.1v0,117]
Yy T—v) el Al el y)|| LV 10,

> Linear(Prob2);
false

> Prob3 := subsop(l = (cos(V_S1*V_S2)=0), Probil);

Prob8 := [cos( V.51 V.52)=0,

e*? 1

VSIvVB2 | ——,———
1+e%2’ 1+ e22

) = z12,V,[—1,0]] J[21,22], [

z

Yy €
y_>1n<1_y>7z_> 1+ez’y_>(y’1_y):|’

vom () o 2o )| v oa

11—y 1+ e*

Prob8 := [cos( V.51 V.52)=0,

e*? 1

VSivB2| ——, ———
14 e22’ 14 e%2

) = z12,V,[—1,0]] J[21,22], [

[ y e .
y_>ln<1_y>7z_> 1+ez’y_>(y’1_y):|’

v () e 2o (wr—)| |0

> Linear(Prob3);
false

> Prob4 := subsop(1l = (V_S1°2%V_S24D(V_S2)=0), Probi);

Probj := [V_512 V_S2D(V_S2)=0,

e 1

VSivB2| ——,———
14 e22’ 14 e%2

> = z12,V,[—1,0]] J[21,22], [

[ Y e* :
y_>ln<1_y>7z_> 1+e;_,7y_>(y71_y):|7

vom () o o - v o]

1+ e*
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> Linear (Prob4);
false

| End of Maple Worksheet

of Implementation

This procedure first extracts a list of all state-variables from the “OrderSpec field” in
the problem statement. It then constructs a table for each possible SB-variable indicat-
ing which state-variable and which dimension correspond to this SB-variable. Then the
procedure extracts the portions of the problem statement which must be the collocation
of linear expressions. Finally, it uses the following helper functions to determine if these
expressions are all of the correct form.

good_exp(Exp: collectStruct({algebraic, equation}), VarSet: set(name), Info: table,
Dimen: posint)

good_term(Term: algebraic, VarSet: set(name), Info: table, Dimen: posint)

get_var(Term: algebraic, VarSet: set(name))

The procedure good_exp checks to see if some structured collection of expressions
or equations are all well-formed results of collocating a linear expression of a linear
equation. The procedure good_term checks to see if the expression specified by the
argument Term could have been collocated from a coefficient (i.e., an expression in-
dependent of all of the state-variables) times a single state-variable. The procedure
get_var returns a sequence of all of the SB-variables which are factors of a potentially
linear term. If an SB-variable appears as a factor of the term more than once it will
appear in the result more than once. If the term could not be linear for some structural
reason, get_var will return an error.

good_exp This procedure will call itself recursively on each element of a list, set, or equation.

If the argument Exp is of type ‘+°then it will call good_term for each operand in the
summation. If Exp is of type “**, function, \‘, name, or numeric then the procedure
will call good_term, directly passing it Exp. Finally, if Exp is some other type the
procedure returns false without any further processing.

good_term This procedure calls get_var to extract the SB-variables that are factors in the

expression specified by Term. If the sequence is empty then the term is valid, because it
is the collocation of an expression that is constant with respect to the state-variables.
If get_var generates an error or if the same SB-variable appears more than once in its
result then the term is not valid.

If none of these conditions hold then the procedure will need to go through the
additional steps of ensuring that all of the SB-variables are derived from the same state-
variable and that there is a one-to-one correspondence between the SB-variables and
the dimensions of the problem. In order to perform both of these checks the procedure
extracts the state-variable and the dimension corresponding via the SB-variable from the
table passed to the Info argument. This is much faster than extracting this information
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from the variable names.

get_var This procedure recursively traverses the expression tree constructing the sequence of
SB-variables as it goes. If at any point it encounters an inherently nonlinear construct
it generates an error.

If the argument Term is either of type “*“or ‘+ ‘then the procedure simply recurses.

If Term is a D-operator then the procedure checks to see if the variable to which
the D-operator is applied is one of the SB-variables specified in VarSet.

If Term is a function, but was not a D-operator, then the procedure checks to see
if any of the argument of the function are one of the SB-variables specified by
VarSet. If any of the arguments contained SB-variables then Term is not linear
and the procedure generates an error. Otherwise if the function name is one of
the SB-variables then it is returned as the result of the procedure.

If Term is a name and the name is one of the SB-variables specified by VarSet then
the procedure returns Term.

If Term is of type ‘¢ then get_var is applied recursively to each of the operands
of the expression. If neither the base of the expression nor the power of the
expression contains any SB-variables then the procedure returns NULL. Otherwise
if the power of the expression is of type nonnegint then the SB-variables contained
in the base are repeated the appropriate number of times otherwise the procedure
returns an error.

If Term is of type numeric then the procedure returns NULL

In all other cases the procedure generates a diagnostic error. Expression involving
Maple constructs that do not fall into one of the above cases were not generated
by collocation of a linear differential expression.

Dependencies

The procedure get_var calls the procedure isDop to determine if a function is actually
a D-operator and if it is, to determine the variable to which the D-operator is applied.

Version 0.2.1

145



SToLinKron Numerical Solutions

SToLinKron

This procedure converts a linear problem from SB-notation to a matrix problem
expressed in Kronecker product notation.

SToLinKron(Prob: SProbType)

This procedure is largely a textual translator that expands the rather compact SB-
notation into the more easily evaluated Kronecker product notation. No mapping and
very little algebra occurs in this procedure. Nevertheless the procedure specified by
ptolemy/SimpProc may be explicitly invoked on some of the diagonal “factors” in the
output (see the section titled “kron_ops” on page 289 for more details). The result
returned by this procedure will be of type LinKronType.

Example Usage

This example starts by directly entering the collocation of a fairly trivial PDE. In its
original formulation the PDE would probably have been 82V /8z% + 8*V/8z2 = K (i.e.,
Poisson’s equation) applied over the unit cube [0, 1] x [0, 1] with the boundary conditions:

V(z2) = sin(mz2) Along the left edge.
V(z2) = cos(m z2) Along the right edge.
V(z1) = 21 Along the bottom edge.
Vi(z1) = —z1 Along the top edge.

These somewhat artificial boundary conditions are shown in Figure 5.2.

1
0.5
VO
-0.5

-1 0

O\Q&\ﬁ Q45

Figure 5.2: Boundary Values for the Example Problem
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Start of Maple Worksheet

> with(ptolemy,LogRatiolMap) ;
[ LogRatioMap]|

> Spi1l := 1/(1+exp(z1)); Spl2 := exp(zl)/(i+exp(zl));

1
Sp11 == ———
P 14 e#?
ezl
> Eq :=
> V_B1(Spi1, Spi12) *(D@@2) (V_S2)*(1+exp(z2)) 4/exp(z2)"2 +
>  V_B1(Sp11, Sp12) * D(V_S2)*(exp(z2)-1)*(1+exp(z2))~3/exp(z2)"2 +
> V_S1 * (D@@2) (V_S2)*(1+exp(z2))"4/exp(z2)"2 +
> V_S1 * D(V_S2)*(exp(z2)-1)*(1+exp(z2)) "3/exp(z2)~2 = K;
1 ezl
VBl |——,——— ) D (V_52)(14¢*)!
Eq:= <1+e“’1+ezl> ( )(1+¢€7)
7= (e )2
1 e 22 22 \3
V‘Bl<1+ez1’1+ez1> D(V_.52)(e* —1)(1+4¢€*)
(ez2 )2
V81D (V_82)(1+e*)  V.SID(V_82)(e™ —1)(1+4¢*)
+ (ez2 )2 + (ez2 )2

=K
> f1 := (exp(z1)/(1+exp(z1))"2 + sin(Pi*exp(z2) / (1+exp(z2))))/2;

f 1 e +1 . we*
== —— 1 —sin
2 (1+e)2 2 14 e22

> £2 := (exp(z1)/(1+exp(z1))"2 + cos(Pi*exp(z2) / (1+exp(z2))))/2;
PPN S Gl
St 2%\ 152

Bound := [
[V_B1(1,0)%V_B2(1,0) = £1, Vv,[-1,-1]],
[V_B1(1,0)*V_S2 = sin(Pi*exp(z2) / (1+exp(z2))), V,[-1,0]1],
[V_B1(1,0)*V_B2(0,1) = £1, V,[-1,1]],
[V_S1xV_B2(1,0) = exp(z1)/(1 + exp(z1)), V,[0,-11],
[V_S1*V_B2(0,1) = -exp(z1) / (1 + exp(z1)) , V,[0,1]],
[V_B1(0,1)*V_B2(1,0) = f2, V,[1,-1]1],
[V_B1(0,1)*V_S2 = cos(Pixexp(z2) / (1 + exp(z2))), V,[1,01],
[V_B1(0,1)*V_B2(0,1) = £2, V,[1,1]1] 1;

Bound:= |

VVVVVVVVYV

ezl 1 . ﬂ_ez2
V_B].(].,O)V_BZ(].,O): m—i_ESln <W>,‘/,[—1,—1]:|

1
2
. . we*?
,|[VB1(1,0) V_52 =sin Tt o* ,V,[-1,0]],

z1 z2
[VJH(LO)VJQ(QI):%]E:%ETF—F%§n< Te )’K[_Llﬂ
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ezl

1+4e#t’

r z1

V_51VB2(0,1)=—

,[V-Sl V. B2(1,0) = V,[O,—l]],

W,V,[O,l]],

[ : .1 e 1 e
V_B].(O,].)V_BZ(].,O) = 5 m-F ECOS <m> 7‘/7[17_1]]

. et
B [V_B].(O,].) V_52 = cos (W) ,V,[l,()]:| B

> Map := LogRatioMap(0,1,x,z);

x e .
Map := [m—)ln (m> ,Z = 1+—ez,m—>(m,1—m):|

[ L1 et 1 7™
V_B].(O,].)V_BZ(O,].) = 5 m+ ECOS <m> ,‘/,[1,1]:|

> SProb := [Eq, Bound, [z1,z2], [Map,Map], [V, [0,0]1]:

> type(SProb, SProbType);
true

> with(ptolemy,SToLinKron) ;
[ SToLinKron]

> Start := time():
> KronProb := SToLinKron(SProb);

. 1 : . e — 1 ,
1 .
Di — C&K I2
lag<222(1+ell)> ( )

e —1
(1+e2)z2(1+e?)

ezl

Diag (m) (C&KI2)

. (612_1)611
D . .
+ lag((l—l—el"?)z,g(l—l—e”)

—|—Diag< >(C&K11),

> (C &K I1),0,0,0,0,0,0| ,

[0, Diag( 1) (C &K R0 ),0,0,0,0,0,0,0],
[0,0,Diag( 1) (C &K R0),0,0,0,0,0,0
[0,0,0,Diag(1) ( RO &K C),0,0,0,0,0
[0,0,0,0,Diag(1) ( RO &K C),0,0,0,0],
(

[

(

k)

]
1,
]
]

0,0,0,0,0, Diag(1) (C &K C),0,0,0],
0,0,0,0,0,0, Diag(1) (C &K C),0,0],
0,0,0,0,0,0,0, Diag(1) (C &K C),0],

[0,0,0,0,0,0,0,0,Diag(1) (C &K C)]|,[V, V_B1_1,V_B1_2,

V_B2_1,V_B2_2, V_Bi12_1,V_B12_2,V_B12.3,V_B12_4], |K,
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. T 612 T ezf? ezl ezl
Sin — CcOos —
14e2 )’ 14e2) 1 4e5’ 14e7’
ezl + 1 . T ez?
Y — s1n
(14+e#)? 2 14e%2 )’

ezl + 1 T 612
—_— — COs
(14+e#)? 2 14e2 )’

1
2
1
2

> time() - Start;
.834

> type(KronProb, LinKronType);
true

End of Maple Worksheet

In this case the complexity of the Kronecker product notation representation of the
matrix problem is modest. However, as the problem complexity increases, the complex-
ity of the Kronecker product representation grows more quickly than the complexity
of the SB-notation. In fact, the results of this procedure will typically be the first to
exceed the reasonable limits of human understanding.

In spite of the extent of the output the procedure executes quickly. This is because
the operation involves so little math. In fact, even for very complicated problems the
execution time of this procedure remains negligible.

of Implementation

This procedure first calls get_SB_var and pde_order to figure out the order of the
governing equations. The order of the bases previously used in the collocation pro-
cess is then subtracted from the order of the governing equation to produce the order
of the weight to be applied. From this the actual weights are computed by calling
mapped_weight (in the map_info_ops LLF).

Then the procedure uses the order of bases used in collocation process to count
the number of extra bases components in each dimension. From this information the
procedure constructs the stack variable names.

These names are of the form V. B.i._.j where ‘I’ and ‘j’ are integers. The value of ‘i’
indicates the dimension whose bases components are boundary splines. When more than
one basis component is a boundary-spline, ‘1’ will be the concatenation (in ascending
order) of each of the dimensions whose bases components is a boundary spline. The
value of ¢}’ indicates the bases group number within the set of bases groups that have
the same ‘i’ value.

For example in a two-dimensional domain the stack variables will be of the form

V, VB1_*, VB2 %, V_B12 %

where ‘*’ represents a range of integers which is determined by knowing the number
of extra bases components for each dimension. To make the example more concrete,

Version 0.7.3
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assume that there are two extra bases components in dimension 1 and that there are
four extra bases components in dimension 2. Then the state-variable names will be

Vv, VB1.1, V.B1.2, V.B2.1, V.B2.2, V.B2.3, V.B2.4,
V_B12.1, V.B12.2, V.B12.3, V.B12.4
V_B12.5, V.B12.6, V.B12.7, V.B12.8

These stack variable names are constructed by calling comb_all (in the comb_ops
LLF) to form a list of all the values of ‘’. Then for each state-variable name the number
of bases groups with a given ‘i’ value is computed. These results are then combined to
form the list of stack variables.

Next the procedure converts each governing equation to its Kronecker product format
by calling kron_eq (from the kron_ops LLF). Each governing equation is associated
with one of the state-variables. This allows a reasonable selection of Kronecker product
results for each row of the matrix. Currently the procedure assigns governing equations
to state-variables in the order in which the governing equations appears in the problem
specification.

Converting override equations into rows of the final matrix is also performed by
calling the kron_eq procedure. However, this is a bit harder because it is necessary to
figure out which row will be replaced by the override equation. The symbolic equation
for a block-row resulting from an override equation is kept in a table indexed by the as-
sociated stack variable name. So determining which row to assign the result of kron_eq
is equivalent to constructing the stack variable name associated with the override equa-
tion. Both the ‘i’ and the ‘j’ parts of the the stack variable name are extracted from
the collocation point number by calling b_point_to num (from the b_ops LLF). An
important assumption utilized by this process is that each override equation is collo-
cated at a specific collocation point, which is associated with a particular basis, which
is associated with a particular unknown in the matrix problem, which is associated with
the row of the same number.

All of this is a matter of convention for PTOLEMY. As mentioned in Section 5.2 it
would be possible to relax some of these conventions, but this would necessitate multiple
procedures analogous to the one performed by assign_bound. Perhaps one procedure
would be required to assign equations to collocation points, another to assign equations
to rows of the matrix, and a third to assign an order to the unknowns. FEM often
uses a grid point ordering scheme analogous to this in order to minimize the bandwidth
of the resulting matrix problem. However, since the blocks in the matrices produced
by PTOLEMY are either nearly dense or zero, little could be gained by using intrablock
reordering of either columns or rows.

Next the procedure computes the parameter components. This is fairly trivial for a
single domain system without any coupling.

To construct the final result the procedure checks each row to see if an override equa-
tion exists for that particular row; if not, the equation for the corresponding governing
equation is used.

Dependencies

This procedure calls get_SB_var to get a list of the S-variables occurring in the gov-
erning equation. This is needed to call pde_order to determine the order of the gov-
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erning equations. The procedure order_subtract is then used to determine the correct
orders for the weights, which are constructed by calling mapped_weight (from the
map_info_ops LLF).

The procedure all_comb (in the comb_ops LLF) is used to construct the stack vari-
able names. The core operation of converting from SB-notation to Kronecker product no-
tation is performed by the procedure kron_eq. Finally, the procedure b_point_to_num
(in the b_ops LLF) is called to figure out the stack variable name associated with a
specific override equation.
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Numerical Methods

MultiSToLinKron

This procedure converts a linear problem defined over multiple subdomains from
SB-notation to Kronecker product notation.

MultiSToLinKron(Prob: MultiSProbType)

The return type of this procedure is MultiSProbType. Although no mapping occurs dur-
ing the execution of MultiSToLinKron, the procedure specified by the global variable
ptolemy/SimpProc may be explicitly invoked on some of the diagonal “factors” in the
output (see the section titled “kron_ops” on page 289for more details).

Example Usage

Applied this procedure to the “L”-problem example considered in previous sections
results in overwhelming long output. As a result, a highly simplified example is used
to illustrate this procedure. The collocation system used here is the one that would
result from applying Laplace’s Equation over two coupled unit square domains. The
state-variable name is V. In addition the left edge of domain 1 is coupled to the bottom
edge of domain 2; however, for simplicity only the boundary values and none of the
directional derivatives are constrained to be equal across the two domains. If, WOLG,
it is assumed that the two domains were [0,1] x [0, 1] and [1,2] x [1,2], prior to the
mapping associated with collocation then Figure 5.3 illustrates the geometry of the
problem. If in addition the coordinate names of the original domain where y; and ys

2
>t y
1172 + Domain 2
1 ! ___Z\__A__
- : -
! ‘ .
12 4+ Domanl = coupling
= * 4 —

Figure 5.3: The Two Domains Used by the Example Problem
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then the boundary values used in this example are

V(y2) =0 Along the left edge of domain 1
V(n) =4 Along the bottom edge of domain 1
V(y) = vV Along the top edge of domain 1
V(y1) =0 Along the top edge of domain 2
V(y2) = vl Along the right edge of domain 2
Vi) =vV2—u Along the left edge of domain 2

These boundary values are illustrated in Figure 5.4.

Start of Maple Worksheet

> with(ptolemy, MultiSToLinKron, LogRatioMap) ;
[ LogRatioMap, MultiSToLinKron |

> Spl := z -> 1/(1+exp(2)); Sp2 := z -> exp(z)/(1+exp(z));
1
1+ e*

ez

1+e*

Spl =z —

Sp2 =z —

Eq :=
(Dee2) (V_S1) * (1+exp(z1)) 4/exp(z1)~2 * (V_S2 + V_B2(Sp1(z2),5p2(z2))) +
D(V_S1) * (1+exp(z1)) 3*(exp(z1)-1)/exp(z1)~2 *

(V_s2 + V_B2(Sp1(z2),8p2(z2))) +
(Dee2) (V_S2) * (1+exp(z2)) 4/exp(z2)~2 * (V_S1 + V_B1(Sp1(z1),Sp2(z1))) +
D(V_S2) * (1+exp(z2)) 3*(exp(z2)-1)/exp(z2)"2 *

(V_S1 + V_B1(Sp1(z1),Sp2(z1))) = 0;

VVVVVVYV

Maple Worksheet Continued on Next Page

2 2

Figure 5.4: The Boundary Values Used in the Example Problem
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1 612

D (v_s1)(1+e) [ V_S2 + VB2 S
( )( +e) + 1+e%2’ 1+ e2 .
Eq := +D(V_S1)

( ezl )2

2 2 . 1 e 2
(1+e1)3(el —]_) <V_52—|—V_B2 <W,W>>/(el)2

. . 1 e?!
D (v_sey(1+e2) (VSI+VBL| —\, —
( J(1+e™) + T el Ty

( ez2 )2

. 223, 28 . 1 e
D(V_52)(1+¢*)® (e —1)(V_51+VJ31<1+611,1+611))/
(612)2:0

_|_

> readlib( ‘ptolemy/pde_collect):
> ExpEq := ‘ptolemy/pde_collect‘(Eq, {V_S1, V_S2, V_B1, V_B2});

(14D (V_S1)V_S2 N (14e ) (e —1)D(V_51) V_S2
(ezl )2 (ezl )2
(14+e2)' D (V_52)V_S1 N (14e2) (e —1)D(V_52) V_S1

(e12 )2 (ez2 )2

ExzpEq :=

_|_

. \ 1 e*?
(2) 21 \4 o+ e
DYI(V_.S1)(1+¢€) V_BZ<1 o2’ ] e12>

( ezl )2

. . . 1 e
D(V_.52)(14+e*)¥(e®*-1) VB[ ——, —
(V52) (146 (o~ ) VB (2 5

_|_

( ez2 )2

3 z1\3 z1 1> ; i
D(V_S1)(1+e* ) (e 1)V32(1+ez271+em
(ezl)2

1 ezl
(2) z2 \4
D(V_52)(1+e )V_Bl<1 —7 7 ell)

_|_

+ =0

( ez2 )2

BC1 := [

[V_B1(1,0)*V_B2(1,0) = 0, V,[-1
[V_B1(1,0)*V_s2 = 0, V,[-1,0]
[V_B1(1,0)*V_B2(0,1) = 0, V,[

)

-111,

111,
:_1]]:
,[0,1117;

]”
-1
[V_s1xV_B2(1,0) = Sp2(z1)~2, V,[
[V_s1xV_B2(0,1) = Sp2(z1)~(1/2),

VVVVVYV

0
v

BC1 := [[V_Bl(l,O)V_BZ(l,O) =0,V,[-1,-1]],

VB1(1,0)V_52=0,V,[-1,0]],
V_B].(]_,O)V_B2(O,1) =0,V,[-1,1]],

%7“[07_1]] ’

[V-Sl V. B2(0,1) = \/%,V,[O,I]M

[
[

[V_SJ VB2(1,0) =
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> BC2 := [
> [V_B1(1,0)*V_B2(1,0) = 0, V,[-1,1]],
> [V_B1(1,0)*V_s2 = 0, V,[0,1]],
> [V_B1(1,0)*V_B2(0, 1) = 0, v,[1,11],
> [V_S1xV B2(1 0) = 5p1(z1)” , V,[-1,01],
> [V S1xV_B2(0,1) = Spi1(z1)"(1/2), V,[1,0]11;
BC2 = [[V_Bl(l,O)V_BZ(l,O) =0,V,[-1,1]],
[VB1(1,0) V.52 =0,V,[0,1]],
[V_B].(].,O)V_BZ(O,]_)ZO,‘/,[]_,]_]],
. 1
[V-Sl V_B2(1,0) = m,‘ﬂ[—lyo]],
1
V_S1 V_BZ(O,l):Hmyvv[lvO]“
> Couple := [[1,1,HIGH,[2]] = [2,2,L0W,[-1]],
> [[v_B1(0,1)*V_B2(1,0), V,[1,-1]1] = [V_B1(0,1)*V_B2(0,1), Vv,[1,-111,
> [V_B1(0,1)*v_sS2, V,[1,0]1] = [V_S1xvV_B2(0,1), V,[0,-1]],
> [V_B1(0,1)*V_B2(0,1), V,[1,1]] = [V_B1(1,0)*V_B2(0,1), V,[-1,-11111;

Couple :=[[1,1, HIGH,[2]] = [2,2, LOW ,[-1]],[

[VB1(0,1)V.B2(1,0),V,[1,—1]] =
[VB1(0,1)VB2(0,1),V,[1,-1]],

[VB1(0,1) V_S2,V,[1,0]] = [ V_S1 VB2(0,1),V,[0,-1]],
[VB1(0,1)V.B2(0,1),V,[1,1]] =

[VB1(1,0) V.B2(0,1),V;[~1,—1]]]

> Map := [[LogRatioMap(0,1,x,z)$2], [LogRatioMap(1,2,x,z)$2]];

Map := [[[m—)ln(i>,z—> i sz = (z,1—z)|,
1—=x 1+ e* ]

m—)ln<L>,z—)e—,m—>(m,1—m):|:|,|:
L 1—=x 1+e*

[ z—1 2e” +1 N
_m—)ln(z_m>,z—> Tre ,:1:—)(9:—1,2—:1:)_,

[ z—1 2e* 41 N
_$_>1n<2—:l’:>7Z_>1—|—7627$_>($_172_$)_:|:|
> Prob := [[ExpEq$2], [BC1,BC2], Couple, [z1,z2], Map, [V, [[0,0], [0,011]1];
2114 (2)
Prop i H(l+e ) D) (V_51) V_52

(ezl )2
N (14 e ) (e —1)D(V_51) V_S§2 N (14+e%)' D) (V_S2)V_S1
(ezl )2 (622)2
N (14e%) (e —1)D(V_52) V_S1 N DV S1)(1+4e) %2
(622)2 (ezl )2
D(V._52)(1+e*)’ (e —1)%1
+ (e12)2
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D(V_S1)(14+e)® (e —1)%2 N D (V_52)(1+¢%) %1

(ezl )2 (612)2
(14 D)V _S1)V_S2 N (14e* ) (e —1)D(V_81)V_82
(ezl )2 (ezl )2

N (14+e2)' D) (V_S2)V_S1 N (14e*)% (e —1)D(V_52) V_51
(ez2)2 (ez2)2

N D) (Vv _s1 )(1+e”)"%2  D(V.52)(1+e™)" (e™ —1)%1

(ezl )2 (612)2
D(V_S1)(14e)® (e —1)%2 N D (V_52)(1+e*) %1

(ezl )2 (612 )2

:O7

+ =0

[ vero)veeno) = 0w -1 -1y

[V—Bl( 170) V.52 = 07‘/7[_170]]7
[VB1(1,0)V_B2(0,1)=0,V,[-1,1]],

[V_S1V_B2(1,0)_ (e )" ,[0,—1]],

(1_|_ 11)27
) ezl
V_S1VB2(0,1) = 1+—17V7[0,1] ],[
el

[V_B1(1,0)V_B2(1,0) =0,V,[-1,1]],
[V_B1(1,0) V_52 =0,V,[0,1]],
[V_B1(1,0)V_B2(0,1) =0,V,[1,1]],

1

m,‘ﬂ[—l,o]],

V_S1VB2(0,1) = ﬂ/ﬁ,‘ﬂ[lﬁ]]” [

[V_SJ V_B2(1,0) =

(1,1, HIGH,[2]] = [2,2, LOW,[-1]],[
[VB1(0,1)V.B2(1,0),V,[1,—-1]] =
[V_B1(0,1)V_B2(0,1),V,[1,-1]],

[VB1(0,1) V_S2,V,[1,0]] = [ V_S1 VB2(0,1),V,[0,~1]],
[VB1(0,1)V.B2(0,1),V,[1,1]] =
[V_B1(1,0)V_B2(0,1), V[ -1, ~1]]]], [zz,zz],[[
m—)ln(lf‘t),z—) %,m—)(m,l—m)],
m—)ln(l_:n),z 1+ez,m—>(:ﬂ,1—:ﬂ):|:|,|:
:B—)ln(;:;>,z 2161_;1,.%—)(.%—1,2—:1:)],
m—)ln(E:i>,z—>zle:_tzl, —>(:n—1,2—9:):|:|:|,
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1 ezl
1:=VBl|——r, ——
% <1+e21’1+e“>

1 ez?
2:=VB2 | ——, ——
% <1+e22’1+e22>

> type(Prob,MultiSProbType);

true
> with(ptolemy, Linear);
[ Linear]
> Linear (Prob);
true

> Start := time(): MultiSToLinKron(Prob); time() - Start;

[[[%5,%4,%3,%2,%1,0,0,0,0,0,0,0,0,0,0,0,0,0],%6,

z2 \2
. €
_O,Dlag <(1(+7€)2)4) 10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

[070707 07070707 07070707 07070707 07070]7

z1 \2
. €
0,0,0, Diag <(1(+7e)1)4> 10,0,0,0,0,0,0,0,0,0,0,0,0,0,0

z1 \2
. €
0,0,0,0, Diag <ﬁ> 10,0,0,0,0,0,0,0,0,0,0,0,0,0

0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0],
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0],
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
0,0,0,0,0,0,0,0,0,0,0,0, R0 &K C,0,0,0,0,0],
0,0,0,0,0,0,0,0,0,0,0,0,0, RO &K C,0,0,0,0], %6,
0,0,0,0,0,0,0,0,0,0,C &K R0,0,0,0,0,0,0,0], %6,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0], %6,

[
[
[
[
[
[
[
[

[070707070707070707070707070707 17070]:| 7[V—17 V—27

V_1_B1_1,V_1_B1_2,V_1_B2.1,V_1_B2_2,V_1_Bi2_1,

V_1_B12.2,V_1_B12.8,V_1_B12_4,V_2_B1_1,V_2_B1_2,
V_2.B2_1,V_2. B2 2, V_2_B12.1,V_2_B12. 2,V_2_B12_3,
(ezl )2 ezl 1

- 0,0,0,0, ———
(1—1—611)27 ]__i_ezl7 P 7(]__i_ezl)Q7

[ 1
mvovov()’ovovo] 7[ZI7Z'Q]7[H17H2]7

[[[171]7[2,2]],[[1,2]]7[[271]]]]

V_2_B12_4), [0,0,0,0,

z2

%1 := Diag < °
z
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(e —1)e
(14+e*)z1(1+e?)
Zﬁfi;a)(m&Kc)

2 _q
(14+e#)z1(1+e22)

(e —1)e
(1+e%2)2z2(1+e*)

ezl

222 (1+e*)
e —1

(1+e%2)z2(1+e*)

+m%< >(H&KC)

%2 := Diag <

+m%< >(H&K0)

%3::Diag< >(C’&K]1)

+Dmg( )(C&Km)

%4::Diag< )(C&KII)

1 .
(612)2
12(1—|—el"2)4

1) (7)) :
D It &K I0
+ lag< 1—|—e11 21 (1+e2 )t ( )

+ Diag <

%5 ::Diag< > (I2&K I0)

+m%< >(m&Km)

1+ezl )4

12_1)(
D
+ 1ag< (1+e2)(1+e
%6:— 000000000%5%4%3%2%10000]

1.716

)2 _
i 2>(IO&KH)

| End of Maple Worksheet

Method of Implementation

Just as for the procedure SToLinKron, the core operations are performed by proce-
dures from the kron_ops LLF. However, unlike SToLinKron, these core operations
no longer represent the bulk of the code. The outline and even much of the logic of
MultiSToLinKron are the same as for SToLinKron, but the extra complications of
multiple subdomains and coupling equations is significant.

The key differences between the implementation of this procedure and that of SToLinKron

are:

e The stack variable names are of the form V_.Domain. B.i._.j where i and j
are defined the same as for a single domain problem and Domain is an integer
indicating the domain number.

e Each call to kron_eq or kron_exp converts an equation or expression to Kro-
necker product notation within the context of a single subdomain. This means
that only a portion of the block-row is constructed for each call to a procedure
from kron_ops.
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e Constructing the parameter component list is no longer trivial. The graph in-
dicating which parameters are constrained to be equivalent must be constructed
and then this graph must be searched in order to identify all of its components.
Fortunately, much of this work is done with the aid of Maple’s networks package.

Partial Row Construction Because the procedures in kron_ops all operate in the

context of a single domain, this procedure constructs intra-subdomain stack variables
for each subdomain. These stack variable names are used to construct the portion of
each block-row that references the unknowns corresponding to a single subdomain.

For block-rows corresponding to governing equations or boundary constraints all of
the unknowns referenced by the block-row will be within a single subdomain. That is,
the rest of the blocks in the block-row will be zero. In the case of coupling equations,
each side of the equation produces a portion of the block-row. These two portions
of the block-row must be embedded among the potential zero-blocks corresponding to
unknowns from other subdomains.

