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Abstract

In a recent article, Barraquand and Pudet (1996) state that the lattice based Forward Shooting Grid
(FSG) method is convergent for Asian options if either nearest lattice point or linear interpolation
is used. Moreover, this result is claimed to be independent of any relationship between the grid
quantization parameter (for the spacing of the nodal averages) and the timestep size. However,
a more detailed analysis of the propagation of interpolation error reveals a problem. A worst
case error analysis shows that the error may be large as the number of timesteps becomes large
if nearest lattice point interpolation is used. We demonstrate that the worst case error is indeed
attained in some numerical examples. Moreover, if a linear interpolation scheme is employed the
FSG algorithm does not converge to the correct price, being off by a constant error which does not
vanish in the limit as At — 0, unless the limit is carried out in a certain way. Similarly, the method
proposed by Hull and White (1993) is convergent provided that the node spacing in the average
direction is selected appropriately as At — 0. It is also a straightforward matter to show that
partial differential equation (PDE) based methods are convergent. Numerical examples comparing
convergence for all three techniques are presented.



1 Introduction

The valuation of path-dependent contingent claims continues to be an active area of research in
finance. With the general absence of analytic solutions, the development of effective numerical
algorithms has taken on added importance. Broadly speaking, these fall into three categories.
Monte Carlo methods are relatively straightforward to implement, though there are some significant
issues with regard to variance reduction methods as well as monitoring frequencies. The general
survey paper on Monte Carlo techniques by Boyle, Broadie, and Glasserman (1997) includes some
discussion of these aspects of path-dependent option valuation and provides references to this
literature. A general approach based on partial differential equations is described in Wilmott,
Dewynne, and Howison (1993). An illustration of how this type of approach may be used to value
lookback options is provided in Forsyth, Vetzal, and Zvan (1998). Finally, given their popularity
and simplicity in the context of vanilla options, it is not surprising that much effort has been
devoted to adapting lattice based methods (i.e. binomial and trinomial trees) to the context of
path-dependent contracts. Although there are numerous examples of this type of approach in the
literature, we wish to concentrate on a subset of these. In particular, certain authors have proposed
a method in which the usual tree is augmented by a second state vector which is intended to capture
the path-dependent aspects of the claim. The elements of this auxiliary vector may be, for example,
possible values for the maximum or minimum stock price reached thus far in the case of a lookback
or candidates for the average stock price in the case of an Asian option.

For present purposes, an important feature of the auxiliary state vector is whether it contains
exact values of the path-dependent feature or whether it is a representative grid spanning the range
of possible values. In the case of a lookback, the highest or lowest price is necessarily one in the
stock price tree. Consequently it is easy to construct the second state vector so that each element
corresponds to a possible value of the maximum or minimum price reached thus far. On the other
hand, the number of possible values for the arithmetic average grows exponentially with the number
of timesteps. It is not feasible to track every possible average in the auxiliary vector. Instead the
vector contains a grid which covers the range of possible averages, and interpolation between the
nodes of this grid is required when solving backwards through the tree to find the initial value of
the claim.

The first authors to propose this type of method were Ritchken, Sankarasubramanian, and Vijh
(1993) and Hull and White (1993). Ritchken et al. examined European and American style Asian
options, whereas Hull and White considered a variety of path-dependent claims including American
and European lookbacks and Asians. A similar set of contracts was studied by Barraquand and
Pudet (1996) using a slightly different algorithm which they called the forward shooting grid (FSG)
method. Li, Ritchken, and Sankarasubramanian (1995) and Ritchken and Chuang (1998) have

used this general kind of approach to value interest rate contingent claims. Another application



is provided by Ritchken and Trevor (1998) in the context of pricing options where the underlying
stock price follows various kinds of GARCH processes.

Given the wide applicability of this methodology, it is clearly important to understand its con-
vergence properties. Somewhat surprisingly, only Barraquand and Pudet (1996) have provided
much analysis in this regard. Most authors have confined themselves to illustrating convergence
through numerical examples. Unfortunately, although the convergence proof provided by Bar-
raquand and Pudet is correct for situations which do not require interpolation, there is a problem
with their proof for contracts where interpolation is needed. More precisely, Barraquand and Pudet

claim that
e the FSG method is convergent if nearest lattice point interpolation is used;

e unconditional convergence is obtained provided that the timestep At and the spacing of the
nodal averages tend to zero, regardless of any quantitative relationship between these two

quantization parameters (Barraquand and Pudet (1996), p. 42).

Since an interpolation error is introduced at each timestep, it is clear that the cumulative effect of
a finite error applied an infinite number of times (as the timestep tends to zero) must be carefully
monitored. The basic problem with Barraquand and Pudet’s analysis is that they consider the
interpolation error only at the expiry date of the option, ignoring the additional errors that occur
at each timestep in the tree. Section 2 of this paper presents a worst case error analysis for the

propagation of the interpolation error which shows that:
¢ if nearest lattice point interpolation is used, then the FSG method may not be convergent;

e if linear interpolation is used, then the error is not reduced in the limit as A¢ — 0, unless the
limit is carried out in a certain way. In particular, the grid spacing in the auxiliary vector

must be an appropriate function of At.