Coupling Equations In order to construct override block-rows that correspond to the

coupling equations the procedure must first extract the coupling orientation from each
CoupleOverType in the collocation system. This information indicates the domain of
application and the relative orientation of the coordinates on each side of the coupling.
Once this information has been extracted the procedure then converts each half of every
coupling equation which is part of the current coupling to Kronecker product notation by
calling kron_exp (form the Kron_ops LLF). Each half is inserted into the appropriate
segment of the full length block-row.

The parameterization of the boundary (i.e., part of the CoupleOrientType in each
CoupleOverType) is used to construct the RowCoord argument to kron_exp. However,
this parameterization information cannot be used directly for the RowCoord argument
except in the central region of each boundary. In other regions of the boundary some
or even all of the coordinates may not vary over the rows of the current block-row. The
collocation point specified in each half of the coupling equation is used to determine
the region of application, which in turn is used to determine which elements of the
parameterization of the boundary must be eliminated from the RowCoord argument.

Finally, the collocation point in the domain with the lower domain number is used
to determine the row number. The procedure b_point_to_num (in the b_ops LLF) is
called to determine the information needed to construct the stack variable name.

Parameter Components As mentioned in the introduction to this subsubsection most

of the work of constructing the parameter components is performed by the Maple’s
networks package. However, the order in which the components procedure reports
the components in nondeterministic. This would normally force the user to check the
order of the components after every use of this procedure, even if nothing material to
the parameter component definition has changed. To prevent this the procedure sorts
the components returned by components so that the order is consistent between runs.

In order to sort the parameter components it is necessary to first define an order with
respect to the parameters. PTOLEMY orders parameters descriptions using the domain
number as the primary key and the dimension number as the secondary key. Using
this ordering all of the parameters within each parameter component are first sorted,
then the parameter components are sorted by comparing the “lowest” parameter in each
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component.

Dependencies

This procedure calls ptolemy/multi spec_to_list from the order_ops LLF in order
to convert the order information into a list of subdomain-specific order specification.

The procedure also calls get_SB_var to get a list of S-variables occurring in the
governing equation so that it can call pde_order to determine the order of the govern-
ing equations. The procedure order_subtract is then used to determine the correct
order for the weights, which are constructed by calling mapped_weight (from the
map_info_ops LLF).

The procedure all_ comb (from the comb_ops LLF) is used to construct the stack
variable names.

Each governing equation and each boundary constraint is converted from SB-notation
to Kronecker product notation by calling the procedure kron_eq (from the kron_ops
LLF). Similarly, each half of each coupling equation is converted by calling kron_exp
(also from the kron_ops LLF). In the case of boundary constraints and coupling equa-
tions the b_point_to num procedure (from the b_ops LLF) is called to construct in-
formation needed to determine the block-row number.

On the chance that it might further simplify the result, the procedure specified by
the global variable ptolemy/SimpProc is invoked on the sum of the RHSs of the matrix
problem produced by the two halves of the coupling equation.

The procedure cross_prod is used to construct all parameter descriptions which
form the nodes of the graph used to compute the parameter components.

160
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5.8 File Format for Matrix Problem Descrip-
tions

Because the range of options for the numerical solution of matrix problem gen-
erated by PTOLEMY is so large, it is important that the user have the option of
using other systems for this part of the process. To make interfacing with other
numerical linear algebra systems more practical PTOLEMY defines a portable
file format for symbolically describing matrix problems of the form arising in
sinc-collocation.

The primary intent of this file-based matrix description is to allow the same
problem to be solved in many different numerical environments, some of which
have little knowledge of PTOLEMY. A significant advantage of this file format
is that because it is a symbolic description of the matrix it is typically a much
more compact representation than the full numerical instantiation of the matrix.

Expression Format

Each expression must be an element of the grammar defined in Table 5.1.
where <Number> represents an integer, fixed point, or floating point number,
<Name> represents one of the ‘H’-parameters or one of the coordinate names,
and <Func> represents a mathematical function name.

Currently, PTOLEMY’s standard numerical solver knows about relatively few
mathematical functions, but it is easy to define new mathematical functions.
The user should not feel constrained by this set of named mathematical func-
tions. However, the user should feel constrained by common sense. The use-
fulness of this file format is dependent on its portability which is contingent on
using widely recognized function names and functions that are common enough
for efficient numerical evaluation routines to exist.

It is hoped that the OpenMath project (see [4]) will develop a better solution
to this problem. The current proposals from the project include phrase-books for
defining translation between different naming schemes that could, with sufficient
acceptance, partially solve this problem.

Stack Descriptions

Stacks are vectors whose elements are constructed from a higher- (or potentially
higher-) dimensional uniform grid using some cartesian ordering. Stacks are
defined by a function over this higher dimensional grid. The file format being

Table 5.1: The Grammar of an Expression

Symbol Production

<ExpSeq> | <Exp> | <Exp>, <Exp>

<Exp> <Term> | <Term> + <Exp>

<Term> <Fact> | <Fact>*<Term>

<Fact> <SubFact> | <SubFact>\<SubFact>

<Sub> <Number> | <Name> | (<Exp>) | <Func>(<ExpSeq>)
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defined in this section allows the expression used to define the stack to be either
a single expression or a list of factors of the expression, where each factor varies
only with respect to one of the coordinates. The grammar for these two kinds of
stack definitions are shown in Table 5.2 where <WS> is white space and <Dim>
is a integer specifying the (one based) dimension number corresponding to the
factor. If the dimension number is zero then the factor describes a constant
factor, independent of all coordinates.

Matrix Block Descriptions

The grammar for the block definition is shown in Table 5.3 Here <RowNum>
and <ColumnNum> are the (zero based) row and column numbers of the block.
The symbol <Dimen> is an integer which indicates the number of dimensions
that vary along either the rows or columns of the block. This is also equivalent
to the number of matrices and vectors that appear in the Kronecker product
sequence. The <Type> symbols in the <TypeSeq> construct indicates whether
the corresponding matrix in the Kronecker product is square (i.e., M) or a vector
(i.e., R for a row vector and C for a column vector).

The symbol <I0rd> indicates the order of the ‘I’-matrix in the Kronecker
product sequence. There should be only one <I0Ord> in the sequence for each
square matrix in the sequence, not necessarily one for every dimension.

The <Stack> symbol defines a diagonal matrix to premultiply the other
matrices. The optional <Perm> symbol indicates a permutation matrix to pre-
cede the Kronecker sequence. It indicates the order in which the dimensions are
to appear in the cartesian ordering of the rows. The symbol <Dim> is an inte-
ger, indicating the (zero based) dimension number; there should be one <Dim>
in the sequence for every dimension that varies over the rows of block.

Matrix Problem Descriptions

The grammar for an entire matrix problem description is shown in Table 5.4. In
this grammar <Coord>> represents a coordinate name and <HName>> represents
the name of an ‘H’-parameter. The symbols <NumMainVar> and <NumExtra>>
are positive integers indicating the number of main stack variables names and
the number of extra stack variable respectively. Each extra stack variable name

Table 5.2: The Grammar for a Stack Description
Symbol Production
<Stack> <SimpStack> | <FactStack>
<SimpStack> | <Exp>
<FactStack> | [<FactSeq>]
<FactSeq> <Fact> | <Fact><WS><Fact>
<Fact> <Dim><WS><Exp>
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Table 5.3: The Grammar for a Stack Description

Symbol Production

<Block> <ElemNum><WS><DimInfo><WS><MatSpec>

<ElemNum> | <RowNum><WS><ColumnNum>

<DimInfo> | <Dimen><WS><TypeSeq>

<TypeSeq> | <Type> | <Type><WS><TypeSeq>

<Type> MIRIC

<MatSpec> | <Stack><WS><IOrdSeq> |
<Stack><WS><Perm><WS><I0rdSeq>

<Perm> <P(<NumSeq>)>

<DimSeq> <Dim> | <Dim>,<DimenSeq>

<I0rdSeq> | <NULL> | <IOrd> | <IOrd><WS><IOrdSeq>

Table 5.4: The Grammar for a Matrix Problem Description

163

Symbol Production
<Prob> <Dimen><WS>
<Names><WS><StackSize><WS>
<ExtraSeq><WS><CompInfo><WS>
<NumBlock><WS><BlockSeq>
<Names> <CoordSeq><WS><HSeq>
<CoordSeq> <Coord> | <Coord><WS><CoordSeq>
<HSeq> <HName> | <HName><WS><HSeq>
<StackSize> | <NumMainVar><WS><NumExtra>
<ExtraSeq> <Extralnfo> | <Extralnfo><WS><ExtraSeq>
<Extralnfo> | <Dimen><WS><CoordSeq><WS><HSeq>
<DimSeq> <Dim> | <Dim><WS><DimSeq>
<CompInfo> <Num0OfComp><WS><CompSeq>
<CompSeq> <Comp> | <Comp><WS><CompSeq>
<Comp> <CompSize><WS><ParamSeq>
<ParamSeq> <Param> | <Param><WS><ParamSeq>
<Param> <Domain><WS><Dim>

<BlockSeq>

<Block> | <Block><WS><BlockSeq>
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will range over some subset of the dimensions, and may even use different coor-
dinate names and ‘H’-parameter names.

The symbol <ExtraInfo> defines the dimensionality and variable names
used for defining each extra stack variable and the block-column correspond-
ing to this stack variable. The integer represented by <Dimen>> specifies the
number of dimensions which vary over the corresponding stack variable, and
<CoordSeq> and <HSeq> specify the parameter names used in the symbolic
description of the blocks.

The parameter components are specified by fields represented by the symbol
<Comp>. The symbol <NumOfComp> represents a positive integer specifying
the number of parameter components. The symbol <CompSize> represents a
positive integer which specifies the number of parameters in the current param-
eter component. The symbols <Domain> and <Dim> specify the (zero based)
number of the domain and dimension, respectively.
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SolveLinKron

This procedure first writes the symbolic form of the matrix problem to a file.
It then spawns a process which runs the C++ command returned by the procedure
ptolemy/solve_command.

SolveLinKron(Prob: LinKronType, N: list(posint), H: list(numeric),
BaseFileName: name)

The argument Prob specifies a matrix problem in Kronecker product notation. The
arguments N and H specify the simulation parameters; each parameter in each list corre-
sponds to one parameter component. The order of the elements of N and H is determined
by the order of the parameter components in Prob. Finally, the argument BaseFileName
provides the base file name to be used for constructing the problem statement and the
problem solution. The problem statement will be written to a file formed by concate-
nating ‘. PROB’ to this base filename and, as a matter of convention, the solution should
be written to the file with the name formed by concatenating ‘. S0OL’ to the base file
name.

The Interface to solve_command

The solve_command procedure must have an interface of
solve_command (BaseName: name, N: list(posint), H: list(numeric))

The arguments are the same as the last three arguments to SolveLinKron. The result
returned by solve_command is a string defining the command to be executed in the
current environment to solve the problem.

If the global variable ptolemy/solve_command has not been assigned then it is
assigned the procedure in Figure 5.5 during package initialization. The purpose of using
this more complicated mechanism for constructing the command is to allow the user to
redefine the command according to the needs of the particular computing environment
or according to the needs of nontraditional applications.

Example Usage

| Start of Maple Worksheet

> with(ptolemy,LogRatiolMap,CollocateRecProb, SToLinKron, SolveLinKron);
[ CollocateRecProb, LogRatioMap, SToLinKron, SolveLinKron]

> Sys := D[1,1](V) + D[2,2]1(V) = K;
Sys = D]yl(V)—i‘DQVQ(V):K

Version 0.3
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macro(TO_STRING = readlib(’ ptolemy/to_string'));

‘ptolemy/solve_command' := proc(
BaseName: name, N: list(posint), H: list(numeric))

local NumOfParam, DQ;

DQ :=substring(*'"'*, 2..2);
NumOfParam := nops(N);

cat( ‘ptolemy_solve‘, BaseName, ‘.prob ‘, BaseName, ‘.sol °,
DQ, TO_STRING(H)), DQ, * , DQ, TO_STRING(N)), DQ);
end;

Figure 5.5: The Default Value of solve_command

Maple Worksheet Continued from Previous Page

> Bound := {[1,LOW,V=0],[1,HIGH,V=0],[2,L0W,V=0],[2,HIGH,V=0]};

Bound := {[1,LOW,V =0],[1, HIGH,V =0],[2,LOW,V = 0],
(2, HIGH,V = 0]}

> Map := LogRatioMap(0,1,x,2z);

x e .
Map = |::n—>ln (m> ,Z = 1+—ez,m—>($,1—$):|

> RecProb := [Sys,Bound, [x1,x2], [Map,Map]l, {[V,[0,0]11}];

RecProb := [DM( V)+Ds2(V)=K,{[1,LOW,V =0],[1, HIGH,V = 0],

[2,LOW,V =0],[2, HIGH,V =0]},[21,22], [

|:$—>IH<L>,Z—> i ,:E—)(m,l—m)],
1—=x 1+ e?

[m —In <£) oz le?:): - (m,1—m)” ,{[V,[0,0]]}]

> type(RecProb, RecProbType);

true

> SProb := CollocateRecProb(RecProb, [z1,z2], ’ExtraBases’);
SProb := [D( V_S1) (=267 4 2¢" e27) — (722 ) v 52

+V_SID(V_82)(—2el ™) 267 4el272) _o(-222)
_|_(e(—“2)_|_4e(_22)+6+4e22+e(212))D(2)(V_SQ)V-Sl

1 e”! \ (—22) 22 (222) (—222)
+V_Bl<1+ell,m> D(V_SQ)(—ZG +Ze +e — € )
1 e . .

(—z1) z1 (221) (—22z1)
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+(e72%) 1 ae(=) L6446 427 ) DP)(V_52)
z1

V_Bl< 1 e )+(e(_2“)+4e(_”)—|—6—|—4e“—|—e(2’1))

14e?’ 14 e

1 ez2
p*)N(vsywwvB2 | ——, %
( ) 1+e2’14e2

+ () pgel) y 6 ae” 42y Vos2e DB (V.S1) = K,
[21,22],{V_S2V B1(1,0) =0, V_S2VB1(0,1) =0,

V_S1VB2(1,0)=0,V_S1 V.B2(0,1) =0},

x e” .
|:$_>ln<ﬁ>’z_>1_|_—ez7$_>($’1_$) 5

o1 (1) oo oo = (w1 -] (2 L0.01))

> type (SProb,SProbType);

true

> LinKron := SToLinKron(SProb);

LinKron := H[Diag <%2 ' (1 _ZI]}j 2% (1- 22 )2> (I1 &K I0)
+ Diag <%4z12(1—z1}};z22(1—z2)2) (10 &K I1)
+ Diag <%3z12(l—z;{)222z22(1—z2)2> (&K 12)
+ Diag <%1z12 (1 —z;{)122z22 (1—22 )2) (124K I0),
Diag<%4Z12(1—1z1+)zlz122(1—22)2> (I0&K I0)
+Diag<%3212(1—1z1+):22(1—z2)2> (I0&K I0),
Diag<%4Z12(1—211):12(1%2)26”) (10&K I0)
+ Diag <%3ZI2(l_ziif(l_zg)%ﬂ> (10 &K I0),
Diag<%2Z12(1—51)22222(1—z2)2> (I0&K I0)
+Diag<%1Z12(1—1z1+)z;22(1—z2)2) (I0&K I0),
Diag<%2ZI2(1_ZIl)j_f:(l_z'g)QeZQ> (10 &K I0)
+Diag<%IZI2(l_ziif:(l_zg)26m> (IU&KJU)],

[0, Diag (22° (1 — 22)?) I0,0,0,0],
[0,0, Diag (222 (1 - 22)*) 10,0,0],
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[0,0,0, Diag (21* (1 — 21)?) 10,0], [0,0,0,0, Diag (21° (1 — 21 )*) I0]

J[V,V_B1_1,V_B1_2,V_B2_1,V_B2_2],[K,0,0,0,0],[ 21, 22 ],

(H1, H2 ], [[[1,[2]]], (11, (2], [TL, (1] ), [0, [1]]]]

%1 :=el 72#) 446l 46 446" 4e(?7)
%2 1= —2el 1) 97 4 o(221) _o(=221)
%3 :=el %) 4 46l 7*) 1644 +el?)
%4 = —2e0 7%2) 4 9672 4 o(222) _ o(-222)

> type(LinKron, LinKronType) ;
true

> H := [ evalf(1/sqrt(2)), evalf(1/sqrt(3)) 1;
H :=[.7071067810, .5773502693 ]

> SolveLinKron(subs(K=1, LinKron), [[2,3]], [H], test);
SPAWNING: ptolemy_solve test.prob test.sol "[[0.7071067810 0.5773502693 1 \
]Il |l[[2 3 ] ]Il

End of Maple Worksheet

This example will create the file called TEST.PROB with constants shown in Fig-
ure 5.6. It will then spawn a process running PTOLEMY_SOLVE which will read this file
and use it to build and solve a matrix problem specified in TEST . PROG; the solution
will then be written to TEST.SOL.

Known Problems

If an expression is long, Maple’s write command will split it into multiple lines. Long
line breaks occur at any place which is acceptable for Maple input, includes places where
white space is not allowed by the file format defined in Section 5.8. This problem is
addressed by the improved I/O capabilities available in the next version of Maple (i.e.,
Version V; Release 4), but in the meantime the user will sometimes need to edit files
created by SolveLinKron and to manually run PTOLEMY_SOLVE.
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SolveLinKron

—_—— ko —_—— ko —_—,— ko —_— ko —,——— N O ©

O O OO0

Z o

0 -UH1 1 (2*exp(-zl1)-2*exp(zl)-exp(2*zl)+exp(-2*z1))*z1"2*(-1+z1)"22 z2"2*(-1+z2)"2 ] 1 O

0 UH2 1 z1"2*(-1+z1)"2 2 (-2*exp(-z2)+2*exp(z2)+exp(2* z2)-exp(-2*z2))*z2"2* (-1+z2)"2 1 0 1

0 UH2"2 1 z1"2*(-1+z1)"2 2 (exp(-2*z2)+4* exp(-z2)+6+4* exp(z2)+exp(2* z22))* z2"2* (-1+z2)"2 ] 0 2
0 VHI"2 1 (exp(-2*z1)+4*exp(-z1)+6+4*exp(z1)+exp(2* z1))* zA"2* (-1+z1)"2 2 z2"2*(-1+z2)*2 ] 2 O

1
R
1
1
2
R
1
1
3
M
0
1
4
M
0
1
1
M
2
2
M
2
3
M
1

4
M
1

M

21N (-14Z0)N2U(A+exp(zl)) 2 (-2*exp(-z2)+2* exp(z2) +exp(2* 22)-exp(-2* 22))* 22°2* (-1422)"2 ] 0 0

2102 (-1470)"2U(A+exp(zl)) 2 (exp(-2*Z2)+4* exp(-22)+6+4* exp(z2) +exp(2* 22))* 2272+ (-1422)*2 ] 0 0

M

ZIN2* (-1+z1)"2* exp(z1)/(1+exp(zl)) 2 (-2*exp(-z2)+2* exp(z2)+exp(2* z2)-exp(-2* 22))* z2"2* (-1+z2)"2 ] 0 O
z1M2* (-1+z1)"2* exp(z1)/(1+exp(zl)) 2 (exp(-2*z2)+4*exp(-z2)+6+4* exp(z2)+exp(2*z2))*z2"2*(-1+z2)"2 ] 0 O

R
-1

1 (2*exp(-z1)-2*exp(zl)-exp(2* z1)+exp(-2* z1))* z1"2* (-1+z1)"2 2 z2"2*(-1+22)"2/(1+exp(z2))

(exp(-2* z1)+4* exp(-z1)+6+4* exp(z1) +exp(2* z1))* z1"2* (-1+z1)"2 2 z2"2*(-1+22)"2/(1+exp(z2)) ]

R
-1

]
0

00
0

1 (2*exp(-z1)-2*exp(z1)-exp(2* z1)+exp(-2* z1))* zIN2* (-1+z1)"2 2 z2/2*(-1+z2)"2*exp(z2)/(1+exp(z2)) 1 0 O

(eXp(-2* Z1)+4* exp(-z1) +6+4* exp(z1) +exp(2* ZL))* ZIN2* (-1+Z1)72 2 z282* (-1+22)"2*exp(z2)/(1+exp(z2)) ] O 0

2202 (-1422)°2 |

2202% (-1422)°2 ]

z102* (-1+21)"2 ]

2102 (-1421)72 |

0

Figure 5.6: The Contents of the File TEST .PROB
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5.10 The C++ Library

Initially most users may wish to implement their own solver in order to exper-
iment with different schemes for exploiting the structure of the matrix. Such
experimentation may be done easily with the aid of tools such as MATLAB.

Unfortunately most of these tools do not have the functionality necessary for
converting the symbolic description of the matrix to a numerical approximation
of the matrix (i.e., to build the numerical matrix). One simple solution to this
problem is to build the numerical matrix in Maple and then write the result
to disk. This solution is inefficient because Maple uses hash table to represent
arrays. The author has build a fast interpreter for computing floating point
approximations of a subset of Maple expressions and the file format described in
Section 5.8. The result is about 10,000 times faster then a direct implementation
in Maple.

Users interested in experimenting with this method may down load the code
from

http://daisy.uwaterloo.ca/~kparker/ptolemy

However, experimentation suggests that for matrices that are small enough to
fit in memory using Maple’s representation, the slower Maple evaluation is ad-
equate. This is because the total time required to build the matrix is small
compared to the time required to solve the matrix; so even extreme inefficiency
has little affect on the total process time. However, on many systems building
sufficiently large matrices in Maple (large enough to cause thrashing) exploits
bugs in either the operating system or Maple causing one or the other to crash.
In such cases using a custom interpreter appears to be the only way to build
the numerical matrix.



Chapter 6
Debugging

This chapter describes tools for identifying bugs in the use of PTOLEMY. The
current version of Maple (i.e., Version 5, Release 3) is severely limited in its
support of traditional debugging tools. The next version, release 4, will provide
a traditional debugger that I have found invaluable for developing many types
applications.

However, traditional debugging tools are not as powerful for finding bugs
in computational software as they are for software dominated by logic. This
is because in logic-oriented software most bugs cause the program to follow an
unexpected execution path. As a result, providing the ability to pose questions
about the execution path gives the user the ability to collect powerful hints about
the cause of a bug. In contrast most bugs in numerically intensive programs do
not alter the execution path. Bugs in computational software most often take
the form of an implementation of incorrect formulas. Subtle examples of this
kind of bug include the application of a valid formula to a situation where the
formula is not applicable and the use of formulas that are algebraically correct
but produce unacceptable amounts of round-off.

Empirical evidence suggests that when bugs in the formula being applied
are not obvious from a visual inspection of the code, the most useful debugging
information is a demonstration of the formula’s effect on various data sets.
Almost all problems of interest have too much data to examine the numerical
values directly. As a result this kind of debugging information must primarily
involve the graphical visualization of data sets.

The kind of visualization most useful for debugging typically requires more
than just graphing raw data. What is most often needed is the graphical vi-
sualization of some user defined manipulation of the data. A common simple
example would be to graph the difference between two data sets; a more com-
plex example might be to graph the Discrete Fourier Transform (DFT) of a data
set. However, in most cases the manipulation of the data to be performed as
part of the visualization is understood by the user in terms of a symbolically
defined mathematical operation. This means that Maple has unusual potential
to provide such nontraditional debugging support.
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This portion of the PTOLEMY package demonstrates some of the potential
for this kind of debugging support. Like the numerical capabilities discussed in
Chapter 5, PTOLEMY provides more of a demonstration of the potential than a
full featured debugging environment.



Graphics

PlotBound

PlotBound

This function graphs a boundary or a collection of boundaries.
PlotBound(Bound: collection(BoundType), PlotOptions: seq)

The argument Bound specifies the boundary(s) to be graphed. The argument Plot-
Options represents a possibly empty sequence of plotting options. These plotting op-
tions allow the user to directly to specify certain plotting options to whatever graphing
procedure is used to produce the actual graphs, i.e., at this time either plot or plot3d.

When the embedded space is one-dimensional the procedure displays the bound-
aries as vertical lines that are intended to illustrate points on a “number line.” In
this case the global variable ptolemy/OneDRange specifies the vertical range used to
depict the boundaries. It should be assigned an expression that evaluates to type
range(numeric) at the time of procedure invocation. During package initialization the
value of ptolemy/OneDRange is set to -1/2..1/2, if the variable is not already defined.

Limitation

The collection boundaries must all be embedded in the same space. That is all of
the boundaries must be structurally of the same dimensionality. Boundaries need not
actually vary in all, or even any, of the dimensions of the space, but the behavior of the
boundary must be explicitly specified for each dimension in the space.

In addition warnings are generated for boundaries in spaces of dimensionality greater
than three. This restriction is not intrinsic; for example four-dimensional spaces might
be handled via animation or projection. However, the graphing capability of Maple is
sufficiently limited so that it is unclear how useful this feature would be.

Example Usage

| Start of Maple Worksheet

> with(ptolemy, PlotBound);
[ PlotBound ]

> D1 := { [0], seq([1/27i / (1 + 1/2"i)], i=-3..3), [11};
oe= {53 ) ) [ o 3] ]}
3 2 3 5 9 9 5

> type(D1,set(BoundType)) ;

true
> ‘ptolemy/OneDRange‘ := -0.1..0.1;
ptolemy/ OneDRange := —.1...1
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0.1

0.05

ey Oé)% 0.2 0.4 0.6 0.
-0.1

Figure 6.1: An Eight Subdomain Partitioning of the Interval [0, 1]

Maple Worksheet Continued from Previous Page

> PlotBound(D1);
See Figure 6.1.

> D2 :=

> { [theta*cos(Pixtheta), theta*sin(Pi*theta), theta=0..2],

> [theta*cos(Pi*(theta + 1/2)), theta*sin(Pix(theta + 1/2)), theta=0..2],
> [2%cos(Pi*theta), 2*sin(Pixtheta), theta=0..1/2] };

D2 = {[Hcos(ﬂ'b‘),esin(ﬂ'@),@ —0.2],
o (e (02)) o (o)) 00
|:2cos(71'9),2sin(71'9),9 :0..%]}

> PlotBound(D2, tickmarks=[4,4]);
See Figure 6.2.

> D3 :={ [t1,1.1,t2,t1=0..1,t2=0..1], [1.1,t1,t2,t1=0..1,t2=0..1],
> [1 - t1*x(14t2),1 - t1x(1-t2),1.1,t1=0..1/2,t2=-1..1] };

D3 := {[1.1, t1,t2,t1 = 0..1,t2 = 0..1],

Maple Worksheet Continued on Next Page

2
1
-1 0 1

Figure 6.2: A Two-Dimensional Spiral Domain
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. . 1
L=t (1462),1— ¢1 (1= #2), 11,8 = 0., 42 = —1..1] ,
[t1,1.1,¢2,¢1 = 0..1,¢2 = 0..1]}
> PlotBound (D3, orientation=[30,70], axes=boxed, tickmarks=[3,3,3]);

See Figure 6.3
| End of Maple Worksheet

Method of Implementation

If the argument Bond represents a single boundary then the dimensionality of the space
it determined and a graph of the boundary is produced. However, if Bound represents
a collection of boundaries then PlotBound is called recursively on each boundary and
then all of the graphs are combined using the display procedure form Maple’s plots
package.

This approach is slower than first normalizing the ranges and then plotting all of
the lines or planes at once, and should probably be changed in the next version of this
procedure.

Dependencies
This LLF does not depend on any other part of PTOLEMY.

0.

Figure 6.3: Three Boundaries in Three Space
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PlotDomBound

This function graphs the boundaries of a collection of domains or subdomains.

PlotDomBound(Domain: collection({DomainType, MultiDomainType}),
PlotOptions: seq)

The argument Domain specifies the domain(s) to be graphed. The argument Plot-
Options represents a possibly empty sequence of plotting options.

Example Usage

| Start of Maple Worksheet

> with(ptolemy, PlotDomBound):

> D1 := [[x1,x2,x3], 0..1, 0..1, 0..1];
D1 :=[[=l,22,28],0..1,0..1,0..1]

> type(D1,RecDomainType);
true

> PlotDomBound (D1,
> orientation=[60,75], axes=framed, tickmarks=[3,3,3], grid=[15,15]);

See Figure 6.4.
> D2 := [[x,y], [y=0..1, x=0..2-y], [x=1..2, y=2-x..2]];
D2 :=[[z,y],[y=0.1,z=0.2—yl, [z =1.2,y =2 — z..2]]

Maple Worksheet Continued on Next Page

0.

Figure 6.4: The Boundaries of a Unit Cube
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> type(D2,MultiTradDomainType) ;
true

> PlotDomBound (D2, axes=framed);
See Figure 6.5.

> D3 := [[x1,x2,x3], x2=0..1, x1=0..2-x2, x3=x1/2..(2-x2)];

1
D3 :=|[z1,22,28],22 =0..1,z1 =0..2 — 22,38 = §$1”2 — z2

> type(D3,TradDomainType) ;
true

> Options :=
> axes=framed, orientation=[40,80], tickmarks=[3,2,5], labels=[x1,x2,x3];
Options := azes = framed, orientation = [40,80], tickmarks = [3,2,5],
labels = [z1, 32,23 ]

> PlotDomBound (D3, Options);
See Figure 6.6.

> PlotDomBound (D3, Options, grid=[5,5], style=wireframe);
See Figure 6.7.

> Map := (x0,x1) ->
(1/2%1n(x0"2 + x1°2) / 1n(1/2),
2%arctan(x1/x0) - In(x0"2 + x1°2) / 1n(1/2));

vV Vv

Maple Worksheet Continued on Next Page

1.5¢

0.5

% 0.5 i 1.5 )

Figure 6.5: The Two Subdomains Commonly Used for the ‘L’-Problem
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Figure 6.6: An Example Three-Dimensional Traditional Domain

The confusing overlap of the z3 label and the tick mark label, ‘1°, is unavoidable in the
current version of Maple.
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Figure 6.7: Another Representation of Figure 6.6
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2 2\ 2 2
Map := (20,21 ) — l lin( 0" + 21 ),Zarctan ﬂ — 1711( 20"+ 2l”)
2 1 z0 1
In{ = In{ =
2 2
> InvMap := . - *cos + s *sin + ;
InvMap yo0,y1 > 1/2)"y0 yo + y1/2 1/2) "yO*sin(y0 + y1/2

1\" 1 1\" 1
InuMap := (y0,y1 ) — <§> cos <y0 + 3 y1> , <§> sin <y0 + 3 y1>

> simplify([Map(InvMap(y0,y1))1);
1
sin <y0 + 3 y1>

1
cos (y[) + 2 y1>

> D4 := [[y0,y1], [-1..1, 0..1], Map, InvMap];
D4 :=[[y0,y1],[-1..1,0..1], Map, InuMap]

y0,2 arctan — 240

> type (D4, MappedDomainType) ;
true

> PlotDomBound (D4, tickmarks=[3,5]);
See Figure 6.8.

End of Maple Worksheet

0.5

0.5 .5

-0.5

-1

-1.5

Figure 6.8: The Boundary of a Section of a Spiral

Notice that this domain cannot be represented as a traditional domain type.
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Method of Implementation

The procedure calls a helper function domain_to_bound on each of the domain spec-
ified by the argument Domain. This helper procedure returns a set of boundaries for
the domain passed to it. The main procedure calls PlotBound to construct the actual
graph.