This latter point illustrates the importance of a formal convergence analysis. Numerical examples
intended to demonstrate convergence are not sufficient here because it is possible to converge to a
value which differs from the correct price by a constant. Now in practice, it should be pointed out
that this constant appears to be quite small, at least for the examples which we have examined.
This means that there do not appear to be any significant problems from using a theoretically
inappropriate grid spacing in the auxiliary vector. Nonetheless, such problems might occur and our
recommended approach provides a simple means of ensuring that they do not.

Using a similar analysis, section 3 demonstrates that the Hull and White (1993) method is con-
vergent provided that the grid quantization parameter is chosen appropriately. Section 4 describes
a partial differential equation (PDE) based method and shows that it is convergent as well. Sec-

tion 5 presents some numerical examples. Section 6 concludes. As we are interested only in cases



where interpolation is required, we focus our discussion on (arithmetic average) Asian options. We
emphasize, however, that there is nothing unique about this. Our results apply to any situation

where interpolation is needed.

2 Analysis of the Forward Shooting Grid Method

We will use the notation in Barraquand and Pudet (1996) to facilitate comparison with that work.
Let

AZ = oVAL
AY = pAZ (1)

where o is the volatility, At is the timestep, and p is a quantization parameter for spacing in the Y’
(average) direction. In the following, we assume that 1/p is an integer. Let discrete values of the

asset price S and average price A be given by

S = Spelt?
AT = SpethY
n=0,...,N; j=-n,...,4+n; k= —kn(n),...,+kmn(n) (2)

where N is the number of timesteps and

km(n) =n/p . (3)

To avoid unnecessary algebraic complication without any loss of generality, take Sy = 1 in equation
(2). It becomes:

n _  _jAZ
S o= €

AT = kAY (4)

It follows that all error estimates will be relative to Sy, consistent with Barraquand and Pudet
(1996).

Under the usual binomial approximation, we associate an upward transition S7 — S;ljr"ll with
probability p, and a downward transition S} — S;-Zj'll with probability (1 — p), during the time
t = nAt to the time t = (n + 1)At. The average is updated based on the transitions:
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FIGURE 1: Asset price tree indicating that a set of discrete averages and option values exists at
each node of the tree.
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with A} = Sy = 1. Each asset price node in the tree has associated with it a set of average values
% and option prices U}'. This is illustrated in Figure 1.
Note that AZI (1] k) and AZT (1]. k) in equation (5) do not necessarily coincide with the lattice values

in equation (4). This necessitates some form of interpolation (Hull and White (1993); Barraquand
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and Pudet (1996)). For future reference, define

log (A"Il. )
* 1 — k= (4,k)
kfloor(Jvk) = floor pA—Z
kj:eil(j7 k) = k}tlom'(ja k) +1. (6)

These are simply the indices for the lattice average values in equation (4) which bracket the updated
average values in equation (5).

Let U, = U(S}, A%, nAt) be the value of the option at t = nAt, A = A}, S = S7. The value of
the option given a suitable terminal payoff condition Uﬁc is given by the usual backward recursion,
bearing in mind that the required values of the averages at ¢t = n + 1 must be interpolated from
the given lattice values at ¢t = n + 1 (as shown in Figure 2):



U;?k — efrAt [p (an—H Un—l—l )+ (1 _ an—i—l ) UTL_H ' )

floor(-77 ) Jj+1, kflOOT(]vk floor(]’ ) J+1ak:;il(.77k)
. n+1 n+1 _ n+l n+1
+ (1 p) (ak;loor(]7k)U] 1 kflaor(j’k) + (1 ak;laor(]ak)> UJ 1 kcezl(j k))]
n=N-1,...,0; j=-n,...,+n; k= —kn(n),...,+km(n) . (7)

In equation (7), p is the risk neutral probability

erAt _ e—om
= (8)
P oVl _ g—ov/AL

r is the risk-free interest rate, and the a’s are determined by the type of interpolation used (nearest

lattice point or linear). Note that

0 < o Gm=St
0 < ot <1. 9
- O! floo'r(-77 ) ( )

In the following, we will restrict attention to the propagation of the interpolation error. Let
(U;fk)E denote the value of the option obtained using backward recursion, assuming that no inter-

polation is required, i.e.

(U]"k)E = At [ (Un:11k+(3 k:))E +(1-p) (Un Lk—(j,k ))E]
n=N-1,...,0; j=-n,...,4n; k= —kn(n),...,+km(n) . (10)

Here (U;L—:—ll,k'*'(j,k)) denotes the value of U for asset price S’ +1, and average value AZJ';(ILk), as

suming no interpolation is required. This assumes the existence of

(U;l:ll,kﬂj,k)) U;Tll (AZi(lj k)) (11)

where UJ'{(A) is a continuous well-defined function of A in the range [A”J]‘c'l (n)> AT (n)]. Note

that

E E E
n+1 _ n+1 n+1 _on+l n+1
(Uj+1,k+(a‘,k)) N akﬁw(m) (Uj+l,k}imr(y‘,k>) + (1 Uk K 1o0r (K )) (Uj+l,k;,~z(ﬁk>)
n+1
q
+ (lB flonr(j k)>

E E E
n+1 _ n+1 n+1 _ . ntl n+1
(U —Lk- (-7 k)) o akj_'lOOT(Jak) (UJ 1 kfloor(Jak)) + (1 a floo'r(J’ )) (Uj—l,k;il(j,k)>



+ (ﬂg_ W))HH. (12)

floor

For ¢ = 1 (nearest lattice point interpolation) and g = 2 (linear interpolation) we have

il ouUt (n)
1 _ . n+1 n+1 n+1 _An+1 j+1
(’Bﬁ (j,k)) = mm [(Ak"' (k) Ak+(j,k)) ’ (Ak+(j,k) A (j,k))] oA

floor ceil floor
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where 7 € [AZi’ ! (i)’ AZj ! G k)] in each case. Substituting equation (12) into equation (10) gives
floor \J ceil \J?

B E E
n _ —rAt n+1 n+1 _n+1 n+1
(Umk) € [p (ak,tm(j,k) (Uj+1,k,f,m(j,k)) + (1 ak,f,m(j,k)> (Uj+1,kcti,(j,k)) )
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- 1-p) (ak;,m(j,k) (Uj—l,k;,m(j,k)) * ( O‘k;,m(j,k)> (Uj—l,k;i,(j,k)) )]

+ e At [P (ﬁZ+ (j,k))m—l +(1-p) (BZ— (j,k))n—i—l] : (14)

floor floor

Let the error in the value of U7, due to interpolation be denoted by E7'; where

E7, = (U?jk)E U . (15)

J5 J J

Then an equation for the propagation of the error due to interpolation can be deduced by subtract-

ing equation (7) from equation (14) to obtain

o= e[y (gr n+1 _ ot n+1
B = e (a’“f*zowU”“)Eﬂ'ﬂ’kﬁmw,k)+ (1 akﬁm<j,k>) Ej+1,k;,-l<j,k>)
1-— n+1 prtl 1 _ q"t! Entl
v (ak;,m(j,k) L )\ W7, ) L )
ac| ntl n+l
r q B .
+ ° p < k}}_lOUT(j’k)) + (1 p) (ﬁkfloor(j’k)) ‘| . (16)

In order to bound the error terms due to interpolation, let

aurtl(A
M, = mnz’a}x 7jgj4( )‘
Q?UM(A)
My = mna;x 5;212 (17)




where A_j  (nt1) < A < Aig, (nt1) in each case. We can then write equation (16) as

< —rAt n+1 .En+1 1— an+1 .En+1
= Vtroon o) [ 31k, )| T Koo i) ) | 25412 Gib)
+ ( )( n+1 n+1

+1 n+1
+({1-0a"7 E"
floor(]ak) J 1 kfloor(.77k) kflaor(]ak) J_lakceil(Jak)

q
+ e*'l‘At |:Mq (Azi—l ) (1 o e*pAZ)q
ceil(j,k)

We can further bound the interpolation error term in equation (18) by noting that (from equations

(5-6))

mn
‘Ej,k

(18)

At < max (S’;lj_'ll, Ak )
ceil(j,k)

A < max (S AL) (19)
ceil(j,k)

Combining equation (19) with equation (18) gives

=

n+1
Jj+1, kfloar(j’k)

< e—rAt an+1
- p flocr (j’ )

+1 n+1
+{1-a" ) E" .
kﬁow(],k) JHLET . (4,k)

+ (d-p) (‘J‘Z;fjwo,m B +11kﬂm(j,k) + (1 B azftjw(a,k)) ‘E;jll,k;i,(j,k) )]
+ e At [Mq (max (S;:"ll,A")) (1 - e_pAZ) ] . (20)
Let
|B"| = max | B, (21)
and note that (with Sp = 1)
max (5’;:"11, A”) e(n+1)oVat (22)

Then, since the interpolation coefficients @ and the probability p are all in the range [0, 1], from
equations (20-22)

Iz < et (e faag (VA (- ) ) (23)

Equation (23) states that the interpolation error generated during timestep n + 1 — n does
not become amplified, but propagates with non-increasing size throughout the remainder of the
computation. However, the cumulative error grows linearly with each step, due to the fact that

a new interpolation error occurs at each step. This results in an expression for the error after NV



steps of the form (with NAt¢ = T'; T being the expiry date of the contract)

n=N-1
HEOH - ‘E&O‘ < e TNAL HENH +2 3 A, (adnit) (24)
n=0
with AATHL — e(nt1)oVat (1 —e PAZ ) This is of the same general form as that obtained by
Barraquand and Pudet (1996, p. 40) except that the sum over all interpolation errors incurred at
each step was omitted there — only the interpolation error at the last timestep was taken into
account. Since HEN H = 0 (the payoff is assumed exact) and since T' = NA¢, taking the limit as
At — 0 in equation (24) gives
n=N-1

quamq—rAt (1 B e—pAZ)q Z e(ax/Eq—rAt)n

n=0

IN

=]

= quU\/Eq*’/'At (1 _ eprZ)q <]_ _ e(O’\/Eq_rAt)N>

1— e(o‘x/Eq—’rAt)

1

M 1
quq (a\/ At)q e T dT/VADT 55 At 0 | (25)

This clearly becomes unbounded as At — 0.