The procedure domain_to_bound has the interface

domain_to_bound(Domain: {DomainType, MultiDomain Type})

This helper procedure checks the type of the argument Domain. If domain is a Mul-
tiDomainType it calls its constructs domain types for each subdomain and calls itself
recursively. If Domain specifies a single domain then the procedure decides what kind of
domain was specified, e.g., RecDomainType versus TradDomainType and so on, and calls
one of the helper procedures rec_to_bound, trad_to_bound, or mapped_to_bound
which produces a set of boundaries for this particular kind of domain.

The interface rec_to_bound, trad _to_bound, and mapped_to_bound is:

rec_to_bound(Domain: RecDomainType)
trad_to_bound(Domain: TradDomainType)
mapped_to_bound(Domain: MappedDomainType)

Each of these procedures constructs a table of boundaries where the absolute value of
the index is the dimension that is perpendicular to the boundary and the sign of the
index indicates rather the boundary is on the low end or the high end.

Dependencies

This procedure calls PlotBound in order to plot all of the boundaries.
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GridInvMap

GridInvMap

This procedure displays the inverse map of a regular grid in the mapped-to domain.

GridInvMap(InvMap: procedure, GridSize: list(posint), Box: list(range),
PlotOptions: seq)

The argument InvMap defines the inverse map to be visualized. The argument GridSize
indicates the number of grid point in each dimension of the mapped-to domain. This
includes grids on the edges of the domain, so a GridSize component of three would
indicate one grid on each end and one in the middle. The argument Domain indicates
the rectangular region in the mapped to domain over which the grid is constructed. The
grid is uniform over this region, such that the total number of grid lines or planes in
each dimension equals that specified by GridSize. Any other arguments are treated as
Maple plotting options.

All of the plot options except color specifications are passed to the final graphing
routine without change. Color specifications are slightly different than for either plot
or plot3d; the symbol color should be equated to either a single color specification
(just as is done for plot or plot3d) or a list of color specifications, one per dimension
of the inverse map. If the color specification is a list of colors then the grid lines which
are constant in the first dimension will be graphed in the first color and so on.

For one-dimensional spaces the global variable ptolemy/OneDRange indicates the
vertical extent of the lines used to represent the grid points. During package initializa-
tion this global variable is set to —1/2..1/2, if it is not already defined. See Section 1.5
for more details.

Example Usage

| Start of Maple Worksheet

> with(ptolemy, GridInvMap);
[ GridInvMap]

> InvMapl := z -> exp(z) / (1 + exp(z));

z

InvMapl := z —

1+ e*

> ‘ptolemy/OneDRange‘ := -0.1..0.1;
ptolemy/ OneDRange := —.1...1

> GridInvMap(InvMapi, [16], [-4..4], tickmarks=[6,3]);
See Figure 6.9

> InvMap2 := (r,theta) -> ((1/2) r*cos(r + theta/2), (1/2) r*sin(r + theta/2));

st = r0) > ( (2 eon(+4 20) (1) s v+ 20)

Version 0.2.2
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0

1
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|
o (1R e A e B L

Figure 6.9: The Sinc Points for the Log-Ratio Map from the Interval [0, 1]
Maple Worksheet Continued from Previous Page |

> GridInvMap(InvMap2, [15,5], [0..Pi, 0..Pi/2], tickmarks=[4,7]);
See Figure 6.10

> InvMap3 := (y1,y2,y3) -> (y1, y2+1/4x(y1-2)*(y1+1)"2, (y1°2 + 1/2)*y3 - y1°2);
InvMap8 :=
. 1 . wf . 1 .
(y1,92,y8) = |yl,92+ 7 (y1 =2)(y1 +1)° (y1" + ) y3 — yI
> GridInvMap(InvMap3, [4,3,3], [-1..1,0..1,0..1],

> axes=framed, tickmarks=[5,5,4]);
See Figure 6.11

> GridInvMap(InvMap3, [6,3,4], [-1..1,0..1,0..1], orientation=[85,88]);
See Figure 6.12

GridInvMap(InvMap3, [6,4,3], [-1..1,0..1,0..1],
orientation=[90,15], projection=0.3, axes=boxed, tickmarks=[5,5,2]);
See Figure 6.13

vV Vv

End of Maple Worksheet

-o‘.\%o 0.2 0.4 0.6 0.8 1

Figure 6.10: The Gridding of the Inverse of a Map from a Sector of a Logarithmic Spiral
to a Unit Square
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Figure 6.11: The Gridding of the Inverse of a Map from a Stylized Bridge Shaped Region
to a Unit Cube
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Figure 6.12: A Side View of Figure 6.11

The grid size has increased slightly as compared to Figure 6.11
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Figure 6.13: A Top View of Figure 6.11

The grid size is slightly different than in either Figure 6.11 or Figure 6.12.

More than Three Dimensions

This module defines graphing routines only for one-, two-, and three-dimensional inverse
maps. At this time Maple does not provide much power for visualizing in more than
three dimensions. Fortunately, this covers most of the important cases. However, four-
dimensional problems do occur often enough, usually as problems with three special
dimensions plus time; as a result, it would be useful to be able to handle these higher-

dimensional maps.

The procedure GridInvMap first determines the dimension of the inverse map,
denoted by n. Then it checks for the existence of a globally visible procedure named
grid_inv Nd, where the letter N is replaced by the number representing the dimension
of the inverse map. For example for a two-dimensional map GridInvMap looks for a
global procedure named grid_inv_2d. If this procedure exists GridInvMap calls this
procedure to create the graphical representation. The result returned by this procedure

is in turn returned by GridInvMap.
The prescribed interface for these support functions is

grid_inv_Nd(InvMap: procedure, GridSize: list(posint), Box: list(range),
Color: list(name)), PlotOptions)

where InvMap, GridSize, and Box are the inputs to GridInvMap, Color indicates the
color to be used for each dimension of the output, and the optional plots options are
the subset of any plot options provided to GridInvMap which did not specify color

information.

The following example illustrates how the user can provide customized support pro-
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cedures.

Start of Maple Worksheet

> with(ptolemy, GridInvMap);
[ GridInvMap)|

>rl :=t -> cosh(3%(t-1/2));
r1 :=t — cosh <3t— g)

> r2 :=t -> cosh(2x(t-1/2)) - 3/4;
. 3
r2 ::t—)cosh(Zt—l)—Z

InvMap4 := (r,theta,phi,t) ->
((r*r2(t) + (1-r)*ri1(t)) * cos(theta)*sin(phi),
(r*r2(t) + (1-r)*ri1(t)) * sin(theta)*sin(phi),
(r*r2(t) + (1-r)*ri(t)) * cos(phi), t);
InvMap4 :== (r,0,¢,t) = ((rr2(t)+ (1 —r)rl(t))cos(8)sin(¢),
(rr2(t)+ (1 —r)rl(t))sin(f)sin(¢),
(rr2(t)+ (1 —r)rl(t))cos(¢),t)

VVVYV

> GridInvMap(InvMap4, [3,3,3,10], [0..1, -Pi..Pi, 0..Pi, 0..1]);
Error, (in GridInvMap) GridInvMap can’t do 4-dimenional graphs.

> ‘ptolemy/grid_inv_4d‘ := proc

>  (InvMap: procedure, GridSize: [posint,posint,posint,posint],

> Domain: [range,range,range,range], Color: [name,name,name,name])
>

> local i, LowT, HighT, SubMap, Graph, t;

> LowT := op(1,Domain[4]);

> HighT := op(2,Domain[4]);

>

> for i to GridSize[4] do

> t := (1 - 1) / (GridSize[4] - 1) * (HighT - LowT) + LowT;

> SubMap 1= readllb(procmake)( &proc‘([x,y,z]1,[1,0],

> ‘&expseq’ (op(l -3, [InvMap(x,y,2,t)1))));

> Graph[i] := ptolemy/grld inv_3d°¢ (SubMap, [op(1..3,GridSize)],
> [op(1..3,Domain)], [op(l..B,Color)], op(5..nargs, [args]))

> od;

>

> plots[display] ([seq(Graph[i], i=1..GridSize[4])], insequence=true,
> op(5..nargs, [args]));

> end:

> GridInvMap(InvMap4, [2,7,6,15], [0..1, -Pi..Pi, 0..Pi, 0..1],

> orientation=[15,85], axes=boxed);

The results can not be effectively typeset. The interested reader can try this example on
his own machine.

End of Maple Worksheet
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Method of Implementation

The base procedure, GridInvMap, first checks the dimension of the inverse map, the
grid-size specification, and the domain specification to make sure that they are the
same. It then separates any of the color directives from all of the other plot options.
If the color option is an array it is saved for passing to the grid_inv_Nd procedure
otherwise an array with the desired color specifications is constructed. Only the last
color directive in the list of plot options is used.

From this it is clear that most of the code for gridding the inverse map is not in the
procedure GridInvMap but is rather in the support procedures grid_inv_Nd. This
module provides three standard support procedures for one, two, and three dimensions.
These procedures are structurally similar.

Each curve is created by calling the inverse map with all but one of the arguments
at fixed numerical values and the one varying argument as a linear expression in a local
variable. This linear expression ranges over the range in the corresponding element of
Box, as the variables of the parameterization range from zero to one. The result is a
parameterization, in terms of parameterization variable, of the inverse map of one of
the grid point, lines, or plane.

These parameterized curves are stored in a table according to the color assigned to
them. Once all of the parameterized lines have been stored in the table, a graph for
each color is created and stored in a second table. Finally, the graphs are combined
into one graph using the display function from the plots package. Care must be taken
to pass the plot options to both procedure for creating the graphs and to the display
procedure.

Dependencies

This procedure does not depend on any other procedures in the PTOLEMY package.
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GridMap

This procedure graphs the result of mapping a grid in the original domain to the
mapped to domain.

GridMap (Map: procedure, N: list(posint), Box: list(range), PlotOptions: seq)

The argument Map describes the map to be visualized. The arguments N and Box
together describe the grid in the original domain. This map will be applied to the grid
and the result will be graphed using any plotting options provided by the argument
PlotOptions. The argument PlotOptions is a possibly empty sequence of plotting
options.

Just as for GridInvMap all of the plotting options except for the color specification
are passed directly to the final plotting command (i.e., plot or plot3d) and color
specification can either specify the color for the entire grid or list the colors for each
dimension of the grid.

The global variable ptolemy/OneDRange specifies the vertical range of the lines used
to indicate points when Map is defined from a one-dimensional to another one dimen-
sional space. During procedure initialization ptolemy/OneDRange is assigned the value
-1/2..1/2if it is not already assigned a value.

Example Usage

| Start of Maple Worksheet

> with(ptolemy,GridMap,LogSinhMap);
[ GridMap, LogSinhMap]|

> MapInfo := LogSinhMap(0,LOW,x,z,3/2);

3 arcsinh(e®)

. 2 .
MapInfo := |::E —In <smh <§ arcsinh 1)-’”)) 12 2 mh(l)7
1 /6 sinh (% arcsinh(1) $>

r— | - - = 9
2 arcsinh(1)

DN | =

arcsinh(1)

VBsech <§ arcsinh(1) x> ]

> Mapl := MapInfo[1i];

Map1 ;=2 — 1In <sinh <§ arcsinh( 1) :1:))

> ‘ptolemy/OneDRange‘ := -0.3..0.3;
ptolemy/ OneDRange := —.3...3
> GridMap(Map1l, [16], [0..3], tickmarks=[4,3]);

See Figure 6.14.
with(ptolemy,MakeTradMap) ;

\

[ Make TradMap ]
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2 S ez

Figure 6.14: A Gridding of the Log-Sinh Map

Notice how the grid becomes more uniform on the right end of the graph. The overlap
of tick mark labels between the two dimensions is unavoidable in the current version of
Maple.

Maple Worksheet Continued from Previous Page

> Domaind := [[x1,x2], x2=0..1, x1=0..2-x2];
DomainA :=[[z1,22],22 = 0..1,z1 = 0..2 — 22]

> MakeTradMap(DomainA, ’Map24’, ’Trash’);
eval (Map24);

\

. z1
1,z2 - .72
(z1,z )—>< _2+$2,$)

GridMap (Map24, [9,5], [0..2,0..1], 0..1,0..1, axes=none);
See Figure 6.15.

\

Maple Worksheet Continued on Next Page

Figure 6.15: The Map of the Gridding of the Lower-Left Subdomain in the ‘L’-Problem

Assuming that the coordinates in the original domain are denoted by X; and X5, the
horizontal lines are the iso-X5 lines and the iso-X; lines are quadratic, curving towards
the right when traced from top to bottom.
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> DomainB := [[x1,x2], x1=1..2, x2=2-x1..2];
DomainB :=[[z1,32],z1 = 1..2,22 = 2 — 31..2]

\

MakeTradMap(DomainB, ’Map2B’, ’Trash’);
eval (Map2B);

\

2 — 2+ a1
(21,22) - <$1—1,u)

z1

> GridMap(Map2B, [5,9], [1..2,0..2], 0..1,0..1, axes=none);
See Figure 6.16.

| End of Maple Worksheet

More then Three Dimensions

This module only defines graphing procedures for one-, two-, and three-dimensional
maps. Just as with GridInvMap the user can add graphing procedures for higher
dimensional spaces or redefine the standard graphing procedures. The graphing pre-
scribed interface is

ptolemy/grid Nd(Map: procedure, GridSize: list(posint), Box: list(range),
Color: list(name)), PlotOptions)

where Map, GridSize, and Box are the inputs to GridInvMap, Color indicates the

Figure 6.16: The Map of the Gridding of the Upper-Right Subdomain in the ‘L’-Problem

Assuming that the coordinates in the original domain are denoted X; and X, the
vertical lines are the iso-X; lines and the iso- X5 lines are quadratic, curving down when
traced from right to left.
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color to be used for each dimension of the output, and PlotOptions is a possibly empty
sequence of plotting options. The argument PlotOptions should not contain any color
plot options.

of Implementation

The core procedure, GridMap, first checks the dimension of the map, the grid-size
specification, and the domain specification to make sure that they are all the same. It
then separates any of the color directives from all of the other plot options. If the color
option is an array it is saved to be used as an argument for the grid Nd procedure;
otherwise an array with the desired color specifications is constructed. Only the last
color directive in the list of plot options is used. Then the name of the plotting procedure
is constructed, i.e., with the appropriate value of n; if a global variable with this name
has been assigned a procedure then this procedure is called, otherwise an error message
is issued.

From this description it is clear that most of the code in this LLF is in the support
procedures, grid Nd. This module provides three standard support procedures for
one, two, & three dimensions. These procedures are structurally similar; they produce
a description of the mapping of each grid line. Each description of a curve in the final
graph stored in a table according the the specified graphing color. Once all of the curves
have been stored in the table a graph is created with all of the like colored curves and
stored in a second table. Finally, the different graphs are combined into one graph using
the display function from the plots package. Care must be taken to pass necessary plot
options to both the procedure for creating the graphs and to the display command.

The description of the map of each grid line is created by evaluating the map with
all but one of the arguments specified to be a specific numerical values and the one
nonnumeric argument as a linear expression which varies over the range in the corre-
sponding element of Box, as the parameterization variable ranges from zero to one. The
result is a parameterization of the map of one of the grid lines.

Dependencies

This procedure does not depend on any other part of the PTOLEMY system.
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ClipPlot

This procedure will clip any two-dimensional Maple plot to some oriented box.
ClipPlot(Plot: PLOT, Box: [range(numeric), range(numeric)])

The argument Plot specifies the plot to be clipped and the argument Box specifies the
clipping box. The result returned is a new plot object in which the data have been
modified so that all of the curves lie within the clipping box.

Maple’s PLOT record has an optional VIEW field which can be used to specify clipping
to be applied during the display of a plot. This field is set when the plotting range is
limited by the appropriate arguments to either the plot command or the display
command from the plots package. This mechanism is actually preferable to using the
ClipPlot procedure for most interactive uses, but it does not work when joining clipped
forms of two different plots to form a new plot and the clipping box is different for each
plot. This need arises often when using GridMap to simultaneously visualize the maps
from several different subdomains. It is primarily for this application that ClipPlot
was created.

Finally, notice that Maple uses a different type to represent three-dimensional plots,
called PLOT3D. This procedure will not work on objects of the three-dimensional type.

Example Usage

The first example illustrates the problem that motivates the need for this procedure as
well as illustrates a simple application of the procedure.

| Start of Maple Worksheet

> with(plots,display);
[ display ]

> with(ptolemy, MakeTradMap,GridMap,ClipPlot);
[ ClipPlot, GridMap, Make TradMap |

> Domaini := [[x1,x2], x2=0..1, x1=0..2-x2];
Domainl :=[[z1,22],22 = 0..1,z1 = 0..2 — 22]

> MakeTradMap(Domaini, ’Mapl’, ’Trash’);

> eval(Mapl);
z1
(z1,22) — <— 7_2+$2,$2)

> Domain2 := [[x1,x2], x1=1..2, x2=2-x1..2];
Domain2 :=[[z1,22],21 = 1..2,z2 = 2 — 21..2]

> MakeTradMap(Domain2, ’Map2’, ’Trash’);
> eval(Map2);
2 — 2 1
(21,22) = (zl —1,%)
T
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A := GridMap(Map1, [11,5], [0..2,0..1], 0..1,0..1):
> Move := (yl,y2) -> (y2 + 1, 1 - y1);
Move := (y1,y2)— (y2+1,1—yl)

> Map2A := subs(RESULT = Move(Map2(x1,x2)), (x1,x2) -> RESULT);

2 — 2 1
u+172_$1>

Map2A := (z1,22°
ap (z1,z )—>( 7

> B := GridMap(Map24, [6,9], [1..2,0..2], 1..2, 0..1):
> Bound := plot([1,t,t=0..1], thickness=3, linestyle=4):

> plots[display] ({A,B,Bound}, axes=none);
See Figure 6.17.

> AA := ClipPlot(4, [0..1,0..1]):
> BB := ClipPlot(B, [1..2,0..1]):

> plots[display] ({AA,BB,Bound}, axes=none, scaling=constrained);
See Figure 6.18.

End of Maple Worksheet

The complexity of the previous example is limited by the fact that all of the points
to be removed are on the same end of each curve. When the same curve crosses the
boundary of the clipping box more than once then that curve must be divided into
multiple curves. The following example illustrated that this procedure can handle these
cases as well.

XA
PIRSAN

Figure 6.17: An Example of the Problem of Joining Two Graphs with Different View
Fields

The thick vertical dashed line indicates the line along which both parts of the final plot
should have been clipped.
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Figure 6.18: The Result of Figure 6.17 Using ClipPlot in Place of the VIEW Field
| Maple Worksheet Continued from Previous Page |

| Start of Maple Worksheet |

> with(plots,display);
[ display ]

> with(ptolemy, PlotDomBound,MakeTradMap,GridMap,ClipPlot) ;
[ ClipPlot, GridMap, Make TradMap, PlotDomBound

> Domain := [[x1,x2], x1=0..1, x2=0..1 + 2*x1%(1-x1)*sin(Pi*5*x1)];
Domain :=[[z1,22],21 =0..1,22 = 0..14+ 221 (1 — 21 )sin(5mz1 )]

> DomPlot := PlotDomBound(Domain, thickness=3):
> GridPlot := GridMap((x1,x2) -> (x1,x2), [11,16], [0..1,0..1.5]):
> display({GridPlot,DomPlot}, axes=framed, tickmarks=[3,4]);

See Figure 6.19.

> MakeTradMap(Domain,’Map’, ’Trash’);

> eval(Map);
. 2
(z1,22) — (21,— : i 2
—1—2zisin(57zl)+2z1*sin(57 1)

> Map0fGrid := GridMap(Map, [11,16], [0..1,0..1.5]):

> Top := plot([t,1,t=0..1], linestyle=4, thickness=3):

> display({Map0fGrid, Top}, axes=framed, tickmarks=[3,6]);
See Figure 6.20.

> MapOfGridInDom := ClipPlot(MapOfGrid, [0..1,0..1]):

> display({MapOfGridInDom, Top}, axes=framed, tickmarks=[3,3]);
See Figure 6.21.

End of Maple Worksheet
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Figure 6.19: A Traditional Domain with a Nonmonotonic Boundary

Method of Implementation

Roughtly half of the code in this LLF is devoted to extracting the curves from the
PLOT record and inserting the modified curves back into the PLOT record. The actual
clipping is done by adding a new point that lies on the boundary between any pair of
points that straddle a boundary and then removing all of the points that lie outside the
boundary.

The PLOT record modified by recursively applying two local procedures, PlotOp
and CurveOp, with the map command. The procedure PlotOp checks to see if the
field passed to it as an argument is a CURVES field; if it is, the procedure will apply
CurveOp to each of the the curve’s subfield using the map command. The CurveOp
procedure then checks to see if the subfield it received is a list of points; if this is the case
the procedure traverses the list looking for transitions from inside the clipping box to
outside the clipping box or vice versa. At every transition it calls the support procedure
interp_to_bound to estimate the point on the boundary that should be added to the
curve. Each portion of the curve that is inside the clipping box is added to a table.
When the curve has been traversed CurveOp returns the list of curves that will replace
the old curve in the PLOT record.

The interface for the procedure interp_to_bound is

interp to_bound(In: [numeric, numeric], Out: [numeric, numeric],
Box: [range(numeric), range(numeric)])

The argument In specifies the point that is inside the boundary, the argument Out
specifies the point that is outside the boundary, and the argument Box specifies the
clipping box. The procedure will return the point on the line segment connecting In
and Out which is on the boundary. This is equivalent to filling in the plot with linear
interpolation near the boundary.
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Figure 6.20: The Mapping of the Grid Shown in Figure 6.19

The thick horizontal dashed line is the boundary of the domain. Denoting the coordi-
nates of the original domain as X; and X3 it is clear from the symbolic form of the map
that the iso-X; lines are vertical in this graph, but a powerful optical illusion makes it
appear otherwise. Using visually orthoginal colors for the iso-X; and the iso-X; line
dramatically reduces the effect of this illusion.
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Figure 6.21: The Mapping Onto the Unit Square of a Gridding of the Domain in Fig-
ure 6.19
It is not strictly necessary for In to be inside the box or for Out to be outside the
box; either may lie on the boundary of the box. However, the procedure will fail if In
is outside the box or if Qut is inside the box.
Dependencies

This procedure does not depend on any other part of the PTOLEMY package.
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[ ]
S1NncC
This LLF makes sinc one of the functions recognized by Maple. It accomplishes this
by defining a function named sine that handles automatic simplifications and defining
the functions needed to make evalf, diff, and int correctly operate on expressions
containing the sinc function.
Integration and numerical evaluation of the sinc function are both defined. However,
at this time, the result of differentiated a sinc(x) contains a removable singularity at
z = 0. That is, the symbolic result is incorrectly defined at z = 0. This problem should
be fixed in the next version.
Definition
The sinc function is defined as
sinc(z) :=sin(wz)/(7z)
In some signal processing literature the function sin(z)/z is referred to as the sinc
function. This less common definition of “the sinc function” is equivalent to sinc(z/7)
using the definition used here.
Example

| Start of Maple Worksheet

> with(ptolemy, sinc);

[ sinc]
> sinc(1/2);
9=
> sinc(2/3);
33
4 7
> sinc(2/7);
= (7)
sinc | =
7
> sinc(2./7.);
.8710264157
> evalf(sinc(1E-9), 20);
.99999999999999999836
> temp := int(sinc(x), x=0..1);
S .
temp 1= l(ﬂ-)
T
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> evalf (temp);
.5894898722

> int(sinc(y), y=-infinity..x);

wn

=3
3
8]

—_

3
|

> temp := diff(sinc(x), x);
cos(mz) sin(mz)

temp 1= 3
T T

> unapply (temp, x)(0);
Error, (in unknown) division by zero

> limit (temp, x=0);

| End of Maple Worksheet

of Implementation

The LLF defines four global functions, i.e., sine, int/sine, diff/sinec, and evalf/sinc.
The sinc procedure performs all automatic simplifications on expression involving the
sinc functions. The int/sinc and diff/sinc procedures instruct Maple’s diff and int
commands on how to differentiate and integrate expressions involving the sinc func-
tion. The evalf/sine computes performs numerical evaluation of the sinc function for
numerical arguments.

The automatic simplifications pose a philosophical dilemma, specifically which sim-
plifications should be performed automatically. Many Maple developers, including the
author, believe that Maple performs more automatic simplifications then it should, but
when adding a new function to the system it is also important that the function behave
in expressions similar to other already defined functions. In this end sinc will evaluate
exactly to one or zero for all integer arguments and it will invoke evalf/sinec for all
floating point arguments. If the argument denoted by Arg is rational and sin(Pi*Arg)
automatically simplifies to some other expression, then sinc will return this simplified
expression divided by Pi*Arg. In all other cases the sinc returns an inert expression
of the form which caused its invocation. That is, the sinc function performs no other
automatic simplifications.

The int/sinc and diff/sinc functions simply return the result of integration or
differentiation using sin(Pi*Arg) / (Pix*Arg) in place of the sinc function. As men-
tioned in the introduction to this subsection, this is always correct for integration, but
not quite correct for differentiation. In particular, differentiation results in a removable
singularity at the origin.

The evalf/sinc procedure first checks to see that only one argument was specified.
Denote this argument by Arg. Maple’s evalf command will call evalf/sinc without first
applying evalf to the argument, so evalf/sine must first apply evalf to the argument.
The result may or may not be numerical; if the result is not numerical then the result
returned by the evalf/sine procedure should be an inert sinc function applied to the
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partially evaluated argument. Otherwise the procedure should compute a numerical
result.

In this latter case the procedure next determines how close the argument is to the
origin. If the argument is close enough to the origin then the procedure returns the
integer 1. If it is not quite this close but still very close it uses the 1 term Taylor
series expansion about the origin to compute the results. Similarly, for arguments a
little further from the origin it uses the two term Taylor series expansion about the
origin. If the argument is further than this from the origin then the function uses the
sinc(z) = sin(m z) /(7 z) formula to compute the result.

The intent is for the result to have a relative error of less then plus or minimum
10N (-Digits) for any argument and any value of Digits. The error is defined as the
error with respect to the exact answer when the argument equals the floating point
value evalf (Arg,Digits).

Dependencies

This LLF does not depend on any other part of the PTOLEMY package.
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Chapter 7

Low Level

This chapter describes the LLFs that exist primarily to provide support for other
parts of PTOLEMY. These LLFs may be divided into five groups, 1) general
utilities, 2) utilities for order manipulation, 3) utilities to support mapping, 4)
utilities to support collocation, and 5) utilities to support writing to files.

The general utilities include: The LLF proc_dimen, which contains two pro-
cedures for determining the dimensionality of the domain and range of a proce-
dure; the LLF map_info_ops, which includes three procedures for constructing
parts of a MaplInfoType given a definition of the map; the procedure cross_prod
for constructing cross products of arbitrary sets; and the LLF comb_ops, which
constraints two procedures for constructing combinations of elements of a single
set.

The utilities for order manipulation include: The LLF order_ops which
contains 12 procedures for expanding, simplifying, constructing the difference
of, constructing the minimum or maximum of, and converting between mul-
tidomain and single domain representations of structures involving Order Types;
the procedure pde_order which computes the order of a PDE; and the proce-
dure required_order which determines the order of approximation required to
accurately evaluate the boundary constraints.

The utilities to support mapping include: The procedure free_var which
determines a superset of the state-variables a PDE; the procedure get _D _forms
which extracts terms involving D-operators from an expression; the procedure
isDop which decides if a term is a D-operator and if it is to what variable it
is applied; the procedure pde_apply which converts PDEs from an unapplied
form to an applied form, and the procedure pde_unapply which performs the
reverse conversion; the procedure pde_collect which converts PDEs to a normal
form where the differential expression is expanded and grouped with respect to
differential operators but the coefficients are simplified; the procedure fast_map
which can quickly map a PDE; and the procedure unit_normal which computes
an expression for the vectors which are of length one and is normal to the
boundary of a subdomain.

The utilities to support collocation include: The procedure spline which
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will construct a spline with prescribed boundary values (including derivative
values) in the original domain and with exponential decay once the spline is
been mapped; the procedure make_bases which constructs bases suitable for
a prescribed order of approximation; the procedure get_SB_var which extracts
all differential terms involving S-variables or B-variables from a PDE; the proce-
dure collocate main which performs collocation on a governing equation, and
the procedure collocate bound which performs the collocation of boundary
constraints. The procedure assign_bound which assigns boundary constraints
to specific collocation points; and the LLF b_ops which contains four procedures
for manipulating expressions involving B-variables.

The utilities to support writing to files include: The LLF kron_ops which
contains six procedure for converting expressions from SB-notation to Kronecker
product notation; and the procedure to_string which converts a Maple expres-
sion to a string in the format used by the lprint command.
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proc_dimen

proc_dimen

This LLF provides two functions for computing the dimensionality of a procedure.

range _dimen(F: procedure)
domain_dimen(F: procedure)

The procedure domain_dimen checks the procedure specified by the argument F to see
how many formal parameters it expects. The function range_dimen checks attempts to
invoke the procedure specified by F with its formal parameters used as actual parameters
and then report the length of the sequence returned. If this invocation of F results in
an error then range_dimen returns the symbol UNKNOWN.

Example

| Start of Maple Worksheet

> readlib(‘ptolemy/proc_dimen‘):
> Mapl := (theta,phi) -> [cos(theta)*cos(phi), sin(theta)*cos(phi),sin(phi)];
Map1 := (6,¢) — [cos(8)cos(¢),sin(8)cos(¢),sin(¢)]

> ‘ptolemy/range_dimen‘(Mapi);

> ‘ptolemy/domain_dimen‘(Mapl);

> Map2 := proc(X)

> local i,Result;

> Result := X;

> for i to 4 do Result := Result - (Result"2 - X) / (2%Result) od;
> end;

Map2 := proc(X)
local i,Result;
Result := X;
for i to 4 do Result := Result-1/2*(Result~2-X)/Result od
end

> Map2(3);
18817

10864

> evalf("); sqrt(3.);
1.732050810

1.732050808

> ‘ptolemy/range_dimen‘(Map2);
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> ‘ptolemy/domain_dimen‘(Map2) ;

> Map3 := x -> if (x < 0) then -x else x fi;

Map3 := proc(x) options operator,arrow; if x < 0 then -x else x fi end

> ‘ptolemy/range_dimen‘ (Map3);

> ‘ptolemy/domain_dimen‘(Map3);
UNKNOWN

| End of Maple Worksheet

The Unknowable

If calling the procedure F with its formal arguments causes F to enter an “infinite
loop” the procedure domain_dimen will never return. No amount of additional logic
can solve this problem, since it is a form of the halting problem.

The more common problem is that for many procedures type checking (or other
restrictions) does not allow the procedure to be invoked with its formal arguments,
even though the dimensionality of the range would be obvious from a casual inspection
of the procedure. Since the internals of the procedure are visible in Maple, additional
logic might resolve many of these problems.

However, the current implementation is sufficient for procedures that are “arrow
operators.” This is the common case for procedures that define maps and inverse maps.
In the future if more complex mapping functions become common, range_dimen may
become inadequate. However, if this happened significant effort to improve this func-
tions would be misguided. It would be better to redesign the procedures which currently
depend on range_dimen to require that the user explicitly specific the dimensionality
of some procedures.