The bound in equation (25) is too pessimistic. This is because the effect of interpolation errors
for large values of A should be small at ¢ = 0 since these states are very improbable. If we make the
assumption that the interpolation errors are negligible for any value of A > A., then the estimate

maxr

for the interpolation error bound becomes (replacing AA™L by A, (1 —ePAZ ) in equation (24))

o] < it (- ey

TM,A? (pa\/A_t)q
~ ! A7 (26)

Note that this tends to zero only if ¢ > 3. In particular, for ¢ = 1 (nearest lattice point interpo-
lation), equation (26) indicates that the scheme may be divergent. This will be demonstrated in
some example computations below in Section 5.

More generally, a precise argument can be given to show that the effect of interpolation errors
for large A becomes small at ¢ = 0. In the Appendix, we show that the interpolation error is
bounded by (as At — 0 with 7' = NAt)

TCrmaz My (pov/At)*

‘E&O‘ < NCpazM, (1 - e7#27)" ~ i



where C),,; is a constant independent of A¢. This bound has the same form as equation (26),
which was obtained by a more intuitive argument.

Equation (27) suggests that the error can become unbounded if (for example) ¢ = 1. However,
this is an overestimate of the error. Note that equation (7) has all positive coefficients which sum
to unity. Consequently

min (UN) =0= U >0. (28)

In the case of a fixed strike put (with exercise price K), we have
max (UN) = K = Uy < K . (29)

For a fixed strike call (with exercise price K), we note that the value of U7, can be maximized at

each step by choosing

1 _ 1 _ 1 _ 1 4k
AL Gm = Al ceiip = ARt fompy = Max (5?11 7An)
n+1 _ An+l1 _ an+1 o n4d-1 k
Ak*(j,k) - Ak*ceil(j,k) - Ak*floor(j,k) = max( -1 7An)
kEt(j, k) = max(k,j + 1)
k= (j,k) = max(k,j — 1) . (30)
Therefore Ul < B}y, where BY} is given by
_ —TAt +1 +1
(Bﬂn’“) =e’ [p (B;L+1,k+(j,k)> +(1-p) (B;Lfl,lc—(j,k))] (31)

forn = N* —1,...,0 where B]]'\,[k = max (O,A}CV - K) and k*(j, k), k™ (j,k) are given in equation
(30). This is simply the binomial expression for a fixed strike lookback call. Consequently we have

0 < Ugy < B(K) (32)

where B(K) = K for a fixed strike put, and is the value of a fixed strike lookback when bounding
the computed price for a fixed strike Asian call. The above arguments can be repeated for the case
of floating strike Asian options, with the upper bounds given in terms of the corresponding floating

strike lookbacks. Thus, equation (60) is more precisely stated as
‘E&O‘ < min [B(K), NCuaxM, (1 — e"2%)’] (33)

where B(K) is independent of At. This means that the error never becomes unbounded, but is of
size B(K) in the worst case (which may be very large, of course).

In equation (27), it is easy to see that convergence can be obtained if the grid quantization

10



parameter p tends to zero as At — 0 as a power of A¢. In particular, if we desire an overall

convergence rate of at least At, then we must have
p=0 [(At)@—qﬂ)/q] (34)

For the case of nearest lattice node interpolation (¢ = 1) p = O [(At)?’/ 2], which implies that at
timestep n (using the notation of equation (2)),

ekzmap\/E — ekmU(At)2
_ noVA
n

which results in the total number of nodes at step n being O [n2 (At)_3/ 2] . The total computational

complexity after N steps is then O [N 3 (At)_?’/ 2] = O(N?/?). For linear interpolation, a similar

~1/2 with total complexity for N

calculation gives the total number of nodes at step n as n2(At)
steps of O(N7/?).

We emphasize here that the above complexities assume that p satisfies equation (34), but p is
assumed to be a constant independent of At in Barraquand and Pudet (1996). For constant p, the

complexity of the FSG method is O(IN?), but convergence is problematic.

3 Analysis of the Hull and White Method

The method developed in Hull and White (1993) is actually a more efficient implementation of the
method described in Barraquand and Pudet (1996). The node spacing in the A direction in Hull
and White (1993) is

m = Speth (36)

where, for given h, the range in k values in equation (36) is selected to span the possible averages
at timestep n. Recall that in equation (2) the range of A values at each timestep n is the same as
the range of S values, which is clearly an overestimate. Consequently, the Hull and White method
has a more efficient average node placement compared to the FSG method.