Dependencies

This LLF does not depend on any other part of the PTOLEMY system. In addition the
check_mapped_domain in the LLF type is the only part of the PTOLEMY system
that uses this LLF.
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map_info_ops

This LLF provides procedures for manipulating Map/nfo Types.

weight(MapInfo: MapinfoType, Arg: algebraic, SubOrder: SubOrderType)
weight(MapInfo: MapinfoType, Arg: algebraic, SubOrder: SubOrderType,
OrderUsed: name)

mapped_weight(MapInfo: MapinfoType, Coord: name, SubOrder: SubOrderType)
mapped_weight(MapInfo: MapinfoType, Coord: name, SubOrder: SubOrderType,
OrderUsed: name)

make_map _info(Coord: name, NewCoord: name, Map: algebraic)
make_map _info(Coord: name, NewCoord: name, Map: algebraic, Options)

The procedure weight returns the weight function evaluated at Arg corresponding
to the map and raised to the power specified by SubOrder. If the SubOrder specifies a
different order for the low end than for the high end, but the factorization of the weight
is not known, then the weight will be raised to the maximum of the two requested
requested order. If present the optional argument OrderUsed specifies the name of the
variable to be assigned a SubOrderType indicating the power to which the weight was
actually raised.

The procedure mapped_weight returns a result equivalent to weight except mapped
to the mapped-to domain. The simplification procedure specified by the global variable
ptolemy/SimpProc is applied to this result.

The procedure make_map _info constructs a Map/nfoType from partial information
about the map. Two options are currently supported:

inv_map: If one of the optional argument is of the form inv_map=expression then the
expression will be used as an explicit statement of the map inverse.

weight: If one of the optional arguments is of the form weight=expression then the
expression will be used as the weight. If the weight has been factored into a
two parts one corresponding to the low end and one corresponding to the high
end this information can be specified with an optional argument of the form
weight=(low,high) where low and high are the factors corresponding to the
low and high end of the interval, respectively.

If no options are given the procedure will attempt to use solve and diff in order to
construct the information not provided. In this case the procedure specified by the global
variable ptolemy/SimpProc will be applied to both of the results. If make map_info
cannot construct the inverse map it will return an error.

If the inverse map or the weight are explicitly specified no effort is made to double
check that the specified expressions are correct. Checking might prevent some errors
but when Maple is unable to find the inverse or to adequately simplify the weight it
may also be unable to confirm that the user provided expressions are correct. Thus the
error checking mechanism could become a new source of errors.
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Example Usage

| Start of Maple Worksheet

> with(ptolemy, LogRatioMap);
[ LogRatioMap ]

> readlib( ‘ptolemy/map_info_ops‘):
> Mapl := LogRatioMap(-1,1,x,z);

Map1 = [m—)ln (”“"J“l) [N A SN <l(m+1)‘\/_7%(1—93)‘\/§>]

1—=x 1+e* 2
> T1 := ‘ptolemy/weight‘(Mapl,exp(z)/(1+exp(z)), 1);
1 e* e®
1= 1 1-—
2 <1—+e’_+ ) < 1—+ez)
> factor(T1);
1 2" +1
2 (14e%)2
> T2 := ‘ptolemy/weight‘(Mapl, exp(z)/(i1+exp(z)), [2,0], ’OrderUsed’);
2
1 e®
T2 = - [ ——+1
2 <1—+ez-+ )
> OrderUsed;
[2,0]
> factor(T2);
1(2e"41)°
2 (14e%)2

> ‘ptolemy/weight ‘ (Mapl, exp(z)/(1+exp(z)), [0,0], ’OrderUsed’);
1

> phi := x -> 1ln(tan(Pi/2%x));

1
¢:=z—In (tan (EF:B))

> Map2 := ‘ptolemy/make_map_info‘(x,z,phi(x));
Map2 :=

1
. tan | —7m a2
1 arctan(e®) (2 )
z—In(tan | =7z 22— 22
2 ™ 1 2
1—|—tan<5ﬂ'm> T

> T1 := ‘ptolemy/weight‘(Map2,exp(z)/(1+exp(z)), 1);

1 we?
tan | =
<2 1—|—ez)

T1 :=2
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> ‘ptolemy/weight ‘ (Map2,exp(z)/(1+exp(z)), [2,0], ’OrderUsed’);

1 me® \2
tan | =
21+ e®

=\ 2\ 2
1+ tan l Te w2
21+ e*

4

> OrderUsed;

> ‘ptolemy/make_map_info‘(x1,z1, In(x1/(1-x1)));
1 z1
[zl —>ln<1f$1> ,21 — 1_(;_7,:51 - —z1 (—1+ =1 ):|

> ‘ptolemy/make_map_info‘(x,z, In((x - a) / (b - x)));

[m—)ln(—':_a>,z—>—e b—l—a’m_) (—m—|—a)(b—m):|
—

—e*—1 —b+a

| End of Maple Worksheet

Dependencies

This LLF does not depend on any other part of the PTOLEMY system. However, the
procedures SToLinKron and make_bases both depend on procedures in this LLF.
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cross_prod

This procedure forms a “set” that is the cross-product of a “set” of discrete “sets.”
Let each of these discrete “sets” be called an input set. The words sets is quoted be-
cause these sets are mathematical sets, but are not necessarily Maple sets. Each of the
input sets and the “set” of input sets may be either ordered or unordered. An ordered
mathematical set is represented using a Maple list.

cross_prod(InputSets: Collection(collection(anything))
cross_prod(InputSets: Collection(collection(anything), NameProc: procedure,
ExtraArgs: seq)

If the optional argument NameProc is not specified the result will be of type Collec-
tion(collections), where each inner collection contains one element from each of the input
sets. Collectively the elements of each inner element specify one element in the out-
put set. Often these elements of the result are used to form some more natural name,
via concatenation, multiplication, or some similar process. If the optional argument
NameProc is specified it will be invoked on each element in the output set. If present
the argument ExtraArgs will be passed to NameProc.

Order of the Results

The result may be an ordered set, i.e., a Maple list, if some part of the argument
InputSets is ordered. If the “set” of input sets is ordered then this indicates that the
order in which the dimensions are traversed is fixed by InputSets; if any one of the
input sets is ordered then this indicates that the order in which this particular dimension
is traversed is to be fixed by InputSets. In either case the result will be a Maple list,
not a Maple set, so that the order of the points may be fixed.

In addition, if the order of the dimensions is fixed, this same order will be used for
the construction of the elements of the result. This means that either the result will
be of type list(list) or that the result passed to NameProc will be of type list,
depending on whether or not any optional arguments are specified.

Examples

| Start of Maple Worksheet

> with(ptolemy,cross_prod);
[ cross_prod ]

> cross_prod({});

{1}

> cross_prod([]);

{1}
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> cross_prod([a,b,c]);

[[a,b,c]]

> cross_prod([a,[b,B],c]);
[[a,b,c],[a,B,c]]

> cross_prod({{1,2,3}, {a,b,c}});

HLaep {Lb}{Lc},{2,a},{2,6},{2,c},{3,a},{3,0},{3,¢}}

> cross_prod({{c,b,a}, {2,3,1}});

HLae {1} {Lc},{2,a},{2,6},{2,c},{3,a},{3,0},{3,¢}}

> cross_prod([[c,b,al, [2,3,11]);
([e,2],[e,3],[e,1],[b,2],[b,3],[b,1],[a,2],[a,3],[a,1]]

> cross_prod({[c,b,al, [2,3,11});

{2e}{3c}{Lc},{2,0},{3,b},{1,6},{2,a},{3,a},{1,a}]

> cross_prod({[c,b,al, {2,3,1}});

HLeh{Lb}{La},{2,¢},{2,6},{2,a},{3,¢},{3,b},{3,a}]

> cross_prod({{c,b,a}, [2,3,1]1});

{2a},{3a},{1,a},{2,6},{3,0},{1,0},{2,¢},{3,¢},{1,c}]

> cross_prod([{c,b,a}, {2,3,1}]);
([a,1],[a,2],[a,3],[b,1],[b,2],[6,3],[¢,1],[¢,2],[c,3]]

> cross_prod([[2,3,1], {c,b,a}]);
([2,a],[2,0],[2,¢],[3,a],[3,b],[3,c],[1,a],[1,b],[1,c]]

> cross_prod([{2,3,1}, [c,b,all);
([1,e],[1,8],[1,a],[2,¢],[2,B],[2,a],[3,¢],[3,b],[3,a]]

> cross_prod([[4,B,C], [1,2,3]], x -> cat(op(x)));
[A1,A2,A3,B1,B2,B3,C1,C2,C3]

> cross_prod([[1,2,3], [1,2,3]], (x,y) -> cat(y,op(x)), V);
[ Vi1, Vie, Vi3, Vo1, Vee, Ves, V31, V32, V33]

| End of Maple Worksheet

Method of Implementation

The procedure first checks for optional arguments. Then it checks to see if the input
mathematical set of mathematical sets is the empty set. If it is not the empty set then
it places the sets into a table indexed by the set number. This process is necessary
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because any of the input sets that contain only a single element may be represented by
the element in isolation; such instances are converted into a list before adding them to
the table. At the same time the size of each input set and the total number of results
is computed. Also the input is checked to determine if dimensions need to be ordered.
The dimensions need to be ordered if InputSets is of type list.

Next an index into the cross-product set is constructed to point to the first element.
Then a “for loop” constructs the result for the current position into a table and incre-
ments the position. The position is incremented so that the last dimension varies most
rapidly.

Finally, the table of results is either converted to a set or to a list, i.e., in order,
depending on whether or not the result needs to be ordered. The result needs to be
ordered if either the dimensions are ordered of if the set for any specific dimension is
ordered.

Dependences

The procedures in this LLF do not depend on any other part of the PTOLEMY library.
However, the procedures assign bound, collocate bound, and collocate main all
depend on procedures from this LLF.
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comb_ops

This LLF contains procedures for computing the collection of all combinations of
elements from a collection of elements.

comb fixed _size(Data: Collection(anything), Size: posint)
comb fixed size(Data: Collection(anything), Size: posint, NameProc: procedure,
Extralrgs)

comb_all(Data: collection(anything))
comb _all(Data: collection(anything), NameProc: procedure, Extralrgs)

The procedure comb _fixed _size will return all of the combinations with the number
of elements specified by the argument Size. The procedure comb_all will return all of
the combinations of any number of elements.

In both cases, if the optional arguments are not specified, the result will be of type
Collection(Collection). Each inner collection is one of the combinations. Sometimes it is
desirable to think of the result as a set of some other type, then a set of combinations.
In such cases it is often necessary to convert each combination into some more natural
name. The optional argument NameProc provides a simple way of doing this. When
present the optional argument NameProc is applied to each combination. If any extra
arguments are present they are also passed to the NameProc.

The Order of the Combinations

If the augment Data is a list both procedures will represent the order of the elements
within the set. This means that the elements within each combination will be reported
in the same order as they appear in Data and that the combinations will ordered in an
order determined by the order of the elements within Data.

Defining the ordering of the combination (of fixed size) requires first introducing
an ordering on the permutations (of fixed size). This procedure orders the parameters
using a cartesian ordering. The permutations of a fixed size can be thought of as the
indices of the array with dimensionality equal to size of the permutation where each
dimension varies over the elements of Data. For example the permutations of size two
of the set {A, B, C'} are illustrated in Figure 7.1. This procedure adopts the convention
that the right most index varies most rapidly.

The set of fixed size ordered combinations is a subset of the fixed size permutations,
specifically the subset of elements (z1,z2,...,2,) where z1 < 2, 3 < z3, and z; <
Ziy1 for 2 up to n — 1. In two dimensions this subset is rather easy to visualize; it
is merely the upper triangle of the two-dimensional array (excluding the diagonal) as
illustrated in Figure 7.2. The ordering of elements of a multidimensional array has
a well-established convention which is also illustrated in Figure 7.1. This procedure
orders this subset of the permutations in the same order as the permutations. This is
also illustrated in Figure 7.2.

For combinations of size greater than two the ordering is still defined as equivalent
to the ordering of the permutations of the same size but visualizing the relevant subsets
becomes much harder. Each constraint of the form z; < ;41 defines a half-space and
the ordered combinations occurs at the intersections of all these half spaces. Figure 7.3
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Figure 7.1: Permutations of Size Two Viewed as a Two-Dimensional Array
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Figure 7.2: Combinations of Size Two Viewed as a Two-Dimensional Array

212 Version 0.1



Low Level comb_ops

illustrates this for combinations of size three.

Examples

| Start of Maple Worksheet

> ptolemy[init]();
> readlib(‘ptolemy/comb_ops‘):

> Set := {Red, Green, Bluel};
Set := { Red, Green, Blue }

> List := [Red,Green,Blue];
List := [ Red, Green, Blue]

> ‘ptolemy/comb_fixed_size‘(Set, 1);
{{ Red},{ Green},{ Blue}}

> ‘ptolemy/comb_fixed_size‘(Set, 2);
{{ Red, Green },{ Red, Blue }, { Green, Blue } }

> ‘ptolemy/comb_fixed_size‘(Set, 3);
{{ Red, Green, Blue } }

> ‘ptolemy/comb_all‘(Set);

{{ Red, Green, Blue },{ Red },{ Green },{ Blue },{ Red, Green },
{ Red, Blue },{ Green, Blue }}

> ‘ptolemy/comb_fixed_size‘(List, 2);
[[ Red, Green],[ Red, Blue],[ Green, Blue]]

> ‘ptolemy/comb_all‘(List);

[[ Red],[ Green],[ Blue],[ Red, Green],[ Red, Blue],[ Green, Blue],
[ Red, Green, Blue]]

> ‘ptolemy/comb_all‘(Set, x —> cat(op(x)));
{ RedGreenBlue, RedGreen, Red, Green, Blue, RedBlue, GreenBlue }

> ‘ptolemy/comb_all‘(List, x -> cat(op(x)));
[ Red, Green, Blue, RedGreen, RedBlue, GreenBlue, Red GreenBlue ]

End of Maple Worksheet
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Figure 7.3: Combinations of Size Three Viewed as a Three-Dimensional Array

The elements of this three-dimensional array are illustrated by the edges of the cubic
grid (i.e. the thicker lines). The permeations occur at the intersections of the lines
in this grid. The plane dividing the top and bottom faces of the region represents
the constraint z1 < z2, and the plane dividing the front and back faces of the region
represent the constraint 2 < z3. Only the region intersected by the two half spaces
contains the subset of permutations which are the ordered combinations. Each of these
combinations is highlighted by gray spheres surrounding the node point.
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Method of Implementation

The procedure comb _all simply calls the procedure comb _fixed size for sizes ranging
from one to the number of elements in Data.

The procedure comb fixed size first computes the number of combinations of the
specified size using the standard formula

m!

nl(m —n)!

where m is the total number of elements in Data and 7 is size of each combination. Then
it “counts” these combinations out in the order described in the subsection titled “The
Order of the Combinations” on on page 211. If the final result is to be ordered, lists are
used to preserve this order; otherwise sets are used that generally do not preserve this
order.

The method of counting out the combinations is to use an index which is initialized
to (1,2,...,n). This index acts as a collection of cursor! into Data (i.e., referencing
the elements of Data) specifying which elements appear in the current combination.
On each iteration of the loop the index is incremented such that all of the ordering
constraints are satisfied. This is done by:

1. Searching from the last element of the index that is not already at the upper limit
of its range. For all but the last element of the index the upper limit of its range
is defined by the value of the element following it.

2. Incrementing this element of the index by one.

3. Reseting all of the elements in the index that follow this element to the lower
limits of their ranges. For all but the first element of the index the lower limit is
defined by the value of the element preceding it.

To make checking of the upper range of the last element of the index easier the
index is actually extended by one element. This extra element is assigned the value
n + 1 element. This element of the index is only used to check the range on the n'®
component. This creates problems if an attempt is made to increment the index past
the last value in the set of combinations to be used. To avoid this problem the loop
is rearranged so that the index is incremented before it is used. This also reduces the
number of times the index is incremented by one, but this optimization is performed to
simplify the logic for incrementing the index not to reduce the number of loop iterations.

Dependences

This module does not depend on any other part of the PTOLEMY system.

THere the word cursor is used in the data structures sense to indicate the pointer like use of an
index into an array. One of the more obvious uses of cursors, keeping track of the current location
on an array oriented display, has gradually replaces this usage of cursor as the most common usage in
computer science.
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order_ops

This module provides several functions for manipulating SubOrderTypes, Order Types
and OrderSpect Types.

sub_order_expand(Sub: SubOrderType)
sub_order_simplify(Sub: SubOrderType)

sub_order_subtract(Plus: SubOrderType, Minus: SubOrderType)
sub_order_min(Sub1: SubOrderType, Sub2: SubOrderType)
sub_order_max(Subl: SubOrderType, Sub2: SubOrderType)

order_expand(0rd: {OrderType, OrderSpecType})
order_simplify(0rd: {OrderType, OrderSpecType})

order_subtract(Plus: OrderType, Minus: OrderType)
order_max(0rd1: OrderType, 0rd2: OrderType)
order_min(0rd1: OrderType, 0rd2: OrderType)

spec_list_to_multi(List: collection(list(OrderSpecType)))
multi spec_to_ list(Multi: collection(MultiOrderSpecType))

The procedures sub_order_expand and sub_order_simplify check their arguments
to determine whether it is an integer or a list of two integers and return the alternate
form when needed.
The procedures sub_order_subtract, sub_order _.min and sub_order_max first
expand both of their arguments, then perform subtraction, max, or min operation be-
tween corresponding locations in an expression tree, and finally simplify the result.
The procedure order_expand and order_simplify either apply the procedure sub_order_expand
or sub_order_simplify to each of the SubOrder Type components of an argument of type
OrderType or call themselves with the Order Type component of an argument of type Or-
derSpecType.
The procedures order_subtract, order _min, and order_max each call sub_order_subtract,
sub_order_min, or sub_order_max to pair of corresponding SubOrderType’s in its ar-
guments.
Finally, the functions spec_list_to_multi and multi_spec_to_list convert between
a collection of MultiOrderSpecType’s and a list of OrderSpecType’s, i.e., one element of
the list per domain.
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Example Usage

| Start of Maple Worksheet

> with(ptolemy,init); readlib( ‘ptolemy/order_ops‘):

[ #nst]
> ‘ptolemy/sub_order_expand‘([1,2]);

[1,2]
> ‘ptolemy/sub_order_expand‘(0);

[0,0]

> ‘ptolemy/sub_order_simplify‘([1,2]);
[1,2]

> ‘ptolemy/sub_order_simplify‘([1,1]);
1

> ‘ptolemy/sub_order_simplify‘(2);

> ‘ptolemy/sub_order_subtract‘([1,2], 1);
[0,1]

> ‘ptolemy/sub_order_subtract‘(2, [0,2]);
[2,0]

> ‘ptolemy/sub_order_subtract‘([2,1], [1,0]);
1

> ‘ptolemy/order_expand‘([[1,2], 1]);

[[1,2],[1,1]]

> ‘ptolemy/order_simplify‘([[1,2], [1,1], 21);
([1,2],1,2]

> ‘ptolemy/order_subtract ‘([[1,2], [2,3], 1, 21, [1,[1,2]1, 1,[0,111);
([0,1],1,0,[2,1]]

> ‘ptolemy/order_max‘([[1,2], [1,31, 11, [[2,01, [2,1], 01);
[27[273]71]

> ‘ptolemy/order_max‘([[1,2], [0,2], [2,1]], [2,1,1]);
[27[172]7[271]]
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> ‘ptolemy/order_min‘([[0,2], [1,3], 11, [[1,01, [2,0], 21);
[07[170]71]

> ‘ptolemy/order_min‘([[1,2], [0,2], [2,1]], [2,1,1]);
[[172]7[071]71]

> Multii := [V, [[1,[0,1]], [[1,2], 1]1];
Multi1 ::[‘/;[[17[071]]7[[172]71]]]

> Listl := ‘ptolemy/multi_spec_to_list‘(Multil);
List1 := [[‘/7[17[011]]]7[‘/7[[172]11]]]

> ‘ptolemy/spec_list_to_multi‘(List1);

[V, [[1,[0,1]],[[1,2],1]]]

> Multi2 := {[U, [[1,0], [1,2], [1,1]11, [V, [[2,1], [0,1], [0,211]};
Multi2 :={[U,[[1,0],[1,2],[1,1]]},[V;[[2,1],[0,1],[0,2]]]}

> List2 := ‘ptolemy/multi_spec_to_list‘(Multi2);
List2 := [{[‘/1[170]]1[U1[271]]}7{[‘/7[172]]7[U7[071]]}7
{[V,[1,1]],[U,[0,2]]}]

> ‘ptolemy/spec_list_to_multi‘(List2);

{tv.(l1,0],(1,2),[1,1]]}, [0, [12,1],[0,1],[0,2]]]}

> List3 := ‘ptolemy/multi_spec_to_list‘(convert(Multi2,list));
Lists := [[[U,[I,O]],[‘/,[2,1]]],[[U,[].,Z]],[V;[O,l]]],
([U,[1,1]],[V.[0,2]]]]

> ‘ptolemy/spec_list_to_multi‘(List3);
[[U,[[1,0],[1,2],[1,1]]],[V,[[2,1],[0,1],[0,2]]]]

End of Maple Worksheet
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pde_order

This module contains several functions to assist in determining the order of differ-
entiation in various differential forms. The primary function is:

pde_order!(Eq: {algebraic, equation, list(equation), set(equation)}, Var: list(name),
Dimen: posint)

This function expects a differential form, a list of state-variables, and the dimensional-
ity of the problem. The function returns a list of ordered pairs, one per state-variable;
the first element in each ordered pair is the state-variable name and the second is the
maximum order of differentiation per dimension. Eq may be either an applied or an
unapplied form.

In addition this module provides three other functions for computing the differential
order of various other differential forms.

‘ptolemy /diff list‘(Term: algebraic)

‘ptolemy /diff order‘(Term: algebraic, Dimen: posint)

‘ptolemy/de order‘(Eq: {algebraic, equation, list(equation), set(equation)},
Var: name)

The function diff_list accepts a single partial (or regular) differential term, and returns
a list indicating with respect to which dimensions differentiation is performed. The
input to diff_list may be either applied or unapplied form, but must use the D-notation.
Note the result is exactly the same list as used by Maple’s indexed D-notation.

The function diff_order will accept the same inputs as diff_list but returns an
ordered list indicating the order of differentiation applied at each dimension. In order
to know the size of this list, the caller must specify the dimension of the problem.

The function de_order will accept a (nonpartial) differential form and a single state-
variable name. It will return the maximum order of differentiation with respect to this
variable. The differential form may be an expression, an equation, or a collection of
equations.

Example Usage

> with(ptolemy, pde_order);
[ pde_order]

> ‘ptolemy/diff_list‘(V);

> ‘ptolemy/diff_ list‘(D(V));

[1]

> ‘ptolemy/diff_list‘(D[2,2]1(V)(x,y));
[2,2]
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> ‘ptolemy/diff_list‘((Dee3) (V) (x));
(1,1,1]

> ‘ptolemy/diff_ list‘((D[1,2]ee2) (V) (x,y));
(1,2,1,2]

> ‘ptolemy/diff_order‘(D(V), 1);

[1]

> ‘ptolemy/diff_order‘(D[2,2](V)(x,y,z), 3);
[0,2,0]

> Sys := D(V) + (Dee2) (U) = K;
Sys :=D(V)+D*N(U)=K

> ‘ptolemy/de_order‘(Sys, V);

1
> ‘ptolemy/de_order‘(Sys, U);

2
> ‘ptolemy/de_order‘(Sys, K);

0
> ‘ptolemy/de_order‘(Sys, P);

-1

These are the two-dimentional incompressable flow, time varying, Navior Stokes
Equations. The coordinates are x,y,t, i.e., two spatial dimensions and time. So including
time the problem is actually three-dimentional.
> Sys := {
> D[3I(V) + UxD[1](U) + VxD[2] (V)

> D[3]1(U) + V«D[1]1(V) + V4D[2] (V)
> D[11(U) + D[2]1(V) = 0};

-D[1]1(P)/rho + mu*(D[1,1]1(U) + D[2,2](U)),
-D[2]1 (P)/rho + mu*x(D[1,1]1(V) + D[2,2](V)),

Sys := {Dl(U)—}-Dz(V):O,

Ds(V)+UDy(U) +V Do(V) = — 22 (D, (U) + Daa()),
Dy;(P)

Ds(U) 4V Dy(V) + VDs(V) = - +#(D1,1(V)+Dz,z(V))}

> pde_order(Sys, [U,V,W,P], 3);
[[Ua[27271]]7[‘/7[27271]]7[Wa[_1a_17_1]]7[P7[1a170]]]
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Method of Implementation

The procedure diff list largely checks the type of Term and parses for the indexing
information. If the D-operator is an unindexed form, indicating that the differential
term is with respect to a single variable, the result [1] is returned. If Term is an @@-
operator, diff list is applied to D-operator portion of the @@-operator and the result is
repeated the appropriate number of times. If Term is any other kind of function the
result is obtained by recursively applying diff list to the function name, i.e., the zeroth
operand. In all other cases Term is assumed to not be a differential form and [] is
returned.

The procedure diff_order calls diff list, sums the results into a zero-initialized
table, and finally constructs a list from this table. Since the state-variables are not
known by diff order it is always assumed that a state-variable is contained in Term, so
the result is always nonnegative.

The procedure de_order calls get_ D _forms to extract each of the differential forms
and then applies diff list to each of theses terms. It uses the list size returned by
diff list as the order of differentiation, and returns the maximum order for any term
returned by get _D _forms. If the specified state-variable does not appear in the specified
differential form, the value -1 is returned. Returning -1 allows the caller to distinguishes
the case when the state-variable does not appear in the expresion from the case when
the state-varable does appear but is never differentiated (in which case zero is returned).
This same convention is used for pde_order.

The procedure pde_order preforms the following steps: 1) calls get_D_forms to
extract each of the differential forms, 2) uses isDop to extract the state-variable corre-
sponding to each term returned by get_D _forms, 3) calls diff order to figure out the
order of differentiation occurring in this term, 4) uses a local table to keep track of the
maximum order of differentiation, and 5) finally returns the information in this table in
a list of lists format.

Design Deficiencies

No check is made to see if the specified dimension makes sense for the particular differ-
ential form.

Specifically diff_order should report an error if the specified dimension is greater
than 1, but the Term is an unindexed D-operator (which is valid syntax only for single
variable problems). Similarly, diff_order should report an error if differentiation is
performed with respect to a dimension greater than the specified dimensionality of the
problem.

Perhaps de_order should allow either a single state-variable or a list of state-
variables. And perhaps it is unnecessary for pde_order to have state-variable names
in its results. An ordered list of lists where each entry is the order information cor-
responding to the state-variable of the corresponding position is the specified list of
state-variables.
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External Dependencies

de_order uses get_D _forms to extract all of the differential forms and evaluate them
as single terms.

pde_order uses get D _forms for the same purpose as de_order, but also uses
isDop to extract the state-variable name. By handling only one state-variable at a
time de_order avoids the need to use isDop.

222 Version 0.1



low level required_order

required_order

This procedure figures the minimum order of approximation required in order to
both satisfy the minimum requested order and to be able to accurately approximate
specified expressions or equations at specified boundaries.

ptolemy /required._order(OrderSpec: collection(OrderSpecType),
Bound: collection(BoundFormType))

The result will be a list of OrderSpecType’s.

Example

| Start of Maple Worksheet

> with(ptolemy,required_order);
[ required _order ]

> required_order([V, [1,0]], [1,L0W, D[2](V), Taghl);

[[V:[1,1]]]

> required_order([V, [1,0]], [2,L0W, D[2](V) = 0]);

[[V,[1,[1,0]]]]

> required_order([V, [1,0]1], {[1,L0W, D[1,1]1(V) = 0], [2,LOW, D[2,2]1(V) = 01});

[[Vi[[2,1],[2,0]]]]

> required_order({[U, [0,0]], [V, [1,0]1}, [2,L0W, D[1]1(V), TagBl);
[[V.[1,0]],[U,[0,0]]]

> required_order ({[U, [0,0]1], [V, [1,0113},
> [[2,L0W, D[1](V) = D[2](W)], [1,HIGH, D[1,2](U), TagCll);

[([V.[1,0]]),[U,[[0,1],1]]]

> required_order ({[U, [0,0]1], [V, [1,0113},
{[1,L0w, D[1,1]1(V) + D[1](U) = 0], [1,HIGH, D[2](U) = V],
[2,L0W, D[21(V) = U], [2,HIGH, U, TagDl});

[[V:[[2,1],[1,0]]],[U,[[1,0],1]]]

| End of Maple Worksheet

Method of Implementation

The procedure first converts the argument OrderSpec into a table; each entry in the
table has an index of the form [Var,Dimen,End] and a positive integer value indicating
the required order for this state-variable along this boundary. Then it looks at each
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boundary form, computes its order using pde_order, and determines if approximation
of this boundary form will require the order to be increased. Any such changes are
recorded in the table, and after consideration of each boundary form the table is used
to construct the final result.

The logic for determining if the order need to be increased merits a few comments.
The high level criterion is that if a term cannot be accurately extracted from an approx-
imation of the current order along the specified boundary then the order of the current
order must be increased. Consider a term with a derivative in dimension d; of order n,
applied on a boundary at one end of dimension ds. If d; = ds then the derivative is in
a direction perpendicular to the boundary and the order of approximation needs to be
at least n in the d; = ds direction along this boundary, only. However, if di # da then
the direction of the derivative is tangent to the boundary and in order to approximate
the term over the entire boundary the order of approximation must be at least n in the
d; direction at both ends.

External Dependencies

This procedure uses order_expand and order_simplify from the module order_ops.
The procedure order_expand is used to construct the table from the argument OrderSpec
and pde_simplify is used to construct a simplified final result from the table.

The procedure pde_order is applied to each boundary form.

224 Version 0.2



Low Level

free_var

free_var

This procedure returns a set of potential state-variables, extracted from an expres-
sion.

free_var(Exp: collection({algebraic, equation}))
free_var(Exp: collection({algebraic, equation}), Coord: list(name))

The argument Exp is expected to be either an applied or an unapplied differential form.

If Exp is in applied form, then the optional argument Coord should be used indicating
the coordinate names of the problem. This use of free_var is the most robust since
the applied form unambiguously indicates whether or not a function depends on the
coordinates of the problem.

When Exp is in unapplied form, the optional argument Coord should not be specified.
In this case, free_var often cannot determine by usage alone whether a symbol is a
state-variable or a symbolic constant. The procedure assumes that a symbol is a state
variable unless the name has been explicitly flagged as a constant with Maple’s assume
procedure. When using free_var on unapplied equations, the user often needs to trim
the result by informing Maple about constants.

Example

| Start of Maple Worksheet

> with(ptolemy, free_var);
[ free _var]

> free_var(D(D(V))(x)

P(x), [x1);
{V,P}

> free_var(D(D(V))(x)

P(x) + Q(y), [x1);

{V.P}
> free_var(D(D(V)) = K);
{K,V}
> assume (K,constant);
> free_var(D(D(V)) = K);
{v}

Sys := {
UxD[1] (U) (x,y) + V*D[2]1 (V) (x,y) =
-D[1]1(P) (x,y)/rho + mux(D[1,1]1(U) (x,y) + D[2,2]1(U) (x,y)),
UxD[1] (V) (x,y) + V*D[2]1 (V) (x,y) =
-D[2](P) (x,y)/rho + mux(D[1,1]1(V) (x,y) + D[2,21 (V) (x,y)),
D[1]1 (U) (x,y) + D[21(V) (x,y) = 0};

Sys 1= {UDl(U)(m,y)—l—VDg(V)(m,y) =
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Method

1 (Daa(U)(,) + Daa(U)(5,0)
UDl(V)(:):,y)—l—VDQ(V)(m,y) =
- DAPHBY) (D a(V ) () + Daa(V)(20).

_ Di(P)(z.y)
p

Dmvxmw)+vaxxw)=o}

> free_var(Sys, [x,yl);
{V,p,U}

> Sysl := ptolemy[pde_unapply] (Sys, {V,P,U}, [x,y1);

@ﬂ:{U&UH+V&U@:—&%Q+HwMUU+MﬂU»

D2(P)

UD(V)+VDy(V) = - + 1 (D1 (V) + Da2p(V)),

DAU)+DAV):0}

> free_var(Sys1);
{V.P,U,p,uu}

> assume(rho,constant); assume(mu,constant);

> free_var(Sys1);
{V,PU}

| End of Maple Worksheet

of Implementation

A local mapping procedure is applied to all the intermediates of Exp. A different map-
ping procedure is used depending on whether Exp is an applied or an unapplied form
(determined by the presence of the optional argument Coord). If an intermediate does
not contain a state-variable the mapping procedure returns NULL which is later removed
from the result.

The selection procedure for an applied form returns the variable name of any D-
operators that are applied at the coordinates specified by Coord, or the function names
of any functions applied to the coordinates specified by Coord. The selection procedure
for an unapplied form returns the variable name of all D-operators and any intermediates
which are names. In every case, only those results that are not explicitly specified as
constants are returned (via the assume mechanism).

It would be more logical to use is to check if a symbol is a constant, but in some
cases this causes enormous delays while Maple tries to figure out if the name can be
reduced to a constant. As a result, as of Maple V R3, isgiven must be used instead.
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Dependencies

The procedure free_var depends on the procedure isDop to parse intermediates in-
volving D-operators.
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Low Level

get_D _forms

This function searches an expression for all of the differential forms of the state-

variables.

get_D _forms(Expression: anything, VarList: {set(name), list(name)})

The return result is a sequence of the “leaves” of the expression tree, except that all
leaves which are replaced by NULL and that subtrees that are D-forms involving one of

the state-variables are returned as a unit, i.e., not traversed.

The automatic simplification rules for sequences will remove all of the NULL’s from
the sequence, but to remove other duplicate entries the users will typically enclose the

call in a set. This may be done with the command

Example

DForms := { get D forms(D[1,2](V) = D[2,1]1(U), [U,V]) }

Start of Maple Worksheet

>

with(ptolemy, get_D_forms);
[ get_D_forms ]

Sys0 := D(V) + (Dee2)(U) = K;
Sys0:=D(V)+ D (U)=K

get_D_forms(Sys0, {V});
D(V)

get_D_forms(Sys0, {K});

> get_D_forms(Sys0, {P});

> Sys1 := D[1,11(V) + D[2,2]1(V) = V + U;

Sys1 :=D11(V )+ D22(V )=V +U

get_D_forms(Sys1, {V});
D11(V),D22(V),V

get_D_forms(Sysi, {U,V});
D11(V),D22(V),V,U

> get_D_forms(Sysi,{P});

> get_D_forms(D[1,1] (V) (x1,x2) + D[2,2] (V) (x1,x2) = V(x1,x2), [V]);

D11 (V)(21,22),D22(V )(21,22),V(z1,22)
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| End of Maple Worksheet

Method of Implementation

This function first checks to see if Exp is:

1. A D-operator where the operated upon variable is a state-variables (e.g., D[1,1] (V)
where V is a state-variable).

2. A function evaluation where the function is one of the state-variable (e.g., V(phi)
where V is a state-variable).

3. A state-variable (e.g., simply V where V is a state-variable).

In any of these cases the result is simply the Args applied to Exp.

If this is not the case then the program checks to see if Exp is a name. In this case
the result is simply Exp.

In all other cases the result is obtained by recursively applying pde_apply to each
of the components of Exp.

Design Flaw

It is not possible to tell if the differential form is actually in an unapplied form. For
example the expression V(phi) will be taken to mean V o ¢ where ¢ € R” — R™ and
V € R™ — R"™. However, this might mean that ¢ is actually the coordinate name and
the user’s call is erroneous. Since there is no way to detect this kind of user error the
function proceeds and generates what is probably a very confusing result.

It is not clear how useful it is to handle constructs of the form V o ¢. Disallowing
them would allow for detection of the common user trying to apply a PDE that is
already in an applied form.

Dependencies

This function depends on isDop to determine if an expression of the form D[1,1] (V)
is a reference to one of the state-variables.
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Low Level

isDop

This function determines if the argument is an D-operator, possibly applied to a
function.

boolean isDop(Term: algebraic)
boolean isDop(Term: algebraic, Fun: name)

If Fun is specified, it is the name of the variable in which the function name is to be
returned.

Example Usage

Method

| Start of Maple Worksheet

> with(ptolemy, isDop);

[#sDop]
> isDop(D(V));
true
> isDop(D(V), ’Var’);
true
> Var;
14
> isDop(D[1,1]1(U) (x,y,2), ’Var’);
true
> Var;
U
> isDop(D[1, 1] (V)*V);
false
> isDop(D[1, 11(V) + D[11(V));
false

| End of Maple Worksheet

of Implementation

The D symbol is treated as a function by Maple. So D(V) is actually an instance of
applying the function D to the argument V. So if Term is a function and the zeroth
operand is D then the first operand is the value returned in Fun.
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However, D[1,1]1(V) is actually represented internally as (D[1,1])(V), so it is also
necessary to check that the function name is of type indexed and that the zeroth operand
of the function name is D.

In addition, (D@@2) (V) is actually represented as (@@(D,2)) (V). So it is also nec-
essary to check to see if the function name is of type function and the function name of
the function name is @@ and its first argument is D.

Finally, an expression of the form D[1,1] (V) (x,y) should be recognized as a D-op,
which is simply applied at x,y. To handle these cases, isDop recursively calls itself on
the function name, terminating only when Term is not an applied function.

Design Flaw

There is an automatic simplification rule which converts expressions of the form D(D(D(V)))
to (DE@3) (V). As a result, isDop does not deal with the first case. I did not succeed
in generating a meaningful example where this was a problem.

However, more effort should be invested to determine if this problem can actually
arise in real applications. If it can, the design will have to significantly altered, perhaps
doubling the complexity of the source code.?

28ince this is a relatively simple procedure, doubling the complexity is not a serious problem.
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pde apply

This function converts an unapplied PDE to one evaluated at a specific set of coor-
dinates.

pde_apply(Exp: collection({algebraic, equation}), StateVar: collection(name),
Args: list(name))

Example

| Start of Maple Worksheet

> with(ptolemy, pde_apply);
[ pde_apply]

> pde_apply(Q + K = v, {V}, [x,y1);

> pde_apply(D[1,1]1(T) + D[2,2]1(T) = K, T, [x,y1);
Dii(T)(wy)+ Dap(T)(z,y) = K

> Sys := [

> UxD[1](U) + V*xD[2](V) = -P/rho + mux(D[1,1]1(U) + D[2,2](U)),

>  U«D[1]1(V) + VxD[2](V) = -P/rho + mux(D[1,1]1(V) + D[2,2]1(V)),

> D[11(U) + D[21(V) 1;

Sys 1= [UDl(U)+VD2(V) - —§+u (D1 (U) + Daa(U)),

UDI(V)+V Da(V) ==+ (Dra (V) + Daa(V). Da(U) + Da( V)

|

> pde_apply(Sys, {U,V,P}, [x,y1);

[U(m,y)Dl(U)(m,y)—I—V(:):,y)DQ(V)(:B,y) =

_w—ku (D11(U)(z,y)+ Dap(U)(z,9)),
U(z,y)D1(V)(z,y)+ V(z,y) D2(V)(z,y) =
P(.’E,y)

-t DuV)(=y) + D2a(V)(2y)),

Di(U)(2,y) + D2V )(,y)

End of Maple Worksheet
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Method of Implementation

This procedure first checks to see if Exp is:

1. A D-operator applied to a variable that is a state-variable (e.g., D[1,1] (V) where
V is a state-variable).

2. A function evaluation where the function is one of the state-variable (e.g., V(phi)
where V is a state-variable).

3. A state-variable (e.g., simply V where V is a state-variable).

In each of these cases, the result is Exp(Args). If Exp is not any of these forms and
is of type numeric or type name, then the result is Exp. This is a terminating case. In
all other cases, the result is obtained by recursively applying pde_apply to each of the
operands of Exp.

Design Weakness

This procedure suffers from the same design weaknesses as get D _forms. Refer to
section titled “isDop” on page 230for an explanation of these problems.

Dependencies

This function depends on isDop to determine if the expression is a D-operator and
to extract the variable name to which the D-operator is applied when it is in fact a
D-operator.
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pde_unapply

This function converts a PDE applied at a specific set of coordinates into an unap-
plied form.

pde_apply(Exp: {algebraic, equation, list(equation), set(equation)},

StateVar: collection(name), Coords: {algebraic, list(algebraic)},
ExtraCoords)

This procedure searches for state-variables (i.e., specified by StateVar) appearing in

Exp which are applied at Coords and rewrites them in the unapplied form.

If extra coordinates are specified the result is equivalent to performing each unapply
in sequence. Because functions are converted into the unapplied format only if they are

applied at exactly the coordinates specified, the order in which these convections are
performed does not affect the result.

Example

Start of Maple Worksheet

>

with(ptolemy, pde_unapply);

pde_

pde_

pde_

pde_

[ pde_unapply]

unapply(Q(t) + K = V(x,y), V, [x,y1);
Q)+ K=V

unapply(1n(x) + (D@@2)(V)(x) = V(x), V, x);
In(z)+D*(V)=V

unapply(sin(D[1] (V) (x,y)) + cos(D[2] (V) (x,y)) = 0, [U,V], [x,y1);
sin (D1(V')) 4+ cos (D2(V)) =0

unapply(S1(phii(x1)) + S2(phi2(x2)) = k, [S1,82], phii(x1), phi2(x2));
S1+52=k

Exp

pde_

:= (D002) (51) (z1)*D(z1) “2%52(=2) ;
Ezp := D'*)(51)(21)D(21)*S2(22)

unapply(Exp, {S1,52}, z1,z2);
D) (51)D(21)* 52

Exp

1= sqrt(2)/2 * (D[11(V) (y1,y2) * D[2](y1) (x1,x2) + D[2]1(V)(y1,y2) * D(y2)(x2));
1 . . . . . . . N
Eop := 5 V2 (Di(V)(y1,92) Da(y1)(w1,52) + D2(V )(y1,y2 ) D(y2)(2))
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> pde_unapply(Exp, [y1,y2], [x1,x2], x2);

V3 (Di(V)(y1,92) Da(y1) + Da(V)(y1,42)D(42))

| End of Maple Worksheet

of Implementation

If extra coordinates have been specified, conversions are first performed with respect to
these coordinates (this is done via recursive calls) and the result is then unapplied with
respect to the coordinates specified by Coords.

The procedure first checks to see if the expression being rewritten is a function and if
it is one of the state-variables applied to the current coordinate(s). In this case it simply
returns the state-variable. Otherwise it checks to see if the expression is a D-operator
applied to a state-variable which collectively is applied to the current coordinate(s).
Again if this is the case the state-variable is returned. For all other functions the result
is constructed by unapplying each of the arguments.

Otherwise the result is constructed by recursively unapplying to each of the functions
operands. The exceptions are atomic expressions (i.e., expressions that do not divide
into subexpressions), floats, and fractions.

Dependencies

This procedure depends on isDop to determine if the expression is a D-operator and
to extract the variable name to which the D-operator is applied when it is in fact a
‘D-operator.
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pde_collect

This function collects like terms of an unapplied PDE.

pde_collect(Eq: collection({algebraic, equation}), StateVar: collection(name))

pde_collect(Eq: collection({algebraic, equation}), StateVar: collection(name),
SimpProc: procedure)

pde_collect(Eq: collection({algebraic, equation}), StateVar: collection(name),
SimpProc: procedure, ExtraArgs)

This function will collect like forms of the state-variables in each subequation within
Exp. The coefficients will then be combined into a single coefficient of a single term per
state-variable form. If a simplification procedure is provided it will be applied to each
coefficient before the final term is produced; if no simplification procedure is specified
the output coefficient will be the simple sum of the coresponding input coeflicients.
If extra arguments are provided they will be passed to the simplification procedure,
following the term to be simplified.

Example

| Start of Maple Worksheet

> with(ptolemy, pde_collect, pde_unapply):
> t1 := diff(S(In(x/(1-x))), x$2);

o (n(12)) (1 ) 07

t1 :=

+D(S)<1“(1fw>> (* rsp 2 ray) )
_D(S)<1“<1fx>> (i aay) 09
o) (n(125)) (25 aep)

T

> t2 := pde_unapply(tl, [In(x/(1-x))1);

e (et iep) 0o

o5 (2 ) 01009 (2 055
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> t3 := unapply(t2,x)(exp(z) / (1+exp(z)));

D (8)%1% (1 +e° ) <1_ e’ >
t3 = o) +D(S)

z 2 = 3
(1_1j—e> (1+ez)<1—1iez>
D(S)%1(1+e”)? <1— e >

(e7)? - e
Nl = lez + < P 2
- ie (1+ez)(1—1jez)

> pde_collect(t3,[S]);

n

") —

- 2
D) (S) %12 (1+e° ) (1_ € )

1+ e*
(e®)?
2 ! +2 ¢’ (14e7) [1- =< /(
L Lpe) (1- <) thet
< _1+e:> (1+e )< _1+e:>
1(1+4 e*)? 1—L .
e) (ez)2 ez
%1 := ! — + e’
€

. 3
€
Ter (1He?) <1_1+e2>

> pde_collect(t3,[S],simplify);
(=7 p14e*—el ) (14e")D(S)+(1+6*) el 2 D) (5)

> pde_collect(t3,[S],factor);
(e —1)(14¢e)*D(S) N (14 )'DP)(8)
(e7)? (e7)?
| End of Maple Worksheet

Method of Implementation

The function pde_collect recursively calls itself until Eq is an algebraic form (i.e., not
an equation or a collection of equations). Then it
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. Extracts all intermediates from the subequation. Maple’s definition of an interme-

diate is broader than the concept of a free variable (as commonly defined in lambda
calculus). As a result the list of intermediates will include all of the differential
forms of the state-variables.

As of the time of this writing, Maple R3 is the current version of Maple. The R3
documentation does not explicitly state the definition of an intermediate. Experi-
mentation suggests that an intermediate of an expression is: 1) any free variable of
the expression, 2) any applied function in the expression, and 3) any intermediates
of arguments of any applied functions. Since the Maple D-operator is implemented
as a function, subexpressions of the form D[1,1] (V) are intermediates.

. Selects all intermediates containing state-variables to form the list of differential

forms to be collected against.

. Performs a collect /distributed on the subexpression in order do the actual col-

lection of like terms. See the Maple on-line help on collect.

. If a simplification procedure is specified then

a) The coefficients and terms are separated into two sequences using the coeffs
g
procedure.

(b) The simplification procedure is applied to each coefficients, using any extra
arguments.

(c¢) The two sequences are recombined into a single expression using the sum
function.

Design Flaws

For consistency with other parts of the PTOLEMY package, the value of the global
variable ptolemy/SimpProc should be used to determine the simplification procedure.

It should be possible for the user to specify the differential forms against which

collection occurs, but then the functionality of figuring out all of the differential forms
in a subexpression would need to be packaged into a separate routine. This is not done
simply because no application has yet arisen that requires the user to specify only some
subset of the differential forms.

An expansion of expressions involving only D-operators would probably cause some

unusual constructs to be better handled. At the moment (D@(1 + D)) (V) is not ex-
panded to be D(V) + (DA2) (V) but is rather treated as a distinct differential form and
is not collected against the forms D(V) or (D/2) (V).

It is not clear how some kinds of functions of differential forms should be treated.

For example a human might choose to rewrite

as

sin(D[1,1]1(V) + D[2,21(V)) + sin(D[1,1]1(V) - D[2,2]1(V))

2%sin(D[1,1](V))*cos(D[2,2](V))

pde_collect attempts nothing of the sort.
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Granularity of Collection

Though pde_collect will operate on an entire collection of PDEs, like terms are found
only on one side of each equation. Sometimes the users would like to collect like terms
from both sides of the equation. Because there are other times when this would be
inappropriate (for example when each side of the equation is applied in a different
domain), the user who wants to do this will have to provide additional functionality.

This performance granularity is the same as that provided by Maple’s standard
collect procedure. For example:

collect(xN2 + x = -x, x)
produces
xN2 + x = -X, X
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fast_map

This procedure performs a highly optimized mapping of an unapplied equation (and
lists or sets of equations and expressions).

fast_map(Exp: collection({algebraic, equation)}, Map: procedure, InvMap: procedure,
Coord: list(name), NewCoordDepend: list(function), Subs: set(equation),
OutVarDepend: collection(function))

There are easier ways of mapping equations than the one used by this procedure, but
simpler methods are significantly slower and more vulnerable to the limitations of sim-
plification procedures. Both problems can be especially troubling for higher order maps
and higher order equations. Pre-prototype versions of this procedure took two hours on
a high end work-station to map equation sets used in testing the module CollocateRec;
this version takes only tens of seconds for the same problems. Because mapping is cen-
tral to PTOLEMY the extra complexity of this procedure is necessary. This procedure is
intended as an internal routine for code developers; most interactive users are encour-
aged to use higher level routines, such as Warp, instead.

The procedure fast_map uses the global variable ptolemy/SimpProc to determine
which simplification procedure is to be applied to the various parts of its result.

Synopsis

Conceptually the argument Exp defines the “equation” to be mapped. However, as
indicated by the type definition in the prototype, Exp need not be an equation.

The arguments Map and InvMap define the map to be applied to the “equation.”
Although the type restriction in the prototype allows for arbitrary procedures, fast_map
places two additional restrictions on these arguments:

1. Both procedures must be functions in the mathematical sense (e.g., idempotent
and with well-defined results over the entire range).

2. The results of both procedures must be defined for purely symbolic arguments.
(In addition the result when the arguments are purely symbolic must be consistent
with the results for numerical arguments).

It is imagined that Map and InvMap will be arrow operators without any control struc-
tures, such as “if statements,” but this is not necessary as long as the above two condi-
tions are meet.

The arguments Coord and NewCoordDepend define names that may be safely used
to represent the coordinates in both the original domain and the mapped to domain.
These names must not conflict with each other, with any global definitions, or with any
symbols used in the “equation.”

The argument NewCoordDepend also indicates, for each new coordinate, the depen-
dencies on the original coordinates. That is each new coordinate is a function of some
or all of the original coordinates. If a new coordinate does not depend on all of the old
coordinates this information is exploited by fast_map to improve the efficiency of the
mapping. Syntactically, this information is encoded in the argument NewCoordDepend
by applying the new coordinate name to the subset of Coord on which it depends. So

240

Version 0.3.2



low_level

fast_map

the new coordinate names are only defined indirectly as the function names in the list
of functions.

For example, if the original coordinates are x1 and x2 and the new coordinate names
are z1 and z2, in the most general map both z1 and z2 would depend on both x1 and
x2. This would be indicated by setting NewCoordDepend to

[z1(x1,x2),z2(x1,x2)].

If for a particular map the value of z1 depends only on the value of x1 (and not on
the value x2) but z2 depends on both x1 and x2, this could be indicated by setting
NewCoordDepend to

[z1(x1),z2(x1,x2)].

The procedure fast_map also allows use of different state variable names for the

” The name of the new

mapped “equation” than those used in the original “equation.
state-variables is given in the argument OutVarDepend and their relationship to the
original state-variables is specified by the argument Subs.

The argument Subs is a set of equations which if converted to assignments, would de-
fine replacement for the original state-variable in terms of the new state-variables. The
functional relationship between the original state-variables and the new state-variables
may be nontrivial. The associated substitution takes place before the mapping is per-
formed, so any representation to the problem coordinates in Subs should be to the
original problem coordinates. If an input state-variables names is used to represent the
same state variable after mapping then no substitution equation is required for this
state-variable.

For example, if the only state-variable is Speed, then the typical value of Subs would
be {} (which is equivalent to Speed = Speed). It is possible to replace the state variable
Speed with two new state-variables representing vector velocities while performing this
mapping. Assuming cartesian coordinates, this might be done by letting Subs equal

Speed = sqrt(Left/\2 + Up/2).

The argument OutVarDepend defines all of the output state variable names and
their dependencies on the output coordinates. The syntax is strictly analogous to the
argument NewCoordDepend. So, continuing the previous example, if OutVarDepend were
equal to

{ Left(z1), Up(z1,z2) }

this would indicate that the the new state-variable Left only depends on z1. This is
equivalent to asserting that, with mapping, the z2 lines are the iso-Left lines. This
information can save a great deal of unnecessary work.

Example Usage

> with(ptolemy, fast_map);
[ fast_map ]

> MapInfo := ptolemy[LogRatioMap](0,1,x1,z1);
1
MapInfo := |21 — In L ,21 —
1—=z1

z1

1_'_71’$1 %((El,l—ﬁl)
eZ
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fast_map([1-x,x], MapInfol[1],MapInfo[2], [x1,[z(x)], {}, {});

1 e
14+e*’1+4e?

g := sum(’a.i’*x"1, i=0..2);

g:=al + al ©+ a2 z*
temp := fast_map(
[x,1-x, £ = g + r], MapInfo[1],MapInfo[2], [x],[z(x)], {F=f,R=r}, {F(z),R(2)});
e 1

14+e*’14e?’

+a2(ez)2+r+2re2+r(eZ)2) /(1+ez)2]

temp =

f= ((10—1—2a0ez—|—(10(e”)2—}—ale’:—}—aal(ez)2

Sys := D[1,1](V) + D[2,2](V) = K;
Sys:= D1 1(V )+ D22(V)=K

Coord := [x1,x2]; NewCoord := [z1(x1),z2(x2)];
Coord := [z1,z2]

NewCoord := [z1(z1),22(z2)]

MapInfo := [ ptolemy[LogRatioMap] (0,w,x1,z1),
ptolemy[LogRatioMap] (0,h,x2,2z2) 1;

xzl we?! rl w-—xl
Mapl = 1 1 1 — .zl _—
apInfo [[$ — n(w_ﬂ),z %1+e21’$ —><ﬁ, N >],
z2 he*t z2 h—z2
In [ —2— A e 2T
[$2—> n(h_$2),z2%1+ezl,£2—><\/ﬁ, 7 >”
Map := subs(RESULT = seq(MapInfo[i][1] (Coord[i]), i=1..2), (x1,x2)-> RESULT);

zl z2
Map := (z1,22) — (ln <w_$1>,ln<h_$2>>

InvMap := subs(RESULT = (MapInfo[1][2](z1), MapInfo[2][2](22)),
(x1,x2)-> RESULT) ;
w ez1 h ez2 )

14 e’ 14 e22

InvMap = (21,22 ) — <

Subs := { V = S1%S2 };
Subs :={V = 8152}

ZForms := [z1(x1), z2(x2)];
ZForms := [z1(z1),22(22)]
OutVar := {S1(z1),S2(z2)};

OutVar := {S1(21),52(22) }
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> fast_map(Sys, Map,InvMap, Coord,NewCoord, Subs,QutVar);
D(2)(81)(14e*)* 82 +D(5’1)(e”1 —1)(14e*1)352

wz (ezl )2 wZ(ezl )2
S1D(2)(82)(14¢*2)* L 51 D(52)(e*® —1)(1+e**)3 _x
hZ(ezQ )2 hZ(ezQ )2 -

> Subs := { V = S1%B2 };
Subs : = {V =81 B2}

> OutVar := {S1(z1),B2(x2)};
OutVar := {S1(21),B2(z2) }

> fast_map(Sys, Map,InvMap, Coord,NewCoord, Subs,OutVar);
D(2)(S1)(1+e* )4BQ+D(51)(e21 —1)(1+e*1)2>B2

w2(ezl )2 w2(e21 )2

+51 D) (B2)=K

> Subs :={ V = x1%S1 * (h-x2)*S2 + B1*B2 };
Subs :={V =21 S1(h—22)52+ B1 B2}

> OQutVar := {S1(z1),82(z2), Bi1(x1),B2(x2)};
OutVar := {S1(21),B2(z2),B1(z1),52(22) }

> Start := time():
> fast_map(Sys, Map,InvMap, Coord,NewCoord, Subs,OutVar);

(1+e*2 )P we D(z)(SQ)SI
h(e2)2(1+e)
h(1+e*)382D(S1) h(l+e*)382D(2)(81)
(14 e2)wet (1+4e*2)wet
B (1+e*2 )2 we*? D(S2) 51 _K
h(e2)2(1+eH)

D?)(B1)B2+ B1D*)(B2)+

+

> time() - Start;
2.734

> L :=x -> 8%x"2%(1-x)"2;
L::ac—)S:th(l—:E)2

> TradDomain := [[x1,x2], x2= 0..1, x1=-L(x2)..1+L(x2)];

TradDomain :=

[z1,22],22 =0..1,z1 = —8z2% (1 — 22 )%..1+ 8227 (1 —22)?]

> type(TradDomain,TradDomainType) ;
true
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> ptolemy[PlotDomBound] (TradDomain, scaling=constrained, axes=framed) ;
See Figure 7.4

> ptolemy[MakeTradMap] (TradDomain, ’Map’, ’InvMap’);

> eval(Map); eval(InvMap);

(:nl,:n?)—>(

zl + 8x2% — 16 z23 + 8 2% )
,:I?
1+ 16222 — 32223 + 16 22*

(z1,22) —
(21 4+ 1621 2% — 3221 223 + 16 21 z2* — 8227 + 16 22° — 8 22*, 22)

> Subs := { V=1V };
Subs :={V =V}

[z1(x1,x2),z2(x1,x2)];
NewCoord := [z1(zl,22),22(2l,22)]

> NewCoord :

> QutVar := { V(z1,22) };
OutVar := {V(z1,22)}

> Start := time():
> fast_map(Sys, Map,InvMap, Coord,NewCoord, Subs,OutVar);

-0.5 0 0.5 1 1.5

Figure 7.4: A Vase Shaped Subdomain
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22 (222 —1)(22 —1)(=1+221)D15(V)
1416 22% — 32223 4+ 16 22*

— 1024 21 22% + 1024 222 21% — 1536 22> + 6144 21 223 — 6144 22° 212

+ 3328 22% — 13312 21 22* + 13312 22% 212 — 3072 22° + 12288 21 22°

— 12288 22° 212 + 1024 22° — 4096 21 22° + 4096 22° 21%) D1 1( V) /

32 + D35(V) + (1 + 256 22°

(1416222 —3222% + 16 22*)% + 16
(42 22% — 256 22° + 528 22* — 480 22° +16022° — 14+ 622) (—1+221)

Dl(V)/(1+16z22—32z23+16z24)2:K

> time() - Start;
4.666

Coordinate Names

Method

The coordinate names instruct fast_map about which symbols in the “equation” cor-
respond to the coordinates of the domain. These symbols get converted to the new
coordinate names, whereas other undefined symbols are assumed to be constants. The
new coordinate names instruct fast_map of which symbols to use in its result to rep-
resent the coordinates of the domain.

These symbols cannot evaluate to anything other than a symbol. Even when either
the input or the output make no explicit reference to the coordinates of the domain,
fast_map must make internal use of these symbols. So, it is important that these names
never evaluate to anything other than a symbol.

One could imagine an “equation” defined implicitly by procedure whose arguments
are the domain’s coordinate names. Many general purpose procedures return results in
this form to ensure that no naming conflicts occur. In this case it may be necessary to
search the global symbol table in order to be sure that the selected coordinate names are
not previously used. This can be done in Maple, but such an approach is undesirably
slow. A more efficient, but more complicated, approach in such cases would be to
require Exp to be a procedure whose arguments are the coordinate names and to return
the results as a procedure whose arguments are coordinate names. Internally the local
variables, which would naturally not conflict with previous global definitions, could be
used for the argument names, but representing all expressions as procedures greatly
complicates the use of PTOLEMY.

The justification for this particular design is that most of the time the user may
employ simple conventions to ensure the uniqueness of the coordinate names, resulting
in a faster system. However, as is generally the case, this improvement in efficiency is
obtained by forcing the user to provide more information.

of Implementation

Perhaps the simplest way of mapping an equation is to 1) apply the state-variables
at the map of the original coordinates, 2) expand any derivatives, and 3) substitute
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the inverse map of the new coordinates for the old coordinates. This method can be
performed in between two and six lines of code, but as mentioned in the introduction to
this section the performance is often unacceptable. This is caused by three facts. First,
the intermediate result is often orders of magnitude bigger than the final simplified
result. Second, simplifying this intermediate result is often excruciatingly slow and
sometimes beyond the capabilities of current technology. Finally, the same operations
are often repeated frequently.
To illustrate these problems, consider the following extremely simple example.

Start of Maple Worksheet

> Map := x -> 1n(x/(1-x));

Map::m—)ln( z )
l1—=z

> InvMap := z -> exp(z) / (1 + exp(2));

InvMap == z —
nvMap 1= z 1o

> Eq := (Dee2)(V);

> Stepl := subs(V(x) = V(Map(x)), convert(Eq(x), diff));

o z

> Step2 := eval(Stepl);

Step2 (=

> Result := subs(x = InvMap(z), Step2);

ez

DV ) (%2) %1% (14 ¢ )? <1—

) +D(V)(%2)

1+ e*
Result := (e )2
1 e - e
2 7+ 2 3 (1+e”) (1~ /(
1= (14e7) [1- - tre
1+e* °*) 1+e*
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ez

D(V )(%2) %1(1+e*)? <1——1+ez> _ D(V)(%2) %1 (1+e)

€ )_ (ez)2 ez
1 z
%1 := — + ¢ 5
1- & " e®
1—|—ez (1+e)<1_1+ez>
%2 :=1In ¢

. e
(1+e) (1- 1)
> ptolemy[fast_map] (Eq, Map,InvMap, [x], [z(x)], {Vv=V}, {V(z)});
DN (V)(1+e%)! LDV (ef—1)(1+e7)
(e7)? (e7)?
End of Maple Worksheet

Obviously the result of the of the direct approach needs to be simplified to the
result produced by fast_map. In this case the simplification can be done, but its
quite a bit harder than just invoking the simplify procedure. More importantly if this
simple equation yields such a complex intermediate result which must then be simplified,
it is reasonable to expect that the complexity of intermediate results would exceed
the simplification capabilities of current technology for even moderately complicated
equations.

The strategy for dealing with this problem, used throughout PTOLEMY, is to avoid
dramatically increasing the complexity of the result before trying to simplify the result.
Instead, this procedure performs intermediate simplifications whenever possible.

This example also illustrates the problem of recomputing the same result, although
it is less obvious. In Step 2 the derivative of 1n(x/(1-x)) is computed four times, once
for each term.