Using an argument similar to that used to derive equation (27), we obtain the estimate

TCrmaa M, (1— )

<
- At

B8 (37)

Hull and White (1993) suggest either linear or quadratic interpolation. If we take h = C'At, for

11



example, then

_h\4
_ TCmasM, (1-e)
- At

This implies that the Hull and White method is convergent as long as linear interpolation (¢ =

&~ TCrpax MyCI(AL)TT . (38)

2) is used. The convergence arguments for lattice type methods used in this paper rely on the
interpolation coefficiencts being in the range [0,1]. As such, they do not apply for the case of
quadratic interpolation and so we do not consider such methods here. The expression in equation
(38) considers only the effect of the interpolation error. There will also be the usual lattice error of
size O(At), so that the global convergence rate of the Hull and White method should be of O(At).

Following Chalasani, Jha, Egriboyun, and Varikooty (1998), we can estimate the number of

nodal averages at timestep n for large n. The maximum possible average value for a lattice after n
steps is

DY = Ll
max n + 1

1 — eoVAH(n+1)
(n+1) (1 - eV
eU(TH-l)\/E

(n+1) (ec’m - 1)

1R

(0]

] as n— oo . (39)

The minimum possible value of the average after n steps is

k=n e—ka’\/At
n . — k=0
min n+1

1 — e—oVAt(n+1)
(n+1) (1 — e“’m)

eo VAL
~ O (n+1)(e‘fm—1)] as n — 0o . (40)
Letting
O e (n+1)VAL
(n+1) (e"m - 1)
em2CAt e7VAl

N (n+1)(e“m—1) ’ )

12



then the total number of average nodes (m; — mz) is O(n/v/At). This gives the total number of
nodes at each step as O(n?/v/At), with resulting complexity O(N7/?).

4 Analysis of PDE Methods

The discrete Asian option pricing problem can be solved using a system of one-dimensional PDE’s
as described in Wilmott et al. (1993) and Zvan, Forsyth, and Vetzal (1998). We consider the option
value U to be a function of two state variables, the asset price S and the average A. Away from

each discrete observation date ¢, U = U(S, A, t) satisfies the usual Black-Scholes equation

0252

U + 5

Uss +rSUs —rU =0 (42)
At observation dates no-arbitrage considerations imply that
U(S, A" ¢ty = U(S, A", t,) (43)

where ¢ (t,) is the time immediately after (before) the observation date ¢,,, and

(5 —4")

An+1:An
+ n+ 2

(44)
with A% = S°. Convergence of the above method is easily demonstrated. Away from the observation
dates, we simply solve a set of one-dimensional problems (equation (42)) for each discrete value of
the average, using standard numerical methods. For example, suppose that second order spatial
discretization is used with Crank-Nicolson time weighting. Since this is a stable, consistent method,
the solution converges at a rate O [(AS)?2, (At)?]. Note that this rate of convergence can be obtained
even for rough initial data (Rannacher (1984)), which is characteristic of payoff functions. The only
unusual feature in this problem is that at each observation date, a new initial condition is generated
using the condition (44). Since generally A"*! will not coincide with a grid node, interpolation
(linear or quadratic) is used to estimate the value of the solution U(S, A1 t}). The interpolation
at each observation date is illustrated in Figure 3.

Since a stable method is being used, the interpolation errors do not become amplified by the
difference scheme. In the worst case, the errors simply persist (i.e. do not get damped out).
Consequently, if N interpolation errors are introduced at N observation times, then the worst case
effect of these errors is simply NV times the maximum interpolation error.

Assuming that the same grid spacing is used in the S and A direction, and letting ASpya.x be

13



FIGURE 3: Between each observation date, one-dimensional PDE’s for each value of the average
A are solved. The values of the option price U~ before each observation date are interpolated from
the values just after the observation date U™T.

the maximum grid spacing in the S or A direction, then the interpolation error at each step is
interpolation error at each observation = O [(ASyax)?] (45)

where ¢ = 2 for linear interpolation and ¢ = 3 for quadratic interpolation. After N = O(1/At)

steps, we have

Asmax 7
global interpolation error = O [%} . (46)
Assuming second order space and time truncation errors, then the total error will be
ASmaX 7
global discretization error = O [%] +0 [(ASmax)2] +0 [(At)2] . (47)

If we use quadratic interpolation as in Zvan et al. (1998), and take the limit in such a way that

14



ASa: = CAt where C' is a constant, then we obtain
global discretization error = O [(At)z] . (48)

Further details concerning the PDE method can be found in Zvan et al. (1998).

Consider a limiting process whereby for a timestep of At = T'/N we take O(N) nodes in both the
average and asset grids. Since the cost of solving NV implicit one-dimensional PDE’s each consisting
of N nodes is O(NN?), we have a total complexity after N steps of O(NN?3). This complexity is smaller
than that of the Hull and White (1993) method and is the same as that of the FSG method with
constant p (equation (1)). The rate of convergence for the PDE method is O [(At)?], compared
to at best O(At) for the lattice methods. Therefore it would appear that the PDE method will
be superior for sufficiently small convergence tolerances. However, equation (48) only takes into
account the truncation error of the discretization of the PDE and the interpolation error. There
is an additional error due the fact that we are attempting to converge to a continuously observed
Asian option using a discretely observed approximation. This will introduce an O(At) error which
will eventually dominate the other errors. Note that the lattice methods suffer from this error
as well, but these methods are only O(At) to start with. Of course, in situations where we are
attempting to price discretely monitored Asian options with a specified finite observation interval,

then the faster convergence of the PDE approach will be more noticeable.