Conceptual Description The method used by fast_map is to:
1. Represent Map(x) in step 1 as an unevaluated function.

2. Expand all the derivatives, yielding only generic forms of the derivatives of Map(x)
(i.e., representations like D(Map) (x), which contains no information about the
actual map).

3. Extract all of the differential forms of the map from this result, figure out what
each differential form is for the specific map, and substitute these results back into
the equation.

This ensures that a given order derivative of the map needs to be computed only once.

Detailed Description The procedure actually performs the following lengthy list of or-
dered steps:

1. Apply the “equation” at the coordinates specified by Coord.

2. Use the values of Coord and OutVarDepend to convert the unapplied form of Subs
into an applied form.
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10.

11.
12.

13.

. Convert the applied “equation” to diff form, perform the specified substitution,

expand the derivatives, and convert the result back to D form.

. Convert the applied form of the new coordinate names to their unapplied form

when they are not in a differential form by invoking the procedure subs. It is more
common to have the coordinate names not in the differential form, and doing a
subs is much faster than the next step, invoking pde_unapply.

. Convert any remaining applied forms of the coordinate names to their unapplied

forms by invoking pde_unapply.

. Convert all applied forms of the output variables (extracted from the argument

OutVarDepend) to their unapplied form.

. Invoke pde_collect to merge similar terms and to invoke the simplification pro-

cedure specified by ptolemy/SimpProc on all of the coefficients. That is, perform
an intermediate simplification of the result.

. Use get D_forms to construct a list of all of the differential forms of the new

coordinates names which appear in the result. Care must be taken to exclude
nondifferential forms of the new coordinates.

. Use Map, InvMap, and NewCoordDepend to figure out what each of these differential

forms maps to in the new coordinate system.

Invoke ptolemy/SimpProc on each of these replacements for the differential forms
of the new coordinates.

Substitute the simplified replacements back into the “equation.”

Replace any remaining occurrences of the original coordinate names with their
equivalence in terms of the new coordinate names.

Finally, invoke pde_collect to simplify the final result.
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This procedure will return a vector valued function that is normal to a specified side
of an arbitrary domain, provided the domain is representable as a DomainType.

unit normal(Domain: DomainType, DimNum: posint, End: EndType)

The result will be a list of vector coordinates, each of which is a function of the domain’s
coordinates.

If the argument Domain is of type MappedDomainType, then the result is a function
of the coordinates of the mapped-to domain. That is, unit_normal returns a vector
that is normal to the boundary in the original domain, but that has been mapped to the
mapped-to domain. This is the natural way to construct the unit normal in this case. Of
course, the user can map this result back to the mapped-from domain. This is not done
automatically because the user will typically want the normal to the boundary of the
original domain, mapped to the mapped-to domain. Mapping from the final domain
to the original domain and having the user map this result back again is obviously
inefficient, but a much more serious problem with doing this is that the result may not
be as simplified after all of this mapping as it was when the process started.

Example

| Start of Maple Worksheet

> with(ptolemy,unit_normal, PlotDomBound) ;
[ PlotDomBound, unit_normal |

> Domain := [[x,y], 0..1, 0..1];
Domasin :=[[z,y],0..1,0..1]

> seq(seq(unit_normal(Domain,i,End), End=[LOW,HIGH]), i=1..2);
[170]7[_170]7[071]7[07_1]

> Domaind := [[x1,x2], x2=0..1, x1=0..2-x2];
DomainA :=[[z1,22],22 = 0..1,z1 = 0..2 — 22]

> DomainB := [[x1,x2], x1=1..2, x2=2-x1..2];
DomainB :=[[z1,22],21 = 1..2,22 = 2 — 31..2]

> PlotDomBound ({DomainA,DomainB},scaling=constrained) ;
See Figure 7.5

> unit_normal (Domaini,1,L0W);
[1,0]

> seq(seq(unit_normal (DomainA,i,End), End=[LOW,HIGH]), i=1..2);

[170]7 [_ %'\/57_ %\/5] 7[071]7[07_1]
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1.5;¢

0. 57

0 0.5 i 1.5 2

Figure 7.5: The Domains of The “L”-Problem

Maple Worksheet Continued from Previous Page

> seq(seq(unit_normal(DomainB,i,End), End=[LOW,HIGH]), i=1..2);

[170]7[_170]7 [%\/_7%\/5] 7[07_1]

> Domain := [[x,y], y=0..1, x=y*(1-y)..1+sin(Pi*y)];
Domain :=[[z,yl,y=0.1,z =y(1—y)..1+sin(ry)]

> PlotDomBound (Domain,scaling=constrained);
See Figure 7.6
> seq(seq(unit_normal(Domain,i,End), End=[LOW,HIGH]), i=1..2);

| Maple Worksheet Continued on Next Page

0 0.5 i 15 5

Figure 7.6: A Bullet Shaped Domain
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1 —142y
V2—dy+4y 2—dy+ay? )|
B 1 cos(my)m [0,1],[0, 1]
\/1—|—c05(71'y)271'27\/l—l—cos(ﬂ'y)Qﬂ'2 A

> Map := (x,y) -> (sqrt(x,y), tan(x,y));
Map := (z,y) — (sart(z,y),tan(z,y))

> InvMap := (r,theta) -> (r*cos(theta),r*sin(theta));
InvMap := (r,8) — (rcos(8),rsin(8))

> Domain := [[[r,thetal, 1/2..1, -Pi/4..Pi/4], Map,InvMap];
1

Domain := [[[r, 0], %..1, i 71'..% 7r:| , Map, ]nvMap:|

> PlotDomBound (Domain,scaling=constrained, xtickmarks=3);
See Figure 7.7

> seq(seq(unit_normal(Domain,i,End), End=[LOW,HIGH]), i=1..2);

ot o] [0 (151 [ 1]

%1 := cos(b‘)2 + sin( @ )2

> ‘ptolemy/SimpProc‘ := simplify;
ptolemy [ SimpProc := simplify

Maple Worksheet Continued on Next Page

0.6
0.4
0.2

Q
-0.2

-0.4
-0.6

Figure 7.7: A Disk Sector Shaped Domain
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> seq(seq(unit_normal(Domain,i,End), End=[LOW,HIGH]), i=1..2);

[cos(8),sin(8)],[—cos(8 ), —sin(8)], [%f%ﬁ] , [%ﬂ— %ﬂ]

| End of Maple Worksheet

of Implementation

In the case when Domain is of type RecDomainType, the procedure simply returns the
answer directly. In this case, the unit normal is zero in every dimension except the
DimNum dimension, where it is plus or minus one. In all other cases, the unit_normal
first computes a basis of the tangent to the specified boundary and then uses this to
compute the vector function that is normal to the boundary.

Computing a tangent to a surface can be easily done if the surface is parameterized.
Simply take the derivative of the parameterized form of the surface with respect to one
of the parameters. The result is a vector tangent to the surface in the direction along
which the parameter increases. The collection of the derivatives with respect to each of
the parameters form a basis of the tangent subspace.

For example, assume that the surface can be represented as

[y1(t1,t2), ya(t1, t2), y3(t1, t2)].

Then the vector } )
Oy Oy2 Oys

| Ot1" Oty Oty |

is tangent to the surface and oriented in the direction of increasing ¢;. Similarly,

[0y Oy2 0ys]
| Oty " Oty Ot |

is tangent to the surface and oriented in the direction of increasing ¢;. If each of
these vector functions is evaluated at the same point on the surface (and the vectors
are imagined to emanate from this point), then the vectors form a basis of the plane
tangent to the surface at the point.

Theorem 1 Given a set of n — 1 independent vectors in n-space, denoted by b;. Let
the the matrices B; be the matrices formed by deleting the jth_column from the matriz

by
bn—l

Then the vector -
b= [|Bl|, —|Bal,..., (—1)"|Bn|]

s perpendicular to all of the b; vectors.
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Proof: Consider the dot product of b and one of the vectors b;. The result is
b- b, = b,’JZ)l + ...+ bhan

Notice taht this is exactly the determinant of the matrix

which must be zero, since the row b; appears twice in the matrix. Hl

The procedure unit_normal uses Theorem 1 and the basis of the tangent to the
surface to construct a vector valued function which is perpendicular to the surface
at every point on the surface. The determinants are computed by using the procedure
linalg[det]. This procedure computes determinants by performing row operations until
the resulting matrix is triangular and then computing the product of the diagonal
elements. The implementation is adequately efficient.

Of course, the final result must be normalized.

Finally, some care must be taken to pick the sign of the vector so that it points in
and not out. This is done by checking the DimNum component of the result. If End equals
LOW then this component should be positive, if End equals HIGH then this component
should be negative.

Dependencies

This procedure has no direct dependencies on any other module except, of course, the
loading and initialization modules.
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This procedure returns a member of a particular family of boundary splines.
spline(Order: OrderType, End: EndType, Diriv: nonnegint)

This form of invocation returns the simplest polynomial spline defined over [0, 1]. The
value of the spline and all of it derivatives up to the order specified by Order are zero
at both zero and one, except for the derivative of order Diriv at the end specified by
End. This derivative (or function value when Diriv is zero) is equal to 1.

spline(Order: OrderType, End: EndType, Diriv: nonnegint, MapInfo: MaplnfoType)

This invocation of the procedure specifies a map to be used in constructing a spline. In
this case spline returns a function (actually a Maple procedure) which is a polynomial
in the inverse map of

ple)i= s ixfx(;zz) (7.1)

The resulting function is defined over the interval

[¢7"(=00), 7 (o0)]
and satisfies the same function value and derivative constraints as when the map is not
specified. The point of specifying a map is to construct splines which when mapped on
the strip about the real line have the same asymptotics as p.
It is an error to specify an order greater than zero at an end that corresponds to
plus or minus infinity. However, the procedure does not explicitly check for or report
this error.

Example Usage

| Start of Maple Worksheet

> ptolemy[init]();
> spline := ’readlib(‘ptolemy/spline‘)’;
spline := readlib( ptolemy/ spline)

> spline(0, LOW, 0);
r—1—-=z

> spline(0, HIGH, 0);
T =z

> Curvesl := [ seq(spline(1, LOW,i), i=0..1), seq(spline(1, HIGH,i), i=0..1) ];
Curvesl := [m—) (2m+1)(—1+$)2,:ﬂ—>m(—1+$)2,m—> —m2(—3—|—2m),

m—)mQ(—l—l—m)]
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> plot(convert (Curvesl,set), 0..1, color=WHITE);
> map(N -> map((T,N) -> T(N), Curvesl, N), [0,1]);
[[1707070]7[0707170]]

> map(N -> map((T,N) -> unapply(diff(T(x),x),x)(N), Curvesl, N), [0,1]);
[[0717070]7[0707071]]

> SubOrder2 := [0,3];
SubOrder2 :=[0,3]

> Map2 := ptolemy[LogRatioMap] (-1,1,x,z);

Map2 = [m—>ln<$+1>,z—>ez_1 T — <%(m+1)‘\/§,%(1—m)‘\/5>]

1—=x 1+ez’

> Curves2 := [ spline(SubOrder2, LOW,0, Map2),
> seq(spline(SubOrder2, HIGH,i, Map2), i=0..3) ];

Curves2 := |::1:—> %(—1—1—:1:)4,:1:—)—11—6(:1:—3)(:B—|—1)(:B2—2:1:—|—5),

T — L $+1)(—1+$)($2—4$—|—7),

g
1 . . - 1 . -
m—)—g(m+1)(m—3)(—1—|—m) , T — ﬁ(m—kl)(—l—l—m)
> plot(convert(Curves2,set), -1..1, color=WHITE, axes=BOXED);
> map(N -> map((T,N) -> T(N), Curves2, N), [-1,1]);
[[1,0,0,0,0],[0,1,0,0,0]]

> map(N -> map((T,N) -> unapply(diff(T(x),x$N),x) (1), Curves2, N), [1,2,3]);
[[070717070]7[070707170]7[070707071]]

> Map3 := ptolemy[LogSinhMap] (0,LOW, x,z);
Map3 := [z — In(sinh(z)),z — arcsinh(e” ),z — (sinh(z),sech(z))]

> SubOrder3 := [2,0];
SubOrder8 :=[2,0]

> Curves3 := [ seq(spline(SubOrder3, LOW,i, Map3), i=0..2),
> spline (SubOrder3, HIGH,0, Map3) 1];

. . 2 . . .

Curvesd e |z — 1—|—351nh(:1:‘)—|—351nh($) P smh(:/l:)(1‘—1—3smh(:/l:))7
(14 sinh(z))3 (1+sinh(z))3

1 sinh( z )2 x sinh( )3

2 (1+sinh(z))3’ (1+sinh(z))3

r —

> plot(convert (Curves3,set), 0..14, color=white);
> map(T -> T(0), Curves3);
[1707 070]
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> map(T -> 1limit(T(x), x=infinity), Curves3);
[07 07 071]

\

seq(map (T -> unapply(diff (T(x),x$N),x)(0), Curves3, N), N=1..2);
[0717070]7[0707 170]

\

Map4 := [x -> 1ln(tan(x*Pi/2)), z -> 2/Pi*arctan(exp(z)),
x -> [sqrt(2/Pi)*sin(x*Pi/2), sqrt(2/Pi)*cos(x*Pi/2)]1];

Map4 = [m—)ln <ta.n <%:L‘7T>) ,Z — 2%,

T
1 . 1 1 1
z—|sqrt |2 — ) sin| -xz7m),sqrt (2 —) cos | -zm
T 2 T 2
> spline(0,LOW,0,Map4); spline(0,HIGH,0,Map4);
(%)
cos| —zw
2
1 L 1
cos{ Sz sin { S &
»(3+7)
sin| —zw
2
1 L 1
cos{ Sz sin { S &7
> Curves4 := [ seq(spline(1,LOW,1i Map4), i=0. , seq(spline(1,HIGH,i,Map4), i=0..1) 1;
1 1 13 1
cos - sin | -z
2 2 2
3
( (s ”)ﬂm( 7))
(3 ) ()
sin| —zw
2
2
1 +
7w | cos sin :mr
2 2
(1 \? 1 . (1
sin| —zw 3cos| —zm) +sin|-zw
2 2 2
1 sin (L ¥ ’
cos| —zm sin| —zw
2 2
1

2
Lon) vsin(Lan))
iy Ccos 2.’Bﬂ' Sin 2:1’,‘71'

> plot(convert(Curves4,set), 0..1, color=white);
> map(N -> map((T,N) -> T(N), Curves4, N), [0,1]);
[[1707070]7[0707170]]

\

r —

r —

Curves4 := |z —

k)

z— —2

> map(N -> map((T,N) -> unapply(diff(T(x),x),x)(N), Curves4, N), [0,1]);
[[0717070]7[0707071]]
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| End of Maple Worksheet

Method of Implementation

Internally this module is divided into two procedures: the primary procedure spline and
the procedure fast_spline. The primary procedure computes the range of the interval,

specifically 1( )
£:= lim ¢~ (2
z——o00
— 1 -1
hieJim 47

and it computes the inverse mapping of p,

o(z):=p(¢(z))

where p is defined as in Equation 7.1. Then the primary procedure passes this informa-
tion to the procedure fast_spline to compute the actual result.

Other PTOLEMY procedures may call the function fast_spline directly in order to
obtain greater efficiency when constructing many splines for the same map.

The spline_fast Function This procedure preforms the core operations involved in the
result of spline.

fast_spline(FullOrder: [nonnegint, nonnegint], End: EndType, Deriv: nonnegint,
RhoInv: algebraic, Coord: name, Low: {numeric, infinity},
High: {numeric, infinity})

In order to understand the algorithm for computing the splines, let n; be the required
order of approximation at the low end, and let n; be defined in the same way except
for the high end. The procedure fast_spline starts by constraining the result to be a
function of the form

f(z) =ap+aro(zx) +azo?(z) + ...+ an_10" 1(z) (7.2)

where n = n; + np + 2. It then constructs n — 1 constraints of the form f(k) (4) = 0 for
k € {0..n;} and f*)(h) = 0 for k € {0..n4}, excluding the derivative of order Diriv at
the end End. Next it augments this system of equations with the constraint f(¢) (v)=1
where d equals Diriv and v is either £ or h depending on the value of End. Then
fast_spline uses Maple’s solve procedure to compute the values of the a’s that satisfy
this system. Finally, it plugs these values back into Equation 7.2.

If either £ or h is not finite, the function evaluations must be performed in the limit.
Also, if a function evaluation results in an error (e.g., division by zero) the result is
recomputed as a limit.

Conditioning Concerns

Notice that fast_spline does all of this work with integer arithmetic, so the result is
accurate even for large values of n. However, the ratio of the largest norm to the smallest
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norm of s the splines in a family grow exceedingly rapidly as the order of the family
increases. As a result even though the splines are accurately computed they may not
be useful for approximation when 7 is large.

For example if nj = n;, and the map is the log-ratio-map on the interval [0, 1] then
the ratio of the largest norm to the smallest norm of the splines in the family grows
like m;!. This is not a problem for second order systems. However, it could become a
problem for fifth order systems.

Dependencies

The procedure spline utilizes the procedure sub_order_expand from the module or-
der_ops. And the procedure fast_spline invokes the procedure indicated by the global
variable ptolemy/SimpProc on its result.
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make_bases

This procedure constructs the collocation of bases required to satisfy the specified
approximation order.

make_bases(Coord: list(name), MapInfo: list(MapinfoType),
OrderSpec: list(OrderSpecType), Var: name, OrderUsed: name,
MainBases: name, ExtraBases: name)

The argument Coord specifies the coordinates in the original problem domain (i.e., the
unmapped domain). The argument MapInfo specifies a list of maps, one per dimension.
The argument OrderSpec specifies the required order of approximation for each state-
variable.

The argument Var specifies the name to be used by make_bases to return the list
of state-variable names. This information is extracted from OrderSpec.

The argument OrderUsed specifies the name to be used by make_bases to return
the list of OrderSpecType’s actually used in this construction of the bases. The order
used will never be less than the order requested, but if the order requested differs on
the two ends of a particular dimension and the MapInfo provided for that dimension
does not specify a factorization of the nullifier into factors corresponding to each end,
then the order actually used will be higher than the order requested.

The argument MainBases specifies the name to be used by make_bases to return
a table of the sinc bases. The table will have entries corresponding to each state-
variable. The value of an entry will be an ordered list of the bases corresponding to
each dimension. The actual sinc bases are the tensor product of each of the dimensional
bases.

The sinc-bases returned are the sinc-functions in the mapped-to domain (i.e., the
sinc functions composed with the inverse map) times the nullifier raised to the power
specified in OrderUsed.

The argument ExtraBases specifies the name to be used by make_bases to return
a table of the boundary spline bases. The table will have entries corresponding to each
ordered pair of the state-variable and dimension. The value of this entry will be an
ordered list of the portion of the extra bases corresponding to that dimension. If the
order specification for this state-variable/dimension combination is [£, h], then the first
£-bases will have nonzero values (or nonzero derivatives) at the low end of the range of
this dimension and the last h-bases will have nonzero values at the high end.

The actual boundary spline bases are the tensor product of at least one entry from
the table ExtraBases and either other sinc-bases or other extra bases.

Example

| Start of Maple Worksheet

> with(ptolemy, make_bases);
[ make_bases |
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> Mapl := ptolemy[LogRatioMap] (0,Size,x,z);

Mani [ o1 ( z > N Size e* N ( z Size—:z:>:|
apl := |z >In| — ) ,% z —_—

D Size —x )’ 14e=’ V' Size' +/Size
readlib(forget): forget(make_bases);

make_bases([yl,y2], [Mapl,Mapi1], {[V, [1,0]1]13},
’Var’, ’0OrderUsed’, ’MainBases’, ’ExtraBases’);

vV VV V

Var;

(V]

> eval (MainBases);

table([
v — [V-Sl yl ( Size —

Size

y1) v so

)
> eval (ExtraBases);
table([
. (2y1 + Size) ( Size — y1)* y1 (Size — y1)?
(‘/7 1) = 3 3 ) s
Size Size

y1? (3 Size — 2yl ) y12(5ize—y1):|

Size® Size?

k)

(v = |
)

Size — y2 y2
Size ' Size

> Map2 := ptolemy[LogRatioMap] (-1,1,x,z);

z+1 e*—1 1 1

2

> make_bases([y1,y2], [Mapi,Map2], [[U, [1,[0,2]11], [v, [1,0]1],
’Var’, ’0OrderUsed’, ’MainBases’, ’ExtraBases’);

\

> Var;

(U, V]

> eval (OrderUsed) ;
([U,[1,[0,2]]],[V,[1,0]]]

> eval (MainBases);

table([
U=|U_S1 y1(1—y1),% U_S2(1—y2)°
V=[V.S1y1(1—y1), V_52]
)
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> eval (ExtraBases);

table([
(V.2) = [%—%yzéywé
(U,1) =
[(2y1 +1)(—1+y1)* yt (—1+y1)*, —y1* (—3+2y1),y1° (=1 +y1)]
(V,1) =
[
(

_ 1 a1 ‘ _
U,2) = [_ g(—1—|—y2)3,§(y2+1)('y22—4y2—|—7),

(y2+1)(-1+y2)°

~T(14u2) (12 -3) (w2 4+1), 7

)

> map(N -> map((T,N) -> unapply(T,y2)(N), ExtraBases[V,2],N), [-1,1]);
([1,0],[0,1]]

> map(N -> map((T,N) -> unapply(T,y2)(N), ExtraBases[U,2],N), [-1,1]);
[[1707070]7[0717070]]

> map(N -> map((T,N) -> unapply(diff(T,y2¢$N),y2) (1), ExtraBases[U,2],N), [1,2]);
[[0707170]7[0707071]]

> Map3 := [x -> 1n(x), z -> exp(z), x > (x,1)];
Map8 :=[In,exp,z — (z,1)]

> MainBases := ’MainBases’; ExtraBases := ’ExtraBases’;
MainBases := MainBases
ExtraBases := ExtraBases

make_bases([x], [Map3], [[V, [[2,0]1111,
’Var’, ’OrderUsed’, ’MainBases’, ’ExtraBases’);

vV Vv

> eval (ExtraBases);

table([

. 1+3z 432> z(14+3z) 1 z? z3
V)= "G (et1) 2(a11) (a1
)

> map(T -> unapply(T,x)(0), ExtraBases[V,1]);
[1707070]

> map(T -> 1limit(T,x=infinity), ExtraBases[V,1]);
[07 07 071]
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> map(N -> map((T,N) -> unapply(diff(T,x$N),x)(0), ExtraBases[V,1], N), [1,2]);
[[0717070]7[0’07170]]

> Map4 :=

> [x -> 1In(tan(Pi*x/2)), z -> 2*arctan(exp(z))/Pi,

> x > (sqrt(2/Pi)*cos(Pi*x/2), sqrt(2/P1)*sin(Pi*x/2))];

1 t =
Map4 = [m —In (tan (Eﬂ':ﬂ>> ,z2— 2 w,
by
1 1 1 . 1
z— |sqrt |2 — ) cos| —7mz),sqrt {2 — ) sin| -7z

T 2 T 2

> MainBases := ’MainBases’; ExtraBases := ’ExtraBases’;
MainBases := MainBases
ExtraBases := ExtraBases

> make_bases([x], [Map4l, [[v, [[1,2]1111,

> ’Var’, ’0OrderUsed’, ’MainBases’, ’ExtraBases’);

\%

Temp := ExtraBases[V,1];

(372) (o (3r2) +29m (57))
cos | —mx cos| —mx ) +4sin| -7z
2 2 2

%1*

Temp::[
(1 1 8

S1I1 — T COS — T 2

2 2 ,<1 >

, S1n 571’:13

 %1*

6 cos lﬂ':ﬂ 2—|—4cos lﬂ':ﬂ sin lﬂ':ﬂ + sin lﬂ':ﬂ ’ /714
2 2 2 2 oo
sin|{ -7z cos|=-m=x 4cos |-z ) +sin| -7z
2 2 2 2

7 %1*

1 2 1 ?
sin|-mz] cos|-—nzx
<2 ) <2 ) ]

72 %1?

1 . 1
%1 := cos <E7T:L‘> + sin <57r9:>

> map(N -> map((T,N) -> unapply(T,x) (W), Temp, N), [0,1]);
[[170707070]7[070717070]]

2

-2

2

> map(N -> map((T,N) -> unapply(diff(T,x), x)(N), Temp, N), [0,1]);
[[071707070]7[070707170]]

> map(T -> unapply(diff(T,x$2), x) (1), Temp);
(0,0,0,0,1]
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> Mapb := ptolemy[LogSinhMap] (0,2,x,z);
1 .
Maph := [m —In (sinh (5 m)) ,z — 2arcsinh(e”),
. 1 1
Tz — <'\/§smh <5 9:) ,'\/Esech <E m))]
> make_bases([x], [Map5], [[v, [[1,0]1111,
> ’Var’, ’0OrderUsed’, ’MainBases’, ’ExtraBases’);
> Temp := ExtraBases[V,1];
2
1 4+ 2sinh (l m) sinh (l m) sinh <l :n)
2 2 2
Temp := 752 ) 7 ) 5
1 4+ sinh l:/l: 14sinh (| ==z 1+sinh (| -z
2 2 2

> map(T -> unapply(T,x)(0), Temp);

[1,0,0]
> map(T -> 1limit(T,x=infinity), Temp);

[0,0,1]
> map(T -> unapply(diff(T,x),x)(0), Temp);

[0,1,0]
| End of Maple Worksheet

Dependencies

This procedure uses the module map_info_ops and order_ops, the function spline,
and the variable ptolemy/SimpProc. The procedure ptolemy/weight in the module
map_tnfo_ops is used to compute the minimum nullifier which satisfies the requested
accuracy order. The procedure spline computes splines with the appropriate boundary
conditions. The procedure sub_order_expand in the module order_ops is used when
determining how many extra bases must be constructed for each dimension. Finally,
the procedure specified by the global variable ptolemy/SimpProc is used to simplify the

extra bases.
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get_SB_var

This function returns a sequence of all the leaves in the expression tree which are
variables containing the substrings ‘_S¢ or ‘_B*.

get_SB_var(Expression: collection({algebraic, equation}))

Usually the result of this function would be included within a set in order to remove

duplicates. The function works equally well with applied or unapplied differential forms.
The function considers each term in isolation so it will even work with equations

with some terms applied and some not. However, such usage is highly discouraged.

Example Usage

Method

| Start of Maple Worksheet

> with(ptolemy, get_SB_var);
[ get_SB_var]

get_SB_var (

(Dee2) (V_S1) (phil(x1))*diff (phil(x1),x1)"2 * V_S2(x2) +
>  V_B1_1(x1) * D(V_S2)(phii(x2)) * diff(phil(x2),x2$2) = 0);
V_51,V_52,V_Bi_1,V_52

vV Vv

> {"};
{V_S1,V_S2,V_B1.1}

> { get_SB_var((D002)(V_S1)*diff(phil(x1),x1)"2 * V_S2) };

{V.§1,V_52}
> get_SB_var(V_S1 + 0.76 = V_S2);
V_S51,V_52
> get_SB_var(cos(V_S1xV_B1));
V_S1,V_B1

| End of Maple Worksheet

of Implementation

This function recursively calls itself until its argument is of type algebraic. It then checks
to see if its argument is a simple differential operator by calling isDop. If in fact the
argument is a D-operator the function extracts the variable being operated upon and
checks to see if contains either ‘_S¢ or ‘ B‘. Otherwise, if the argument is a function the
function name is checked. If the function name does not contain an ‘S¢ or an ‘ B¢ then
get_SB _var is recursively called on all of the functions arguments. Differential forms of

264
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the type V_S1(V_S2) are deemed to be nonsensical in the context of PDEs and therefor
the arguments are not checked if the function name matches. If the expression is a
name it is checked directly. Finally, if the expression contains more than one operand
get_SB _var is called recursively on each of its operands.

Dependencies This function depends on isDop to extract the state-variable from D-

operators.
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collocate_main

This procedure converts expressions or equations into SB-notation. This conversion
to SB-notation effectively collocates the governing equation.

collocate_bound((Expression: collection({algebraic, equation}), Coord: list(name),
NewCoord: list(name), MapInfo: list(MapinfoType),
MainBases: table, ExtraBases: table, VarCollec: collection(name))

The argument Expression specifies the collections of expressions and equations to
be converted into SB-notation. The arguments Coord and NewCoord specify the names
of the conditions in the original and mapped domains, respectively. These names are
used in the mapping process and should be undefined symbols. The argument MapInfo
specifies the map to be applied as part of the collocation process. The resulting n-D map
is such that each output coordinate depends only on the corresponding input coordinate
and this dependence is described by the corresponding entry in MapInfo. The arguments
MainBases and ExtraBases specify the main bases and the extra bases. Finally, the ar-
gument VarCollec specifies the state-variables. The global variable ptolemy/SimpProc
specifies a simplification procedure that is automatically applied, by fast_map, to the
final results.

Example Usage

| Start of Maple Worksheet

> with(ptolemy,collocate_main);
[ collocate _main |

> Map := ptolemy[LogRatioMap](0,1,x,z);

Map = [m—)ln <L>,z—> e—,m—)(m,l—m)]
1—=x 1+ e*

> Maps := [Map, Map];

Maps::[[m—)ln( z ),z—) i ,m—)(m,l—m)],
1—= 1+e*

x e .
[m—)ln(l_m) sz = 1+ez,m—>(m,1—m):|:|

> BasesOrder := {[V, [1,0]1};
BasesOrder := {[V,[1,0]]}

> MainBases[V] := [V_S1x*x1%(1-x1), V_S2];
MainBasesy :=[V_S1 21 (1—21), V_52]
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> ExtraBases := table([
> (V,1)=[(2%x1+1)*(1-x1), x1*(1-x1)"2, x1"2%(3-2%x1), x1"2%x(1-x1)],
> (v,2)=[1-x2,x2]]);

EaxtraBases := table([
(V1) =
[(221 +1)(1—a1),21 (1 —a21)* 21*(3—2a1),21” (1 —a1)]
(V,2)=[1-—122,22]
1)

> collocate_main({}, [x1,x2],[yl,y2], Maps, MainBases,ExtraBases, V);

{1}

\

Simplel := [ seq(D[1$il(V), i=0..2) I;
Simplel := [V, D1(V ), D11(V)]

> collocate_main(Simplel, [x1,x2],[yl,y2], Maps, MainBases,ExtraBases, V);

[V_Bl<36y1+1 et (M) (3+4e) () )vsg
(L+evl )2’ (14ev!)3’ (L+evt )3 ' (l4evl)? N
+VJ31<3‘*‘“+1 et (M) (3+4e) (&) )%1
(T4ev )2 (14 )7 (14ev)? "(1+4ev!)
e V.S2 V.81 e %LV.S1 (-1+e")V_S2V_S1
(+e ) (Tge )~ 14 et
(—1+e" )%l V_S1
14 ey!

_ yl yl _ y1 yl ( _ y1
vy (o Zit3er 2em 1 o e et (Z24eV)) g
1+ ev! (14+evt)2’ (14 ev!)? (14ev?)?

—1+3e¥! 2e¥ —1 eV eV (—2—|—ey1 )
+V_B].<_ 1+ey1 7_(1+ey1)276(1+ey1)27_ (1—1—63/1)2 %1
+ V.52D(V_.51)+%1D(V_.51),—-2V_52V_51—-2%1V_51
(—14e")(14+e")V_S2D(V_S1)

ey!
(=1+e? ) (14 )%1D(V_S1)
_ =
—2 4 ¥t —1+ ¥ 2e¥ — 1
+VBI1 <—4,z o ST e 2 T V_52
—2 4 ¥t —1+4 ¥ 2e¥ — 1
+VBI1 (—4,2 e ST e i T %1
+(1+ey1)2 V_SQD(Q)(V_51)+(1+ey1 )2%1D(2)(V_51)]
ev! eyl

%1:=V.B ! e
1:=VB2[—— & _
° (l—l—e-‘/z’l—l—eyz)

> Simple2 := [ seq(D[2$i](V), i=0..2) 1;
Simple2 := [V, D2(V ), D2 2(V)]
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> collocate_main(Simple2, [x1,x2],[yl,y2], Maps, MainBases,ExtraBases, V);

1 e¥? e’ V_S2 V_S1
%1V_52—|—%1V_BZ(1+ey2,1+ey2) EETE
y2
' V_B2 (ﬁ, li—yz) V_S1
€ €
+ TETTE ,%1VB2(-1,1)
N e’ (1+e¥? ) D(V_S2)V_S1 N e’ V.B2(-1,1) V_S1
(14 ev?)?ev? (14 ev!)?
%1D(V.S2)(1+e¥®)? %1D(V_S2)(e¥® —1)(1+e"?)®
+ ev? ’ (ey2 )2

N e' (e¥® —1)(1+e¥®*)*D(V_S2)V_S1
(14 (e )2
L (L4e)' DPI(V.S2) VST %1D?)(V_S2) (14 e )4]

(1+ e )2 (ev?)? (e2%)?
. Seyl—l—l eyl (eyl )2(3+ey1) (eyl )2
%1.—V_B].<(1+ey1)27(1+ey1)37 (1_|_ey1)3 7(1+ey1)3>

> Laplacian := D[1,1]1(V) + D[2,2](V) = 0;
Laplacian := D11(V )4+ D22(V) =0

> collocate_main(Laplacian, [x1,x2],[y1,y2], Maps, MainBases, ExtraBases,V);

(14e"' )2 D) (V_81)V_S2 N (1+e"" )2 DB)(V_S1)%1

1 1

—2V_S1V_S2+
ev ey
3e¥ +1 e¥! (ey1 )2 (3—|—ey1 ) (ey1 )2
(14ev? )2’ (14 evt)3’ (L+evt)® 7 (14evl)?
D(z)(V_SQ)(1—|—ey2)4/(ey2)2
N e’ (e?® —1)(1+e¥®)’D(V_S2)V_S1
(1 e )7 (e )2
(e —1)(14e")D(V_S1)V_52
_ —
eV (14+e2)' D) (V_S2)V_S1
(T e )7 ()2

—|—V_Bl<

VL (o e e D) DY)
(e — 1)(1+ey2)3/(ey2 . (e’ — 1)(1+sz YD(V_S1)%1
wvan (e T e T 2 ) v

+V.B1 <—4,2 _12:62?1 - ‘it;},—z _llj:z;yl) %1 —2V_S1%1=
0

%1:=V_B ! e
1=VB2|{—— & _
° <1—|—e-‘/271—|—ey2>
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Method

| End of Maple Worksheet

of Implementation

This procedure recurses down the expression tree until it reaches a node that is of
type algebraic. At that point it constructs arguments to fast_map and performs the
mapping that is the primary operation for conversion to SB-notation. However, the
variables corresponding to the boundary splines are left unmapped. This is done for
consistency with collocate_bound.

The coordinates and maps passed to fast_map are constructed directly from the
Coord, NewCoord, and MapInfo arguments. The dependencies of the new coordinates
on the old (i.e., the NewCoordDepend argument to fast_map) are always the same, with
each new coordinate depending only on the corresponding old coordinate. The Subs
argument passed to fast_map is the sum of all of the bases.

The output state-variable names are simply the names of each of the sinc and bound-
ary basis components. Each output variable depends only on the corresponding coor-
dinate. So that the sinc basis components are mapped but the boundary spline bases
components are not, the fast_map argument OutVarDepend specifies that the boundary
spline bases components are dependent on the input coordinates and that the sinc bases
components are dependent on the output coordinates.

This two-step mapping procedure where sinc bases are mapped in one step and
boundary splines are mapped in the next step is more complicated than simply mapping
all of the output state-variables in one step. It is done this way to allow better code
sharing with bound_collocate.

Dependencies

This procedure depends on the procedure fast_map to do the core of the mapping
process. It also uses the procedure cross_prod to construct the Subs argument of
fast_map.

It also depends on the procedure diff_to_pos in the module b_ops to map the
boundary splines as well as convert their representation to the positional notation.
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This procedure sorts boundary forms according to regions of application and converts
them into SB-notation. This conversion to SB-notation is analogous to the task of
performing collocation on governing equations, thus the name of the procedure.

collocate_bound(BoundCollec: collection(BoundFormType), Coord: list(name),
NewCoord: list(name), MapInfo: list(MapinfoType),
MainBases: table, ExtraBases: table,
0rd: collection(OrderSpecType))
collocate_bound(BoundCollec: collection(BoundFormType), Coord: list(name),
NewCoord: list(name), MapInfo: list(MapinfoType),
MainBases: table, ExtraBases: table,
0rd: collection(OrderSpecType), ONQ_,, BOUND)

The result of this procedure is a set of lists, where each list corresponds to a boundary
region. The first element in each list is a list indicating the region of application; all of
the rest of the elements in each list are the converted equations or expression-tag pairs
from the boundary forms applied in this region. Of course, the equations or expressions
in the output have been converted to SB-notation.

The argument BoundCollec specifies the boundary forms to be converted into SB-
notation.

The arguments Coord and NewCoord specify the names of the conditions in the
original and mapped domains, respectively. These names are used in the mapping
process and should be undefined symbols. The argument MapInfo specifies the map to
be applied as part of the collocation process. For the resulting n-D map, each output
coordinate depends only on the corresponding input coordinate and this dependence is
described by the corresponding entry in MapInfo.

The arguments MainBases and ExtraBases specifies the main bases and each of
the extra bases. The argument Ord specify the order of approximation being used.
Implicitly this defines the number of extra bases along each boundary.

If the optional 8*h-argument is provided, it indicates that the procedure should
assume that the extra bases are orthogonal at the points where the boundary forms will
be applied. This would be the case if the forms are applied on the boundary (or if the
extra bases are specially constructed to be orthogonal at the actual point of application).
The result is that many subexpressions in the output are zero, and the result is typically
much simpler.

However, for normal application of PTOLEMY the extra bases will not be orthogonal.
So this behavior is not the default. However, the extra bases are nearly orthogonal and
research-type users may wish to instruct the system to assume that the extra bases
are orthogonal even when they are not. The expert user may be able to tell that this
simplification reduces complexity enough to offset the increase in error.

The global variable ptolemy/SimpProc specifies a simplification procedure specified
to be applied, by fast_map, to the final results.
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Example Usage

| Start of Maple Worksheet

> with(ptolemy,collocate_bound);
[ collocate bound ]

> Map := ptolemy[LogRatioMap](0,1,x,z);

Map = [m—)ln <L> sz = e—,m—)(:ﬂ,l—:ﬂ)]
1—=x 1+ e*

> Maps := [Map, Map];

Maps := |:|:1E—>11’1 <L> sz = e—,:l:—) (m,l—m)],
1+ e?

l—=z

x e” .
|:£L'—>11’1 <m> s 2 —> H—GZ,LL'—) (iL‘,].—:L‘):|:|

> BasesOrder := {[V, [1,0]1};
BasesOrder :=={[V,[1,0]]}

> MainBases[V] := [V_Si1x*x1%(1-x1), V_S2];
MainBasesy :=[V_S1z1(1—21),V_52]

> ExtraBases := table([
(V,1)=[(2%x1+1)*(1-x1)"2, x1*(1-x1)"2, x1"2%(3-2%x1), x1"2*x(1-x1)],
(v,2)=[1-x2,x211);

vV Vv

EztraBases := table([
(V1) =
[(221 +1)(1—a1)* a1 (1 —a1)*,21° (83— 221 ),21% (1 — a1 )]
(V,2)=[1-22,22]
)

> collocate_bound({}, [x1,x2],[yl,y2], Maps, MainBases,ExtraBases, BasesOrder);

{1}

Bound1 := {[1,L0W, V, TagA]l, [1,L0W, D[1](V), TagB],
[2,L0W, V = cos(Pi*x1)], [2,HIGH, V = sin(Pi*x1)]};

vV Vv

Bound1 :=3[1, LOW,V, TagA],[1,LOW ,D,(V ), TagB],
)

[2, LOW,V = cos(ma1)],[2, HIGH,V = sin( a1 )]}

> collocate_bound(Boundi, [x1,x2],[yl1,y2], Maps, MainBases,ExtraBases,BasesOrder);

{[[%3 V_52 + %3 %1, TagA],V,[-1,0]],

1
[%3%1 :cos( mel ),V,[Z,—l]],

1+ e¥?
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[e¥! %1 V_S1 mel!

-m +%3%1 = COS <m) ,‘/,[0,—1]] 5

[e¥! %1 V_S51 . el

-m +%3%1 = SIn <m> ,‘/,[0,1]] s

- o1

%3 %1 = sin (%) ,V,[—l,l]] [ [%2 %1, TagB1,V,[—2,1]],

[[%3%17 TagA]v‘/v [_171]]7[[%3%17 TagA]v‘/v[_]ﬂ_l]]v

y1
[[%2 %1, TagB],V,[—2,—1]], [%3%1 — sin <1”+eﬁ> ,V,[z,1]] ,
y1
[%3%1 = cos <17T+ej> ,V,[—1,—1]] ,

[[%2 V_S2 + %2%1, TagB1,V, [_z,o]]}

%1:=VB ! e
1:=VB2|—— & _
° (1—|—e9271—|—e92>

1 1 , , ,
2= VDl <_6 (1 'Eyeyl )27_ (zle-iy-ey_l ;276 (1 jyeyl )2’_ ey(§12ej1(;z )>
1 1 142 IR 12
e v (e ety e Gre )
> Bound2 := {[1,L0W, D[1]1(V) + V = sin(x2)], [1,HIGH, D[2]1(V) + D[1]1(V), TagCl};
Bound?2 ::{

[1,LOW,D:(V ) +V =sin(22)],[1, HIGH,D>(V )+ D:(V), TagC]}

> collocate_bound(Bound2, [x1,x2],[y1,y2], Maps,
> MainBases, ExtraBases,BasesOrder,0N_BOUND) ;

{[V_B1(0,1,0,0)V_Bz( 1,0)+ V_B1(1,0,0,0) V.B2(1,0) = 0,V,

[—2,—1]], [V_Bl(O,l,0,0) V_s2

1 e®

1+ev2’14ev2

. 1 ev? ev?
—|—V_Bl(1,0,0,0)V_BZ< >:sin< >,V,

+V_B1(0,1,0,0) V_B2 < > +V_B1(1,0,0,0) V_52

14ev2’ 1+ ev2 1+ e¥2

(—2.0]]..[
V_B1(0,0,1,0)V B2(-1,1) 4+ V.B1(0,0,0,1) V_B2(0,1), TagC
L Vi[2,1])[
V_B1(0,1,0,0)V_B2(0,1) + V_B1(1,0,0,0) V.B2(0,1) =
3 y2 2
sin(1),V,[—2,1]], HV_B1(0,0,1,0)D( V_52)(1+e¥*)
ey?
+V_B1(0,0,1,0) V.B2(-1,1) + V.B1(0,0,0,1) V_52
1 e¥?
> 7TagC:| 7‘/7[270]] 7[[

1+4ev2’14ev2

—|—V_Bl(0,0,0,1)V_B2<
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V_B1(0,0,1,0) V.B2(—1,1) + V_B1(0,0,0,1) V_B2(1,0), TagC
],1/,[2,—1]]}

| End of Maple Worksheet

of Implementation

The procedure makes several passes through the collection of boundary forms. On its
first pass it determines which dimensions are used by any of the boundary forms, groups
all the boundary constraints according to the boundary on which they are applied, and
determines for each dimension which ends have boundary forms applied to them.

Then the procedure uses this information to construct a list of all the regions for
which results will need to be reported. These regions are not specified in list of {—1,0,1}
notation for the final output of this routine. Rather the result is specified as a list
of boundaries of the form [Dim,End]. This allows for easy referencing of the input
boundary forms associated with each region. For example, if for a two-dimentional
domain the boundary forms are applied at [1,HIGH] and [2,L0W] then the list would
be of the form

[C[1,L0w]], [2,L0w]l, [[1,L0W],[2,LO0W]],
[[1,HIGH],[2,L0w]], [[1,HIGH],[2,HIGH]]]

Figure 7.8 illustrates this example.

This set of affected regions is constructed creating a set of all of the boundaries
affected, i.e., a set with entries of the form [Dim,End]. The set structure is used to
eliminate any duplicates. Then for each affected boundary the procedure cross_prod
is called to construct a set of all of the regions in that boundary. These sets are then
coalesced into one set, which has the effect of removing all duplicates.

The procedure then proceeds to perform the collocation one region at a time. This
is done primarily by evoking the procedure fast_map on each boundary form occurring
in any group of boundary forms which contains the region. Finally, the procedure
diff_to_pos (from the b_ops module) is called to convert the boundary variables into
positional notation. If the optional 8 argument is specified, this conversion will be
done as though the boundary forms are exactly on the boundary instead of merely close
to the boundary.

Quite a bit of extra code is required to ensure that fast_map and diff to_pos do
not operate on the tags of form derived from BoundTag Types. Although PTOLEMY code
never creates tags that would be altered by these operations, the tag may be any Maple
object and it is important to preserve them unaltered in the output.

It might seem that this is more complicated than simply collocating the equations for
each boundary and then grouping the results by regions. It is. However, boundary forms
cannot be collocated the same across all regions on the same boundary. It is necessary
to construct a different collocation for each regions in which a single boundary form is
applied.

The primary reason for this is to allow for important symbolic simplifications. Specif-
ically in each boundary region some of the bases will be zero at all of the collocation
points. It is not strictly wrong to represent all of these bases in the final result; they
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[1,HIGH]

//// _

[2,LOW]

Figure 7.8: An Example of Two Boundaries Affecting Five Regions

will simply have zero contribution to the final matrix. However, the added complexity
is prohibitive. There are many more boundary regions than domains in most higher-
dimensional problems and often many more boundary forms per boundary region than
governing equations per domain, so simplifying the boundary constraints is critical.

The fast_map Call The coordinates and map passed to fast_map are constructed di-

rectly from the Coord, NewCoord, and MapInfo arguments. The dependencies of the
new coordinates on the old (i.e., the NewCoordDepend argument to fast_map) are al-
ways the same, specifically each new coordinate depends only on the corresponding old
coordinate.

The substitution performed by the procedure fast_map is the sum of all of the
bases which are nonzero in the current region. Symbolically, this is constructed by
determining which one-dimensional bases components are nonzero in each dimension
and then calling ecross_prod to construct a list of all nonzero n-dimensional bases. A
one-dimensional bases component is nonzero in the region if it is a boundary spline or
if it is a sinc basis that is not perpendicular to one of the boundaries of the region.

An example may clarify the previous paragraph. For a two-dimensional problem in
region [-1,-1]1, [-1,1], [1,-1], and [1,1] a sample substitution would be

V — V_B1*V_B2.
For the regions [-1,0] and [1,0] a sample substitution might be

V — V_B1*V B2 + V_B1xV_S2.
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Similarly for the regions [0,-1] and [0,1] a sample substitution might be
V — V_B1*xV_ B2 + V_S1%V_B2.
In contrast a sample substitution involving all of the bases would be
V — VB1*xV B2 + V_B1*V_S2 + V_S1*V_ B2 + V_S1*V_S2.

The output state-variables are merely the set of bases components used in the sub-
stitution. Each output state-variable depends only on the one coordinate in the dimen-
sion for which it is a bases component. However, it is necessary at this stage to only
map the output variables which correspond to sinc bases components, since the output
state-variables corresponding to boundary splines will undergo mapping as part of the
conversion to positional notation.

This two-step mapping procedure where sinc bases are mapped in one-step and
boundary splines are mapped in the next step is more complicated than simply mapping
all of the output state-variables in one step. The advandate is that it affords some extra
efficiency when the boundary forms will be applied exactly on the boundary. Specifically,
mapping of some boundary splines may be avoided in this case. Unlike the efficiency
gained by using only the nonzero subset of the bases, this is not a compelling gain in
efficiency.

It is not clear that this efficiency gain justifies the added complexity. Other alterna-
tives would require redesigning the b_ops LLF.

Undetected Errors

It is an error to have a boundary constraint that involves a derivative of higher order
than the corresponding order of the bases. Detection of this error is a fair amount of
work. Since this procedure is intended as a low level support routine it is assumed that
the higher level code which invoked this procedure will have ensured that the arguments
do not cause this error. As a result, rechecking for this error would be wasteful.

However, users who call this procedure directly should be careful when assigning the
meaning to the result.

Dependencies

This procedure depends on the procedure fast_map to do the core of the mapping
process. It also uses the procedure cross_prod to construct the Subs argument when
calling fast_map.

It also depends on the procedure diff_to_pos in the module b_ops to map the
boundary splines as well as convert their representation to the positional notation.
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This procedure assigns boundary constraints to collocation points.

Any assignment that does not assign two constraints to the same point is alge-
braically correct, but some assignments yield less approximation error than others.
This is because the boundary conditions are being applied at collocation points a small
distance from the boundary and some of the constraints are more sensitive to this ap-
proximation than others.

This procedure sorts the constraints according to the order of their sensitivity with
respect to the point of application and assigns the most sensitive constraints to collo-
cation points nearest the boundary. Because only the order of the sensitivity is used,
instead of the exact sensitivity, and because directional sensitivities are not distinguished
in corner regions, the result is not the assignment that minimizes the error caused by
collocating boundary conditions a small distance from the boundary. This algorithm
tends to avoid assignments that cause particularly large errors.

Typically, the error caused by applying boundary conditions a small distance from
the boundary will be of the order of the approximation error for the PDE, so minimizing
(or even eliminating) this source of error will not significantly increase the accuracy of
the overall solution. All that is needed is to ensure that this source of error is not
unacceptably large.

assign_bound(Region: list(integer),
Constraint: collection({equation, [algebraic, anything]}),
Order: collection(OrderSpecType))

The argument Region specifies in which boundary region the constraints will be applied.
Each dimension of the domain is divided into three parts, i.e., low-end extra collocation
points, main collocation point, and high-end extra collocation points. The result is
that an n-dimensional domain is divided into 3" regions. Each region is specified by
indicating for each dimension in which of the three divisions the region occurs. The
three divisions are represented by -1, 0, and 1, respectively. Figure 7.9 illustrates how
each region would be specified for a two-dimentional domain.

The argument Constraint specifies all of the constraints to be assigned collocation
points in this region. The procedure assign _bound is not designed to be called with
some of the constraints and then later called with additional constraints.

The result of this procedure will be a set of override directives. If the constraint
is of the type equation the corresponding override directive will be an OverRide Type.
However, if the constraint is a two element list, the override directive will be like an
OverRideType, except that instead of an equation in the first element will be the con-
straint exactly as provided. The functionality is provided for override directives that
will be converted into OverCouple Types by the caller. The second element in such con-
straints is to be used to label the constraint so that it may later be identified. Within
the context of normal PTOLEMY usage this identification would be done to matched two
halves of a coupling equation.
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[-1,1] 3 Region [0,1] 3 [1,1]
S T

A \ \ -,

5 | Region [0,0] | &

g 8
[_1,_1] : Region [0,-1] : [1,_1]

Figure 7.9: Each Region and its Identifying List for a Two-Dimensional Domain

Example

| Start of Maple Worksheet

> with(ptolemy,assign_bound);
[ assign_bound ]

> Bound := [V_B1 * V_S2 = Ki, D(V_B1) * V_S2 = K2];
Bound :=[V_B1 V.52 = K1,D(V_B1)V_52 = K2]

> assign_bound([-1,0], Bound, [V,[1,0]1);
{[D(V_B1)V_52=K2,V,[-2,0]],[ V.B1 V.52 = K1,V,[-1,0]]}

> Bound := [V_B1#V_S2 = K1, D(V_B1)*V_S2 + U_B1xU_S1= K2, U_B1xU_S2 = K3];

Bound :=[V_B1 V_S2 = K1,D( V_B1) V_S2 + U_B1 U_S1 = K2,
U_B1 U_S2 = K3]

> assign_bound([1,0], Bound, {[V,[1,0]],[U,[0,011});
{[U_B1 U_52 = K3,V,[2,0]],
[D(V_B1) V_S2 + U_B1 U_S1 = K2,U,[1,0]],
[V_B1 V.52 = K1,V,[1,0]]}

> Bound := [V_S1 * V_B2 = Ki, D(V_B1) * V_S2 = K2];
Bound :=[V_51 V_B2 = K1,D(V_B1)V_52=K2]

> assign_bound([-1,1], Bound, [V,[1,1]]);
{[D( V_B1 ) v.se = KQ,V;[—Z,0,0,Z]],
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[V_S1 V_B2 = K1,V,[-2,0,0,1]]}

> Bound := [V_B1#V_B2 = K1, D(V_B1)*V_B2 + U_B1xU_B2= K2, U_B1xU_B2 = K3];

Bound :=[V_B1 V_B2 = K1,D(V_B1)V_B2 + U_B1 U_B2 = K2,
U_B1 U_B2 = K3]

> assign_bound([-1,1], Bound, {[V,[1,0]],[U,[0,0]11});
{[U_B1 U_B2 = K3,V,[~2,0,0,1]],
[D(V_B1) V_B2 + U_B1 U_B2 = K2,U,[~1,0,0,1]],
[V_B1 V_B2 = K1,V,[~1,0,0,1]]}

> Bound := [V_B1xV_B2 = K1, V_B1xV_B2 = K2];
Bound:=[V_B1 V_B2 = K1,V _B1 V_B2 = K2]

> assign_bound([1,1], Bound, [V,[0,0]1]1);
{[V_B1 V_B2 = K2,V,[1,0,0,1]],[ V_B? V_B2 = K1,V,[1,0,0,1]]}

> Bound := [V_B1xV_B2 =

K, V_B1%V_B
Bound

_ _B2 = K];
:=[V_B1V_B2=K,V_B1V_B2=K]

> assign_bound([1,1], Bound, [V,[0,0]1]1);
([V_B1 VB2 = K,V,[1,0,0,1]]}

> Boundl := [[V_B1x*V_S2, ‘Label A‘], [D(V_B1)*V_S2, ‘Label B‘]];
Bound? :=[[ V_B1 V_52, Label A],[D( V_B1) V_52, Label B]]
> Bound2 := [[D(V_B1)*V_S2, ‘Label A‘], [V_B1x*V_S2, ‘Label B‘]];

Bound2 :=[[D( V_B1) V_52, Label A],[ V_B1 V_52, Label B]]

> Resultl := assign_bound([1,0], Boundl, [V,[0,1]1]);

Result1 := {[[D( V_B1) V_52, Label B],V,[1,0]],
[[ V_B1 V_S2, Label A],V,[1,0]]}

> Result2 := assign_bound([1,0], Bound2, [V,[0,1]1]);

Result? := {[[D( V_B1) V_52, Label A],V,[1,0]],
[[V_Bi V_S2, Label B,V,[1,0]]}

> map(x -> x[11[2] = [x[11[1], op(2..3,x)], Resultl);
{Label A=[V_B1 V_52,V,[1,0]], Label B = [D( V_B1) V_52,V,[1,0]]
}

> LHS :=
subs (map(x -> x[1]1[2] = [A,x[11[1], op(2..3,x)], Resultl),
[‘Label A¢, ‘Label B‘]);

LHS :=[[A, V_B1 V_S2,V,[1,0]],[A,D( V_B1) V_S2,V,[1,0]]]

vV Vv
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RHS :=
subs (map(x -> x[1]1[2] = [B,x[1]1[1], op(2..3,x)], Result2),
> [‘Label A¢, ‘Label B‘]);
RHS :=[[B,D(V_B1)V_52,V,[1,0]],[ B, V_B1 V_52,V,[1,0]]]

vV Vv

\

seq(LHS[i] = RHS[i], i=1..2);
[A,V_B1 V_52,V,[1,0]] = [BvD( V_B1 ) V.S2,V,[1,0]],
[A,D(V_B1)V_52,V,[1,0]]=[B,V_B1 V.52,V,[1,0]]

| End of Maple Worksheet

of Implementation

As stated in the introduction to this section any assignment of constraints to collocation
points is valid as long as no collocation point is assigned more than one constraint.
However, applying boundary constraints at interior points instead of on the boundary
introduces a source of error other than the fundamental error of approximation.

For any assignment this source of error will decrease with the same order as the error
of approximation. Typically the range of this error over the set of possible assignments
will include the inherent error of approximation. So it is important to pick a good
assignment, but if this source of error is less than the inherent error of approximation
there is little incentive to find a better approximation.

For a given constraint the error caused by applying it at a collocation point instead
of on the boundary will be larger for collocation points further from the boundary. If
the constraint is of the form

L(V)(z) =k

then the error introduced by applying the constraint off the boundary is proportional
to |[L(V)(ze) — L(v)(zp)| where z. is the collocation point and zp is the projection of
z. onto the boundary (or boundaries). So it is desirable to assign the constraints that
change the most rapidly near the boundary to the points that are actually nearest to
the boundary.

An ideal approach might be to compute |L(V)(z.) — L(V)(zs)| for every combination
of constraint and admissible collocation point and then employ a selection criterion
that either minimized the bound on the total error or at least approximately minimized
the bound on the total error. As this point in the problem solution process where
assign_bound is invoked the number of grid points to be used, i.e., the values of N,
are not known so it is not possible to compute the error associated with any particular
assignment.

However, the exponential order at which [L(V)(z.) — L(V)(zs)| decreases (as a
function of N) will be equal to the order of the first nonzero derivative of £L(V') at the
boundary in the direction zp — z.. It would be reasonable then to compute the series
of £(V) with respect to the appropriate coordinate and determine the first nonzero
derivative.

For linear problems this approach is equivalent to computing the first nonzero deriva-
tive of each of the terms in £(V) and using the minimum. In this case £(V) will be
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made up of linear combinations of terms of the form
(DE@p0) (S_VO) *---% (De@pj)(BVj) *---* (De@pn)(SVn)

and checking for the first nonzero derivative of such terms is particularly easy.

Consider any of the boundary spline, which can be easily determined. As N becomes
large those constraints with boundary splines that have a small exponential order of
change near the boundary will eventually dominate the error due to applying boundary
constraints off the boundary. So a reasonable alternate strategy is to assign these
constraints to the collocation points nearest the boundary.

This task is made easier by the fact that z. and z; only differ in the direction (or
directions) perpendicular to the boundary.

This is approximated by sorting the equations according to the order of their vari-
ability near the corner or edge, sorting the points according to their distance from the
corner, and then pairing the constraints and points in this order. The result is not
optimal, but since for large N this source of error tends to be dominated by a few (often
one) more sensitive constraint, simply assigning these constraints to the points nearest
the boundary yields an almost optimal assignment.

Design Limitations

This procedure assigns individual equations to individual collocation points. The idea
that this is a useful thing to do is based on several assumptions about the way PTOLEMY
works. It would be reasonable to design a sinc-collocation system which applied more
than one collocation constraint at a single collocation point, but it would require non-
trivial changes to the much of PTOLEMY.

Even within the context of PTOLEMY’s design this procedure assumes that in each
region there are more points than equations and that the system of equations is well-
defined. Since the number of boundary bases in each region is the same as the number
of collocation points, this assumption is often justified.

However, it is possible to have an overconstrained system of boundary constraints
in a corner region even when the original problem is properly constrained. Consider
a problem defined over the region [0, 1] x [0, 1] with Dirichalay conditions specified on
both the upper and the right boundaries. Suppose that the boundary condition are

_1—|—\/1—$1
2

flz1,1) = g(@1) ==
F(1,22) = h{zg) = LY 72 V;“
This is a well-constrained PDE since g(1) = 1/2 = h(1). (Figure 7.10 illustrates these
boundary conditions). When the order of the extra bases is [0, 0], then in the region
(1,1) there is exactly one basis, namely z1-z3 or, in SB-notation V_B12_4. However, two
constraints will arise in this region, one from each edge. Specifically, V. B12.4 = g(x1)
and V.B12 4 = h(x2). Thus, there are more constraints than bases.

This problem is uncommon when the order of the extra bases is greater than 1.
However, a new problem arises then. Since g(z1) # h(z2) except at the corner, these
two constraints are inconsistent. Even if constant terms (i.e., terms not involving state-
variables) are evaluated at the boundary, this is a system of consistent, but not inde-
pendent, constraints.
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Figure 7.10: Dirchalay Boundary Conditions on Adjoining Edges

Probably the most desirable solution would be to develop a new module, perhaps
called resolve_bound, which replaces a system of constraints with the “nearest” well-
conditioned system. The method could be a variation on using Singular Value Decom-
position (SVD) on the original system to generate a new system that is the inverse of
the generalized inverse of the original system. The most difficult issue here is handling
symbolic constants and coefficients that vary along the boundary.

At the moment PTOLEMY provides the user with a chance to edit the boundary
constraints manually. When a problem arises, the user can typically achieve nearly
optimal results by removing one of the redundant constraints in the affected corner
region.

Dependencies

This module uses the procedure ptolemy/sub order_expand from the order_ops
module and the procedure cross_prod to construct a list of all of the collocation points
in the specified region. This module also uses the procedure ptolemy/de_order out of
the module pde_order to determine which boundary splines occur in each constraint.
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This module provides procedures for manipulating the B-variable constructs used to
represent the boundary spline bases components.

b_point_to_num(Point: list(integer), 0rd: list(SubOrderType), BoundSet: name)
b_num to_point(Num: posint, BoundSet: list(posint), Ord: list(SubOrderType))

In the construction of LinKronType’s, bases corresponding to specific sets of collocation
points are assigned names based on the set of bases components that are boundary
splines and the sequence number within the group of bases having the same set of
boundary spline components. The sequence numbers are assigned in order, assuming
that the last index varies most rapidly.

The procedure b_point_to_num and b_num _to_point provide utilities for convert-
ing between this type of specification of boundary points and the cartesian coordinate
method used by the collocation routines. The procedure b_point_to_num requires a
cartesian type specification and order information and returns the sequence number and
the set of boundary components. The set of boundary components is assigned to the
variable specified by BoundSet. The procedure b_num _to_point requires the sequence
number, the set of boundary components, and order information and returns a cartesian
type point specification.

collocate Bvar(Exp: collection({algebraic, equation}), BName: collection(name),
Coord: list(name), NewCoord: list(name), MapInfo: list(MapinfoType),

ExtraBases: table)
collocate Bvar(Exp: collection({algebraic, equation}), BName: collection(name),
Coord: list(name), NewCoord: list(name), MapInfo: list(MapinfoType),

ExtraBases: table, OrderSpec: collection(OrderSpectype),
Region: list(integer))

The procedure collocate Bvar collocates any B-variables in the argument Exp and
converts the variables into the positional notation.