5 Numerical Examples

This section provides some numerical computations to support our analysis. We considered the
example of a European fixed strike call option, and computed prices using the FSG, Hull and
White, and PDE methods. The algorithms were coded in C++. Computations were performed on
a Sun Ultrasparc workstation.

We begin by describing some further details about the algorithms. The FSG method was
implemented as described in Barraquand and Pudet (1996). Both nearest lattice point and linear
interpolation methods were examined. Barraquand and Pudet (p. 47) recommend values of p = 0.5
for linear interpolation and p = 0.1 for nearest lattice point interpolation. We computed values
using both of these values of p for each interpolation scheme. In addition, we also used the value
p = 1.0. In this case the number of nodes for the average was the same as that for the stock price.
This particular scheme was not expected to perform very well, but it provided an interesting point
of comparison.

The Hull and White (1993) method was implemented as described in that article, with the
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TABLE 1: Data for the test cases. European fixed strike call options. Limit as frequency of obser-
vation becomes continuous.

Case 1 Case 2
o 0.40 0.50
r 0.10 0.10
Time to expiry | 0.25 years | 5.0 years
Exercise price | $100 $100
Asset price $100 $100

additional feature that the average node spacing parameter h in equation (36) was specified as:

h= oy 22220 (49)
T
This choice of scaling factor for h was selected so as to give roughly the same number of average
nodes at t = T for the different maturities and volatilities we considered. The parameter « in
equation (49) controls the fineness of the grid in the average direction. Three values of a were
used: 10, 5, and 1. Linear interpolation was used.

The PDE method employed an irregularly spaced finite difference method with Crank-Nicolson
timestepping. The finite difference method in one dimension is algebraically identical to a finite
element discretization with linear basis functions and mass lumping. Constant timesteps were used
to facilitate comparison with the lattice methods. The same grid spacing was used in both the A
and S directions. On the initial coarse 50 x 50 grid, the spacing near the exercise price was selected
to be similar to the spacing used in the lattice methods. Finer grids were constructed by halving the
spacing of the coarse grids. The timestep size was also halved with each grid refinement. Quadratic
interpolation was used.

We considered two cases of fixed strike Asian call options. The data for these cases is listed in
Table 1. The results for the FSG method are given in Table 2. Consider Case 1 first. Clearly, the
computations for nearest lattice point interpolation are in agreement with the convergence analysis
presented above. As will be shown below, the correct price for this option is ~ $5.1662. When
p = 1.0 or p = 0.5, the computed values are nowhere near the true price. When p = 0.1, the results
for a small number of timesteps (50-100) are reasonably close to the correct price. However, as At
is decreased the solution begins to diverge.

When linear interpolation is used, our convergence analysis indicates that the FSG method will
converge to the correct solution plus a constant error as At — 0. Extrapolation of the prices in the
table for p = 0.1 with linear interpolation to At = 0 gives a value of $5.1688, a little higher than

the true price.
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TABLE 2: Convergence of the Forward Shooting Grid method. CPU times are given for a Sun
Ultrasparc.

Case 1
Nearest Lattice Linear
Point Interpolation Interpolation
p | Timesteps | Option Value | CPU (sec) | Option Value | CPU (sec)
1.0 50 2.0942 0.4 5.2672 0.6
100 1.4311 2.9 5.2447 5.2
200 0.9881 23.5 5.2254 41.5
400 0.6873 188 5.2101 332
0.5 50 3.6866 0.7 5.2095 1.3
100 2.6806 5.9 5.2019 10.3
200 1.8415 46.9 5.1941 82.8
400 1.2412 375 5.1874 663
0.1 50 5.1629 3.7 5.1613 6.5
100 5.1688 29.5 5.1657 51.9
200 5.1364 236 5.1678 415
400 4.8737 1881 5.1685 3316
Case 2
1.0 50 16.2053 0.4 28.7217 0.6
100 10.7957 3.0 28.6631 4.6
200 6.9113 24.1 28.6052 36.6
400 4.0803 191 28.5556 291
0.5 50 25.0508 0.8 28.5168 1.1
100 19.9843 6.0 28.5107 9.1
200 14.7166 48.1 28.4934 73.0
400 9.9951 382 28.4745 562
0.1 50 28.2968 3.8 28.3440 5.7
100 28.6676 30.1 28.3816 45.7
200 29.3198 241 28.3996 366
400 29.1303 1906 28.4071 2908
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Turning to Case 2, we begin by noting that the correct price here is ~ $28.4052. Again,
very poor results are obtained using nearest lattice point interpolation. The solution with linear
interpolation is close to the true price with p = 0.1 and 400 timesteps. Extrapolation to At = 0
of the prices in the table for linear interpolation with p = 0.1 gives a value of $28.4131. For both
cases, the FSG method with linear interpolation converges to a number which although close to
the correct price is not that price.