The argument BName specifies all of the boundary spline bases component names.
These are in effect the state-variables of the mapping associated with collocation. The
arguments Coord and NewCoord specify the coordinate names in the original domain and
the mapped-to domain. The argument MapInfo specifies the map associated with the
collocation process. Finally, the argument ExtraBases provides a table for looking up
the boundary spline bases components. The table is expect to have entries for indexes
of the form [V,Dim] where V ranges over the set of problem state-variables (i.e., not the
set of B-variables) and Dim ranges over the set of problem dimensions. This is the form
of table returned by make_base.

If the optional arguments OrderSpec and Region are specified then collocation is
performed on the boundary corresponding to the region specified by Region. Collocation
on the boundary generally causes some simplification of the results, because some terms
are constant on the boundary. The simplification is especially pronounced when some
of the weighting terms are zero on the boundary.
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Examples

The first example illustrates how to convert between sequence number specifications
and cartesian coordinate specifications. Referring to Figure 7.11 should help with un-
derstanding this example.

Start of Maple Worksheet

> ptolemy[init]();
> readlib(‘ptolemy/b_ops‘):
> 0rd := [[1,0], [0,11];

Ord :=[[1,0],[0,1]]
> ‘ptolemy/b_point_to_num‘([-2,0], Ord, ’Bound’); Bound;
1
(1]

> ‘ptolemy/b_point_to_num‘([-1,0], Ord, ’Bound’);
2

> ‘ptolemy/b_point_to_num‘([1,0], Ord, ’Bound’);
3

> ‘ptolemy/b_point_to_num‘([0,-1], Ord, ’Bound’); Bound;
1
(2]

> ‘ptolemy/b_point_to_num‘([0,1], Ord, ’Bound’);
2

> ‘ptolemy/b_point_to_num‘([0,2], Ord, ’Bound’);
3

> ‘ptolemy/b_point_to_num‘([-2,-1], Ord, ’Bound’); Bound;
1
[1,2]

> ‘ptolemy/b_point_to_num‘([-1,-1], Ord, ’Bound’);
4

> ‘ptolemy/b_point_to_num‘([1,-1], Ord, ’Bound’);
7

> seq( ‘ptolemy/b_num_to_point‘(i, [1,2], Ord), i=1..9);
[_27_1]1[_17_1]7[17_1]7[_271]1[_171]7[171]7[_272]7[_172]7[172]
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> seq(‘ptolemy/b_num_to_point‘(i, [1], Ord), i=1..3);
[_210]7[_170]7[170]

> seq(‘ptolemy/b_num_to_point‘(i, [2], Ord), i=1..3);
[07_2]7[07_1]7[071]

| End of Maple Worksheet |

The next example illustrates the process of collocating the boundary spline variables.

| Start of Maple Worksheet |

\

with(ptolemy, LogRatioMap);
[ LogRatioMap ]

\

readlib(‘ptolemy/b_ops‘):

\

Map := LogRatioMap(0,1,x,z);

x e .
Map = [m—)ln <m>,z—> 1+—ez,m—>(m,1—m)

> ExtraBases := table(
> [(V,1) = [(2%x1+1)*(1-x1)"2, x1*(1-x1)"2, x1"2%(3-2%x1), x1"2x(1-x1)],
> (v,2) = [1-x2, x2]11);

EaxtraBases := table([
(V1) =
[(221 +1)(1—a1)* 21 (1—a1)*,21° (3 —2a1 ),21” (1 — 21 )]
(V,2)=[1-22,22]

Maple Worksheet Continued on Next Page
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Figure 7.11: A Stylized Illustration of the Collocation Points in the Example
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)

> Expl := [ seq((De@i)(V_B1), i=0..4) ];
Ezp1 :=[V_B1,D(V_B1),D'*)(V_B1),D®)(V_B1),D")(V_B1)]

> Exp2 := [ seq((Deei)(V_B2), i=0..2) 1;
Ezp2 :=[V_B2,D( V_B2),D'*)(V_B2)]

> ‘ptolemy/collocate_Bvar‘(Expi, {V_B1,V_B2}, [x1,x2],[z1,z2],[Map,Map], ExtraBases);

V BL 3ez1 +1 ezl (ezl )2(3+ezl) (ezl )2
(1_1_611)37(1_1_611)37 (1+ezl)3 7(]__i_ezl)S ’

veil_s ezl 3 26:1_1 ezl _ezl(_2+ezl)
(1_1_611)2’ (1+ez1)2’ (1+ezl)2’ (1+ezl)2 ’
z1 z1 z1 z1
vV B1 6—1—|—e 7 —2+e — —1+e — 2e” —1 7
1+ e#! 1+ e?! 1+ e#! 1+ e*!

V_B1(12,6,—12, —6),0]
> ‘ptolemy/collocate_Bvar‘(Exp2, {V_B1,V_B2}, [x1,x2],[z1,z2],[Map,Map], ExtraBases);

[V_B2< ! il ),V_BZ(—l,l),O]

14 e’ 14 e%2

> ‘ptolemy/collocate_Bvar‘(Exp2, V_B1, [x1,x2],[z1,z2],[Map,Map], ExtraBases);
[V_B2,D(V_B2),D'*)(V_B2)]

> ‘ptolemy/collocate_Bvar‘(Exp2, V_B2, [x1,x2],[z1,z2], [Map,Map], ExtraBases);

[V_B2< ! il ),V_BZ(—l,l),O]

14 e’ 14 e%2

> Exp := [ op(Expl), op(Exp2) 1;
Ezp :=[V_B1,D( V_B1),D'*)(V_B1),D'*)(Vv_B1),D'")( V_B1), V_B2,
D(V_B2),D*)(V_B2)]

> BName := {V_B1, V_B2};
BName :={V_B1,V_B2}

> BasesOrder := [V, [1,0]];
BasesOrder :=[V,[1,0]]

> ‘ptolemy/collocate_Bvar‘(Exp, BName,
> [x1,x2],[z1,2z2], [Map,Map] , ExtraBases, BasesOrder, [-1,0]);

V_B1(1,0,0,0),V_B1(0,1,0,0),V_B1(—6,—4,6,2),

1 ez2

V_B1(12,6,-12,—6),0,VB2 [ —— —>
14 e22" 14 e%2

>,V_B2(—1,1),0
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> ‘ptolemy/collocate_Bvar‘(Exp, BlName,
> [x1,x2],[z1,2z2], [Map,Map], ExtraBases, BasesOrder, [0,1]);

V BL 3ezl+1 ezl (ezl )2(3+ezl) (ezl )2
(]__i_ezl)3’(1_1_611)37 (1+ezl)3 7(1—'—611)3 ’
ezl zezl -1 6 ezl ezl(_2+ez1)
(1_1_611)27 (1—1—611)27 (1+ezl)27 (1+ez1)2 ’
—14+e 247 —14e 26 -1
1+es "7 14ext’ 1+es ’ 1+e )’

V_B1 (—6

V. B1 (6

V_B1(12,6,—12,—6),0,V_B2(0,1),V_B2( -1, 1),0]

\

‘ptolemy/collocate_Bvar ‘ (Exp, BName,
> [x1,x2],[z1,2z2], [Map,Map], ExtraBases, BasesOrder, [-1,-1]);

[VB1(1,0,0,0),V_B1(0,1,0,0),V_B1( —6,—4,6,2),
V_B1(12,6,—12,—6),0,V_B2(1,0),V_B2(—1,1),0]

‘ptolemy/collocate_Bvar ‘ (Exp, BName,
[x1,x2],[z1,2z2], [Map,Map], ExtraBases, BasesOrder, [1,1]);

[VB1(0,0,1,0),V_B1(0,0,0,1),V_B1(6,2,—6,—4),
V_B1(12,6,—12,—6),0,V_B2(0,1),V_B2(—1,1),0]

vV Vv

| End of Maple Worksheet

Method of Implementation

The b_point_to_num Procedure This procedure first scans the argument Point for
nonzero elements in order to construct the set of boundary components. The set of
boundary components is actually assigned to the argument BoundSet as a list so as to
preserve the order.

Then the procedure makes a second pass through the components of Point which are
in the boundary set in order to figure the sequence number, but this time in the reverse
order. Each relevant coordinate is compared to the corresponding order information to
decide if it on the “LOW” end or the “HIGH” end of this dimension. In either case
a simple (though different) formula is used to determine the sequence number within
this dimension. The overall sequence number is accumulated by summing the produce
of each dimensional sequence number with the dimension’s stride, where the stride is
defined to be the change in sequence number for a unit change in the corresponding
dimension. The stride may be computed on the fly from the value of the stride for the
previous dimension.

Because it is easier to compute the sequence number in zero-based arithmetic the
procedure computes each the sequence number in each dimension assuming zero-based
counting. Then the final result is incremented to convert it to one-based counting system
used in PTOLEMY.

The b_num_to_point Procedure This procedure first computes the stride for every
dimension in the boundary set and then on the second pass computes the coordinate
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number associated with each dimension in the boundary set. This is necessary be-
cause the stride must be computed from the last dimension towards the first while the
coordinates must be computed from the first dimension towards the last.

The coordinates are computed by first getting the sequence number in the current
dimension, then checking to see if the result is on the “LOW?” end or the “HIGH” end,
and then using the inverse of the formulas used by b_point_to num. The sequence
number in the current dimension is computed by performing an integer division of the
current remainder and the corresponding stride; the remainder is used for the next
dimension.

Because this calculation is easier and faster to perform for zero-biased array indexing
(as opposed to one-based array indexing) the sequence number is first decremented by
one.

The final point should contain zeros in the dimensions not in the boundary set. This
result is constructed by using a subsop to insert the coordinates for dimensions in the
boundary set into a list of zeros.

The collocate_Bvar Procedure This procedure first calls get_D_forms to extract a

set of all of the D-operators involving B-variables. If this set is empty then the pro-
cedure skips all other operations. Otherwise, the procedure collocates each D-operator
involving B-variables and substitutes the results back into the expression.

Each D-operator involving B-variables is collocated by:

1. Determining the order of the D-operator and parsing the variable name to de-
termine the dimension associated with the bases component. The procedure
get_D _forms is called for this purpose.

2. Extracting the associated boundary splines from the argument ExtraBases and
applying the D-operation to each boundary spline.

3. Mapping the result using fast_map.

4. Applying the B-variable at these mapped boundary splines in order to represent
the result in positional notation.

If the optional seventh and eighth arguments indicate that collocation is to be applied
on the boundary then the mapping of the arguments is more complex but the other
steps are unchanged. Specifically if the order of differentiation is less than the order of
approximation on the specified end, then the value of applying the D-operator to each of
the boundary splines can be determined simply by their sequence number. Specifically,
the extra bases are constructed so that at each end point all of their derivatives up to
the order of approximation are zero except for one derivative which is exactly equal to
one.

However, if the order of differentiation is greater than order of approximation then
the mapping of the extra bases is performed in exactly the same manner as when the
collocation occurs in the interior. The limit of the result as the corresponding new
coordinate approaches plus or minus infinity is used.
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Dependences

The procedures b_point_to_num and b_num_to_point call order_expand, in the
module order_ops, to expand the order information provided by the argument Ord.

The procedure collocate Bvar calls the procedure get_D forms to create a set of
all differential forms involving B-variables. It also calls isDop to extract the B-variable
associated with the current differential form. Finally it calls fast_map to actually map
the extra bases.

If the collocation is performed on the boundary then the procedure will also call the
order_expand to expand the order information provided in the argument OrderSpec,
but the procedure might not call fast_map.
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This LLF provides procedures for converting equations and expressions from SB-
notation to Kronecker product notation. The procedures that are indented primarily
for external usage are:

kron_eq(Eq: equation, RowCoords: list(nonzeroint), Stack: list(name), Weight: table,
HName: list(name))
kron_exp(Exp: algebraic, Sign: {-1, 1}, RowCoords: list(nonzeroint),
Stack: list(name), Weight: table, HName: list(name))
kron_accumulate(Exp: algebraic, Sign: {-1, 1}, RowCoords: list(nonzerint),
Weight: table, HName: list(name), Row: table, RHS: name)

The procedure kron_eq returns a row vector and a “scalar” term called the RHS. The
equation formed by equating the product of the row vector and the column vector (spec-
ified in the argument Stack) with the RHS is equivalent to the constraint specified by
the argument Eq.

The behavior of kron_exp is similar, except that the product of the row vector and
the column vector minus the RHS is equivalent to Sign*Exp. In both cases the result
is represented in the form [list(algebraic), algebraic], where the first element is the row
vector and the second element is the RHS.

The procedure kron_accumulate is equivalent to the procedure kron_exp, except
that the results are “accumulated” in the arguments Row and RHS. That is, the results
are added to the the initial values of the variables named by these argument.

In each case the row vector contains elements that are Kronecker product represen-
tations of matrices. That is the row vector is a vector of matrices so it is typically also
a matrix. Stated differently the Kronecker products notation allows the representation
of a collection of row vectors of numbers by a single row vector of Kronecker products.

Since each row vector of numbers is associated with a specific collocation point, each
row vector of Kronecker products is associated with a collection of collocation points.
The argument RowCoords indicates 1) which coordinates vary over the collection of
collocation points, 2) the order of the rows, i.e., collocation points. The order of the rows
is constrained to be some cartesian ordering (see “cartesian ordering” in the glossary)
8o the only ordering information that must be specified is the order of the coordinates
and the order of the collocation points within each coordinate. The order of the rows is
further restricted so that the collocation points within each coordinate must be either
ascending or descending. This information is encoded into the RowCoords argument by
specifying the coordinate number for the coordinates that vary over this set of rows
in the order used to specify the cartesian ordering. If the collocation points are in
descending order for the particular coordinate the negative of the coordinate number is
used.

For example, consider a three-dimensional problem and a collection of rows such that
only the first and third coordinates vary over the collection collocation points. Then
RowCoords should equal [1,3], [-1,3], [1,-3], [-1,-3], [3,1], [-3,1], [3,-1], or
[-3,-1] depending on the ordering of the rows. If the rows are in the “natural” order
then the value of RowCoords should be [1,3]. If, however, the rows are ordered so that
the first coordinate varies most rapidly and the third coordinate actually decreases with
increasing row number, then the value of RowCoords should be [-3,1].
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The argument Stack specifies the column vector to be multiplied by the row vector
of Kronecker product terms. Alternately, it specifies the order of stack-variable names,
to be used in the row vector formulation. The stack-variable names are constrained to
a fixed set of variations on the state-variable names, specifically if V is one of the state-
variable names then the stack variable names may be V and cat(‘VB*, Comb, ‘_¢,
Num) where Comb is an ordered list of the dimensions which are constant for this group
of bases and Num indicates which subgroup of bases are being specified. So in effect,
Stack only indicates the order of the bases subgroups. This is why this argument is not
not needed by the procedure kron_accumulate.

The argument Weight is a table of weights indexed by the state-variable name and
the dimension. Finally, the argument HName is a list of the variables names which should
be used to denote the sampling width. These variables are introduced into the diagonal
components of the result during the conversion of differential forms to Kronecker product
notation.

Support Procedures

In addition there are two lower-level procedures in this module that might be called by
the user, but that were designed primarily to support the three procedures described in
the introduction to this section.

kron_term(Term: algebraic, Weight: table, HNames: list(name),
RowOrient: list({-1, 0, 1}))

kron_term(Term: algebraic, Weight: table, HNames: list(name),
RowOrient: list({-1, 0, 1}), Permutation: list(posint))

split_term(Term: algebraic, SFacts: name, BFacts: name, Coeff: name,
StateVar: name)

The procedure kron_term converts a single term into a Kronecker product format.
The procedure split_term groups all of the factors in a term according to whether
they contain S-variables, B-variables, or neither. Because it is necessary to understand
the material in the next section in order to more fully describe these procedures a
complete description of the interface is deferred to the subsection titled “Method of
Implementation” on page on page 293.

Constraints on the Form of the Input

All of the procedures in this module assume that the SB-notation expressions have been
normalized to a form compatible with the following grammar.

equation := erpression = erPression
erpression :=term(+term)*
term := factor(xterm)*
factor :={Constant, SVarDOp, BVar}
SVarDOp:={D(SVarDOp),SVar}
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where Constant is any expression that is constant with respect to the SB-variables (but
typically not with respect to the coordinates), SVar is the stack variable name of one
of the sinc-bases component groups (e.g., V.S1), BVar represented one of the boundary
spline bases component groups (in positional notation), and D is Maple’s D-operator.

Employing this assumption, the module implements a recursive descent parser. This
lexically oriented approach has several drawbacks. The form of the expressions is critical;
mathematically equivalent but syntactically nonconforming expressions will cause errors
(possibly even undetected errors). In my opinion the appropriate elegant solution is to
employ modern algebra to construct a class of expression whose unique normal form
is the desired result. See [6] for several examples of normalizing various classes of
expressions.

Developing such an approach is a small research project in its own right, whereas
implementing this recursive descent parser was at most a couple of days work.

Examples
| Start of Maple Worksheet
> ptolemy[init]();
> readlib(‘ptolemy/kron_ops‘):
> Stack := [V, seq(cat(‘V_B1i_¢,i), i=1..4), seq(cat(‘V_B2_¢,i), i=1..4),
> seq(cat (‘V_B12_¢,1),i=1..16)];

Stack := [V, V_B1_1,V_B1_2,V_B1.3,V_B1_4,V_B2_1,V_B2_2,
V_B2.3,V_B2_4,V_B12_1,V_B12.2,V_B12.8,V_B12_4,
V_B12_5,V_B12.6,V_B12_7,V_B12.8,V_B12_9, V_B12_10,
V_B12_.11,V_B12_12,V _B12_13,V _B12_14,V _B12_15, V_B12_16

]

\%

=

—
]

exp(z1)/(1+exp(z1))"2;

ezl

W= ey

\%

=

[\
1]

exp(z2)/(1+exp(z2)) "2;

612

W2 := 7(1 et )

> Weight := table([(V,1) =W1, (V,2) = W2]);
Weight := table([

ezl

(1+ez1)2

ez2

(1+ez2)2

(Vi1) =
(V,2) =
)

> HName := [H1,H2];
HName :=[H1,H2]
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> Spl := 1/(1 + exp(z1)); Sp2 := exp(z2)/(1 + exp(z2));

1
Spl := ————
P 1+ e#!
z2
e
Sp2 (= ——
P 14 e?2

> Eq := D(V_S1)*V_S2%exp(z1)/(1+exp(z1)) + D(V_S1)*V_B1(Sp1,Sp2)= K;

_ D(V.S1)V._52¢" 1 e \
Eq:= e +D(V_.S1)VB1 TTorire7) =K

> ‘ptolemy/kron_eq‘(Eq, [-1,2], Stack,Weight,HName);

. (ezl )2612 )
[[Dlag <(1_|_ezl FHI (15 e )2 (11_rev &K 10),0,0,0,0,

ezl

D‘ T . 1 <a
18 (HJ (1+e4 )

ezl ez?

Di . ;
lag<H1(1—|—e”)2(1—|—eZ2)

) (11_rev &K C),

) (I1 _rev &K C),0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0] ,K]

> ‘ptolemy/kron_eq‘(Eq, [1,-2], Stack,Weight,HName);

. (ezl )2 ez? ‘
[[Dlag ((1 e P HI (15 e )2 (11 &K I0_rev),0,0,0,0,

ezl

Diag (m) (.[1 &K 61_7'6’11)7

ezl ez?

Di : :
lag<H1(1+ezf 2 (1 +e2)

> (I1 &K C_rev ),0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0] ,K]

> readlib(forget) (‘ptolemy/kron_ops‘);
> ‘ptolemy/kron_eq‘(Eq, [2,1], Stack,Weight,HName);

. (ezl )2ez2
[[Dlag <(1+ell FHT (1T )? P(2,1)(I1 &K 10),0,0,0,0,

z1

Diag (m) P(2,1)(I1 &K C),

ezl ez2

Dlag(m(Hezz )2 (1+e#)

) P(2,1)(I1 &K C),0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0] ,K]

> ‘ptolemy/kron_eq‘(Eq, [-2,1], Stack,Weight,HName);

. (ezl )2 ez2
[[Dlag <(1 el Y HI (167 )2 P(2,1) (11 &K [0_rev),0,0,0,0,

ezl

Dlag <m> P(Z,l)(Il &K C’_TB’U)7
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ezl ez2

Dlag(Hl(l—i—e” 2 (1+e*)

> P(2,1)(I1 &K C_rev),0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0] ,K]

> ‘ptolemy/kron_eq‘(Eq, [1], Stack,Weight,HName) ;

. (ezl )2 ) . ezl
[[Dlag <7(1 o )7 H (11 &K R0),0,0,0,0,Diag T (1L )e Axe ) I1,

ezl ez2

Dlag(m(Hezz )2 (1+e#)

> 11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0] ,K]

> ‘ptolemy/kron_eq‘(Eq, [2], Stack,Weight,HName) ;

ezlez2
Di . . R1 &K 10),0,0,0,0
H lag<(1+eﬂ)(1+ezz)2)( - 0.0.0.0

z2

Diag ( ! ) (R1 &K C),Diag <

L. > (R1 &K C),0,0,0,0,0,
14 e??

14 e?2

0,0,0,0,0,0,0,0,0,0,0,0,0] ,K]
> ‘ptolemy/kron_eq‘(Eq, [1, Stack,Weight ,HName);

. ezl . 1
[[Dlag (m) (R1 &K R0)7070,0707D13g <—1 +ezl> R17

z2
Diag (ﬁ) R1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] ,K]

| End of Maple Worksheet

Method of Implementation

The recursive descent parser is implemented by the procedures described in the next
three subsections. In addition to parsing, kron_accumulate converts the information
in RowCoords to the information needed to provide the RowOrient and Permutation
arguments of kron_term.

kron_aaccumulate This procedure first converts the information contained in RowCoords
into a form that is easier to use, although less compact. First the absolute value of each
element of RowCoords is stored in a local variable, called RowDim. This list of dimensions
that vary over the current collection of rows is then sorted. If the sorted order is not the
same as the order specified in RowCoords then a permutation matrix will be required in

the output and the procedure will compute the information for this matrix.
Explaining the construction of the permutation matrix requires the introduction
of new notation. For coordinates that vary in this region define the region coordinate
number to be the position number of the coordinate within the subset of coordinates that
vary. In this step the coordinates must be ordered as they are in the definition of the the
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cartesian ordering of the rows; this may not be the natural ordering of the coordinates.
Next define the domain coordinate number to be the position of a coordinate in the
natural coordinate ordering. For coordinates that vary in this region define the ordered
region coordinate number to be the position number of the coordinate within the subset
of coordinates that vary in this region when this subset of coordinates is ordered using
the natural ordering.

Then define f to be the function that maps the “region coordinate number” to
the “domain coordinate number.” Similarly define g to be the function that maps the
“domain coordinate number” to the “ordered region number.” It follows that RowDim
directly Specifies f and sorting RowDim directly specifies g~ 1. In order to define the
! over an ordered sequence of
inputs. Computing ! is performed by copying the information contained in RowDim
into a table.

permutation matrix it is necessary to compute f=1 o g~

The first parsing operation performed by the procedure is to determine if Exp is a
sum of terms or a single term. It then calls the procedure kron_term for each term in
the equation. If the result from kron_term is an algebraic expression then the term
was a constant, with respect to the SB-variables and the result is subtracted from the
RHS. If the result is of type [name,algebraic], then the result is a single block in the row
vector and is added to the corresponding table entry in Row. If the result is of type
set([name, algebraic]) then the result is a set of matrix blocks each one of which is added
to the appropriate entry in Row.

kron_term The procedure kron_term returns three different types depending on the input.

These three types may be aggregated into the following return type
{algebraic, [name,algebraicl,set([name,algebraicl)}.

Each of these types corresponds to one of the following circumstances.

1. If the term is constant with respect to the SB-variables then it is not associated
with any stack variable and the result will be of type algebraic. In fact, in this
case the result will be the input unchanged.

2. If the term depends only on sinc bases components (i.e., contains S-variable but not
B-variables) then the term is associated with the stack variable with the same name
as the state-variable. In this case the result will be a list containing the associated
stack variable name and the result of converting the term into Kronecker product
notation.

3. If the term depends on some boundary splines (i.e., contains some B-variables)
then the term will represent more than one element in the matrix. This is because
in positional format each B-variable represents several bases component groups,
specifically, one bases component group for each argument. In this case the result
will be a set of Kronecker product blocks, each represented as a list containing
the associated stack variable name and the associated Kronecker product block.

If the term contains more than one B-variable then each B-variable defines multiple
bases component groups. In this case the result must contain a nonzero block for
each of the elements in the cross-product of the set of bases component groups
defined by each B-variable. In addition, the name of each associated stack variable
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depends on all the dimensions for which the corresponding basis components are
boundary splines.

The first operation of the procedure is to call split_term to separate the factors of
the term. If the term does not have factors containing S-variables nor factors containing
B-variables then the result is a constant term and no further work is required.

Otherwise the procedure constructs the Kronecker product portion of the result.
In the case where the term contains B-variables and the result will represent several
different matrix blocks, each matrix block will still have the same Kronecker product
portion, that is each result differs only in the coefficient part. This is because the
arguments of the B-variables specify only the portion of the coeflicient that differs from
one basis component groups to the next.

To construct the Kronecker product portion of the result the procedure first deter-
mines which coordinates vary in the column direction. This is necessary for determining
the shape of the matrices in the result, i.e., whether an individual factor in the Kro-
necker product is a row vector, column vector, or a full matrix. The dimensions that
do not vary in the column direction are those dimensions that are not associated with
S-variables.

While determining which coordinates vary in the column direction the procedure
also determines the order of differentiation applied to each S-variable. This informa-
tion is used to determine which matrix will be used in the Kronecker product, e.g.,
I 1) 1) and so on. Notice that the order of differentiation of the B-variables is
always zero since differentiation of the original equations in the directions where the
bases component was a boundary spline was performed by directly differentiating the
boundary spline. That is the arguments of the B-variables already represent the effect
of any differentiation in the corresponding dimension.

Combining information about which of the coordinates vary in the column direction
with information about which coordinates vary in the row direction, information about
whether the coordinates decrease or increase in the row ordering, and information about
the order of the differentiation in each dimension, the procedure constructs the Kro-
necker product portion of the result. Information about which coordinates vary in the
row direction and about the ordering of the rows with respect to specific coordinates is
extracted from the argument RowOrient.

Next the procedure checks to see if the optional argument Permutation was pro-
vided. If so it checks the type of the argument and constructs the permutation matrix to
be inserted between the diagonal matrices and Kronecker product portion of the matrix.
Finally, the diagonal matrix to represent the coefficient portion term is constructed.

In the case where the term contains B-variables the appropriate coefficient will be the
product of the term coefficient and the coefficient which vary from one bases component
group to the next, i.e., the portions of the coefficient specified as arguments to of the B-
variables. These coefficients are constructed by calling eross_prod with the arguments
from each B-variable. The result is multiplied by the constant portion of the term and
the result is paired with the corresponding stack variable name.

If the symbolic representation of the diagonal matrix is constructed using factors
from different sources, then the procedure specified by the global variable ptolemy /SimpProc
is applied to the expression before it is used in the final result. However, if the coeflicient
in merely copied from the input no simplification is performed, the assumption being
that any desired simplification has already been performed.
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split_term The procedure split_term divides each of the factors of the term, specified by
the argument Term, into one of three lists. This procedure also returns the name of the
state-variable associated with this term.

Because the problem is assumed to be linear there must be only one state-variable
associated with each term, that is all of the SB-variables will be associated with the
same state-variable. This name is assigned to the variable named by the argument
StateVar. The result assigned to the variable named by the argument SFacts is a list
of the factors that are D-operators involving one of the S-variables. The result assigned
to the variable named by SFacts is a similar list for the factors which are B-variables.
And the result assigned to the variable named by Coeff will be the product of all the
other factors.

This procedure calls get_SB_var to get a list of the variables names. It then sep-
arates this list into S-variables (.i.e., those containing “_S”) and B-variables(i.e., those
containing “ B”). Next it examines these lists to extract the state-variable name and
assigns it to the variable specified by StateVar. In the second pass the procedure checks
each factor to see if it contains one of the S-variables or one of the B-variables. Those
that contain neither are part of the coefficient.

Dependencies

The procedure split_term calls the procedure get_SB_var to extract the names of the
bases components.

The procedure kron_term calls isDop to extract the name of the bases component
from each factor containing S-variables. The name is required in order to parse out the
associated dimension information and for the call to de_order which is used to figure
out what order ‘I’-matrix is required. Finally, cross_prod may be called to construct
a list of all the output results when the term contains B-variables.
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to_string

This function converts a Maple structure to a string.
to_string(0bj)

Earlier versions of Maple’s write procedure produced highly unnormalized representa-
tions of floating point numbers. Even in the current version of Maple, the cat procedure
will not handle floating point numbers. In addition this function converts commas into
spaces in lists to make the result more easily read form C.++

As Maple is improved the need for this function should disappear.

Example

| Start of Maple Worksheet

> with(ptolemy,to_string);
[ to_string ]

> to_string(sqrt(2.));
1.414213562

> to_string(evalf(E~3)); evalf(E"3);
20.08553691

20.08553691

> to_string(evalf (Pi*1079));
814159265/

> to_string(evalf(1/Pi));
0.3183098861

> to_string(evalf (1/Pi)*107(-2));
0.003183098861

> to_string(evalf (1/Pi)*107(-3));
3.183098861e — 4

> to_string(evalf([[1/sqrt(2), 1/sqrt(3)], [2, 31]1));
[[0.7071067810 0.5773502693][2 3 ]]

> to_string(Diag(exp(z1), exp(z2)));
Diag(exp(z1 ) exp(22))

End of Maple Worksheet

Version 0.1

297



298 CHAPTER 7. LOW LEVEL



Bibliography

[1]

[9]

[10]

[11]
[12]

ALFRED V AHO, JoHN E. HopcrorT, J. D. U. Data Structures and
Algorithms. Addison-Wesley, Reading, Mass, 1983.

CHAR, B. W. Maple V: Language Reference Manual. Springer-Varlag,
1992.

Heck, A. Introduction to Maple. Springer-Varlog, 1996.

JOHN ABBOTT, ANDRE VAN LEEUWEN, A. S. Objectives of openmath.
Technical Report 12, Research Institute for Applications of Computer Al-
gebra, 1996.

JouN LunD, K. L. B. Sinc Methods for Quadrature and Differential Equa-
tions. Society for Industrial and Applied Mathematics, Philadelphia, 1992.

KeirH O. GeDDES, S. R. Czapror, G. L. Algorithms for Computer
Algebra. Kluwer Academic Publishers, Boston, 1992.

PARKER, K. Automatic Setup of Sinc-Collocation for Partial Differential
Equations. PhD thesis, University of Utah, 1996.

ScHREIBER, R. Block algorithms for parallel machines. In Numerical
Algorithms for Modern Parallel Computer Architectures, M. Schultz, Ed.
Springer-Verlag, 1980, pp. 197-207.

SEDGEWICK, R. Algorithms in C++. Addison-Wesley, Reading, Mass.,
1992.

STENGER, F. Numerical Methods Based on Sinc and Analytic Functions.
Springer-Verlag, New York, 1993.

WiRrTH, N. Programming in Modula-2. Springer-Verlag, New York, 1982.

ZAYED, A. I. Advances in Shannon’s Sampling Theorem. CRC Press, Boca
Raton, 1993.

299