The Hull and White algorithm results for both cases are presented in Table 3. This method
is well-behaved for all values of a and numbers of timesteps. This is consistent with our analysis
because the grid spacing in the average direction is selected as in equation (49), providing a con-
vergent method. The complexity estimate of O(N 7/ 2) is clearly confirmed in the table, both in
terms of CPU time and the number of grid nodes at ¢ = T'. The rate of convergence implied by
the numbers in the table is O(At). Extrapolation to At = 0 of the values when o = 1 gives price
estimates of $5.1663 for Case 1 and $28.4051 for Case 2.

Table 4 contains the results for the PDE method for both cases. As expected, this method is also
convergent and shows an O(N?3) complexity. The rate of convergence is O(At). As noted above,
this is slower than the O [(At)?] convergence rate that one might expect due to the fact that we are
taking the continuous limit of a discrete observation model. Extrapolating the results to At = 0
gives prices of $5.1662 for Case 1 and $29.4052 for Case 2, in excellent agreement with the Hull and
White extrapolated prices of $5.1663 and $28.4051. As both of these methods are convergent, this
leads to the conclusion that the true prices are ~ $5.1662 and $28.4052. By contrast, recall that
the FSG extrapolated prices were $5.1688 and $28.4131. This is clearly consistent with our analysis
indicating that the FSG method converges to a price with a constant error if linear interpolation
is used. Of course, our analysis suggests that the FSG method could be modified so that it is
convergent. This could be done, for example, by making p depend on v/At. However, this would
result in what amounts to an inefficient implementation of the Hull and White method, owing to
an unnecessarily large number of nodes in the average direction.

Although our main emphasis is on convergence, it might be worth concluding this section by
making some observations on the relative merits of the PDE and Hull and White methods. For
this particular case, where we are attempting to converge to the continuous observation limit, the
two approaches are quite comparable. It might be possible to employ quadratic interpolation to
improve the efficiency of the Hull and White method. This has been suggested by both Hull and
White and Ritchken and Chuang (1998). The tradeoff here would be between fewer nodes in the
average direction (observe that our PDE approach using quadratic interpolation requires far fewer
grid points than the Hull and White method to achieve comparable accuracy) versus more floating
point operations being required for the interpolation. However, we stress that the convergence of

such an approach has not been formally demonstrated.
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TABLE 3: Convergence of the Hull and White method for the test cases. CPU times are given for
a Sun Ultrasparc. The grid size is the number of nodes in the A direction att =T.

Case 1
a | Timesteps | Grid Size | Option Value | CPU (sec)
10 50 204 5.1824 0.8
100 528 5.1745 8.6
200 1535 5.1706 97.8
400 4209 5.1686 1084
5 50 371 5.1651 1.5
100 1051 5.1658 16.9
200 2941 5.1661 189
400 8192 5.1663 2120
1 50 1794 5.1580 7.2
100 5053 5.1622 81.4
200 14243 5.1644 917
400 40205 5.1654 10296
Case 2
10 50 163 28.5098 0.7
100 450 28.4583 7.5
200 1225 28.4319 82.7
400 3394 28.4186 913
5 50 308 28.4310 1.3
100 844 28.4180 144
200 2356 28.4115 160
400 6579 28.4083 1782
1 50 1440 28.3899 6.0
100 4051 28.3972 67.2
200 11415 28.4011 757
400 32196 28.4031 8548
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TABLE 4: Convergence of the PDE method for the test cases. CPU times are given for a Sun
Ultrasparc. A Cartesian product grid is used. The grid size is given as number of nodes in the S
and A directions.

Case 1
Grid Size | Timesteps | Option Value | CPU (sec)
50 x 50 50 5.1478 1.6
100 x 100 100 5.1559 13.8
200 x 200 200 5.1610 112
400 x 400 400 5.1636 908
Case 2
50 x 50 50 28.3573 2.2
100 x 100 100 28.3842 14.5
200 x 200 200 28.3952 112
400 x 400 400 28.4003 911

In practice, a typical contract would feature discrete monitoring. In such cases the PDE method
can be expected to be superior. Both the Hull and White and FSG methods at best would converge
at a rate of O(At), and at best have O(N3) complexity. The PDE method also has complexity of
order N3, but its convergence rate is O [(At)?]. This means that in order to obtain a given error,
lattice based methods require work of order N® whereas the PDE method requires work of order
N3/2 due to the implicit discretization.

Even so, in our view the real strength of the PDE method lies in its flexibility in terms of
handling more complex path-dependent features such as barrier provisions. Various types of Asian
options with assorted barriers have been examined using the PDE method by Zvan et al. (1998).
Examples include Parisian style cases where the barrier provisions depend on the length of time
for which the underlying asset lies outside a pre-specified range, as well as situations where the
barrier is in terms of the average rather than the price. It is also easy to adapt the PDE method
to alternative stochastic processes for the underlying asset such as a CEV model. By comparison,
we suspect that the incorporation of such characteristics into a lattice based approach would be

relatively difficult.

6 Conclusion

The convergence analysis presented in this paper suggests that in the worst case, the forward shoot-
ing grid method proposed by Barraquand and Pudet (1996) with nearest lattice point interpolation
will exhibit large errors as the number of timesteps becomes large. This analysis is confirmed by

some numerical experiments. If linear interpolation is used, then the FSG method should converge
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to the correct solution plus a constant error term which is not reduced by decreasing the timestep.
The constant appears to be fairly small if a large number of nodes is used in the average direction,
but this method should be used with caution.

As long as the average node spacing parameter is selected appropriately, then the Hull and
White (1993) method is convergent. If linear interpolation is used, then the complexity of this
algorithm is O(N7/2), where N is the number of timesteps. If quadratic interpolation is used, then
it may be possible to reduce this complexity, although not to O(N?3). Moreover, it has not been
formally shown that such an approach would be convergent.

The PDE method is also convergent in the continuous limit for Asian options. The PDE method
has complexity O(N?®), where N is the number of timesteps. In the case of discretely observed
barriers, this method converges as O [(At)?], where At is the timestep size (Zvan et al. (1998)).
When using this method to converge to the continuously observed limit, the rate of convergence is
reduced to O(At).

Generally, when dealing with straightforward Asian options, either the Hull and White or the
PDE methods are effective. The FSG method is somewhat problematic. The PDE method shows
promise as being a flexible, general technique which can be used to price a wide variety of more
complex path-dependent options. Between observation dates, the PDE algorithm consists of a set of
independent one-dimensional PDE’s. These one dimensional problems only exchange information
at observation dates. This would seem to be ideally suited to a parallel implementation, if speed

of computation is of paramount concern.
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Appendix

In this Appendix, we make a more precise argument that the effect of interpolation errors for large
A becomes small at ¢ = 0. This means that a bound of the form (26) is actually a correct estimate,
compared to the overly pessimistic (25).

Since equation (20) is linear, we can consider ‘E(()),o‘ to be

B < > (v
N*=0

(50)

where E7) (N*) is the error propagated to node (j,k) at timestep n due to an interpolation error
occurring during the transition from N* +1 — N*, assuming no other interpolation errors occur
during transitions from N* - N* —1,N*—1 = N*—2,...,1 = 0. Clearly E7,(N*) = 0 for
n> N*.

Consequently, we have (from equation (20))

‘EJJY,: (N9 < e At [Mq (max <Sﬁ1+1,Ag*))q (1 — e_pAZ)q]
< M, (1—e22)" (s8N + (aN)] - (51)
We can rewrite equation (51) as
B )| < My (1= e 2 2) (B V), + (B (V) (52)

with
(BRv), = (a)’
(B @)y = (sh)" (53)

Since the error equation (20) is linear, we can consider the error E7;(N*) to be bounded by the
sum of errors due to (E]]Y,: (N*))S and (E]JY,: (N*))A

—_oAZ\1
Te(NY) < M, (1—e )" [(BR(V))  + (Bf(V)) ] (54)
where (Ejnk(N *))S and (Efk(N *))A satisfy the error equation (20) with terminal conditions (53)

and no interpolation error term.

Since (E;fk(N *))S is independent of k, it follows from equation (20) (with zero interpolation
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error) that
* —rA 1 1
(Brv) g =2 [ (Bjie) g + (0= 9) (B77) (55)
for n = N* — 1,...,0. This is precisely the binomial tree expression for the European call option
with payoff (at 7" = N*At)
(5emVB) =51 as At 0. (56)

Let the value of this option (E8,O(N*))S be bounded by C(N*)g. (Eg,O(N*))A can be bounded
by noting that the payoff is A%, so that (E;ﬁk(N *))A (n < N*) is maximized at each timestep by

selecting

n+1 _ An+1 _ An+1 _ n+1 k
Ak+(j,k) = Ak+ceil(j,k) = Ak:+floor(j,k) = maX(SjH »An)
n+1 _ an+1 _ An+1 _ n+1 k
Ak—(j,kz) = Ak—ceil(j,k) = Ak—floor(j,k) = max(‘sjfl »An)
k* (4, k) = max(k, j +1)
k_(ja k) = ma‘X(kaj - 1) . (57)

This is simply an algebraic statement of the fact that the price of a fixed strike lookback call is
always greater than the price of a fixed strike Asian call (with the same strike). With definition
(57) in equation (20) we obtain

() y < [p (Bilaegm) o+ =2 (F) 58)

forn = N*—1,...,0. The right hand side of inequality (58) is precisely the binomial tree expression
for a lookback call with payoff A? at T* = N*At, where A is maximum value attained by the asset
(as defined in equation (57)). Note that there are no interpolation errors generated at any timestep
of the lookback (58). Let (Eg,O(N*))A be bounded by some constant C'(N*)4. Let

n]l\%x(|C’(N*)A| + |C(N*)S|) < Chas
N* < N; N—> o
N = T/At. (59)

Then, from equations (50) and (52) we have

‘ES,O‘ < NCpaaM, (1—e7#27)" . (60)
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Taking the limit in equation (60) as At — 0 with 7' = N At we obtain

q
8| < NOaaM, (1 - e07)" = TcmaquA Spm/ﬂ) | -

This estimate has the same form as that in equation (26), which was obtained by a more intuitive

argument.
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